
Super-resolution via Transform-invariant Group-sparse Regularization

Carlos Fernandez-Granda

Stanford University

cfgranda@stanford.edu

Emmanuel J. Candès

Stanford University

candes@stanford.edu

Abstract

We present a framework to super-resolve planar regions

found in urban scenes and other man-made environments by

taking into account their 3D geometry. Such regions have

highly structured straight edges, but this prior is challeng-

ing to exploit due to deformations induced by the projection

onto the imaging plane. Our method factors out such de-

formations by using recently developed tools based on con-

vex optimization to learn a transform that maps the image

to a domain where its gradient has a simple group-sparse

structure. This allows to obtain a novel convex regularizer

that enforces global consistency constraints between the

edges of the image. Computational experiments with real

images show that this data-driven approach to the design

of regularizers promoting transform-invariant group spar-

sity is very effective at high super-resolution factors. We

view our approach as complementary to most recent super-

resolution methods, which tend to focus on hallucinating

high-frequency textures.

1. Introduction

A fundamental challenge in computer vision and image

processing is to increase the resolution of blurry images.

Multi-frame super-resolution consists of combining several

low-resolution images for this purpose [6]. Single-frame

super-resolution is even more challenging. The aim is to ob-

tain a higher-resolution image by upsampling a single im-

age. In general, it is of course impossible to recover fine

scale details that are absent from the low-resolution image.

We can only hope to reconstruct certain very specific struc-

tures (see [4] for theoretical results on the super-resolution

of pointwise objects) or to hallucinate high-frequency tex-

tures that are visually pleasing [1].

In this work we consider planar regions taken from 3D

scenes that have straight edges aligned in a few main direc-

tions, such as the one in Figure 1. This class of surfaces is

of great practical interest. They are ubiquitous in urban en-

vironments and recent large-scale urban 3D mapping efforts

(such as the Apple 3D map) make such data readily avail-

Figure 1. Image of a building façade (top left) and its gradient (top

right) along with their low-rank representation (bottom).

able. Existing super-resolution techniques can be applied to

this class of textures to obtain reasonably good upsampling

results up to factors of three or four. However, most of these

techniques are designed for generic images and do not take

into account what high-level structure may be present in the

data. In this work, we explore the possibility of attaining

higher upsampling factors by harnessing such prior knowl-

edge for images with structured edges.

Unfortunately, the non-uniform blur and deformations

induced by the projection of 3D surfaces onto the imaging

plane make it very challenging to exploit prior knowledge

about the structure of the data directly. In fact, in our quest

to super-resolve regions with structured edges we face two

fundamental questions that are at the core of many problems

in computer vision:

1. How should we leverage prior knowledge about global

features of the 3D geometry of a scene?

2. How can we deal with the camera projection, which

distorts these global features?

In our case, the global features include straight edges ori-

ented in a few main directions, which suggests promoting

structured sparsity of the image gradient, for example via
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Figure 2. Eight-fold super-resolved reconstruction obtained by our

method (bottom right) of an approximately low-rank region (top

right and white rectangle on left) in a low-resolution image of a

truck (left).

a group ℓ1-norm penalty [18]. This provides a partial an-

swer to the first question. However, we must still tackle the

second. Indeed, if we only have access to a projected low-

resolution image, it is unclear how to design an appropriate

group-sparsity penalty for the image gradient. A solution in

the case of highly structured 3D scenes is to use recent ad-

vances in the recovery of low-rank textures [19], defined as

low-rank structures deformed by affine or projective trans-

formations. These techniques allow to obtain a transforma-

tion that reveals low-rank structure from the low-resolution

image. In the case of images with highly structured edges,

the sparsity pattern of the gradient tends to follow a low-

rank pattern, as illustrated by Figure 1. Our method com-

bines these insights by:

1. Learning the domain transform that reveals the low-

rank structure of the data.

2. Designing a nonparametric regularizer tailored to this

structure.

Under the assumptions that the edge structure of the 3D

scene is approximately low rank, this data-driven procedure

produces a convex regularizer that allows to super-resolve

the image very effectively. Figure 2 illustrates the power

of our approach with a simple example in which it decon-

volves lines that are almost merged together due to heavy

aliasing in the low-resolution data.

Our approach departs significantly from current state-of-

the-art methods for single-image super-resolution, which

infer the fine-scale details of the upsampled image from a

database of corresponding low and high-resolution patches.

Different options to perform this inference include fitting

a Markov random field model [8], learning a parametric

model for the edge profiles [13], or applying a sparse-

coding framework [17]. These example-based methods en-

force local consistency to produce sharp-looking edges and

are able to hallucinate high-frequency textures very effec-

tively at moderate upsampling factors, especially if prior

knowledge about these textures is available [9, 7, 14]. How-

ever, they are not well adapted to deal with global features,

such as the straight edges in Figure 1. Our work is designed

to exploit such features and is consequently complementary

to these methods. Merging both approaches is an interesting

direction for future research.

To recapitulate, our main contribution is a principled

methodology for the super-resolution of planar regions with

regular structures, which achieves high-quality results at up-

sampling factors that are problematic for other methods.

This is achieved by learning the geometric structure of the

3D scene and leveraging it within a variational framework.

We motivate and explain our technique in more detail in

Section 2. Experimental results are provided in Section 3.

In Section 4 we end the paper with some conclusions and

ideas for further work.

2. Proposed method

2.1. Directional total variation

Consider the problem of designing a regularizer adapted

to the problem of super-resolving images with sharp edges

oriented in a few main directions. The most common choice

in the literature is to penalize the ℓ1 norm of the gradi-

ent [11], also known as the total variation (TV) of the im-

age, or related non-convex penalties [10] in order to obtain

an estimate with a sparse gradient (see also [15] for a recent

approach that takes discretization into account). Unfortu-

nately, minimizing the total variation often fails to super-

resolve two-dimensional edges, even in the case of very

simple piecewise-constant images such as the checkerboard

shown in Figure 3. This failure is largely due to the fact that

the regularizer is agnostic to the orientation of the edges in

the image, and in particular to the correlation between the

orientation of nearby edges. This suggests resorting to a

regularizer that is better adapted to the high-level structure

of the image gradient.

Let us assume that, as is the case for the checkerboard in

Figure 3, we happen to know the directions of most edges in

the image. In this case, the gradient in the image is not only

sparse, but group sparse [18], since its nonzero elements

are grouped along horizontal and vertical lines. As a result,

a more suitable regularizer is the directional total variation

(DTV) of the image, defined as

DTV (I) =

N1
∑

x=1

√

√

√

√

N2−1
∑

y=1

(I (x, y + 1)− I (x, y))
2

+

N2
∑

y=1

√

√

√

√

N1−1
∑

x=1

(I (x+ 1, y)− I (x, y))
2
, (2.1)



for an image I ∈ R
N1×N2 . In words, this cost function

is equal to the sum of the ℓ2 norms of the difference be-

tween adjacent rows and columns. It is designed to favor

edges that are aligned horizontally and vertically. A simi-

lar regularizer has been proposed for multiple change-point

detection in time-series analysis [3]. The top of Figure 3

compares the results of minimizing the TV and DTV cost

functions to perform nonblind deblurring of a checkerboard

image. DTV minimization recovers the edge structure of

the image very precisely, whereas TV minimization pro-

duces significant artifacts.

Blurred TV DTV

Figure 3. Nonblind deblurring of a checkerboard using TV and

DTV minimization. The blurring kernel was a 21 × 21 Gaussian

kernel with standard deviation equal to 3.

2.2. Transform­invariant regularization

The DTV regularizer proposed in Section 2.1 is obvi-

ously of very limited applicability. We seldom encounter

images where the edges are perfectly aligned horizontally

and vertically. Because of this, we turn towards a more

general model, which applies to many man-made structures

such as building façades. We consider images such that

there exists an affine or projective transform τ for which

most of the edges of I ◦τ are aligned vertically and horizon-

tally. To be clear, I ◦ τ is a new image obtained by applying

τ to the domain of I and then resampling. In general it is

not straightforward to design a regularizer adapted to such

a model. The reason is that the gradient is no longer group

sparse along a few main directions. However, it is group

sparse modulo the transform τ . Following this insight, we

define

TI-DTV(I) = DTV(I ◦ τ), (2.2)

a cost function that promotes straight edges in the trans-

formed image, where TI-DTV stands for transform-

invariant directional total variation. Indeed, the cost func-

tion (2.2) is invariant to affine or projective transforms of

I , as long as we are able to estimate them a priori. As we

will see, this allows to factor out significant deformations

induced by the camera projection. At the bottom of Fig-

ure 4 we can see the results of minimizing the TI-DTV cost

function to perform nonblind deblurring of a tilted checker-

board. Unlike TV minimization, TI-DTV minimization

yields a sharp and aliasing-free result, almost identical to

the original.

Original Blurred

TV TI-DTV

Figure 4. Nonblind deblurring of a tilted checkerboard using TV

and TI-DTV minimization. The blurring kernel was a 21 × 21

Gaussian kernel with standard deviation equal to 3.

2.3. Transform­invariant low­rank textures

In order to use the cost function proposed in (2.2), it

is necessary to learn a transform “τ” mapping the image

to a domain where its edges are mostly aligned vertically

and horizontally. We propose doing this by exploiting the

fact that images with vertical and horizontal edges tend to

be approximately low rank when viewed as a matrix. This

is obviously the case for the checkerboard in Figure 4, but

holds much more broadly. For example, Figure 5 shows a

low-rank texture extracted from a blurry image. The main

edges are indeed aligned horizontally and vertically by the

transformation associated to the low-rank texture. An im-

age with low-rank structured edges might lose its sharpness

at low resolutions, but it remains an approximately low-rank

texture. This is crucial for our interests, since we can con-

sequently use TILT to learn the transform associated to the

edge structure and then apply the regularizer proposed in

Section 2.2.

Figure 5. Blurry image containing an approximately low-rank tex-

ture (left) together with the result of rectifying it using the trans-

form learnt by TILT (right).

The authors of [19] develop robust computational tools

that allow to extract low-rank textures distorted by affine

or projective transformations. With a slight abuse of termi-

nology, we refer to this method as TILT, which stands for

transform-invariant low-rank textures. In essence, TILT al-



lows to compute a transform τ from an image I such that

I ◦ τ = L + E, where L is a low-rank matrix and E ac-

counts for sparse deviations from the low-rank model. This

is achieved by solving

min
τ,L,E

‖L‖∗ + λ ||E||
1

subject to I ◦ τ = L+ E, (2.3)

which is inspired by theoretical results on the recovery of

sparsely corrupted low-rank matrices [5]. Even though

Problem (2.3) is non-convex, it can often be tackled effi-

ciently by solving a sequence of convex programs. We refer

to [19] for more details on transform-invariant low-rank tex-

tures and on how to solve Problem (2.3), but we would like

to mention that the presence of the sparse term E is of vital

importance if we apply TILT to retrieve low-rank textures

from low-resolution inputs. The reason is that it accounts

for artifacts caused by blur and pixelation. This is illus-

trated by Figure 6, which shows the low-rank and sparse

components obtained from a blurry image.

Input Low-rank comp. Sparse comp.

Figure 6. Low-rank (center) and sparse (right) components ex-

tracted by TILT from the low-resolution image on the left.

2.4. Super­resolution via TI­DTV regularization

We finally have all the tools to tackle the problem of

super-resolving an image obtained from a 3D scene with

structured edges. We propose to leverage a data-driven con-

vex regularizer adapted to the 3D geometry revealed by

TILT. Given a low-resolution image ILR ∈ R
n1×n2 , we

aim to obtain a higher-resolution image IHR ∈ R
N1×N2 ,

N1 > n1, N2 > n2 such that

ILR ≈ D (K ⊗ IHR) , (2.4)

for a downsampling operator D : RN1×N2 → R
n1×n2 and

a blurring kernel K ∈ R
N1×N2 . In order to do this, we

suggest a two-step method.

1. We apply TILT to the low-resolution image ILR in or-

der to obtain a transform τ which reveals the low-rank

edge structure of the image. In practice, we upsam-

ple ILR using bicubic interpolation before learning the

transformation. To implement this step we use the

code for TILT available online.

2. We obtain a high-resolution image by solving

min
ĨHR

∣

∣

∣

∣

∣

∣
D
(

K ⊗ ĨHR

)

− ILR

∣

∣

∣

∣

∣

∣

2

+ λ · DTV
(

Aτ ĨHR

)

+ β · TV
(

ĨHR

)

, (2.5)

where λ and β are regularization parameters,TV rep-

resents the usual total variation operator for discrete

images (i.e. the sum of the horizontal and vertical fi-

nite differences) and Aτ is a linear operator that maps

the image to the domain where we seek to penalize the

directional total variation.

For color images we apply this procedure to the illuminance

channel and upsample the chrominance components Cb and

Cr using bicubic interpolation.

The cost function in (2.5) combines a data fidelity term,

which enforces the model (2.4), with the convex regularizer

described in Section 2.2 and also with an extra term that pe-

nalizes the total variation of the image. The reason is that

the TI-DTV term is not enough to stabilize the reconstruc-

tion as Aτ is often rank defficient. Additionally, the careful

reader might remark that we assume that the low pass ker-

nel K is known. In practice, we use a Gaussian kernel with

a standard deviation σ slightly greater than the upsampling

factor divided by two. In general, the algorithm is quite ro-

bust to this choice and also to the values of λ and β. For the

results in Section 3 we used σ = 5.5 in all cases and λ = 3
and β = 0.1 in most cases. The Supplementary Material1

elaborates on the stability of our method to changes in the

parameters σ, λ and β.

In order to solve Problem (2.5) we apply the Templates

for First-Order Conic Solvers (TFOCS) framework pro-

posed in [2], code for which is provided online. This

framework consists in casting the problem as a conic pro-

gram, determining the dual problem and applying a first-

order method, such as accelerated gradient descent, to solve

a smoothed version of the dual. The main advantage of

TFOCS over other solvers is that it allows to minimize func-

tions of the form ‖Wx‖ for an arbitrary linear operator W ,

a vector x and any norm for which we can compute the cor-

responding dual norm efficiently. We can apply TFOCS al-

most off the shelf to solve (2.5) by implementing functions

to apply the operator Aτ and to compute the dual of the

mixed ℓ1/ℓ2 norm, equal to the mixed ℓ∞/ℓ2 norm. Some

care is needed in the implementation of Aτ for the solver to

run quickly. The optimization algorithm applies the adjoint

A∗

τ repeatedly, so it is important to make this efficient. This

can be done by implementing Aτ with a sparse matrix that

samples the transformed image on a new grid using bilinear

interpolation. We refer to [2] for further relevant details on

TFOCS, in particular Sections 4.4, 4.5 and 4.6.

1www.stanford.edu/˜cfgranda/TI_DTV_supp_mat.pdf

www.stanford.edu/~cfgranda/TI_DTV_supp_mat.pdf


Finally, we would like to point out that (2.5) is a convex

cost function. As a result, the algorithm is robust to the

choice of initialization and converges to the same solution

even if we use the optimum for TV or other cost functions

such as (2.6) as a starting point.

2.5. An alternative approach

Instead of solving Problem (2.5), another option to

super-resolve our class of images of interest is to work

directly in the rectified domain penalizing the DTV

norm. More precisely, one can compute the rectified low-

resolution image IτLR = ILR ◦τ and then solve the optimiza-

tion problem

min
Ĩτ

HR

∣

∣

∣

∣

∣

∣
D
(

K ⊗ ĨτHR

)

− IτLR

∣

∣

∣

∣

∣

∣

2

+ α · DTV
(

ĨτHR

)

, (2.6)

where α is an optimization parameter. The super-resolved

image in the original domain can then be obtained from the

solution by inverting τ . This simplifies the optimization

problem that we must solve, but yields worse results than

the method proposed in Section 2.4. The reason is that we

are implicitly assuming that the kernel acts on the rectified

domain, a model which is inaccurate and does not account

for the uneven blur caused by the camera projection. Ade-

quate modeling of the downsampling operator is crucial to

super-resolve effectively [12], so it not surprising that the

results for this alternative method are not as sharp as those

obtained with TI-DTV regularization, as shown in Figure 7.

TI-DTV

Alternative

Figure 7. Comparison between solving Problems (2.5) and (2.6) to

super-resolve at an upsampling factor of 8 using geometric infor-

mation obtained from the low-resolution image. TI-DTV produces

superior results.

3. Experiments

The code used for the experiments is available at www.

stanford.edu/˜cfgranda/TI_DTV_code.zip.

3.1. Super­resolution of real images

In this section we provide some experimental results to

evaluate the performance of our method. We focus on qual-

itative comparisons, since there is no clear metric capable

of quantifying the quality of super-resolved images (for in-

stance, at high upsampling factors the mean-square error

can be better for blurry images that do not enhance any fea-

tures of interest). Further experiments are reported in the

Supplementary Material. In our first example, we take large

planar regions from five images in the SUN database [16],

shown in Figure 8, and compare our method with other rep-

resentative super-resolution methods developed in the liter-

ature. Although we apply the algorithms to the whole planar

region, zoomed-in areas are shown due to space limitations.

Interpolation algorithms are represented by bicubic interpo-

lation, which we compute using the Matlab function imre-

size. To compare with classical variational techniques we

use TFOCS to solve the optimization problem

min
ĨHR

∣

∣

∣

∣

∣

∣
D
(

K ⊗ ĨHR

)

− ILR

∣

∣

∣

∣

∣

∣

2

+ γ TV
(

ĨHR

)

, (3.1)

where γ is a regularization parameter, since TV regulariza-

tion is usually the method of choice to promote sharp edges

in image processing. Finally, we choose the sparse-coding

super-resolution algorithm of Yang et al [17] as a repre-

sentative of exemplar-based algorithms using patches. In

the literature, this method is competitive with most other

exemplar-based techniques. It is actually noted in [17]

that exemplar-based methods have difficulties dealing with

highly structured textures such as building facades, because

it is difficult to build a dictionary that can exhaust edges in

all directions and scales. Nevertheless, it serves as a base-

line to compare with our method. We use the code available

Figure 8. Planar regions with structured edges extracted from im-

ages in the SUN database [16]. A white rectangle highlights the

areas shown in Figure 12.

www.stanford.edu/~cfgranda/TI_DTV_code.zip
www.stanford.edu/~cfgranda/TI_DTV_code.zip


online for this algorithm, which allows to apply an upsam-

pling factor of 4. For the rest of the methods, including ours,

we apply an upsampling factor of 8.

Zoomed-in areas of the results are shown in Figure 12.

In all cases bicubic interpolation produces images that are

very blurry. The results for TV regularization are sharper,

but they contain significant artifacts which make edges ap-

pear wobbly instead of straight. Despite its reduced upsam-

pling factor, the sparse-coding algorithm is also not capable

of super-resolving edges effectively and its results are only

slightly better than those of bicubic interpolation. In con-

trast, TI-DTV regularization produces clear straight edges

that correspond to the global geometry of the planar surface,

yielding upsampled images that are significantly sharper

than the rest. Figure 13 shows the effect of applying the

transform learnt from the low-resolution images to the high-

resolution images obtained by TI-DTV regularization. As

expected the edges align mostly horizontally and vertically

following the low-rank structure.

For the top example in Figure 12, where the low-

resolution image has size 120x136, the running time re-

quired by TI-DTV regularization is of 123.0 s (SRF=2),

417.8 s (SRF=4) and 1713.5 s (SRF=8) on a desktop com-

puter with a 3.2 GHz processor and 4 GB of RAM.

3.2. Super­resolution of text

Text follows the model that we consider to some ex-

tent, since most letters contain horizontal or vertical edges.

As a result, TI-DTV regularization is capable of effectively

super-resolving letter or characters printed on distorted sur-

faces. To demonstrate this, Figure 11 shows four such ex-

amples and compares the results obtained from bicubic in-

terpolation and our method. Comparisons to other methods

are included in the Supplementary Material. TI-DTV reg-

ularization is clearly superior in all cases, despite the fact

that some letters have edges that are not aligned with the

low-rank structure (see the following section).

3.3. Limitations

As we have made clear throughout this paper, our

method is geared to the super-resolution of planar surfaces

that are approximately low-rank and have straight edges that

are oriented following the low-rank structure. If these con-

ditions are not met, the algorithm might produce artifacts

in regions that resemble horizontal or vertical edges. In

Figure 9 such artifacts can be seen along the jagged diag-

onal line. A way to overcome this would be to incorporate

other orientations into the transform-invariant group-sparse

penalty, or introduce a more sophisticated group-sparsity

prior adapted to such features. In any case, the method of-

ten degrades gracefully in regions that do not have straight

edges with the right orientation. In Figure 10, for example,

TI-DTV does not produce any artifacts around the arc and

at the same time super-resolves sharply the edges in the rest

of the image. In comparison, TV makes the arc look sharper

but generates obvious artifacts.

Figure 9. Eight-fold upsampled detail (right) of a shop sign (left)

showing the kind of artifact that might be produced by TI-DTV

regularization.

Bicubic TV TI-DTV

Figure 10. Comparison of the results of super-resolving an image

that does not completely conform to the transform-invariant low-

rank model using bicubic interpolation, TV regularization and TI-

DTV regularization. The upsampling factor is 8.

4. Conclusion and extensions

We believe that developing tools capable of constraining

non-local image structure is a crucial step towards achiev-

ing high-quality super-resolution at large upsampling fac-

tors. Our contributions are the introduction of a princi-

pled methodology in which such constraints are imposed

through data-driven non-parametric regularizers and a ro-

bust implementation of this methodology for a particular

class of images, which yields state-of-the-art results. Fu-

ture research directions include combining our framework

with patch-based methods, designing group-sparsity pat-

terns adapted to other classes of images and developing al-

ternative approaches to learn the parametric transformations

that make our regularizers approximately invariant to the

camera projection.
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Bicubic (x8) TI-DTV (x8)

Figure 11. Eight-fold upsampling of surfaces containing text taken from the SUN database [16]. The input is shown on the left with the

right scaling for reference.
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Figure 12. Results from super-resolving the images in Figure 8 using bicubic interpolation, total-variation regularization, sparse coding [17]

and our proposed algorithm. The upsampling factor was 4 for sparse coding and 8 for the rest of the methods.

Figure 13. Super-resolved examples from Figure 12 obtained by TI-DTV regularization rectified by the transformation learnt by TILT from

the low-resolution images.


