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Super-Resolution Target Identification from Remotely
Sensed Images Using a Hopfield Neural Network

Andrew J. Tatem, Hugh G. Lewis, Peter M. Atkinson, and Mark S. Nixon

Abstract—Fuzzy classification techniques have been developed
recently to estimate the class composition of image pixels, but their
output provides no indication of how these classes are distributed
spatially within the instantaneous field of view represented by the
pixel. As such, while the accuracy of land cover target identification
has been improved using fuzzy classification, it remains for robust
techniques that provide better spatial representation of land cover
to be developed. Such techniques could provide more accurate land
cover metrics for determining social or environmental policy, for
example. The use of a Hopfield neural network to map the spa-
tial distribution of classes more reliably using prior information
of pixel composition determined from fuzzy classification was in-
vestigated. An approach was adopted that used the output from a
fuzzy classification to constrain a Hopfield neural network formu-
lated as an energy minimization tool. The network converges to a
minimum of an energy function, defined as a goal and several con-
straints. Extracting the spatial distribution of target class compo-
nents within each pixel was, therefore, formulated as a constraint
satisfaction problem with an optimal solution determined by the
minimum of the energy function. This energy minimum represents
a “best guess” map of the spatial distribution of class components
in each pixel. The technique was applied to both synthetic and sim-
ulated Landsat TM imagery, and the resultant maps provided an
accurate and improved representation of the land covers studied,
with root mean square errors (RMSEs) for Landsat imagery of the
order of 0.09 pixels in the new fine resolution image recorded. As
such, we show how, by using a Hopfield neural network, more accu-
rate measures of land cover targets can be obtained compared with
those determined using the proportion images alone. The Hopfield
neural network used in this way represents a simple, robust, and
efficient technique, and results suggest that it is a useful tool for
identifying land cover targets from remotely sensed imagery at the
subpixel scale.

Index Terms—Fuzzy image classification, Hopfield networks,
image resolution, land cover, optimization methods, super-resolu-
tion object detection.

I. INTRODUCTION

I NFORMATION on land cover features is required for man-
agement and understanding of the environment. Accurate

identification and extraction of target land cover features is a
vital procedure for many areas of work, e.g., military intelli-
gence, agricultural planning, and water resource management.
Remote sensing has the potential to provide this information.
Imagery derived from aircraft and satellite-mounted sensors
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have attributes that make remote sensing suitable for target
identification, and the short orbit times of many sensors (of the
order of 3 h to 16 days) means a temporal sequence of images
can be acquired, aiding the monitoring of specific features.
Also, the large spatial coverage that can be obtained with im-
agery from satellite sensors (e.g., of the order of 110 km )
provides an advantage over costly and time-consuming ground
survey. Many remote sensors measure ground reflectance at
a fine spectral resolution and for most target identification
applications, this provides sufficient information to identify
accurately features of interest. Finally, remote sensing has the
potential to provide land cover target information at a variety
of scales (e.g., from 1 m to 1 km). These aspects make
target identification from remotely sensed imagery attractive.
However, there exist several practical limitations.

Perhaps the biggest drawback of target identification from re-
motely sensed images relates to that of scale. Spatial scale is a
key factor in the interpretation of remotely sensed land cover
data [1], and the information obtainable from such imagery can
vary greatly depending on the spatial variation in the observed
land cover and the specific terrain characteristics under consid-
eration. There also exist practical limits to the level of detail that
can be identified by each remote sensor and these limits are de-
fined by the resolutions of the remote sensing system. One of
the commonest measures of image characteristic used is spa-
tial resolution, which determines the level of spatial detail de-
picted in an image. This measure is a function of the instan-
taneous field-of-view (IFOV) of a sensor, defined as the cone
angle within which incident energy is focused on the detec-
tors [2]. In turn, the IFOV leads to a ground resolution element
(GRE) on the surface of the Earth (this GRE should not be con-
fused with the pixel, which is the output product to which a ra-
diance value is assigned).

The pixel represents the smallest element of a digital image
and has, therefore, traditionally represented a limit to the spa-
tial detail obtainable in target feature extractions from remotely
sensed imagery. Within remotely sensed images, a significant
proportion of pixels is often of mixed land cover class composi-
tion, and their presence can adversely affect the performance of
image analysis operations [3]. The solution to the mixed pixel
problem typically centres on fuzzy classification. Subpixel class
composition is estimated through the use of techniques such
as spectral mixture modeling [4], multilayer perceptrons [5],
nearest neighbor classifiers [6], and support vector machines
[7]. These approaches allow proportions of each pixel to be par-
titioned between classes, and the output of these techniques gen-
erally takes the form of a set of proportion images, each dis-
playing the proportion of a certain class within each pixel. In
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most cases, this results in a more appropriate and informative
representation of targets than that produced using a hard, one
class per-pixel classification. However, while the class compo-
sition of every pixel is estimated, the spatial distribution of these
class components within the pixel remains unknown.

The work in this paper, along with other work in the litera-
ture, demonstrates that it is possible to identify land cover tar-
gets at the subpixel scale (super-resolution). Fisher [3] argues
that within remotely sensed images, the pixel can only be subdi-
vided by creating repetitive information and Fig. 1 demonstrates
this argument, with the spatial resolution of a 22 pixel image
containing four classes (A, B, C and D) being increased to a 4

4 pixel image. The finer resolution means that all new pixels
fit within the old pixels and take the same value. However, the
technique described in this paper suggests that the use of prior
information allows greater precision. Such a land cover target
identification technique potentially leads to several useful ap-
plications.

1) To identify land cover targets at a fine spatial reso-
lution from any remote sensing system.While sensors
on satellites such as IKONOS (up to 1 m spatial resolu-
tion) can provide sufficient spatial detail for accurate land
cover target extraction, the cost and availability of such
data may prohibit its use in many areas of work. By ap-
plying the developed technique to cheaper, more readily
available data, for example SPOT HRV (up to 10 m spatial
resolution) data, similar levels of accuracy for land cover
target extraction might be achieved.

2) To apply such a technique to obtain more accurate
land cover metrics from remotely sensed imagery.
By increasing the spatial resolution of land cover target
maps derived from medium-resolution sensors such as
the Landsat thematic mapper (TM) or the SPOT high res-
olution visible sensor, the potential exists to, for example,
more accurately locate field boundaries or define areas
of semi-natural vegetation. Such information would be
of use in determining environmental or social policy, for
example.

3) For fine detail urban target identification. With the ad-
vent of satellites such as IKONOS and Orbview, and the
more common use of airborne remote sensing, imagery of
spatial resolution less than 5 m is becoming widely avail-
able. Application of a technique to produce super-reso-
lution maps of land cover targets from these source data
would allow urban land cover target extraction and map-
ping of an unprecedented fine detail from remotely sensed
imagery.

4) To simulate fine spatial resolution imagery from im-
agery of a coarser spatial resolution.Such an approach
could aid decision making on future choices of imagery.

A. Previous Work

Only recently has research been undertaken on the subject of
identifying land cover targets from remotely sensed images at
the subpixel scale. Schneider [8] introduced a knowledge-based
analysis technique for the automatic localization of field bound-
aries with subpixel accuracy. The technique relies on knowledge

Fig. 1. Example of Fisher’s argument.

of straight boundary features within Landsat TM scenes, and
serves as a preprocessing step prior to automatic pixel-by-pixel
land cover classification. With knowledge of pure pixel values
either side of a boundary, a model is defined for each 3 by 3
block of pixels, the model then uses parameters such as pure
pixel values, boundary angle, and distance of boundary from
the centre pixel. Using least squares adjustment, the most ap-
propriate parameters are chosen to locate a subpixel boundary
that divides mixed pixels into their respective pure components.
Improvements on this technique were described in [9] which
used a neural network to speed up processing and [10], [11] and
[12] put forward algorithmic improvements, along with the ad-
dition of a vector segmentation step. The technique represents
a successful, automated and simplistic pre-processing step for
increasing the spatial resolution of satellite imagery. However,
its application is limited to features with straight boundaries at
a certain spatial resolution and the models used still have prob-
lems resolving image pixels containing more than two classes
[13].

Flack et al. [14] also concentrated on super-resolution target
identification at the borders of agricultural fields, where pixels
of mixed class composition occur. Edge detection and segmen-
tation techniques were used to identify field boundaries and the
Hough transform [15] was applied to identify the straight, sub-
pixel boundaries. These vector boundaries were superimposed
on a subsampled version of the image, and the mixed pixels were
reassigned each side of the boundaries. By altering the image
subsampling, the degree to which the spatial resolution was in-
creased could be controlled. However, no validation or further
work was carried out, and so the success of the technique re-
mains unclear.

Aplin et al. [16] also made use of subpixel scale vector
boundary information, along with fine resolution satellite
sensor imagery to identify land cover targets. By utilizing Ord-
nance Survey land line vector data and undertaking per-field
rather than the traditional per-pixel land cover classification,
target identification at a subpixel scale was demonstrated. As-
sessments suggested that the per-field classification technique
was generally more accurate than the per-pixel classification.
However, in most cases around the world, accurate vector data
sets with which to apply the approach will rarely be available.

The techniques described so far are based on direct pro-
cessing of the raw imagery. Other work has focused on using
a preprocessing step where fuzzy classification of the imagery
is undertaken, and an attempt to map the location of class
components within the pixels is made.
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Fig. 2. Hopfield neural network as an analog circuit. The black circles at the intersections represent resistive connections (T s) between outputs and inputs.
Connections between inverted outputs and inputs represent negative connections.

Atkinson [17] used an assumption of spatial order within and
between pixels to map the location within each pixel of the pro-
portions output from a fuzzy classification. Spatial dependence
is the concept whereby observations close together tend to be
more alike than those further apart [18], and this assumption
proved to be valid for recreating the spatial distribution and areal
coverage of the land cover. The algorithm produced a certain
degree of success for semi-natural land cover targets. However,
the simple technique suffered from problems due to the com-
plex land cover mixing in the data used.

Unlike Atkinson [17], Foody [19] made use of additional
information in the form of a second higher spatial resolution
image. The author used it in a simple regression based approach
to sharpen the output of a fuzzy classification of a lower spatial
resolution image, producing a subpixel land cover map. The re-
sults produced a visually improved representation of the lake
being studied, and this was further improved by fitting class
membership contours, lessening the blocky nature of the rep-
resentation. However, the areal extent of the lake was not main-
tained using the contouring technique and in addition, the author
noted that it is difficult to obtain two coincident images of dif-
fering spatial resolution.

B. Paper Structure

This paper describes an approach that uses the output from a
fuzzy classification technique to constrain a Hopfield neural net-
work formulated as an energy minimization tool. In Section II,
an overview of the workings and previous applications of the
Hopfield neural network will be given. Section III introduces
the modifications made to apply the Hopfield network to the
problem of land cover target identification and mapping at the
subpixel scale, as well as methods used to understand and im-
prove the processes at work. In Section IV, results of applying
the approach to synthetic imagery are used to explain and under-
stand the performance of the network. Section V illustrates the
results of applying the technique to simulated remotely sensed
imagery, and Section VI provides analysis and explanation of
these results. Finally, Section VII provides a summary and con-
clusion of the findings of the research.

II. HOPFIELD NEURAL NETWORK

The Hopfield neural network is a fully connected recurrent
network and can be implemented physically by interconnecting
a set of resistors and amplifiers with symmetrical outputs and
external bias current sources (Fig. 2). The mathematical model
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describing the behavior of such an array of electronic compo-
nents can be derived from Kirchoff’s current law [20], [21]

(1)

where

(2)

is the resistance between the output of amplifierand input
of amplifier, is the number of amplifiers, 0 is the
capacitance of amplifier, is the internal voltage of amplifier
, and is the external bias on amplifier. is the conductance

from amplifier to amplifier , where

(3)

and is the output voltage of amplifier. is the
nonlinear activation function, defined as

(4)

where determines the steepness of the function.
Hopfield [22] shows how (1) can be written in a neural con-

text for ease of interpretation, where, in this case the nonlinear
amplifiers correspond to neurons

(5)

where
time constant for neuron;
total weighted input at neuron ;
number of neurons in the network;
neural output which is a function of the input;
external bias on neuron;
weight from neuron to neuron .

which corresponds to the conductance in (1).
The set of differential equations described so far defines the

time evolution of the network. Thus, from a set of initial neuron
outputs, the state of the network varies with time until con-
vergence to a stable state, where neuron output stops varying
with time. Weights and biases determine the neural outputs at
this stable state.

Hopfield [22] showed that using symmetric weights with no
self connection, i.e., and 0 is sufficient to guar-
antee convergence to such a stable state. Therefore, indepen-
dent of its initial status, a Hopfield neural network will always
reach an equilibrium state where no output variation occurs and
it was also demonstrated that for high values of the gain,, the
activation function (4) approaches a step function. The

stable states of the network consequently correspond to the local
minima of the following energy function [21]:

(6)

where is the energy calculated over the whole network. For
neurons where 0 and with high values of , the last term
becomes small and can be neglected, such that

(7)

From (5) and (7), the equation describing the dynamics, i.e., the
rate of change of neuron input of the Hopfield network can be
written as

(8)

or

(9)

The Hopfield network can therefore be used for energy mini-
mization problems if the weights and biases are arranged such
that they describe an energy function, with the minimum of en-
ergy occurring at the stable state of the network [20]. By speci-
fying different values for the weights and biases, any hypothet-
ical energy minimization problem can be simulated.

Many real world problems can be formulated as the mini-
mization of an energy function, and this is central to the design
of a Hopfield neural network formulated as an optimization tool.
The energy function used must represent the problem correctly,
and reach a minimum at the solution of the problem. Once this
function is designed, the weights and biases can be set, and the
network is built around these.

Most real world problems contain built-in constraints in ad-
dition to a goal that must be considered. These constraints form
a cost added to the objective within the energy function, which
can then be defined as

Energy Goal Constraints (10)

If the energy function is arranged in this particular way, the con-
straints become part of the minimization process, which means
that the constraints do not need to be treated separately, just
weighted by their importance to the problem. The Hopfield net-
work process then finds the minimum energy that represents a
compromise between the goal and the constraints.

The Hopfield network has been used within the field of re-
mote sensing for ice mapping, cloud motion, and ocean current
tracking [23], [24]. These demonstrate the utility of the Hop-
field network for feature tracking, the basic principle of which
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Fig. 3. (a) 2� 2 pixel image,p andq represent the image dimensions,x andy represent the image pixel coordinates. (b) Representation of the Hopfield network
for the image in (a).i andj represent the neuron coordinates (int = integer value).

is to match common features in a sequence of images. In addi-
tion, more general feature matching problems have been tackled
using a Hopfield network [25]–[27], as well as applications such
as recognition or classification [28], [29].

Hopfield and Tank [20] also used the network’s energy
minimization capability and demonstrated solutions to com-
plex combinatorial problems such as the traveling salesman
problem. Hopfield and Tank formulated the problem as the
minimization of an energy function, and for a ten-city problem,
achieved convergence to a valid tour with an 80% success rate.
Later, work in [30] and [31] eliminated the presence of local
minima in the energy functions where constraints were not
satisfied by setting various constants in a certain arrangement,
and this guaranteed convergence to a valid solution.

III. U SING THE HOPFIELD NEURAL NETWORK FORTARGET

IDENTIFICATION AT THE SUBPIXEL SCALE

The input data for the research described in this paper were
derived from aerial photography, whereby targets were identi-
fied and extracted accurately from the photographs by hand,
using field survey for verification. By degrading these verifi-
cation images of clearly defined land cover targets to the spatial
resolution of Landsat TM data using a square mean filter, ac-
curate class proportion estimates were obtained for each pixel.
These provided the input to the network, but in practice, this
input could come from automated fuzzy classification methods
such as the multilayer perceptron. However, for the research in
this paper, the aim was to understand and test the capabilities of
the Hopfield network technique, so any error introduced to the
input data by an automated fuzzy classification method would
be detrimental to this aim.

Mapping the spatial distribution of the class components
within each pixel was formulated as a constraint satisfaction
problem, and an optimal solution to this problem was de-
termined by the minimum of an energy function coded into
a Hopfield neural network. The network architecture was
arranged to represent a finer spatial resolution image, and
constraints within the energy function determined the spatial
layout of binary neuron activations within this arrangement.
The Hopfield neural network was used to find the minimum of
the energy function, which corresponded to a bipolar map of
class components within each pixel and this method is outlined
in detail in the following sections.

A. Network Architecture

In many papers, on the use of Hopfield neural networks
for optimization, the spatial relations between neurons are
considered irrelevant. However, for this paper, the nature of
the problem and the proposed solution requires the network
neurons to be considered as being arranged in a regular grid,
with positioning within this grid being of significance to the
network design for this task (Fig. 3). Therefore, neurons will be
referred to by coordinate notation, for example, neuron
refers to a neuron in row and column of the grid and has
an input voltage of and an output voltage of . The zoom
factor determines the increase in spatial resolution from the
original satellite sensor image to the new high-resolution image
and after convergence to a stable state, the neurons represent
a bipolar classification of the land cover targetat the higher
spatial resolution. Fig. 3 shows the notation used in this paper
and how coordinates are transformed linearly from the image
space to the network neuron space, for example, the pixel ()
in the satellite image is represented by neurons centred
at coordinates [ int int ], whereint is the
integer value.

B. Network Initialization

Each neuron is initialized with a starting value , and two
strategies for initializing the network exist.

1) Each set of neurons representing a pixel in the low-res-
olution image is identified and a proportion of this set
is randomly given an output of 0.55. This pro-
portion is equal to the actual area proportion of the class
within the image pixel and the remaining neurons of the
set are given an output of 0.45. The values of 0.55
and 0.45 were chosen as the initial on and off outputs to
speed up processing time and avoid unnecessary bias to-
ward certain energy minimization paths. In [20] and many
other papers related to the use of the Hopfield network
for solving the traveling salesman problem, neurons are
initialized with a random value close to the central state
value (0.5). This choice is justified by the fact that no ini-
tial preference should be given to any path. The small dif-
ference between the two values also enables the network
to “push” neuron outputs to 1 or 0 to represent a bipolar
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classification faster than if, for example, a neuron was ini-
tially given an output of 0 and had to be pushed to 1 to
produce an optimal solution.

2) The completely random initialization of neuron outputs
within the range [0.45, 0.55]. This allows perfor-
mance comparison with the class proportion-defined ini-
tialization, and does not introduce any possible unneces-
sary bias into the result, which may occur using 1), should
estimated class proportions be inaccurate.

C. Implementation

When implemented on a digital computer, sets of biases and
weights do not need to be determined, as the network is simu-
lated via its equation of motion (9) using the Euler method

(11)

where is the time step of the iterative method and the function
is measured using . Equation (8) shows the

correspondence between the two functions, and is de-
termined using the goals and constraint of the super-resolution
target identification task. Equation (11) is run until

, where is a sufficiently small value, and
the equations of motion were defined as

(12)

Each component of (12) is described in the subsequent sections.

D. The Energy Function

The goal and constraints of the subpixel mapping task were
defined such that the network energy function was

(13)

where
and constants weighting the various energy pa-

rameters;
and output values for neuron of the two

objective (or goal) functions (see Sec-
tion III-D1), and these correspond to the
quadratic term in (5);
output value for neuron of the propor-
tion constraint (see Section III-D1), which
corresponds to the linear term in (7).

1) Goal Functions: The goal (objective) functions were
based upon an assumption of spatial order [18]. Almost all
natural and human-made phenomena exhibit spatial continuity
at some scale, such that points near to each other are more alike
than those further apart, and the degree of dissimilarity depends
on both the environment and the nature of our observations
[32]. These observations can be the pixels in remotely sensed
images, and the assumption of spatial order can be used to infer
relationships between these pixels. By focusing within this
research on discrete land cover targets, which all exhibit spatial
order to some degree, the assumption of spatial order becomes

particularly relevant. Therefore, by devising simple measures
of spatial order and incorporating each as objective functions
within the Hopfield network, to map the spatial distribution of
class components within a pixel, this real world phenomenon
was modeled.

In this case, the aim of the goal was to make the output of
a neuron similar to that of its neighboring neurons. Therefore,
if the output of neuron ( ) was similar to the average output
of the eight neighboring neurons, then a low energy is given.
If it is different, then this represents an undesirable situation in
terms of the aim of spatial order, and a high energy is produced.
However, to produce a bipolar image, a function that just drives
a neuron output to be similar to the surrounding neuron output
is insufficient. Consequently, two objective functions were in-
troduced, one to increase neuron output toward a value of 1 and
another to decrease neuron output to 0, each dependent on the
average output of the eight neighboring neurons.

The first function aimed to increase the output of the centre
neuron to 1 if the average output of the surrounding eight
neurons was greater than 0.5

(14)

where is a gain which controls the steepness of thetanhfunc-
tion. The tanh function controls the effect of the neighboring
neurons. If the averaged output of the neighboring neurons is
less than 0.5, then (14) evaluates to 0, and the function has no ef-
fect on the energy function (13). If the averaged output is greater
than 0.5, (14) evaluates to 1, and the function controls
the magnitude of the negative gradient output, with only
producing a zero gradient. A negative gradient is required to in-
crease neuron output.

The second goal function aimed to decrease the output of the
centre neuron to 0, given that the average output of
the surrounding eight neurons was

less than 0.5

(15)

This time, thetanh function evaluates to 0 if the averaged
output of the neighboring neurons is more than 0.5. If it is
less than 0.5, the function evaluates to 1 and the center neuron
output controls the magnitude of the positive gradient
output, with only 0 producing a zero gradient. A positive
gradient is required to decrease neuron output only when
1 and , or 0 and

0.5 is the energy gradient equal

to zero, and 0. This satisfies the objective of
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recreating spatial order, while also forcing neuron output to
either 1 or 0 to produce a bipolar image.

2) Proportion Constraint: While the goal functions provide
the enforcement of spatial order, the sole use of these func-
tions would result in all neuron outputs taking the values 1 or 0.
Therefore, a method of constraining the effect of those functions
to the correct image areas was required. The proportion con-
straint aimed at retaining the pixel class proportions output
from the fuzzy classification. This was achieved by adding in
the constraint that the total output from the set of neurons rep-
resenting each coarse resolution image pixel should be equal to
the predicted class proportion for that pixel. An area proportion
estimate representing the proportion of neurons with an output
of 0.55 or higher was calculated for all the neurons representing
pixel

Area Proportion Estimate

(16)

The use of thetanh function ensures that if a neuron output is
above 0.55, it is counted as having an output of 1 within the
estimation of class area per pixel. Below an output of 0.55, the
neuron is not counted within the estimation, which simplifies the
area proportion estimation procedure and ensures that neuron
output must exceed the random initial assignment output of 0.55
in order to be counted within the calculations.

To ensure that the class proportions per pixel output from the
fuzzy classification were maintained, the proportion target per
pixel was subtracted from the area proportion estimate (16)

(17)

If the area proportion estimate for pixel is lower than
the target area, a negative gradient is produced that corresponds
to an increase in neuron output to counteract this problem. An
overestimation of class area results in a positive gradient, pro-
ducing a decrease in neuron output. Only when the area propor-
tion estimate is identical to the target area proportion for each
pixel does a zero gradient occur, corresponding to 0 in
the energy function (13).

E. Technique Advantages

The approach described in this paper holds several strategic
advantages over those techniques mentioned in Section I-A.

• The option to choose the level of spatial resolution in-
crease. This is essential if simulation of higher spatial res-
olution imagery is the aim.

• The Hopfield network technique has the ability to simulate
any shape rather than being restricted to straight bound-
aries.

• The ease with which any additional information can be
incorporated within the framework to aid the target identi-
fication. Any prior information about the land cover target
depicted in the input imagery can be coded easily into the

Hopfield network as an extra constraint to increase accu-
racy.

• The design of the Hopfield network as an optimization
tool means that all constraints are satisfied simultaneously,
rather than employing a multistage operation.

• The effect that each one of these constraints has on
the final prediction image can be controlled simply via
weightings.

• While the incorporation of prior information on each land
cover target may increase map accuracy, the Hopfield net-
work technique has the benefit of being able to produce ac-
curate, super-resolution land cover target maps from just
class proportions. There is therefore no reliance on the
availability of finer spatial resolution imagery or land line
vector data.

IV. I NTERPRETATION

To understand and illustrate the workings of the Hopfield
network set up in this way, several synthetic images were
created. Traditionally, within the remote sensing community,
there has been a reluctance to use synthetic imagery, with the
application of techniques directly to real imagery being pre-
ferred. However, by breaking down the elements of real-world
imagery into simplified representations, understanding an
image processing technique and, in turn, making improvements
to it becomes easier.

The spatial order exhibited in all natural and human-made
landscapes is demonstrated by the fact that scenes within re-
motely sensed imagery are composed of various shapes, for ex-
ample, fields, roads and houses. The variety of the spatial order
of shapes can be characterized using compactness and circu-
larity. Compactness is defined as

(18)

where is the perimeter length, andis the area of the shape.
Circularity is defined as

(19)

where is the area of the shape, and max is the maximum dis-
tance from the shape centre to the perimeter. Fig. 4 shows eight,
56 56 pixel, synthetic images of differing shapes, with their
respective compactness and circularity measures. The shapes
represent extremes of spatial order as well as possible land
cover targets, for example (b) a road and (d) a field. In addition,
the shapes cover a wide range of compactness and circularity
values, providing a useful test of the generalization capabilities
of the Hopfield network. Fig. 5 shows each synthetic image
subsampled (using a 7 7 mean filter) to generate an 8 8
pixel image, which causes mixing of the two classes (white
and black) at the shape boundaries, producing eight proportion
images and imitating the effect of class mixing within remotely
sensed imagery. By using these eight proportion images as
inputs to the Hopfield network and setting a zoom factor of 7,
it should be possible to test the capabilities of the network by
approximating the eight images each was derived from.
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Fig. 4. Synthetic images and the features of the shapes depicted in each.

A. Setting the Constraint Weightings

To attempt to make predictions from the synthetic imagery,
optimum values of goal and constraint weightings and

should be used, as these constants are of great importance
because they control the direction of the optimization process.
For this paper, equal weightings of 1.0 were chosen and the
justification for this decision becomes clear with the following
examples.

Fig. 6(a) shows a hypothetical situation of an image pixel with
a zoom factor of five. It should be noted that for this example,
the effect of proportions within surrounding pixels is ignored for
simplicity, but in practice, the distribution of class proportions
within the surrounding pixels may have a significant effect on
the resulting neuron activations predicted.

The target class proportion is 8/25, and using the constrained
random initialization method, this is satisfied immediately (of
the 25 neurons, eight are activated). While the proportion con-
straint value is zero, the goal function values for this arrange-
ment and are large due to the isolated outputs of neurons
C and D. To minimize 1 and 2 and keep the target propor-
tion of 8/25, neurons A and B should have an increased output,
while the outputs of C and D should be reduced.

If the proportion constraint is strongly weighted, then the ar-
rangement of neural outputs displayed in Fig. 6(a) remains, as
is minimized, and the goal functions are not weighted strongly
enough to have an effect, i.e., .

If the goal functions are strongly weighted, then neurons A
and B display increased output, neurons C and D stay at a high
output, and other neurons around these also increase in output.
In such a case, the proportion constraint is not sufficiently strong
to maintain target class proportions, i.e., .

The effect of such biased weightings is demonstrated by run-
ning the network with a zoom factor of 7, for 10 000 iterations
on the synthetic image in Fig. 5(a). Fig. 6(b) demonstrates that
the predicted shape is too large and irregular without the pro-
portion constraint to control the positive activation effect of the
goal functions. Giving a large weight means that maintaining
target class proportions becomes a priority, and the goal func-
tions have little effect, such that the image in Fig. 6(c) is pro-
duced with a range of outputs.

By weighting the goal functions and proportion constraint
equally, i.e., , each affects and controls the other to
minimize the overall energy of the network, and this is demon-
strated in the following examples.

B. Predictive Ability and Limitations

The results of the Hopfield network predictions from the syn-
thetic imagery after 10 000 iterations, using values of 1.0 for

and are shown in Fig. 7. Three measures of accuracy
were calculated to assess the difference between each network
prediction and the target images. One of the simplest measures
of agreement between a set of known proportions, and a set of
estimated proportions is the area error proportion (AEP) per
class

AEP (20)

where is the total number of neurons. This statistic informs
about bias in the prediction, and as it is based solely on area
predictions, it represents a measure of the success of the pro-
portion constraint in maintaining the target proportions.
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Fig. 5. The 56� 56 pixel synthetic imagery shown in Fig. 3 next to each degraded to 8� 8 pixel images.

The correlation coefficient represents an alternative mea-
sure of the amount of association between a target and estimated
set of proportions

(21)

where is the covariance betweenand and , and are
the standard deviations ofand . This statistic informs about
the variance of the subpixel spatial distribution.

Another standard measure is the root mean square error
(RMSE) per class

RMSE (22)

which informs about the accuracy of the prediction (bias and
variance).

Fig. 7(a) demonstrates the predictive ability and generaliza-
tion capabilities of the Hopfield network used in this paper.
From the eight by eight pixel image in Fig. 4, the network is able
to re-create perfectly the circle it was derived from Fig. 4(a). For
a set area of pixels, the circle represents the maximum spatial
order attainable, and so by basing the goal functions around this
assumption, the network is able to perform well on such regular
shapes.

Fig. 6. (a) Hypothetical image pixel with a zoom factor of five imposed. The
pixel has been initialized with eight neurons of high output (white) and 17 with
low output (black), (b) Hopfield network prediction for the shape in Fig. 4(a),
givenk = 1:0; k = 1.0 andk = 0.1, (c) Hopfield network prediction for
the shape in Fig. 4(a), givenk = 0:1; k = 0.1, andk = 1.0.

Fig. 7(b) demonstrates the limitations that exist when class
proportions lie on the edge of images. The goal functions are
set up to rely on information from surrounding neurons and the
lack of such information for edge neurons, consequently means
that only the proportion constraint is satisfied, leading to the
poor predictive performance at the image edge.

Fig. 7(c) and (f) demonstrate good predictive ability in terms
of class area, resulting in low area error proportion estimates.
However, in both cases, the predicted shapes are slightly incor-
rect, resulting in a larger RMSE. This is due to certain edge for-
mations satisfying the goal functions and proportion constraint,
yet not being identical to the edges in the target image. The lack
of information available to recreate such edges correctly shows
that the problem is underconstrained.
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Fig. 7. Hopfield network predictions and accuracy assessment, given the 8� 8 pixel synthetic imagery shown in Fig. 5 as input.

Fig. 7(d) reflects this problem further because, as described
previously, the use of spatial order as the basis for the goal func-
tions, means that the network will almost always converge to
curved rather than sharp corners. Unless prior knowledge exists
on the type of shapes that the network is aiming to recreate, this
problem will remain.

Finally, Figs. 7(e), (g), and (h) demonstrate the ability of the
network to cope with more complex shapes. Comparison of,
for example, Figs. 7(e) with (f) shows identical area error pro-
portion values of 0.0003, demonstrating how the class area has
been predicted accurately. However, the correlation coefficients
and RMS errors are significantly different, representing the dif-
ficulty in predicting the spatial distribution of class components
for a complex shape such as that in Fig. 7(e). While the propor-
tion constraint has ensured that class area is maintained, without
prior information on the shape depicted in the input proportions,
the goal functions on their own are insufficient to recreate accu-
rately the spatial layout of the cross.

By repeating the network run on the more complex input pro-
portions in Figs. 7(e), (g), and (h), slightly different predictions
are produced each time. The use of an initialization technique
based on random neuron output, constrained by target class pro-
portions, means that starting neuron arrangements from certain
network runs produce lower energy than others. This results in
different paths of convergence along the energy surface of the
network, and in turn, for the more complex shapes, this results
in slightly different predictions each time, again indicating the
underconstrained nature of the problem.

1) Predictive Ability versus Shape Type:Relationships can
be drawn between the shape characteristics and the predictive
ability of the network. These have the potential to be used to
obtain a network performance prediction, providing that a cer-
tain degree of knowledge about the input land cover shapes is
known.

Figs. 8(a) and (b) show the relationship between the var-
ious shape characteristics and the RMSE. The plots suggest
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Fig. 7. (Continued.) Hopfield network predictions and accuracy assessment, given the 8� 8 pixel synthetic imagery shown in Fig. 5 as input.

improved performance with compactness and circularity max-
imized, which represents maximum spatial order and is due to
the design of the goal function, as mentioned previously.

2) Predictive Ability versus Zoom Factor:Fig. 9 demon-
strates the effect that different zoom factors have on the ability
of the Hopfield network to predict accurately the spatial layout
of various shapes. The network was run on the synthetic
imagery shown in Fig. 5, using zoom factors of 3, 5, 7, and 9,
and the averaged results were plotted.

Fig. 9(a) shows little difference between the area error pro-
portions for the different zoom factors, and this indicates that
the zoom factor has little effect on the accuracy with which the
areal coverage of the shape is predicted. However, Fig. 9(b) and
(c) demonstrates the effect that the zoom factor has on the pre-
cision of the prediction, because as the zoom factor is increased,
the accuracy with which the target shape is recreated increases.

The drawback is increased computational time and therefore, a
balance must be found between the spatial resolution and accu-
racy required, and computational cost.

3) Predictive Ability versus Iterations:Fig. 10 shows the
performance of the network over 10 000 iterations, after initial-
ization using the proportion-constrained method. The network
was run on the synthetic imagery shown in Fig. 5 using a zoom
factor of 7 and values of 1.0 for and , and the aver-
aged results were plotted. The three plots demonstrate how, from
the proportion-constrained random initialization, the major spa-
tial organization of neuron outputs is undertaken within the first
1000 iterations. Fig. 10(a) shows how after 2000 iterations, the
area error proportion reaches a stable value, reflecting the sat-
isfaction of the proportion constraint, and this leaves the goal
functions to be minimized, and reflected in the gradual conver-
gence to stable values of Figs. 10(b) and (c).
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Fig. 8. Scatterplots showing the variation in RMSE with (a) compactness and
(b) circularity.

C. Initialization

The use of just three weighting functions in determining the
energy of the Hopfield network described in this paper, enables
the energy surface to be plotted. This simplicity means that the
Hopfield network set up in this way is not only understandable,
but also computationally efficient, and by studying the shape
of such a surface, the workings of the network can be better
understood. Fig. 11(a) shows energy plots for three different
initializations of the network. The network was run on the 8
synthetic images shown in Fig. 5 using a zoom factor of 7, and
values of 1.0 for and , and the averaged results were
plotted.

i) Represents a typical energy path when the network is
initialized using image class proportions. The proportion
constraint is satisfied immediately, leaving the network
to minimize the total energy by altering neuron outputs
to reduce the overall goal value.

ii) Represents a typical energy path when the neurons are
initialized to random outputs, which are mostly less than
0.55, and the shape of the plot reflects the design of
the proportion constraint. The threshold built into the
proportion constraint means that, unless neuron output
is greater than 0.55, it is not counted as “on” in terms
of representing class proportions. The proportion con-
straint, therefore, has little effect until the goal functions
increase the output above 0.55 of enough neurons. At this
point, the goal functions are sufficiently satisfied that the
network minimizes the total energy by altering neuron
outputs to reduce the overall constraint function value.
In satisfying the constraint function, the dominant en-
ergy-minimizing force shifts toward the goal functions,

Fig. 9. Bar charts showing the relationship between zoom factor and (a)
average area error proportion, (b) average correlation coefficient, and (c)
average RMSE.

which again increase neuron output, until the network
finds a balance between the two functions, and converges
to an energy minimum.

iii) Represents a typical energy path when the neurons are
initialized to random values, which are mostly greater
than 0.55. This satisfies neither the goal nor the constraint
functions and the network, therefore, minimizes the total
energy by altering neuron outputs to find a compromise
between the functions.
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Fig. 10. Graphs showing the relationship between number of iterations and
(a) average area error proportion, (b) average correlation coefficient, and (c)
average RMSE.

Fig. 11(b) displays a close-up of the convergence of the three
energy plots in Fig. 11(a) and shows the three plots reaching
approximately the same point, demonstrating the effectiveness
of the network at converging to similar energy minima, given
any initialization. Of the three runs depicted in Fig. 11(a), (i)
reached the energy minimum quickest (approximately 5000 it-
erations), followed by (ii) (approximately 8000 iterations), then
(iii) (approximately 9000 iterations).

D. Performance Predictions

This section has revealed several features about the workings
of the Hopfield network that can be used to generate predictions
on its performance.

• The technique will produce a more accurate prediction if
the shape depicted in the input class proportions is com-
pact and circular.

• The technique will produce a more accurate prediction if
a high zoom factor is used.

• The technique will produce a more accurate prediction if
the network is allowed to run for at least 1000 iterations.

Fig. 11. (a) Hopfield network energy plots for three different initialization
settings: (i), (ii), and (iii) and b) close up of the convergence of the three plots
shown in (a).

• The network will converge to an accurate prediction in
fewer iterations if a proportion-constrained initialization
is used.

V. RESULTS

Results were produced using the Hopfield network run on a
P2-350 computer. The network was used to identify land cover
targets at the subpixel scale from simulated remotely sensed im-
agery. Landsat TM imagery was acquired over an agricultural
area east of Leicester (Stoughton), U.K., and seven wavebands
at a spatial resolution of 30 m. Within the imagery, attention
was focused on a wheat field and a section of airstrip, which
provided clearly defined targets with which to evaluate the tech-
nique.

Figs. 12 and 13 show the various data used to initialize the
network and evaluate the results produced. The verification data
shown in Figs. 12(b) and 13(b) were derived by field survey and
hand from the 0.5 m spatial resolution digital aerial photographs
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Fig. 12. (a) Digital aerial photograph (1 km grid overlaid), (b) verification data derived from aerial photography and ground survey, (c) 24� 24 pixel Landsat
TM band 4 image, and (d) wheat class proportions.

Fig. 13. (a) Digital aerial photograph (1 km grid overlaid), (b) Verification data derived from aerial photography and ground survey, (c) 24� 24 pixel Landsat
TM band 4 image, and (d) asphalt class proportions.

shown in Figs. 12(a) and 13(a). The class proportion estimates
shown in Figs. 12(d) and 13(d) were calculated from the verifi-
cation data using a square mean filter that avoided the potential
problems of incorporating error from the process of fuzzy clas-
sification of the imagery in Figs. 12(c) and 13(c).

The network was initialized using the wheat and asphalt pro-
portion images shown in Figs. 12(d) and 13(d). The propor-
tion-constrained initialization method was used with values for

and of 1.0, and zoom factors of 5 and 7 were used for
comparison.

After 10 000 iterations of the network at zoom factor 5
(approximately 10 min running time), prediction images were
produced [Figs. 14(a) and (c)] with spatial resolutions five
times higher than that of the input class proportion images in
Figs. 12(d) and 13(d). In addition, after 10 000 iterations of
the network at zoom factor 7 (approximately 20 min running
time), prediction images were produced [Figs. 14(b) and (d)]
with spatial resolutions seven times finer than that of the input
class proportion images in Figs. 12(d) and 13(d). The same
measures of accuracy used in Section IV were calculated to
assess the difference between each network prediction and the
verification data.

VI. DISCUSSION

The high accuracies shown for the results in Fig. 14 indicate
that the Hopfield network has the potential to locate accurately
target class proportions within pixels from remotely sensed im-
agery.

The regularity and discrete nature of the wheat field enabled
the network to perform well on this particular land cover target.
In Fig. 14(a) and (b), the network maintained the areal coverage

of the field in its prediction, while accurately predicting the field
shape also, and in both cases, the nature of the goal functions
meant that the network predicted rounder corners than that of
the actual field. With a zoom factor of seven, there was a less
pronounced rounding effect due to the finer scale that the goal
functions were working on, resulting in greater accuracy. This
corner-rounding problem represents the under-constrained na-
ture of the problem, and prior information about the field shape
at its corners could potentially be built into the network as a con-
straint to avoid this problem.

The more complex shape of the airfield, as expected, pro-
duced results of lower accuracy than those for the wheat field.
However, the statistics in Figs. 14(c) and (d) demonstrate that for
both cases, the shape was predicted accurately, with an RMSE
as low as 0.094 pixels using a zoom factor of seven. As pre-
dicted in Section IV-D, more accurate results were again pro-
duced using the higher zoom factor. Again, both predictions pro-
duced rounder corners than those of the actual land cover target,
but by using a zoom factor of seven, the network was able to
model more accurately these corners than when it was run with
a zoom factor of 5.

VII. CONCLUSION

This study has shown that a Hopfield neural network can be
used to estimate the location of the class proportions within
pixels and produce a land cover target map of subpixel geo-
metric precision. The Hopfield network represents a robust, effi-
cient, and simple technique, and results from synthetic and sim-
ulated remotely sensed data show good performance, suggesting
that it has the potential to identify accurately land cover targets
at the subpixel scale.
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Fig. 14. Hopfield network predictions and accuracy assessment, given the class proportion images shown in Figs. 11 and 12 as input.

Further work could be undertaken, examining the per-
formance of the technique on imagery of differing spatial
resolutions to provide a measure of the applicability of the
technique to imagery from sensors other than the Landsat
TM. The findings from this paper suggest that the problems
that do exist with the Hopfield network technique are due to
the underconstrained nature of the problem, and additional
future work may focus on incorporating various forms of prior
information about the imagery to be processed as constraints
in the network.
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