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Super‑resolution time‑resolved 
imaging using computational 
sensor fusion
C. Callenberg1, A. Lyons2*, D. den Brok1, A. Fatima2, A. Turpin3, V. Zickus2, L. Machesky4, 
J. Whitelaw4, D. Faccio2* & M. B. Hullin1*

Imaging across both the full transverse spatial and temporal dimensions of a scene with high precision 
in all three coordinates is key to applications ranging from LIDAR to fluorescence lifetime imaging. 
However, compromises that sacrifice, for example, spatial resolution at the expense of temporal 
resolution are often required, in particular when the full 3‑dimensional data cube is required in short 
acquisition times. We introduce a sensor fusion approach that combines data having low‑spatial 
resolution but high temporal precision gathered with a single‑photon‑avalanche‑diode (SPAD) array 
with data that has high spatial but no temporal resolution, such as that acquired with a standard 
CMOS camera. Our method, based on blurring the image on the SPAD array and computational sensor 
fusion, reconstructs time‑resolved images at significantly higher spatial resolution than the SPAD 
input, upsampling numerical data by a factor 12× 12 , and demonstrating up to 4× 4 upsampling 
of experimental data. We demonstrate the technique for both LIDAR applications and FLIM of 
fluorescent cancer cells. This technique paves the way to high spatial resolution SPAD imaging or, 
equivalently, FLIM imaging with conventional microscopes at frame rates accelerated by more than an 
order of magnitude.

Conventional cameras produce images that show static illumination in a depicted scene, because exposure 
times are usually much longer than the photon transit time. Time-of-Flight (ToF) imaging systems, however, 
reach temporal resolutions of picoseconds or less and can therefore record the propagation of light in the scene. 
Obtaining both a high temporal and spatial resolution is particularly important for ToF imaging systems, which 
are o�en limited by the resolution in the time domain. A simple example are LIDAR-based systems where the 
measurement resolution in the temporal domain directly equates to the spatial depth resolution. In more complex 
applications, such as non-line-of-sight imaging (NLOS), the resolution of the ToF of the photons is critical for 
determining an object’s position in all three spatial  dimensions1–4. Access to high-resolution temporal informa-
tion is also pertinent to challenges such as imaging through complex  media5–7, and �uorescence lifetime imaging 
(FLIM), where the �uorophores of a target object are identi�ed from their �uorescence  lifetimes8.

�e challenge of time resolved imaging amounts to sampling a spatio-temporal impulse response I(x, y, t), 
where x and y are image coordinates and t is the delay between emission and arrival of the light. Since the �rst 
capture of such data by  Abramson9, di�erent technologies and methods for recording light-in-�ight images 
have emerged. Streak cameras accelerate and de�ect photoelectrons in order to separate them depending on 
their time of production. �is allows very high temporal resolution but is limited to imaging one line at a time. 
�erefore, for two-dimensional imaging, it requires either scanning of the  scene10 (which makes data acquisition 
time-costly and rules out single-shot imaging) or further modi�cation of the set-up, like adding a digital micro-
mirror device (DMD) in order to encode the signal  spatially11,12. To-date streak cameras provide the optimum 
temporal resolution with commercially available systems claiming resolutions of ∼100 fs, but are also the most 
expensive of the available technologies.

Intensi�ed charge-coupled devices (ICCD) provide high pixel counts and have recently been shown to be able 
to reach down to 10 ps temporal resolution for suitably prepared  scenes13. �is is, however, limited by various 
restrictions on the type of measured data, and requires bulky and costly hardware.
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A cheap alternative is the use of photonic mixer devices (PMD)14, which are based on intensity modulated 
illumination and a special sensor pixel design that allows measuring the phase shi� between outgoing and 
incoming illumination. �ey are generally used as ToF sensors for depth imaging and provide high spatial, but 
low temporal resolution.

Arrays of single-photon avalanche diodes (SPAD) are rapidly becoming a leading technology for high tempo-
ral resolution imaging. �is is due to the ability to manufacture time-correlated single-photon counting (TCSPC) 
electronics for each individual pixel directly onto the sensor chip allowing for timing resolutions on the order 
of tens of  picoseconds15,16. Currently SPAD arrays su�er from a relatively low pixel count and thus by them-
selves cannot be employed for many of the above imaging applications. Morimoto et al. recently demonstrated 
a ground-breaking 1 Megapixel SPAD array with timing capabilities shown in a LIDAR type  experiment17. �e 
sensor lacked TCSPC electronics however, instead gaining temporal information by scanning an electronic gate 
and identifying the rising edge of the response, this approach is o�en unsuitable for high-resolution FLIM due 
to the low photon e�ciency.

In this paper, we present a method to provide three-dimensional images with both high spatial and temporal 
resolution. In our approach, we fuse the time-resolved image of a SPAD detector, which is low in spatial resolu-
tion, with the image of a conventional CCD sensor which integrates the signal over the whole acquisition time 
but provides higher spatial resolution. Our method uses an optical blur to ensure that temporal information from 
the entire �eld of view is captured by the SPAD detector despite the low �ll-factor typical of SPAD arrays with 
in-built TCSPC electronics. In this respect the approach is similar to other methods that exploit blur for increased 
dynamic range, image restoration methods, or to otherwise avoid a loss of critical  information18,19. Point spread 
functions optimized by arti�cial neural networks have also been proposed, using the neural network for the 
image reconstruction and the SPAD data  alone20. �e combination of sensor fusion and optical blur negates the 
heavy under-sampling of the scene caused by the pixel geometry of the SPAD array at the expense of sacri�cing 
a percentage of the collected light intensity for the higher resolution sensor (up to 50% in the work shown here). 
By using convex optimization, a data cube with the temporal resolution of the SPAD detector and the spatial 
resolution of the CCD camera is reconstructed. Furthermore, our approach is capable of compensating sensor 
�aws like dead pixels in the SPAD array. We �rst verify our method with numerical simulations and assess its 
performance—details of this can be found in the Supplementary Information. We then demonstrate the method 
practically on two di�erent temporal imaging schemes: namely multipath LIDAR and FLIM.

Our method upsamples the whole three-dimensional light-in-�ight image. Similar to the works of O’Toole21 
and  Lindell22, our optimization acts on the data cube as a whole, not on a reduction to a two-dimensional depth 
map. �is feature is key for applications where simple interpolation methods will yield an incorrect result, such 
as micron-scale changes in the �orescence lifetime arising from the structure of single cells in FLIM. To test the 
robustness of our approach, we also demonstrate its potential using a separate publicly accessible dataset acquired 
with a similar experimental  con�guration23 (see Supplementary Information). Our method retains high quality 
image reconstructions even in the presence of ambient light.

Computational fusion of sensor data
�e goal of our method is to construct a �nal dataset with the spatial resolution of a high pixel density CCD 
sensor and the temporal resolution of a SPAD array. For a SPAD dataset of spatial resolution m × n pixels and τ 
timebins, and a high pixel density dataset of M × N pixels, this results in a �nal datacube, iHR(x, y, t) , of dimen-
sions M × N × τ.

SPAD arrays typically su�er from poor �ll-factor (around 1% for the array in this work, see “Methods”), this 
results in a loss of information from light falling outside of the active areas. �e image, therefore, needs to be 
optically �ltered to prevent aliasing. We achieve this by moving the sensor slightly out of focus, such that the 
light from each point in the scene reaches at least one pixel’s active area and we therefore capture the temporal 
information from each point within the scene. �e resulting blur is then accounted for during the data analysis 
(see Supplementary Information) such that the algorithm retrieves the full iHR(x, y, t) with the correct temporal 
information at each spatial coordinate.

�e forward model is designed to encapsulate these features, we represent this with a matrix:

where B performs a blurring operation to account for the defocusing, S is a mask accounting for the sparse 
sampling of the SPAD array, and P performs a spatial downsizing of the higher M × N dimensions to the lower 
m × n dimensions (full details in Supplementary Information). �e �nal SPAD camera measurement, the low 
spatial-resolution time-of-�ight image d, is then given by:

with Aτ applying A to all time bins and both iHR and d being in vector form. �e high-resolution transient image, 
iHR , is reconstructed via

where T performs a temporal integration over the data cube, c is the vectorized CCD image and Kh and Kl 
perform a spatial integration over the high resolution and low resolution data cube, respectively. �e third 

(1)A = P · S · B

(2)d = Aτ · iHR

(3)

iHR = argmin
i∈RMNτ

�Aτ i − d�2 + α�Ti − c�2

+ β�Khi − Kld�2 + γ �i�1 + δ�∇2Di�1

subject to i ≥ 0
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term enforces a similarity between the temporal distribution of photon counts in the measured data and in the 
reconstruction, this proved to be an essential prior in the reconstruction. �e fourth term promotes sparsity 
of the reconstructed data cube and, while not a�ecting the quality of the result signi�cantly, it ensures stability 
of the reconstruction. �e last term is a 2-dimensional total variation prior that acts on the spatial dimensions 
of each frame, which we found to signi�cantly improve the results for scenes with large amounts of multiply 
scattered light.

�e relative weights α , β , γ and δ have been tuned to yield the best results (see Numerical Simulations in 
Supplementary). �e optimization is performed using CVX 2.124,25 and Gurobi 7.5226/MOSEK.

Experimental results: LIDAR
We verify our method with data from a LIDAR scene depicted in Fig. 1 and described in detail in the “Methods” 
section. �e raw data is �rst denoised and adjusted as described in the Supplementary Information. �e high 
spatial resolution data cube is then reconstructed according to Eq. (3). �e parameters used for this and all 
other data shown in this paper and the Supplementary Information are listed in Table 1. To model the blur of 
the defocused image on the SPAD sensor, a standard deviation of 6 CCD pixel widths was used. �is value was 
found empirically as the one yielding the best reconstruction results and its accordance with the data was veri�ed 
using in- and out-of-focus data acquisitions.

�e reconstruction results for di�erent scenes are shown in Fig. 2. Column (a) and (b) show the raw meas-
urements, (c) shows the reconstructed data cubes. One can see that high-frequency textures that are well visible 
in the CCD image but not in the SPAD measurements have been transferred into the light-in-�ight image. 
Surfaces are much smoother, less noisy, and sharpened in all dimensions. (Black lines visible in the images are 
due to temporal quantisation and rendition of the data (the temporal axis is shown with a factor 3 in order to 
keep aspect ratios consistent)).

In addition to the reconstructed data cubes, simple depth images of the raw SPAD measurement and recon-
structed scene are shown in column (d), where the time bin with the highest photon count per spatial pixel was 
used as the depth value. Here, it is well visible that dead pixels from the SPAD array have been �lled in, even 
though they have not been masked or otherwise speci�cally addressed before or during the reconstruction. �is 
is possible because due to the blur, information from the dead regions is not lost, but spread over and mixed 
into surrounding pixels and can therefore be reconstructed. Noise has also been reduced in comparison to the 
raw SPAD data. In general, the method remains robust to noise levels expected in a realistic experiment. A full 
discussion of this is presented in the Supplementary Material.

�e raw data of our SPAD measurements, as well as the reconstructed high resolution light-in-�ight images 
rendered as videos showing the light propagating through the scene, can be found in the Supplementary Infor-
mation, along with run times for all datasets.

Figure 1.  (a) Schematic sketch of the imaging set-up for the LIDAR experiment: �e scene is uniformly 
illuminated by pulsed laser from the same direction as the camera setup. Light is collected and then imaged onto 
both the high-resolution CCD array and the low-resolution SPAD array by the same objective lens. �e SPAD 
sensor is placed slightly out of the focal plane to ensure the temporal information from each point within the 
scene spreads across multiple pixels. (b) E�ect of the optical blur: With the low �ll-factor sensor in focus such 
that the imaging system’s point-spread-function PSF (coloured circles) is smaller than the pixel pitch, regions of 
the scene are not collected by the pixels (grey areas). Shi�ing the sensor out of the focal plane blurs the PSF and 
ensures collection of the temporal information from each point in the scene.
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Experimental results: FLIM
We next show the potential of our method for FLIM using a commercial microscope, the details of which 
are described in the “Methods” section. �e sample consists of ovarian cancer cells expressing Raichu–Rac 
clover–mCherry27,28 and images are acquired using a single point scanning approach in a 256 × 256 grid. �e 
temporal information is acquired with TCSPC in 75 timebins of 160 ps duration. From this data we build a lower 
resolution dataset that emulates the measurement that would be performed by the SPAD array. We apply our 

Figure 2.  (a) CCD image, (b) 32 × 32 × t SPAD measurement, (c) 96 × 96 × t reconstructed light-in-�ight 
image and (d) depth images extracted from the SPAD measurement (top) and the reconstruction (bottom) for 
di�erent scenes. (a,b) are used as the inputs for our algorithm. From top to bottom the measurements show a 
gol�all, a plastic cup �lled with water in front of a slanted wall, detail of a basketball, three cardboard letters 
with a few centimetres distance between them in front of a slanted wall, three cardboard steps. Black areas in 
the depth images correspond to pixels with very low signal-to-noise ratio that therefore contain no meaningful 
depth information.
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forward model operator, Aτ , following Eq. (2) with a downsampling ratio of 4 × 4 . �is results in a 64 × 64× 75 
temporally resolved dataset that forms the low-resolution input to our algorithm, d. For the high spatial reso-
lution dataset, c, we take the total time-integrated photon counts from the full 256 × 256 pixel array to form 
an intensity image. �e lifetimes are estimated by �tting a single exponential decay model to both d and iHR , 
bounded between 1 ns and 7 ns using prior knowledge of the lifetime distribution. �e algorithm input images, 
along with the resulting lifetime image, are depicted in Fig. 3. We test the validity of our approach by comparing 
the distribution of the measured lifetimes with those obtained with the algorithm, shown in Fig. 3e. �ere is a 
high level of �delity to the ground truth data with the overall shape of the ground truth distribution. Artefacts in 
the reconstructed image can be observed in the lower right corner, these are most likely due to blurring opera-
tor, B, incorporating pixels that lay outside of the 256 × 256 pixel �eld-of-view, thus including areas which were 
physically measured. We note that this situation does not exist in when an optical blur is included in the setup, 
as opposed to the synthetic one introduced here. �e algorithm mean lifetime of the reconstructed image was 
2.18 ns with a standard deviation 0.41 ns, in close agreement with the ground truth lifetimes of ( 2.14 ± 0.25 ) 
ns. �e same approach could also be used to improve the acquisition speed of point scanning imaging systems 
such as the one used to acquire the data in Fig. 3. Our results show a reduction in the number of time-resolved 
measurements (spatial points) by at least a factor of 16 can be achieved with the amount of time needed to acquire 
the high resolution image being small in comparison. We note, however, that substantial time is still required 
for the reconstruction post-measurement. Whilst the temporal information within a LIDAR scene can o�en be 
readily approximated with a linear interpolation, this is rarely the case for more complex systems such as FLIM 
where there may be non-trivial sub-micron changes in the lifetime. Our method can, however, account for these 
small scale variations by acquiring temporal information from the whole scene and by interpreting using the 
high-resolution spatial information as an additional constraint.

We next demonstrate the potential of our approach on a bespoke SPAD camera-based FLIM microscope, the 
details of which can be found in the “Methods” section. Here, unlike the previous examples, the �eld-of-view 
of the SPAD sensor is matched onto the CCD (Andor something) with a ×5.55 smaller magni�cation thereby 
allowing for a higher pixel density whilst also demonstrating the robustness of the approach when di�erent 
optical systems are used for the two sensors. We note that in this case, ground-truth lifetime data cannot be 
obtained in the same way as shown in Fig .3. Figure 4 shows images taken of cancer cells (details in “Methods”) 
and the corresponding reconstruction for a 4 × 4 upsampling from the SPAD array. �ere are clearly features in 
the lifetime image which cannot be fully resolved by the lower pixel count SPAD sensor but become apparent in 
the high resolution reconstruction such as the small size and distinct shape of the longer lifetime regions at e.g. 
in the center of the larger cell. For comparison, the distribution of the lifetimes for the low-resolution SPAD data 
and the �nal reconstruction are shown, displaying a strong level of similarity. �e pixel-wise di�erence is also 
calculated by binning 4 × 4 pixel areas of the reconstructed dataset before evaluating the lifetime to match the 
dimensions of the SPAD data. �is is displayed in Fig. 4e and shows good agreement between the two datasets 
with artefacts arising at the cell boundaries due to the 4 × 4 binning.

Figure 3.  Spatial upsampling of the �uorescence lifetime of SKOV3 cancer cells. (a) Full 256 × 256 resolution 
intensity image. (b) Down-sampled low resolution �uorescence lifetime image. (c) Ground truth image at 
the full 256 × 256 resolution. (d) Result of our reconstruction algorithm with a 4 × 4 pixel upsampling. 
(e) Distribution of the reconstructed lifetimes. (f) �e pixel-by-pixel di�erence in lifetime between the 
Reconstruction and the Ground Truth Data.
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Conclusion
Our method shows that with a simple optical set-up and a conventional camera, the spatial resolution of a 
SPAD array sensor can be increased signi�cantly. In simulations, a factor of 12 could be achieved on each spatial 
dimension, corresponding to a factor of 144 in pixel count, even in the presence of noise. Low �ll factor limita-
tions could be overcome by moving the SPAD sensor slightly out of focus. In this way, the proposed method 
has the potential to push the spatial resolution of time-resolved SPAD arrays well beyond the current state of 
the art and into the few mega pixel domain. Holes in the SPAD measurement due to dead pixels are �lled in by 
the reconstruction. �is has been demonstrated on measurement data with an upsampling factor of 3 × 3 on 
LIDAR data and a factor of 4 × 4 on FLIM data due to hardware limitations. On additional datasets that have not 
been captured with our hardware set-up we demonstrated upsampling of 8 × 8 and 16 × 16 a�er blurring and 
downsampling the original 256 × 256 pixels SPAD data. �ese results, as well as those from simulated measure-
ments, suggest that using a CCD sensor with higher pixel density, our method would allow higher upsampling 
factors also with our original hardware set-up. Additionally, our method is not limited by a low signal-to-noise 
ratio or the presence of ambient light as evidenced by the reconstructions in the Supplementary Information 
(“Upsampling results on other data sets” Section).

�e main limitation of our method is the long run time of the reconstructions, which scales with the size of 
the reconstruction as well as the original SPAD measurement. A full calibration of the light transport matrix, 
which would include all optical e�ects for the speci�c hardware set-up accurately, might yield even better results 
on experimental data. On the other hand, it would supposedly also make the model more bound to a speci�c 
set-up, and less �exible in the application to new unknown hardware systems. However, it could be a worthwhile 
enhancement for a �xed (commercial) system. Considering the availability of small form factor SPAD and CCD 
sensors, both could be combined into a single, convenient device.

Data accessibility
All data and code used in this article can be found at https ://githu b.com/ccall enber g/spad-ccd-fusio n.

Methods
Experimental setup: LIDAR. For the high temporal resolution dataset, we use a 32 × 32 SPAD array with 
in-pixel Time Correlated Single Photon Counting (TCSPC) capabilities of 55 ps bin  width1,15. �e sensor layout 
consists of 7 µ m diameter sensors with a 50 µ m pitch and is of the same basic design now commercialised by 
Photon Force Ltd. Exposure times of up to 13 s are used. �e high spatial resolution is obtained using an Andor 
iXon emCCD with a 512 × 512 pixel array cropped to 96 × 96 pixels to match the �eld of view of the SPAD array. 
�e same optics are used to match the SPAD and emCCD �eld of views ensure that the two cameras can be co-
registered with minimal aberrations/defects. �is achieved using a 50:50 beamsplitter so that all of the collect 

Figure 4.  Fluorescence lifetime images of SKOV3 cancer cells expressing pcDNA3.1-mClover from a SPAD-
CCD based microscope. (a) Intensity image from the CCD sensor at a spatial resolution of 304 × 152 pixels. 
(b) Lifetime image obtained from the SPAD sensor with a resolution of 76 × 38 pixels. (c) Reconstructed image 
upscaled by a factor of 4 × 4 to the same resolution as (a). (d) �e lifetime distributions of the reconstructed 
image and the low spatial resolution dataset from the SPAD sensors (Ground Truth). (e) �e pixel-by-pixel 
di�erence between low-resolution data and the reconstruction downsampled to the same pixel resolution.

https://github.com/ccallenberg/spad-ccd-fusion
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light is directed to one of the two sensors. CO-registering in this way does not however present a limitation of 
out approach as illustrated by Fig. 4 which was acquired with di�erent optical components and magni�cation 
for each sensor. �e emCCD is used without gain such that it operates as a conventional CCD. Exposure times 
of the order of 100 ms are used. �e same camera objective (12 cm �sheye) is used for both sensors in parallel, 
separated with a beamsplitter. �e illumination source is Ti:Sapph oscillator of 130 fs pulse duration at a repeti-
tion rate of 80 MHz and a centre wavelength of 800 nm which �ood illuminates the scene. �e SPAD camera 
acquisition is synchronised with the laser using an Optical Constant Fraction Discriminator to minimise elec-
tronic jitter.

Multiphoton time‑domain fluorescence lifetime imaging (FLIM). �e following process was used 
to prepare the data shown in Fig. 3. Cells were le� to equilibrate on a heated microscope insert at 37 ◦ C, perfused 
with 5 % CO2 prior to imaging. Images were acquired in the dark using a multiphoton LaVision TRIM scan 
head mounted on a Nikon Eclipse inverted microscope with a 20X water objective. Illumination is provided by a 
Ti:Sapphire femtosecond laser used at 920 nm (12 % power). Clover signal was passed through band pass �lters 
525/50 nm emission and acquired using a FLIM X-16 Bioimaging Detector TCSPC FLIM system (LaVision 
BioTec). A 254 µm2 �eld of view correlating to 256 pixel2 was imaged at 600 Hz with a 10 line average in a total 
acquisition time of 5199 ms.

For the data shown in Fig. 4, a bespoke microscope system was created using and Andor Zyla as the high-
spatial resolution CMOS array and the 192 × 128 pixel FLIMera system developed by HORIBA Scienti�c based 
upon the chip presented  in16. �e microscope consisted of a × 20 0.4 NA Olympus objective with a 250 mm focal 
length tube lens for the Zyla and a 50 mm tube lens for the SPAD sensor, resulting in a ×5.5 magni�cation at the 
SPAD sensor compared to the Zyla. Before passing the data into the reconstruction algorithm the images from 
the Zyla were downsampled to a size of 608 × 304 pixels from which a 304 × 152 pixel area was taken to match 
a 76 × 38 pixel area selected from the SPAD �eld of view. Exposure time was 500 ms.

Mammalian cell lines, culturing conditions and transfections. SKOV3 ovarian cancer cells were 
maintained in Dulbecco’s modi�ed Eagle’s medium (DMEM) supplemented with 10 % FBS, 2 mM L-Glutamine 
and 1X PenStrep. Cell lines were maintained in 10 cm dishes at 37 ◦ C and 5 % CO2 . SKOV3 cells were transfected 
in the morning using Amaxa Nucleofector (Lonza) kit V, program V-001 with either 5 µ g Raichu-Rac1_Clover-
mCherry or pcDNA3.1-mClover DNA (adapted  from27) following manufacturers guidelines and replated on 6 
cm TC-treated dishes at 37 ◦ C and 5 % CO2 . For live cell imaging, cells were collected and replated onto 35 mm 
glass bottom MatTek dishes that were previously coated overnight with laminin (10 µg ml

−1 ) diluted in PBS. 
�ese were le� overnight at 37 ◦ C, 5 % CO2 . �e next morning prior to imaging, the dishes were washed twice 
with pre-warmed PBS and replaced with pre-warmed FluoroBrite DMEM supplemented with 10 % FBS, 2 mM 
L-Glutamine and 1X PenStrep. For �xed cell imaging, the cells were collected and replated onto 22 mm glass 
coverslips that were previously coated overnight with laminin (10 µgml−1 ) diluted in PBS. �ese were le� over-
night at 37 ◦ C, 5% CO2 . �e next day, these cells were �xed in 4% PFA for 10 minutes and washed with PBS and 
mounted using Fluromount-G (Southern Biotech).

Reconstruction parameters. See Table 1.
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