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Abstract— Ultrasound localization microscopy has enab-
led super-resolution vascular imaging through precise
localization of individual ultrasound contrast agents
(microbubbles) across numerous imaging frames. However,
analysis of high-density regions with significant overlaps
among the microbubble point spread responses yields
high localization errors, constraining the technique to low-
concentration conditions. As such, long acquisition times
are required to sufficiently cover the vascular bed. In this
work, we present a fast and precise method for obtain-
ing super-resolution vascular images from high-density
contrast-enhanced ultrasound imaging data. This method,
which we term Deep Ultrasound Localization Microscopy
(Deep-ULM), exploits modern deep learning strategies and
employs a convolutional neural network to perform local-
ization microscopy in dense scenarios, learning the nonlin-
ear image-domain implications of overlapping RF signals
originating from such sets of closely spaced microbubbles.
Deep-ULM is trained effectively using realistic on-line syn-
thesized data, enabling robust inference in-vivo under a
wide variety of imaging conditions.We show that deep learn-
ing attains super-resolutionwith challengingcontrast-agent
densities, both in-silico as well as in-vivo. Deep-ULM is
suitable for real-time applications, resolving about 70 high-
resolution patches (128 × 128 pixels) per second on a
standard PC. Exploiting GPU computation, this number
increases to 1250 patches per second.

Index Terms— Ultrasound, deep learning, super resolu-
tion, ultrasound localization microscopy, neural network.
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I. INTRODUCTION

R
OBUST, precise, fast and cost-effective in-vivo

microvascular imaging is a cornerstone for clinical mana-

gement of diseases that are hallmarked by impaired or

remodeled microvasculature, such as angiogenesis in can-

cer [1]. Contrast-enhanced ultrasound is a cost-effective

modality, which combines ultrasound imaging with

enhancement of blood through the use of ultrasound

contrast agents, inert gas microbubbles that are sized

similar to red blood cells [2]. Nevertheless, the spatial

resolution of conventional contrast-enhanced ultrasound

imaging is bound by the diffraction limit of sound. Being

primarily determined by the adopted wavelength, this limit

in practice manifests itself as an inherent trade-off between

resolution and penetration depth, since acoustic waves

suffer from increasing amounts of absorption at higher

frequencies.

Recently, this trade-off was circumvented through the

introduction of super-resolution ultrasound imaging, where

Nobel-prize-winning super-resolution concepts from optics

(e.g. Photoactivation Localization Microscopy - PALM) are

exploited and translated into the ultrasound imaging domain

with the aim of achieving sub-wavelength resolution images

of flowing microbubbles. [3], [4]. Today, the most com-

mon approach for achieving ultrasound super resolution

is Ultrasound Localization Microscopy (ULM). In ULM,

individual microbubbles are pinpointed from diffraction-

limited ultrasound data across a large sequence of imaging

frames with sparse microbubble population, i.e., using low

contrast-agent concentration. By combining all these posi-

tion estimates into one frame, a super-resolved image is

produced [5]–[8].

To boost the amount of imaging frames in a shorter time

span, Errico et al. acquired over 75,000 frames of a fixed

rat brain using an ultrafast ultrasound imaging scheme across

2.5 minutes [9]. Yet, for adoption in a clinical environment,

imaging for 2.5 minutes is still lengthy when considering

inevitable artifacts and drift due to patient motion.

Beyond mapping the accumulated microbubble localiza-

tions, one can also track detections across multiple frames

[8], [10]. This not only permits rendering of velocities and

interpolation of the detections, but also removal of spurious

clutter localizations. While nearest-neighbor data association

schemes are common [8], [9], [11], Ackermann et al. showed
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that more robust assimilation can be obtained through dedi-

cated motion models in a modified Markov chain Monte Carlo

framework [12]. The latter was recently evaluated in a clinical

setting [13], advocating the value of ULM for diagnostics

in the context of vascular phenotyping of tumors. At the

same time, the authors underline a major hurdle to overcome

if ULM is to be broadly implemented in clinical practice:

long measurements (even of about one minute) suffer from

significant tissue motion. While mild in-plane motion can be

compensated with sub-wavelength accuracy [14], registration

errors for relatively large movements can be much larger than

the localization precision of ULM. Moreover, out-of-plane

components cannot be corrected in 2D.

ULM avoids the trade-off between resolution and pene-

tration depth, but it gives rise to a new trade-off that bal-

ances localization precision, microbubble concentration and

acquisition time. High image fidelity is attained when large

amounts of bubbles are localized with high precision, pos-

ing a lower bound on the acquisition time of ULM. This

bound can be relaxed significantly when high concentrations

are used, with many high-precision localizations per frame.

Moreover, the probability of actually filling all arterioles with

microbubbles in a certain timespan increases with higher

concentrations. Obtaining the required localization precision

in data with such a dense population of microbubbles with

overlapping signals is a challenging task however, yielding a

scenario in which single-bubble localization algorithms break

down. As such, standard ULM methods adhering to this

microbubble-sparsity constraint still require long acquisition

times, impairing broad translation in a clinical setting, where

high contrast concentrations, limited time, significant organ

motion and lower frame-rate imaging are common.

Recently, an acoustic counterpart of PALM, termed acoustic

wave sparsely activated localization microscopy was pro-

posed [15], [16]. This approach elegantly leverages acoustic

waves to sparsely and stochastically activate nanodroplets.

Unlike standard ULM, it allows for the use of a high concen-

tration of contrast agents, thereby more effectively covering

the full vascular bed. Such agents are however currently not

clinically approved.

ULM algorithms based on deconvolution [17], [18] or

sparse recovery [19]–[21] have been developed specifically

to cope with the overlapping point spread functions (PSFs)

of multiple microbubbles. Sparse recovery strategies pose

the localization task as an inverse problem with a struc-

tural sparsity prior [19], in which bubbles with overlapping

PSFs but distinct sparse locations on a dense grid can be

resolved. Sparsity-based ultrasound super-resolution hemody-

namic imaging (SUSHI) [20] expands upon this by considering

the inherent temporal structure of the data, and performs sparse

recovery in the temporal correlation domain. While successful

localization of densely-spaced emitters has been demonstrated,

even highly optimized fast recovery techniques involve a time-

consuming iterative procedure. Fourier-domain fast iterative

shrinkage-thresholding [20] improves dramatically over an

image domain formulation, but computational time grows

significantly with the field of view. In addition, the optimal

settings of sparse-recovery methods can vary across frames

due to e.g. time-varying microbubble densities.

Here we present Deep-ULM [22], an ultrasound localization

microscopy strategy based on deep learning [23], designed

and trained to cope with high-concentration contrast-enhanced

ultrasound (CEUS) acquisitions. We harness a fully con-

volutional neural network for super-resolution image recon-

struction from dense images containing many overlapping

microbubble signals, and show that the method is robust to

varying imaging conditions and microbubble concentrations.

The output of the network is not a set of position vectors

but rather a high-resolution image in which the pixel values

reflect recovered backscatter intensities. Our approach shares

similarities with a recently introduced deep learning technique

for single molecule fluorescence microscopy [24], albeit in a

completely different field and setting. Image recovery using

Deep-ULM is fast, and can be applied to any CEUS acquisition

in which the PSF can be estimated (e.g. from a-priori charac-

terization or simply a few sparse frames), requiring minimal

user expertise and no manual tweaking. Using controlled in-

silico experiments we show that our approach outperforms

both standard ULM as well as sparse recovery methods for

high densities, and subsequently demonstrate that the detection

process generalizes well to in-vitro and in-vivo applications.

II. METHODS

A. Synthetic Training Data Generation

Deep learning typically relies on the exploitation of large,

representative datasets that enable the training of a robust

network that generalizes well when employed in practice.

While measuring sufficiently diverse CEUS inputs along with

their super-resolved outputs is not trivial, the generation of

realistic synthetic training data is in fact rather simple. To this

end, we sample the real system PSF from CEUS images

using a tool that enables manual selection of a few individual

microbubbles across a few frames. We then automatically

fit a rotated anisotropic Gaussian PSF model to the data to

extract the PSF parameters φ̂. That is, for each acquisition

setting, we selected a few sparse CEUS frames and fitted

the PSF model to a set of well-isolated microbubbles. Using

our imaging protocol, we did not observe significant deviation

from Gaussian PSF shapes. For the in-vivo data, the median

relative root mean squared error (RMSE) of the PSF fit used

to generate training data was 6.2%

The generation of new synthetic data for training is straight-

forward, with each corresponding low-resolution CEUS input

and super-resolved target represents the basis for a diverse

training dataset involving a number of variations.

We generated target patches containing multiple microbub-

bles with various intensities on a high-resolution grid. A broad

spectrum of contrast-agent-concentrations was simulated, ran-

domly drawn from a uniform distribution between 0 and

260 microbubbles/cm2. Relative backscatter intensities were

also drawn randomly, reflecting the backscatter intensity vari-

ations of a polydisperse microbubble population imaged at

various distances from the elevational beam, and ranged
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between 0.4 and 1 (a.u.). The set of microbubble locations

was then converted to radiofrequency CEUS signals using

the radiofrequency-modulated PSF. At this stage, the signa-

tures of closely-spaced individual microbubbles create distinct

interference patterns. These radiofrequency data were then

envelope detected through the Hilbert transform, and subse-

quently down-sampled to an 8 times courser grid to yield

the input image patches. Variance of the PSF and uncertainty

in its estimate was incorporated in the training procedure

by introducing variance in the PSF parameters φ through a

multiplicative random component, i.e.:

φ = φ̂ [1 +N (µ = 0, σ = 0.1)] . (1)

While we here assume that tissue clutter is suppressed prior

to ULM processing (e.g. through singular value filtering or

the use of contrast-enhanced imaging sequences), in practice

some clutter (and noise) may remain. Therefore, to increase

the model’s robustness after training, we added white and

colored background noise with relative standard deviations

of 2% and 5%, respectively. Colored noise was produced by

spatially filtering white noise with a 2D Gaussian having a

standard deviation of 1.2 pixels.

B. Deep Neural Network Architecture

A computational model should then be able to learn

representations from this data through a hierarchy of non-

linear operations, having the capacity to perform an end-to-

end mapping from diffraction-limited CEUS to super-resolved

images. For this purpose, we adopted a fully convolutional net-

work architecture based on an encoder-decoder structure [25].

The encoder is trained to optimally convert the ultrasound

image space into a feature space that contains all relevant

microbubble position information, through convolutions and

down-sampling operations. The decoder is trained to transform

this feature space into a high-resolution, super-resolved frame

via up-sampling and transposed convolutions.

Specifically, the encoder follows a contracting path which

consists of 3 layer-blocks, each block comprising two 3 × 3

convolution layers with leaky rectified linear unit (ReLU)

activations, and one 2×2 Max-pooling operation. We use leaky

ReLUs [26] rather than regular ReLUs across all convolution

layers in the network to avoid inactive neurons/nodes that

effectively decrease the model capacity. In addition, batch nor-

malization is used before all activations to boost the network’s

trainability by enabling higher learning rates and requiring

less-strict hyper-parameter optimization [27].

The subsequent latent layer includes two 3×3 convolutional

layers, followed by a dropout layer (probability 0.5) which

randomly disables about 50% of the latent features during

training. This latent space is then transformed to a high-

resolution localization image by the decoder. The decoder

again consists of 3 blocks; the first two blocks encompassing

two 5 × 5 deconvolution layers [28] of which the second

has an output stride of 2 rather than 1, followed by a 2 × 2

nearest-neighbour up-sampling layer which simply repeats the

image rows and columns. The last block consists of two

deconvolution layers, of which the second again has an output

stride of 2, preceding another 5 × 5 convolution which maps

the feature space to a single-channel image through a linear

activation function. The full network effectively scales the

input image dimensions up by a factor 8.

C. Training Strategy

We used the Adam optimizer with learning rate 0.001,

and trained the network on batches of 256 synthetic imaging

frames across 20,000 iterations to minimize the following cost

function, similar to the one proposed in [24]:

c(x, y|θ) = ‖ f (x|θ) − Gσ ∗ y‖2
2 + λ‖ f (x|θ)‖1 (2)

where x and y are input CEUS and target super-resolved

patches, respectively, f (x|θ) is the nonlinear neural network

function with parameters (weights and biases) θ , and λ is

a regularization parameter that promotes network predictions

that yield sparse images, and was (conservatively) set equal

to 0.01. The operator Gσ denotes a 2D Gaussian filter of

which the standard deviation was set to 1 pixel at the start of

training. In practice, we observed that applying such a mild 2D

filtering operation on the sparse target data strongly improved

training stability; small localization errors are penalized less

than large errors. This mean-squared-error-based regression

strategy enables joint estimation of microbubble locations and

their backscatter intensities. The latter is particularly useful to

emphasize localizations near the elevational beam axis during

image reconstruction.

As a unique batch of data is generated on-line for each

iteration, the model’s robustness and capacity to generalize

to new cases is drastically improved. The latter is further

supported by applying dropout during the training phase,

randomly disabling features at the encoded latent space with

a probability of 0.5.

Training (and inference) were run on a computation server,

equipped with an NVidia Titan X Pascal that has 12 GB of

video memory.

D. Reference ULM Implementations

1) Standard ULM: Standard ULM was implemented using a

centroid localization approach, largely following the method-

ology described by Errico et al. [9] We first up-sample the

images by a factor 8 (equal to the grid up-sampling of Deep-

ULM) and deconvolve them with a Gaussian low-pass filter

having a slightly lower standard standard deviation than the

imaging PSF to avoid instability, and subsequently keep only

values above 50% of the 98th percentile. We then perform a

morphological opening operation to remove spurious peaks,

after which we detect the local maxima. We finally select a

small area of 24 × 24 pixels (i.e. 3 × 3 pixels on the original

data) around the local maxima and therefrom compute the

local image centroids. The code was written in Python, using

the scikit-image and scipy modules.

2) Sparse Recovery Based ULM: Sparse recovery based

ULM [19] approaches the microbubble localization task as an

inverse problem, by modelling each image frame as a superpo-

sition of translated and scaled PSFs according to microbubble

locations and backscatter amplitudes on a high-resolution grid.

Assuming that the microbubbles are smaller than a pixel and

sparsely distributed across the image, the following regularized
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Fig. 1. Deep-ULM frame-based localizations for synthetic and in-vivo datasets. (A, C) Examples of synthetic datasets with different microbubble
densities, generated using a point-spread-function model estimated from clinically acquired ultrasound data. (B, D) Corresponding Deep-ULM
recoveries on a 15-µm spaced grid. The true locations of the microbubbles are marked as blue circles, and Deep-ULM predictions (on a discrete
grid) as red crosses. (E) An illustrative example frame in an in-vivo CEUS loop, (F) localizations within an area of interest of (E), and (G) corresponding
Deep-ULM recoveries from which these localizations are deduced.

Fig. 2. Detection rate and localization precision of Deep-ULM (red) compared to ULM based on deconvolution and centroid estimation (gray) and
sparse recovery (black). (A) Recovered density as a function of simulated microbubble (MB) density, and (B) corresponding median localization
errors with bars representing the standard deviation. Note that Deep-ULM’s localization errors are very close to the grid spacing (15 µm), and well
below the wavelength (214 µm), even for high microbubble densities.

inverse problem can be formulated by promoting a sparse

solution through the addition of an ℓ1 penalty:

x = arg min
x

(

‖Ax − y‖2
2 + λ‖x‖1

)

(3)

where x is the microbubble reflectivity vector on a high-

resolution grid, y is the vectorized image frame, and A is

the measurement matrix in which each column is a shifted

version of the PSF. To solve (3), we employed a highly

optimized Fourier domain implementation of the Fast Iterative

Shrinkage-Thresholding Algorithm (FISTA). We used a grid

up-sampling factor of 8, and λ was set to 0.01.

3) Sparse Recovery via SUSHI: Sparsity-based super-

resolution hemodynamic imaging [20] aims at producing

time-lapse super-resolved sequences of fast hemodynamic

changes. It was implemented by first dividing the acquired

CEUS clip into small movie segments and estimating the

pixel-wise variance of each segment, resulting in a variance

time-lapse movie of the MBs, which exhibits improved spatial

resolution and background rejection. To further improve the

spatial resolution beyond the acoustic diffraction limit, sparse

recovery is then performed on the variance images, by using

a similar formulation to (3), again with an up-sampling

factor of 8.

III. VALIDATION METHODOLOGY

A. In-Silico Experiments

Flow of microbubbles through an artificial vascular network

was simulated by propagating particles along streamlines with

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 01,2021 at 08:04:36 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Deep-ULM on in-silico flow data compared to diffraction limited imaging. (A) Simulated vascular skeleton, (B) diffraction-limited maximum
intensity persistence image, (C) Deep-ULM super-resolution reconstruction and (D,E) zooms of (B,C). (F1-F5) Deep-ULM reconstruction across
12 seconds with decreasing frame rates, displaying how dense localization on high-concentration simulations maintains reasonable fidelity even
when very limited imaging frames are available. The actual physiological requirement is that vessels are sufficiently filled by the agent within the
imaging time, which is relaxed by the use of high concentrations.

a specific velocity, comprising a deterministic part, as well

as a multiplicative random component, i.e.: v(x, y, t) =

max(0, vdet (x, y, t)) · N (µ = 1, σ = 1). 140 particles were

infused at the injection point by randomly drawing particle

injection times from a uniform distribution across a 12-second

timespan, leading to the generation of approximately 12 parti-

cles per second. Ultrasound imaging of this process was simu-

lated by modelling the scanner’s PSF as a bivariate Gaussian,

modulated by the transmit wavelength. The standard deviation

in the axial and lateral direction were set to 0.14 and 0.16 mm,

respectively. The modulation frequency was set to 7 MHz,

the second-harmonic response of a nonlinearly resonating

microbubble to an ultrasound transmit frequency of 3.5 MHz

after fundamental mode suppression (e.g. bandpass filtering

or pulse inversion). The image was formed by demodulating

the radiofrequency scan lines originating from the summed

contributions of all microbubble responses trough the Hilbert

transform. Frames were constructed at a rate of 100 Hz,

and the pixel dimensions were 0.12 × 0.12 mm. Note that

through the above we do not explicitly simulate the complex

microbubble physics, but rather directly model scanner’s PSF.

B. In-Vitro Experiments

We then designed an in-vitro experiment by imaging

microbubbles flowing through a 0.3-mm cross-channel flow

phantom (20% Polyacrylamide). To that end, we performed

CEUS imaging (power modulation with pulse inversion) using

the Vantage ultrasound system (Verasonics, Seattle, WA),

equipped with an L11-4v probe transmitting a single cycle

burst at 3.5 MHz. The frame rate was 100 Hz and we

acquired data across 10 seconds, starting from the moment

when steady flow was observed. The phantom was infused

with a 1/500 dilution of 1 mL SonoVue (Bracco). The pixel

dimensions were 0.15 × 0.15 mm. We used a singular-value-

decomposition (SVD) filter to suppress clutter and enhance

microbubble signal.

C. In-Vivo Experiments

1) Data Acquisition and Pre-Processing: The animal exper-

iments were performed at the University of Washington,

Seattle, WA, USA, with prior approval from the University of

Washington’s Institutional Animal Care and Use Committee

(IACUC). All appropriate guidelines from the University’s

Animal Welfare Assurance (A3464-01) as well as the NIH

Office of Laboratory Animal Welfare (OLAW) were followed.

A 250-grams female Sprague Dawley rat (Harlan Labs, Indi-

anapolis, IN) was anesthetized using isoflurane (5 % to induce

and 2.5 - 3 % to maintain), and the area overlying the

T7/T8 vertebrae was shaved, cleaned and sterilized. After dis-

section of paraspinal muscles, a laminectomy was performed
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Fig. 4. In-silico evaluation of Deep-ULM compared to ULM based on centroids and sparse-recovery for parallel microbubble streams with
varying densities and interfering point spread functions. (A) Number of microbubbles in the frame across time, (B) Maximum intensity persistence
images (MIP), along with individual example frames (inset), (C) standard centroid ULM images, (D) SUSHI, (E) sparse recovery ULM, (F) Deep-ULM,
and (G) mean lateral profiles of the two rightmost streams for all techniques. Note that Deep-ULM attains better sub-wavelength separation for higher
densities than the other methods.

to expose the spinal cord from T6 to T10. A compression-type

lesion was produced [29]. High-frame-rate CEUS acquisitions

of the cord were performed with a Vantage ultrasound research

platform (Verasonics, Seattle, WA, USA), using a linear array

transducer (Vermon, Tours, France). Details of the acquisition

are further described in [30]. The transmit center frequency

was 15 MHz with 90% bandwidth in receive. An intravenous

injection of 0.15-mL Definity®(Lantheus, New Jersey, USA)

contrast agent followed by a 0.2-mL saline flush was adminis-

tered via the tail vein using a catheter (BF-27-01, SAI Infusion

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 01,2021 at 08:04:36 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. In-vitro Deep-ULM in a 300-µm crossed-channel phantom. (A) Optical reference image (B) Maximum intensity projection image, (C) Centroid
localization image, (D) Deep-ULM image, and (E) Intensity profiles of channels.

Technologies, Lake Villa, IL, USA). We then waited about

3 minutes for the concentration to drop. A 5-angle plane wave

amplitude modulated sequence was adopted [30], using delay-

and-sum beamforming in receive. The plane wave frame rate

was 30 kHz to avoid motion artifacts when compounding

the 5 angles. Compounded images were obtained at a rate

of 400 Hz. The IQ data were then wall filtered (Butterworth

high-pass of order 20 with a cutoff at 50Hz) and SVD-

filtered to suppress tissue clutter and enhance the response

to microbubbles, and subsequently envelope detected through

the Hilbert transform. Details of the microbubble composition

and concentration of Defininity can be found in the package

insert [31].

2) Motion Compensation: For motion compensation, we first

extracted the tissue signal from by performing a singular value

decomposition on the space-time data (i.e. a Casorati matrix

of which the columns are vectorized frames), and attributing

the first few singular values (describing components with high

spatiotemporal coherence) to tissue [19]. We then computed

the required rigid transformations that map each resulting

frame to the first frame in the loop. The maximum measured

motion was about 75 µm for the rat spinal cord sequence.

IV. RESULTS

A. Synthetic Data

Fig. 1 shows several examples of Deep-ULM applied

to such synthetic datasets, with the reconstruction being

on an 8 times up-sampled grid. Recovery of a high-

resolution 128 × 128 patch using Deep-ULM takes less than

0.8 milliseconds on a GPU-equipped workstation, and about

14 milliseconds on a standard PC. The training and testing loss

(a measure of resemblance between the network predictions

and ground truth) monotonically decrease as a function of

the number of iterations, showing no sign of overfitting.

This can be attributed to the on-line synthetic data generation

and dropout-based regularization. During testing, dropout is

disabled, further pushing the loss down as a consequence of

effective model ensemble averaging [32].

Fig. 2 displays the recovered density and localization pre-

cision of Deep-ULM compared to an optimized standard

ULM method based on deconvolution and centroid local-

ization [9] and ULM based on sparse recovery [19] as a

function of simulated microbubble density. A microbubble

is only considered detected if a localization was obtained

close to its true location, within 30 µm (about 1/7th of the

wavelength). To determine the localization precision, each

identified microbubble is associated to the closest ground-

truth microbubble position, and their Euclidian distance is

calculated. For low densities, all methods perform similarly

well, with Deep-ULM displaying a very slight increase in

localization error. When the density increases however, sparse

recovery adequately detects more microbubbles than standard

ULM, while Deep-ULM significantly outperforms both sparse

recovery and standard ULM in terms of detection rate and

localization precision. Deep-ULM is moreover about 4 orders

of magnitude faster than iterative sparse-recovery procedure.

B. In-Silico Flow Through a Branching Vessel

We then tested Deep-ULM on a simulated CEUS acqui-

sition of microbubble flow through a realistic bifurcating

vessel. Deep-ULM detects over 20000 microbubbles across

the generated 1200 frames, finely delineating the vascular

architecture as shown in fig. 3. Because the method detects

many microbubbles per frame, reconstructions at lower frame

rates and shorter timespans become feasible. The impact of

using such a reduced amount of imaging frames is evaluated in

fig. 3F, showing that reconstructions with as few as 120 frames

already display good fidelity.
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Fig. 6. In-vivo Deep-ULM in a rat spinal cord. (A) Deep-ULM across 8-seconds acquired at a frame rate of 400 Hz, along with a (B) Maximum
intensity persistence (MIP) image and (C) zoomed region of interest for Deep-ULM and the corresponding mean intensity image. (D) Intensity profiles
of vessels, with their full-width-half maxima indicated by black horizontal lines, being 21 µm, 19 µm, and 20 µm for profiles 1, 2, and 3, respectively.

We then compare standard ULM [9], frame-by-frame

sparse-recovery [19], SUSHI [20], and Deep-ULM on sub-

diffraction spaced parallel streams. To that end, we simulated

a 10-second ultrasound acquisition of microbubbles moving

at 1 mm/s through 3 pairs of parallel vessels (separated

by λ/3, λ/4, and λ/5, respectively) for increasing densities.

From fig. 4C, we can observe that standard ULM again

performs very well for low densities, but yields many false

localizations when the number of microbubbles per area

increases. SUSHI however displays good performance across

all densities (fig. 4D); although it does not detect the most

closely spaced vessels for the higher densities, it delineates the

λ/3- and λ/4-separated vessels across all experiments.

Sparsity-driven ULM (fig. 4E) remains more robust than stan-

dard ULM up to higher densities, but is less stable then SUSHI

for the densities used in the two rightmost panels. Despite

the use of a highly-optimized Fourier-domain implementa-

tion [20], the sparsity-based methods are about four orders of

magnitude slower than inference with GPU-accelerated Deep-

ULM ( 6 seconds/frame compared to 0.6 milliseconds/frame

on our system). In this specific experiment, Deep-ULM

outperforms the sparse recovery methods, which we attribute

to learning of the image-domain implications of overlapping

RF signals from closely-spaced microbubbles (figs. 4F-G).

C. In-Vitro Crossed-Channel Phantom

A comparison of the optical image, maximum-intensity-

persistence CEUS, centroid ULM, and deep-ULM of the

cross-channel phantom is given in Figure 5.

Qualitatively, Deep-ULM reaches the resolution required to

adequately represent the physical channel dimensions. This is

also evident from the intensity profiles given in Figure 5E.

Compared to standard centroid localization, Deep-ULM

appears less sensitive to noise, which we attribute to the

denoising prior of the autoencoder structure.

From Figures 5 A and D one can observe that the dimen-

sions of the tubes by optical imaging and Deep-ULM are

similar. The intensity profiles displayed in Fig 5E-2 are

taken where the two channels physically start to overlap in

the imaging plane. At that point, the spacing between the

centerlines of the two peaks in the deep-ULM line profile is
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Fig. 7. In-vivo Deep-ULM of an injured rat spinal cord. (A) Maximum intensity persistence image and (B) Deep-ULM image, clearly depicting the
vascular deficit originating from a compression injury.

only 280µm. This visible separation, despite physical channel

overlap, is likely due to the larger concentration of microbub-

bles in the center of the channels.

D. In-Vivo Rat Spinal Cord With High-Frame-Rate CEUS

We proceed to apply Deep-ULM in-vivo, using a high-

frame-rate (400 Hz) CEUS scan of a rat spinal cord acquired

with a Verasonics Vantage ultrasound research scanner [29].

We retrained the neural network based on an estimate of

the PSF parameters of this system (obtained using the tool

described earlier), and performed Deep-ULM on an 8-second

acquisition to obtain a super resolved image. Recovery on the

8 times up-sampled (4096 ×1328) grid took 100 milliseconds

per complete imaging frame. In total, over 600,000 localiza-

tions were attained. Localizations for an illustrative example

frame are shown in fig. 61E-G. The method robustly resolves

individual microbubbles on dense data with significant over-

laps in their PSFs. Fig 6 shows how the method achieves

super-resolution image recovery, resolving vessels beyond the

diffraction limit. A spatial resolution of about 20-30 µm was

achieved, estimated by measuring the full-width-half-maxima

of several profiles of arterioles that carried a sufficiently

large amount of microbubbles (see fig. 6D). This was a

4-5 fold improvement with respect to the image resolution

of the maximum intensity projection image for these profiles.

Comparing the full-width-half-maxima (21, 19 and 20 µm)

to the predominant diameter of vessels in the spinal cord

as identified by µCT (around 20 µm), we observe good

agreement [33]. Fig. 7 shows the application of Deep-ULM on

a 12-second CEUS acquisition of a rat spinal cord following

an injury [29], clearly depicting the resulting vascular deficit.

V. CONCLUSION AND DISCUSSION

Ultrasound localization microscopy (ULM) has enabled

researchers to achieve extraordinary and unprecedented res-

olution in vascular ultrasound, no longer hindered by the

diffraction limit of sound. Yet, its harsh limitations in terms

of allowable contrast-agent concentrations lead to long acqui-

sition times, and have spurred research in the direction of

solving the high-density problem. Although recent methods

exploiting sparse-recovery strategies do indeed allow for

higher concentrations [19], [20], they come at a high computa-

tional cost. In this paper, we show how deep neural networks

can learn how to perform efficient ULM in challenging high-

density scenario’s, requiring nothing more than an estimate of

the local PSF of the image system. Notably, the network archi-

tecture, settings, and training procedure remained unchanged

across the different in-silico and in-vivo experiments; the

method was simply used “as is”.

Deep-ULM uses a convolutional neural network that is

trained using synthetic datasets that consist of ground truth

microbubble backscatter amplitudes on a fine grid along with

their corresponding CEUS ultrasound images. The method’s

performance depends on the capacity of the network to learn
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how to solve this sparse-recovery problem in an efficient man-

ner, by learning a nonlinear function that maps low-resolution

B-mode images to super-resolved localizations. On the other

hand the quality and representability of the synthetic data

for the actual acquisitions used during inference plays a

major role. To improve robustness with respect to the latter,

uncertainty in the estimated ultrasound scanner parameters is

incorporated by introducing a variance in the adopted PSF

model parameters across the dataset.

A polydisperse set of microbubble signals, with bubbles

being on or off resonance, ringing, interacting and more,

is likely causing a large degree of variability in the behav-

ior of the received signals. We here aimed to model those

variations by introducing stochasticity in the parameters of a

frequency-modulated anisotropic Gaussian PSF. Although this

displays promising results in-vivo, it likely does not capture

the full extent of variations due to the above said physical

properties. In future work, devising a more realistic physics-

driven microbubble model for training Deep-ULM may further

boost its performance.

The neural network was designed based on an encoder-

decoder principle to perform the end-to-end mapping between

the input images and their targets; an architectural approach

that has been widely adopted for various segmentation and

image enhancement problems [25], [34], [35]. The total num-

ber of convolutional layers in our deep net amounts to 15,

which yielded sufficient capacity to perform the desired sparse-

recovery functionality, while not overfitting. The latter thrives

with our on-line training data generation and the use of

a relatively thin bottleneck latent layer with 50% dropout,

effectively exploiting an ensemble of trained encoder models

at the inference stage. With this deep network, super-resolution

recovery of low-resolution images takes about 14 milliseconds

per patch on a regular PC, and even less than 0.8 milliseconds

when exploiting GPU computation. One could push this num-

ber further down by using model compression techniques [36],

such as learning less complex models to replicate the current

model’s functionality through knowledge distillation [37].

Deep-ULM effectively learns the significant nonlinear

image-domain implications of overlapping RF signals orig-

inating from closely spaced microbubbles, which up till

now have hampered high-density super-localization in ultra-

sound. Being trained to deal with concentrations as high as

260 microbubbles per cm2, our experiments show that Deep-

ULM indeed performs well for high densities; conditions

in which single particle localization algorithms based on

image centroids break down. While sparsity-driven algorithms

[19], [20] improve upon centroid-based localization, Deep-

ULM outperforms them in both localization precision and

speed, being about 4 orders of magnitude faster. Nevertheless,

also for Deep-ULM, higher densities pose greater challenges

for the algorithm. Although the maximum admittable con-

centration given a desired precision is significantly boosted,

it will inherently depend on the signal to noise ratio of the

ultrasound acquisition. In addition, at some point bubble-

bubble interaction and multiple scattering may play a role.

The latter is however expected to be minimal, even at high

concentrations [38].

For very low concentrations, localization by Deep-ULM was

found to be slightly less precise than centroid-based localiza-

tion. Since Deep-ULM is trained to perform well across a

large range of concentrations, gradient-based optimization of

the deep neural network parameters is naturally biased towards

achieving low cost at high concentrations, as having more

microbubbles in the field of view yields a stronger train signal.

The ability to handle such high microbubble concentrations

has significant implications for translation into clinical appli-

cations. Alleviating the very demanding temporal constraints

of standard ULM by faster coverage of the relevant arterioles

is a necessity rather than a luxury in many diagnostic settings,

where time is scarce and the impact of organ movement

across the acquisition becomes significant. With ultrafast high-

frame-rate ultrasound imaging architectures finding their way

into clinical scanners, a super-resolution method requiring less

than 1000 frames can achieve sub-second temporal resolution,

thereby drastically improving real-time clinical utility while at

the same time mitigating those severe motion artifacts.

Opacic et al. [13] showed that application of super-

resolution ultrasound in a clinical setting is feasible when

using dedicated motion compensation and frame clustering

strategies. While this holds great promise, a significant amount

of acquisitions were excluded due to severe motion artifacts

that could not be compensated for. Combining the above

methodology with methods that exploit higher densities to

reduce the acquisition time, such as Deep-ULM, could poten-

tially bridge this practical gap.

While the present method is implemented for 2D imaging,

the ability to perform 3D ULM in a fast and data-efficient

manner would be a cornerstone for many of its purposes.

Operating in a low-concentration regime, traditional ULM

would require acquisition, transfer and storage of an enor-

mous amount of volumes, precluding its current use [39].

On the other hand, Deep-ULM efficiently deals with higher-

concentrations, significantly lowering the required amount of

acquisitions. Its future translation into 3D might therefore

actually be possible.

As opposed to non-learned signal processing techniques,

end-to-end deep learning methods such as Deep-ULM strongly

rely on high-quality training data. We here generated new

training data for each imaging system to allow Deep-ULM

to exploit and learn scanner-dependent wave interference

patterns. Application of Deep-ULM to new systems and

experiments with different system settings therefore requires

retraining.

In this work, Deep-ULM was trained to localize individual

microbubbles, without incorporating any structural priors on

the vascular architecture or microbubble dynamics. Including

such priors in the model has the potential to further improve

image fidelity, and is part of future work. We note that care

should be taken to ensure that such models generalize well

to pathological conditions by choosing appropriate priors,

or exploiting training data that also represents these diseased

cases.

Deep-ULM enables high-fidelity super-resolution vascular

ultrasound imaging under challenging conditions. It operates

at a high recovery speed and does not require manual tweaking
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by an expert user, opening vast new possibilities for localiza-

tion microscopy in ultrasound imaging.
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