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Super-resolved Ultrasound Echo Spectra with

Simultaneous Localization using Parametric

Statistical Estimation
Konstantinos Diamantis, Aris Dermitzakis, James R. Hopgood, Member, IEEE, and Vassilis Sboros

Abstract—Ultrasound contrast imaging (UCI) aims to detect
flow changes in the vascular bed that can help differentiate
normal from diseased tissues thus providing an early screening
tool for diagnosis or treatment monitoring. Ultrasound contrast
agents (UCAs), used in UCI, are microbubbles (MB) that scatter
ultrasound non-linearly. To date the signal processing research
has successfully subtracted signals from the linear response of
tissue (“linear signals”), but, in general has not provided a
sensitive detection that is specific to the UCA signal. This paper
develops a method for the temporal and spectral estimation of
linear and non-linear ultrasound echo signals. This technique is
based on non-parametric methods for coarse estimation, followed
by a parametric method within a Bayesian framework for
estimation refinement. The results show that the pulse location
can be estimated to within ±3 sample points accuracy for signals
consisting of ≈80 sample points depending on the signal type,
while the frequency content can be estimated to within 0.050 MHz
deviations for frequencies in the 1 to 4 MHz range. This
parametric spectral estimation achieved a 5-fold improvement
in the frequency resolution compared to Fourier-based methods,
and revealed previously unresolved frequency information that
led to over 80% correct signal classification for linear and non-
linear echo signals.

Index Terms—Bayesian inference, Markov chain Monte Carlo,
medical ultrasound, microbubbles, ultrasound contrast imaging

I. INTRODUCTION

A large number of human diseases are associated with

abnormal vascular networks such as cancer, ischaemia, in-

flammation and also novel therapeutic interventions such

as tissue regeneration. The measurement of perfusion and

its quantification has been the subject of intensive research

across the spectrum of imaging technologies for decades.

However, the real time detection and monitoring of perfusion

or microvascular flow currently represents a major clinical

and research bottleneck and is essential in the understanding,

diagnosis, and therapy monitoring of such diseases. Ultrasound

contrast imaging (UCI) uses injections of sub-capillary sized

microbubbles (MB) stabilized with a biocompatible shell in
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diameters between 1 − 6 µm, to ensure image contrast from

the vascular bed [1]. Suitably, these MBs remain within the

vascular bed and have flow kinetics similar to blood cells.

This enables the measurement of vascular and microvascular

blood flow using modern ultrasound systems [2], [3]. How-

ever, this technology has not achieved quantitative status and,

compared to magnetic resonance imaging (MRI) and positron

emission tomography (PET), UCI has lower sensitivity and

reproducibility and it is highly operator dependent [4]–[7].

Historically, the introduction of MBs to diagnostic ultra-

sound contrast imaging sparked a debate on their physical

behaviour and a number of theoretical models have been pro-

posed [8], [9]. This debate remains open and inconclusive [10].

This is partly due to the high number of parameters that

affect the behaviour of MBs and the difficulty in isolating

these experimentally. As a result this theoretical debate has not

converged into models that can aid the UCI signal processing

design. State of the art clinical UCI signal processing is based

on basic amplitude and phase modulation techniques, that suc-

cessfully suppress linear tissue echo but offer very little in the

enhancement or differentiation of non-linear MB signals [11]–

[14]. In addition, despite the introduction in the clinic of a

few UCI applications (e.g. liver lesion diagnosis), today the

MB signal and image processing remain sub-optimal and there

are still significant discrepancies between in-vitro and in-vivo

contrast image data that are difficult to interpret [15]. Thus,

signal processing tools especially designed for the analysis of

echo signals need to be developed. MBs provide ultrasound

echoes [13], [14], that can be distinguished from linear scatters

such as tissue; statistical properties of these echo returns

include total intensity, spectral content, and temporal informa-

tion. By detecting the presence of UCAs and differentiating

them from tissue, the resolution and sensitivity of ultrasound

images can be greatly improved to detect vascular activity.

Compared to soft tissue, MBs are more compressible and

expandable when insonified with ultrasound. As a result when

exposed to ultrasound they oscillate under the varying pressure

of the field. This oscillating behaviour results in high scattering

strength of the contrast MBs [16]. In the ultrasound literature,

soft tissue provides linear scatter, which will be related to

the incident field following linear scatter theory. This means

that the linear scatter spectra are expected to consist of

specific frequency components, with small variations among

them. By contrast, MBs usually provide non-linear scatter and

they may generate a more variable spectral content including

various sub- and ultra-harmonics [17], [18]. Most traditional
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2

frequency estimation techniques in ultrasonics are based on the

Fourier transform (FT) [19]. The frequency resolution (∆f ),

i.e. the ability to distinguish two frequency components that

are closely-spaced, depends solely on the signal length and

the sampling frequency. However, the ultrasound signals are

short in duration and the FT results in spectral peaks that

are not narrow enough to determine their exact position and

number. Moreover, the FT does not localize in time whereas

in ultrasonics analysis, the pulse locations and durations are

also important.

In previous work [20], [21] a Bayesian spectral analy-

sis technique was introduced providing improved frequency

resolution compared to the FT for echo signals from non-

linear scatter. Similar results were obtained from a preliminary

study on echo signals from linear scatterers [22]. Hence, it

is important to investigate whether “hidden” spectral features

can be used to identify unclassified scatter received by a

transducer. In this study the frequency estimation system is

expanded to include temporal information. This was accom-

plished by incorporating a modified voice activity detection

(VAD) technique, mainly used in speech processing [23]–

[25]. From the observation of responses from ultrasound

scatterers, the pulse location estimation of the echo signals

in ultrasound imaging is similar to the signal burst detection

in speech detection. However, if the SNR or the amplitudes

are low, the performance of the VAD is poor. There is little

information in the ultrasonic literature about joint estimation of

pulse locations and frequencies system especially for multiple

pulse echo signals from MBs [26]. A first study in [27]

showed accurate pulse location for MB echo signals on top

of the frequency estimation shown in [21], [22]. The current

work builds on the temporal and spectral analysis tools first

presented in [21], [27], by proposing a lower-uncertainty

spectral estimator through statistical post-processing of the

system’s output, and by providing an evaluation of the system

performance. The latter was accomplished by testing the

system on both synthetic data, and experimentally in-vitro,

with linear scatterer and non-linear MB ultrasound signals.

The findings are discussed with a view to further development

of the algorithm as well as to precision improvements in the

ultrasound signal characterization.

II. MATERIALS AND METHODS

A. Single Ultrasound Scatter Experiment

A commercial phased array ultrasound transducer (S3,

Philips, Andover, MA, USA) was used to acquire echo signals

from solid copper spheres (Goodfellow Cambridge Ltd, Hunt-

ingdon, UK) and Definity MBs (Lantheus Inc, MA, USA).

The solid copper spheres (SCSs) were used as linear scatter-

ers [11], [28]. All the measurements were carried out using

a modified ultrasound scanner (Sonos5500 Philips Medical

Systems, Andover, MA, USA). The transmit focus was set

to 60 mm depth and the acquisitions were performed between

70 mm and 80 mm depths for both SCSs and MBs, to ensure

that the same calibrated settings applied. At this depth range,

peak negative pressure of 550 kPa was recorded, ensuring MB

survival for more than 50% of the MBs. A 6-cycle sinusoid

was used as the excitation pulse with a transmit frequency

(f0) equal to 1.62 MHz. The transducer was not operated at

its resonance (around 2.8 MHz), but rather at the low edge

of its bandwidth. Data were sampled at 20 MHz and the raw

echo signals were stored for further processing. A schematic

diagram of the experimental setup, consisting of a water tank

and tubing that allowed the flow of SCSs or MBs, is shown

in Fig. 1.

Ultrasound 

Transducer

Glass 

Pipette

Micropipette

TMM

Water

(a)

Ultrasound

Transducer

Perspex 

Tube

Micropipette

Anechoic

water Tank

Flow of 

MBs

(b)

Fig. 1. Illustration of the experimental setup for echo signal acquisition from
(a) SCSs, and (b) MBs.

In Fig. 1(a), a water tank was used to measure the SCS scat-

ter. This setup was previously used to calibrate the ultrasound

receiver at a point in the field in order to provide absolute

calibration of microbubble signals [28]. A 4 cm diameter hole

at the base of the tank was sealed with a 25 µm thickness

Mylar film to provide an acoustic window. The central cylin-

drical space defined by the circular acoustic window at the

base is filled with degassed water. The remainder of the tank

was filled with the tissue mimicking material (TMM) [29],

in order to minimize multiple reflections. A glass pipette was

placed at the top of the tank and its bottom tip with 1 mm

internal diameter was held at the center of the tank. Alignment

was achieved by aligning a thread inserted through the glass

pipette, which was held straight by attaching a lead bead to the

bottom. The maximum echo from the thread ensured alignment

of the SCS path with the centre of the ultrasound beam. SCSs

with a variety of radii, ranging from 29 µm to 58 µm, were

dropped individually into the glass pipette, with the help of

another micro-pipette, and then into the tank following a path

that coincided with the centre of the ultrasound transducer.

The setup for MB echo acquisition (Fig. 1(b)) was similar

but with an inverted geometry. The tank was filled with

degassed water. A Perspex tube was placed at the center of the

bottom of the tank with an 8 mm internal diameter. The tip of

a glass micropipette, with approximate diameter 100 µm, was

placed at the center of the Perspex tube. The suspension of

MBs was diluted enough to ensure the release of single MBs

at the tip of the micropipette. The flow in the Perspex tube

ensured a MB path at the centre of the ultrasound beam and

towards the face of an ultrasound probe, which was placed at

the top of the tank.
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3

B. Non-parametric Temporal and Spectral Estimation

Pulse location and spectral estimates using conventional

non-parametric estimation (NPE) methods were initially em-

ployed to provide the initial conditions for the proposed para-

metric estimation system. For the pulse localization the Hilbert

transform (HT) is commonly used in ultrasound imaging [30]

as it enables the extraction of the envelope of the modulated

signal [19]. A wavelet denoising (WD) method [31], [32]

was also adopted as it presents various advantages compared

to traditional filtering approaches in cases of multiple-pulse

signals [31], [32]. The combination of the above 2 methods

(HTWD) improves the pulse detection accuracy but may fail

when there are closely-spaced pulses present in the measured

echo signals. The latter was resolved with the addition of

a VAD complement [23], [25], and the formation of a joint

HTWD-VAD method as presented in [27]. For the spectral es-

timation, the multi-taper spectrum [33] was chosen to initially

analyse the ultrasound signals in the frequency domain [21]. In

this technique, several data windows are used on the same data

record to obtain a number of modified periodograms, which

are averaged to produce a multi-taper spectrum. By reducing

the variance, a cleaner spectrum is achieved compared to the

Discrete Fourier Transform (DFT).

C. Estimation Refinement

1) Parametric Modelling: For the experimentally measured

echoes from MBs and SCSs, the number of pulse segments

in the signal and the number of frequency components in

each pulse segment were all unknown. Based on the excitation

pulse used, the multiple pulse-echo signals can be modelled

as several segments of sum of sinusoids in noise [34]. It was

assumed that there were m pulses in the observed signal with

N data points. For each pulse, there are 2 change-points, Ti

and Ti+1, hence 2m change-points in total. A typical MB

signal with 9 pulse segments and 2900 points is shown in

Fig. 2. The multiple pulses model can be defined as follows:

Fig. 2. Display of an experimental MB raw signal including 9 MB responses
in the time domain as recorded after array processing.

D0 : x(t) = n(t)

Dkm
: x(t) =











n(t) if T2i−2 ≤ t ≤ T2i−1 − 1,

xi(t) + n(t) if T2i−1 ≤ t ≤ T2i − 1,

n(t) if T2m ≤ t ≤ T2m+1,

where i ∈ (1,m), and xi(t) is given by:

xi(t) =

ki
∑

j=1

acj,ki
cos(ωj,ki

t) + asj,ki
sin(ωj,ki

t). (1)

Note that the model D0 corresponds to the lack of any

pulses in the observation sequence, and Dkm
denotes there

are m pulse segments in the signal. The indices k1, k2, . . . , km
denote the number of super-positioned frequency components

in the m pulse segments. In each i−th pulse segment, acj,ki

and asj,ki
are the cosine and sine amplitudes respectively of

the ωj,ki
, that is the j−th frequency component of the i−th

segment with ki frequency components. Moreover, n(t) is a

sequence of a zero mean white Gaussian noise with variance

σ2
ki

. The signal model can be written in vector-matrix form:

x = G (ωkm
, T 2m)akm

+ n, (2)

where akm
, [ak1

,ak2
, . . . ,akm

]T , in which aki
(i =

1, . . . ,m) , [(ac1,ki
, as1,ki

), . . . , (acki,ki
, aski,ki

)]T repre-

sents the amplitudes of the frequency components in each

pulse segment. G(ωkm
, T 2m) is a matrix of non-overlapping

elements with a size of 2N ×
m
∑

i=1

ki given by:

G =































0 0 · · · 0
G1 0 · · · 0
0 0 · · · 0
0 G2 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
0 0 · · · Gm

0 0 · · · 0































.

The matrix G contains the information about change-points

[T1, T2, . . . , T2m], and spectral contents [ωk1
,ωk2

, . . . ,ωkm
]

for m different pulse segments. Each component Gi(i =
1, . . . ,m) in the G matrix represents a single pulse where the

number of frequency components, the frequency values, their

amplitudes, and the noise variance are all unknown parameters.

They can all be represented by θki
,

(

ωki
,aki

, σ2
ki

)

. As far

as each segment is concerned, the Gi matrix can be defined

as:

Gi =











E(ωk1
, T2i−1) . . . E(ωki

, T2i−1)
E(ωk1

, T2i−1 + 1) . . . E(ωki
, T2i−1 + 1)

...
...

...

E(ωk1
, T2i − 1) . . . E(ωki

, T2i − 1)











where E (·) , [cos (·) , sin (·)]. Moreover, T2i−1 and T2i are

the two corresponding change-points for each pulse segment.
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2) Joint Posterior Distribution: The Bayesian posterior

probability for the frequencies of a signal provides an accurate

estimation of frequency peaks [35]. According to Bayesian

inference, samples from the posterior distribution can be drawn

given the appropriate prior distributions. These priors reflect

the degree of belief of the relevant values of the parameters.

The joint prior distribution can be considered as the product

of the independent parameter priors, displayed in Table I for

the m segments.

TABLE I
PRIOR DISTRIBUTIONS FOR INDEPENDENT PARAMETERS

Parameters Prior Distributions

T2m Uniform Distribution

km Truncated Poisson Distribution

ωkm
Uniform Distribution

akm
Multivariate Normal Distribution

σ2

km
Jeffrey’s uninformative prior

δ2m Inverse Gamma Distribution

Λm Gamma Distribution

In Table I, Λm is the hyperparameter of the number of

frequency components km, and δ2m is the hyperparameter

of the amplitudes akm
. The joint prior distribution can be

expressed in (3):

p({k,θk}m,T 2m) = p({k,ak,ωk}m|σ2
k)p(σ

2
k)p(T 2m)

∝
(Λkm

m

km!
exp(−Λm)×

1

|2πσ2
kΣkm

|1/2
×

1

πkm

× exp[−
a
T
km

Σ−1
km

akm

2σ2
k

]
)

×
1

σ2
k

(
1

N − 1

1

N − 2
· · ·

1

N − 2m
), (3)

where Σ
−1
km

= δ−2
m G

T (ωkm
,T 2m)G(ωkm

,T 2m).
The posterior distribution is the product of the joint prior

distribution and the likelihood function, which based on the

signal model is given by:

p (x | {k,θk}m,T 2m) = (2πσ2
k)

−N/2 ×

exp

{

−
1

2σ2
k

‖ x −G(ωkm
,T 2m)akm

‖2
}

, (4)

where m in {k,θk}m represents different pulse segments and

‖A‖2, AT ·A. The posterior distribution in (5) can be obtained

after integrating out the nuisance parameters: amplitudes ak

and noise variance σ2
k based on Bayes’s rule.

p(T 2m, {k,ωk}m|x) ∝ (γ0 + xTPkm
x)−(N+v0)/2

×
(Λm/[(δ2m + 1)π])km

km!
(5)

where Pkm
= IN − G(ωkm

T 2m)Mkm
G

T (ωkm
,T 2m), IN

is the identity matrix with N -by-N dimensions, and M
−1
km

=

G
T (ωkm

,T 2m)G(ωkm
,T 2m) +Σ

−1
km

.

3) Reversible Jump Markov Chain Monte Carlo Algorithm:

The refinement of the model parameters, for both pulse loca-

tions and frequency components, using a parametric model

with numerical Bayesian method, consisted of two steps in

each iteration. First, based on the initial guesses given by

aforementioned combination algorithm of the VAD and the

HTWD for envelope detection, a random walk perturbation

was adopted as the proposal distribution for refinement of

the pulse location estimates. Specifically, the update of each

change-point depended on its previous value and performed a

local exploration of the initial guess, which can be described

as:

T ∗|T ∼ N (T, σ2
T ). (6)

where T and T ∗ are previous state and new state of the change-

point respectively. N (·) represents the normal distribution with

mean T and variance σ2
T .

Second, for the frequency estimation, a reversible jump

Markov chain Monte Carlo (rjMCMC) algorithm was used to

explore the regions around dominant peaks from the multitaper

power spectrum initial guess. After the pulse locations were

coarsely estimated, frequency estimation was performed for

different pulse segments. Although the posterior distribution

was simplified, it was still highly non-linear, which means

the closed form of p(T 2m, {k,ωk}m|x) can not be easily

obtained. Therefore, the rjMCMC algorithm was introduced to

sample from the complicated joint posterior distribution and

then to estimate the multiple pulse locations and frequency

contents for each pulse segment simultaneously. An ergodic

Markov chain whose equilibrium distribution is the specific

joint posterior distribution given by (5) was formulated. The

simulation was run long enough to reach the stationary dis-

tribution. The reversible jump technique (rjMCMC) allowed

to jump between subspaces of different model orders. Based

on the obtained samples, the Maximum A Posterior (MAP)

estimator was adopted to obtain a mode of the estimated

posterior distribution p̂(km|x) and p̂(ωkm
|km, x). Then, the

desired parameters (km,ωkm
) were estimated as:

k̂m|x = arg max
km

p̂(km|x)

ω̂km
|k̂m, x = arg max

ωkm

p̂(ωkm
|km, x) (7)

For each of the m segments, there are three candidate moves

to be selected. The birth and death moves introduce dimension

changes according to the state of Markov chain, by randomly

proposing a new frequency on (0, π), or randomly removing

an existing one respectively. The update move only refines the

frequencies within the same dimension. Details of the birth,

death and update moves can be found in [21].

D. Data Analysis

The Bayesian analysis resulted in a highly multi-modal

posterior distribution. This made the interpretation of the

algorithm’s output difficult and several non-sensible parameter

estimates were obtained. Imposing limitations such as k ≤ 20
in [21] is a partial solution to this problem but higher perfor-

mance could be achieved if further processing is applied to the

rjMCMC frequency estimates. Here, this was accomplished by

extracting a reasonable summary of the posterior distribution

through clustering and outlier rejection.
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5

An initial processing of a number of synthetic signals using

the parametric statistical estimation (PSE) system, enabled

comparisons with true pulse locations and frequency compo-

nents that were known, as well as with estimates derived from

non-parametric methods. The algorithm was then set to a large

number of realizations (Nreal = 500) when applied to real

ultrasound signals, to ensure that there were sufficient data for

analysis, since many estimates were ignored during a single-

case study. A single realization was also set to a high number

of iterations (Niter = 10000) to ensure that convergence to

a specific model order was achieved. The output data from

all realizations were considered for the current processing.

They were clustered based on the number of detected frequen-

cies (or else model order, k), so that the marginal posterior

distributions of parameters of interest can be considered uni-

modal. Previous allocation of estimated values in histograms,

regardless of the model order [21], was no longer adopted.

In this work, realizations with the same number of estimated

parameters were grouped in terms of model order and the

data from the most frequent model order were chosen for

further processing. These enabled the calculation of the mean

frequency values and the associated standard deviation by

applying normal distribution fits to the data from all the

realizations of this model order. Frequency estimates referring

to the same frequency component (i.e. the first or the last)

may contain values that differ greatly from realization to

realization. For this reason all values significantly higher than

two times the standard deviation were removed.

The pulse location estimation as well as the frequency

estimation based on the post-processing described above were

followed for an ultrasound transmit pulse, the MB signal of

Fig. 2 containing 9 MB pulses, and also 9 SCS individual

responses for comparison. The underlying hypothesis here was

that super-resolved spectra are possible to extract using this

methodology and that real short duration signals provide a re-

producible super-resolved spectrum. Ultrasound linear scatter

has a well-defined spectrum and was used here to provide this

test. The frequency estimates from the transmit pulse were

used as a standard of comparison for all the linear and non-

linear ultrasound responses. The frequency estimates from all

the MB and the SCS responses were then analysed in an

attempt to classify any given response into one of the two

categories. Specific features in common for most SCS or MB

responses revealed initially by the PSE, and subsequently by

the use of data-fitting functions were exploited in order to

create Nd data points that render the classification possible.

A standard k-means algorithm was employed to solve this

clustering problem [36]. The number of clusters (Ncl) was

2 and therefore two centroids (c) were eventually estimated.

Each data point belonging to either a SCS or MB response

was associated to the nearest centroid. The S function is a

measure of the distance of all data points from their centroids

and is given by:

S =

Ncl
∑

p=1

Nd
∑

q=1

‖ d(p)q − cp ‖2, (8)

where ‖ d
(p)
q − cp ‖ is the Euclidean distance between a data

point d
(p)
q and the centroid cp. The algorithm was repeated

several times until the centroids no longer change and the

squared error function (S) was minimized.

III. RESULTS: ESTIMATION ALGORITHM

A. Estimation of Synthetic Signals

A synthetic signal was used for an initial performance

evaluation of the estimation algorithm. The signal included

two pulse segments and consisted of 1500 sample points. As

an exemplar, white Gaussian noise with an SNR = 5 dB was

also added to the signals. The sampling frequency, fs, was

20 MHz, and the two pulse segments were synthesized as a

sum of 2 and 3 frequency components respectively. The two

pulses were located between samples (450, 600) and (750, 850)

with frequency components (in MHz) at (0.6π = 1.885,

0.7π = 2.199) and (0.2π = 0.628, 0.3π = 0.943, 0.32π =
1.005) respectively. The estimation procedure was repeated for

100 times with different noise realizations, amplitudes, and

phase components. An example of such a synthetic signal

is shown in Fig. 3(a). The 2nd segment was shorter than

the first (100 sample points instead of 150). Given the fs,

all Fourier-based methods result in a ∆f comparable to

20 MHz/100 = 0.200 MHz [37]. As a consequence, the two

larger frequencies separated by 0.062 MHz were regarded as

a single frequency by non-parametric analysis (Fig. 3(b)).

Fig. 3. (a) Display of a synthetic signal consisting of two pulse segments. (b)
Fast Fourier Transform (FFT) of the 2nd segment.

The pulse locations from both NPE and PSE are compared

in Table II. The NPE resulted in less-accurate average es-

timates for the starting points of both pulses (1st and 3rd

change-points), where a 10 point standard deviation (SD) from

the true values was measured. By using the parametric method

the accuracy of the pulse location estimates improved signifi-

cantly with standard deviations no higher than 2 sample points,

for both pulses, between the different signals. The results

confirmed the higher accuracy of the parametric estimation

in cases of lower SNRs. Fig. 4 shows the pulse location

convergence diagnostics for the 2nd pulse (3rd and 4th change-

points) of a single synthetic signal and thus single algorithm

realization, as an example. The pulse location estimates were

in this case 750 and 849 for the 3rd and 4th change-point

respectively (Fig. 4). The first value (750) was observed with
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6

probability of ≈ 0.5, clearly standing out from other estimates

(≈ 0.2 at best). The second value (849) was observed with a

probability of ≈ 0.42 while the probability of the second most

frequent estimate (850) was also relatively high (0.34). Both

estimates were within the range described in Table II. After the

first 1000 iterations, all the change-points, related to the start

and end points of pulses, reached their stationary distributions.

TABLE II
NPE AND PSE (MEAN ± SD IN SAMPLE POINTS) OF PULSE LOCATIONS

FOR 100 SYNTHETIC SIGNALS OF VARYING NOISE, AMPLITUDE AND

PHASE

Change-point Ground truth NPE PSE

1st 450 460± 1 452± 2

2nd 600 602± 4 600± 0

(a) Change-points comparison for the 1st pulse segment

Change-point Ground truth NPE PSE

3rd 750 760± 2 749± 1

4th 850 850± 1 850± 1

(b) Change-points comparison for the 2nd pulse segment

Fig. 4. Localization of the second pulse segment of a single synthetic signal.
Histogram of position and convergence diagnostics are shown in (a) and (b) for
the 3rd change-point, and in (c) and (d) for the 4th change-point respectively.

Each rjMCMC realization detected a specific number of

frequencies for each pulse segment as shown in Fig. 5. For

the 1st segment, the most frequent number of frequencies was

2 and for the 2nd segment, the most common value is 3. The

detection of the 3rd component indicates the robustness of the

new algorithm. Similar to the pulse locations, the frequency

values obtained from 100 realizations using the PSE for the

two pulse segments of the synthetic signal were compared to

the ground truth, and to the results using NPE (Table III).

Both the non-parametric and the parametric methods provided

accurate frequency estimates, for the first pulse segment as

shown in Table III(a). However, the SD values were almost

two orders of magnitude lower for the parametric method

compared to the non-parametric one. In Table III(b) for the

second pulse segment, the NPE can identify two frequency

components where the 2nd was estimated between the 2nd and

the 3rd true frequency values. On the other hand, not only did

the PSE provide estimates closer to the true values, but it was

also able to distinguish the two closely-spaced frequencies.

Fig. 5. Histogram showing the number of detected frequencies using a
synthetic signal with 100 randomly selected noise, amplitude, and phase
components for (a) the first and (b) the second pulse segment. A single
rjMCMC realization was performed on the synthetic signal with a random
component set, thus 100 rjMCMC realizations in total.

TABLE III
FFT PEAKS AND PSE (MEAN ± SD IN MHZ) FOR A SYNTHETIC SIGNAL

OF 100 RANDOMLY SELECTED NOISE, AMPLITUDE AND PHASE

COMPONENTS

Freqs. Ground truth FFT peaks PSE

1st 2.199 2.200± 0.036 2.199± < 0.001

2nd 1.885 1.887± 0.053 1.885± 0.001

(a) Frequency estimates comparison for the 1st pulse segment

Freqs. Ground truth FFT peaks PSE

1st 0.628 0.620± 0.210 0.629± < 0.001

2nd 0.943 0.979± 0.220 0.939± 0.001

3rd 1.005 0.0 1.003± 0.001

(b) Frequency estimates comparison for the 2nd pulse segment

Fig. 6 shows the histogram of detected frequencies and the

convergence diagnostics for the 2nd pulse of a single re-

alization, as an example. The most frequent value (3) was

observed with probability of 0.78, with significant difference

from number 4 which was the second most common estimate

with a probability of 0.16. It can be seen that the number of

detected frequencies converged to the number 3 after about

2000 iterations. As a result of this convergence, the first 2000
iterations can be considered as the burn-in period.
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7

Fig. 6. (a) Histogram of detected frequencies and (b) convergence diagnostics
for the 2nd pulse segment of a single synthetic signal, from a single rjMCMC
realization.

B. Estimation of an Ultrasound Transmit Pulse

Fig. 7(a) displays an ultrasound transmit pulse (Tx). The

pulse had a duration of ≈ 4 µs which translated to ≈ 80 sam-

ple points, given the fs used here. This resulted in a ∆f
comparable to 20 MHz/80 = 0.250 MHz when using non-

parametric methods for spectral estimation. The proposed

estimation system was applied 500 times to the signal. The

two change-points, as estimated using the parametric pulse

localization system are also shown in Fig. 7(a) together with

their standard deviations. The start of the pulse was located

at sample point 24 ± 1 (or 1.2 µs) and the end at sample

point 96 ± 1 (or 4.9 µs). Importantly a single start and a

single end point were found at sample points 30 (or 1.5 µs)

and 120 (or 6.1 µs) respectively, using the non-parametric

estimation. These were not a good estimate of the pulse edges

as displayed in Fig. 7(a). Each of the 500 rjMCMC realizations

provided detections of specific number of frequencies for the

transmit pulse as shown in Fig. 7(b). The most probable

number of frequencies (model order) was k = 10, which

accounted for 76.4% of the realizations, while the number

11 for 20%. The frequency estimates from the rjMCMC

realizations that resulted in k = 10 were further processed

using histograms. These frequency distribution histograms are

displayed in Fig. 7(c), together with their normal distribution

fits from where it was possible to calculate mean frequency

values and their corresponding standard deviations. The result

is shown in Table IV and also overlaid to the FFT in Fig. 7(d).

Given the ∆f limitation, the FFT did not result in more than

6 peaks. The transmit pulse broadly looks like a windowed

pure sinusoid, and therefore by Fourier analysis side-lobes are

expected. Since there is uncertainty in the start and end of

the pulse, some of (but not all) the additional frequencies in

Fig. 7(c) effectively represent frequencies in these side-lobes,

although these components will have small corresponding

amplitudes.

Table IV shows that instead of a single fundamental fre-

quency at 1.62 MHz, which was the f0 used here, the PSE

returned two components around the f0. A clean single sinu-

soidal signature was not expected due to the extreme f0 used

TABLE IV
PSE FOR AN ULTRASOUND TRANSMIT PULSE (MEAN ± SD IN MHZ)

Frequencies Transmit pulse

1st 0.998± 0.027

2nd 1.167± 0.031

3rd 1.562± 0.024

4th 1.717± 0.026

5th 2.070± 0.030

6th 2.264± 0.028

7th 2.602± 0.030

8th 2.850± 0.033

9th 3.211± 0.028

10th 3.297± 0.041

here as described in subsection II-A. These two components

were f1 = 1.562 (±0.024) MHz and f2 = 1.717 (±0.026)

MHz and their corresponding harmonics (hx ≈ 2× fx, where

x = 1, 2) were the last two frequencies of the spectrum,

h1 = 3.211 (±0.028) MHz and h2 = 3.297 (±0.041) MHz

respectively. These two frequency pairs (f1−f2, h1−h2) and

others from the Table IV (i.e. 5th and 6th ) were separated by

less than 0.250 MHz, and thus they were not resolved by NPE.

By using the rjMCMC algorithm and the processing described

in subsection II-D, the ∆f was reduced to 0.086 MHz which

was the distance between the most closely spaced estimated

frequencies (9th and 10th ). Further, it is seen from Table IV

that SD values were kept below 0.041 MHz at all cases.

C. Estimation of SCS Responses

Fig. 8(a) displays an example of a typical SCS response.

This entire signal, received by the ultrasound transducer,

consisted of ≈ 1500 sample points and included a single pulse

segment of ≈ 80 sample points (or ≈ 4 µs duration), similar to

the transmit pulse. The two change-points, as estimated using

the parametric pulse localization system are also shown in

Fig. 8(a), together with their standard deviations. The start of

the pulse was located at sample point 580± 2 (or 29 µs) and

the end at sample point 655± 3 (or 32.75 µs). The SD values

were slightly increased in the SCS signal (up to 3 sample

points) compared to the transmit pulse localization (1 sample

point). The equivalent start and end points using the NPE were

found at sample points 590 (or 29.5 µs) and 660 (or 33 µs)

respectively (Fig. 8(a)). Each of the 500 rjMCMC realizations

provided the detections of a specific number of frequencies as

shown in Fig. 8(b). The most probable number of frequencies

(model order) was k = 10, which accounted for 69.2% of

the realizations, while the number 11 accounted for 25.2%.

All frequency estimates from the rjMCMC realizations that

resulted in k = 10 are displayed in the histograms of Fig. 8(c),

together with their normal distribution fits. Fig. 8(d) displays

the resulting mean frequency and standard deviation values

alongside the FFT of the SCS response. The latter as in the

transmit pulse case, did not reveal more than 6 peaks. The

frequency estimates of Fig. 8(d) using the PSE are shown in

Table V (SCS1), where the equivalent estimates of the other

8 SCS responses can also be found.

Table V shows that the PSE resulted in between 9 and

11 frequency components for all SCS responses, which is
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8

Fig. 7. (a) Display of a 6-cycle ultrasound transmit pulse in the time domain. The pulse locations found by using the PSE system, as well as by the NPE are
also indicated. (b) Histogram showing the number of detected frequencies, and (c) frequency distribution histograms and their normal distribution fits using
500 rjMCMC realizations. (d) FFT of the transmit pulse and mean frequency estimates with their standard deviation obtained by the PSE system.

Fig. 8. (a) Display of an experimental SCS response in the time domain. The pulse locations found by using the PSE system, as well as by the NPE are also
indicated. (b) Histogram showing the number of detected frequencies, and (c) frequency distribution histograms and their normal distribution fits using 500
rjMCMC realizations. (d) FFT of the SCS signal and mean frequency estimates with their standard deviation obtained by the PSE system.

TABLE V
PSE FOR 9 SCS RESPONSES (MEAN ± SD IN MHZ)

Freqs SCS1 SCS2 SCS3 SCS4 SCS5 SCS6 SCS7 SCS8 SCS9

1st 1.547± 0.023 1.253± 0.006 1.307± 0.043 1.391± 0.064 1.379± 0.098 1.364± 0.106 1.205± 0.011 1.619± 0.056 1.554± 0.147

2nd 1.674± 0.015 1.558± 0.012 1.506± 0.022 1.512± 0.038 1.590± 0.039 1.602± 0.044 1.610± 0.007 1.715± 0.063 1.694± 0.077

3rd 1.834± 0.021 1.757± 0.015 1.740± 0.017 1.751± 0.022 1.779± 0.029 1.781± 0.031 1.817± 0.032 1.772± 0.090 1.893± 0.047

4th 2.085± 0.027 2.005± 0.029 2.106± 0.063 2.148± 0.056 2.051± 0.072 2.046± 0.077 2.011± 0.049 1.977± 0.147 1.986± 0.098

5th 2.326± 0.016 2.165± 0.055 2.306± 0.051 2.273± 0.048 2.212± 0.083 2.258± 0.092 2.423± 0.065 2.304± 0.155 2.361± 0.081

6th 2.768± 0.023 2.366± 0.023 2.583± 0.078 2.658± 0.074 2.396± 0.076 2.433± 0.078 2.588± 0.060 2.447± 0.111 2.653± 0.077

7th 2.823± 0.023 2.607± 0.051 2.684± 0.081 2.919± 0.055 2.599± 0.096 2.658± 0.071 2.921± 0.027 2.790± 0.094 2.888± 0.080

8th 3.290± 0.006 2.884± 0.047 2.959± 0.067 3.227± 0.031 2.935± 0.074 2.887± 0.048 3.261± 0.007 2.967± 0.120 3.255± 0.051

9th 3.460± 0.011 3.276± 0.021 3.260± 0.013 3.415± 0.013 3.271± 0.025 3.271± 0.014 3.423± 0.006 3.301± 0.039 3.308± 0.046

10th 3.756± 0.015 3.463± 0.022 3.458± 0.026 3.447± 0.020 3.450± 0.014 3.756± 0.015 3.470± 0.033 3.496± 0.035

11th 3.759± 0.017 3.683± 0.021 3.719± 0.016 3.729± 0.013 3.754± 0.024 3.635± 0.074
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9

comparable to the number found in the transmit pulse. These

results show that the SCS responses were reproducible and

that 9 responses are an adequate sample size to describe their

distribution. The fundamental frequency values found were

consistently similar to those of the transmit pulse. Specifically,

the PSE returned a single frequency component between

1.506 MHz (SCS3) and 1.619 MHz (SCS8), for all SCS

responses. The mean and SD values of these components were

1.566±0.041 MHz. Thus, 4×SD (i.e. 95% of the distribution)

corresponded to 10.6% of the mean value. This result is

statistically similar to the f1 (1.562 MHz) of the transmit pulse

(subsection III-B). The frequency component closest to the f2
of the transmit pulse ranged between 1.674 MHz (SCS1) and

1.817 MHz (SCS7) for all SCS responses. The mean and SD

values of these components were 1.752 ± 0.044 MHz, with

4×SD corresponding to 10.2% of the calculated mean value.

This result is not significantly different to the f2 (1.717 MHz)

of the transmit pulse (subsection III-B).

High reproducibility was found for the two harmonic fre-

quency components, which were approximately in the 2× fx
range. First, all SCS responses included strictly one frequency

component in the narrow range between 3.227 MHz (SCS4)

and 3.301 MHz (SCS8). Their mean and SD values were

3.268 ± 0.021 MHz, with 4×SD corresponding to 2.6%
of the calculated mean value. Second, a single frequency

component for each SCS response was found in the also

narrow range between 3.415 MHz (SCS4) and 3.496 MHz

(SCS9). Their mean and SD values were 3.454± 0.024 MHz,

with 4×SD corresponding to 2.8% of the calculated mean

value. The two components in these ranges represented a shift

to larger values compared to the harmonics h1 (3.211 MHz)

and h2 (3.297 MHz) of the transmit pulse. Importantly, Ta-

ble V shows that only two frequency components per SCS

response were found in the harmonic frequency range, with

the exception of SCS9 that resulted in 3. In addition, the

SCS8 response included a second spectral signature in the

f2 range. Frequency pairs corresponding to f1 − f2 (average

difference 0.185±0.039 MHz), and h1−h2 (average difference

0.186± 0.024 MHz) were separated by less than 0.250 MHz,

and were therefore resolved only after using the PSE. The

minimum ∆f measured was 0.053 MHz that was the distance

between the 8th and the 9th frequency estimates of the SCS9

response. Table V also shows that several frequencies between

2 MHz and 3 MHz were in common for only a group of 3−4
of the SCS responses, and were not repeated in all of them.

Further, it is seen that SD values varied from a few kHz to

0.155 MHz. However the larger SD values were associated

mainly with the SCS8 response, and the average SD value

was 0.049 MHz.

D. Estimation of MB Responses

The enlarged version for a single pulse segment of Fig. 2,

is illustrated in Fig. 9(a) for clarity. This was similar in

duration to the transmit pulse or the SCS response shown

above (≈ 80 sample points or ≈ 4 µs), resulting in the same

conventional ∆f = 0.250 MHz. The proposed PSE system

was applied 500 times to the MB signal and the results for

the segment are shown in Fig. 9. The two change-points, as

estimated using the parametric pulse localization system are

also shown in Fig. 9(a), together with their standard deviations.

The start of the pulse was located at sample point 305± 5 (or

15.5 µs) and the end at sample point 379±10 (or 19.3 µs). The

SD values were significantly higher (up to 10 sample points)

compared to the SCS pulse localization (3 sample points at

worst). The equivalent start and end points using the NPE

were found at sample points 310 (or 15.8 µs) and 380 (or

19.4 µs) respectively (Fig. 9(a)). Fig. 9(b) displays the number

of detected frequencies for the single MB pulse of Fig. 9(a)

and for the 500 rjMCMC realizations. The most probable

number of frequencies (model order) was k = 14, which

accounted for 49% of the realizations, while the number 15
accounted for 36%, and the number 16 for 10%. Similar to the

previous subsection, all frequency estimates from the rjMCMC

realizations for k = 14 were further processed. The frequency

distribution histograms are displayed in Fig. 9(c), together

with their normal distribution fits from where it was possible

to calculate mean frequency values and their corresponding

standard deviations. Fig. 9(d) displays the resulting mean

frequency and standard deviation values alongside the FFT

of the MB response. The latter did not reveal more than 7
peaks. The frequency estimates of Fig. 9(d) using the PSE are

shown in Table VI (MB2), where the equivalent estimates of

the other 8 MB responses can also be found.

The results from all the different MBs showed that there

was reproducibility on these individual frequency signatures

but the spread of responses was wider compared to the SCS,

and often there was significant overlap between the significant

fundamental and harmonic frequencies. Table VI shows that

the PSE resulted in between 8 and 15 frequency components

for the 9 MB pulses. This is a much wider range compared

to that of the SCS responses. Particularly, the MB responses

resulted in a higher number of > 3 MHz frequencies com-

pared to the SCS ones, which made the harmonic frequency

definition less straightforward. For the MB2 response, the

equivalent to the f1 frequency was 1.567 (±0.028) MHz and

its harmonic was h1 = 3.221 (±0.032) MHz. However, f2
was not distinct, since the 4th frequency estimate significantly

overlapped with the 5th (Fig. 9(c)). Therefore, it was not

clear whether f2 was 1.686 (±0.029) MHz or 1.756 (±0.047)

MHz. The corresponding harmonic h2, was also not distinct

and both the 12th and the 13th frequencies of the spectrum

were candidates. In such cases, the fundamental component

(fx) closest to the transmit one was considered for further

analysis. Subsequently, those frequency components closest to

2 times the selected fx were assumed to be their corresponding

harmonics (h1, h2). The same processing was followed for all

MB responses.

The PSE returned one frequency component between

1.556 MHz (MB1) and 1.654 MHz (MB5), for all MB

responses. The mean and SD values values of these compo-

nents were 1.603 ± 0.038 MHz. Thus, 4×SD (i.e. 95% of

the distribution) corresponded to 9.4% of the mean value.

This result is not significantly different to the frequency f1
(1.562 MHz) of the transmit pulse (subsection III-B). The

frequency component closest to the f2 (1.717 MHz) of the
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10

Fig. 9. (a) Individual display of the second MB response from Fig. 2 in the time domain. The pulse locations found by using the PSE system, as well as by
the NPE are also indicated. (b) Histogram showing the number of detected frequencies and (c) frequency distribution histograms and their normal distribution
fits using 500 rjMCMC realizations. (d) FFT of the MB response and mean frequency estimates with their standard deviation obtained by the PSE system.

TABLE VI
PSE FOR 9 MB RESPONSES (MEAN ± SD IN MHZ)

Freqs. MB1 MB2 MB3 MB4 MB5 MB6 MB7 MB8 MB9

1st 0.983± 0.021 1.031± 0.016 1.127± 0.018 1.309± 0.048 1.027± 0.027 1.266± 0.024 1.583± 0.020 1.603± 0.018 1.562± 0.024

2nd 1.147± 0.035 1.193± 0.018 1.476± 0.030 1.425± 0.026 1.246± 0.035 1.473± 0.029 1.704± 0.028 1.700± 0.029 1.723± 0.023

3rd 1.287± 0.061 1.567± 0.028 1.623± 0.027 1.634± 0.031 1.453± 0.036 1.645± 0.037 2.098± 0.039 2.193± 0.040 2.116± 0.035

4th 1.556± 0.030 1.686± 0.029 1.788± 0.045 1.754± 0.055 1.654± 0.034 1.724± 0.068 2.579± 0.060 2.262± 0.044 2.468± 0.040

5th 1.685± 0.040 1.756± 0.047 2.013± 0.043 1.963± 0.063 1.783± 0.054 1.961± 0.057 2.645± 0.046 2.364± 0.044 2.824± 0.089

6th 1.816± 0.076 2.098± 0.028 2.188± 0.046 2.248± 0.090 2.010± 0.056 2.147± 0.110 2.729± 0.047 2.853± 0.043 2.957± 0.092

7th 2.131± 0.052 2.222± 0.036 2.451± 0.080 2.419± 0.046 2.192± 0.063 2.494± 0.097 3.170± 0.036 3.164± 0.098 3.196± 0.051

8th 2.274± 0.104 2.603± 0.027 2.692± 0.035 2.684± 0.046 2.437± 0.068 2.744± 0.094 3.340± 0.033 3.239± 0.060 3.252± 0.025

9th 2.553± 0.105 2.750± 0.042 2.834± 0.044 2.939± 0.039 2.626± 0.093 3.008± 0.042 3.496± 0.059 3.361± 0.035 3.353± 0.034

10th 2.818± 0.040 2.960± 0.047 3.023± 0.037 3.093± 0.027 2.964± 0.073 3.141± 0.031 3.714± 0.034 3.476± 0.057

11th 2.934± 0.056 3.221± 0.032 3.227± 0.027 3.208± 0.042 3.094± 0.042 3.386± 0.062

12th 3.186± 0.047 3.422± 0.038 3.473± 0.017 3.588± 0.016 3.265± 0.041 3.528± 0.034

13th 3.366± 0.035 3.566± 0.031 3.863± 0.012 3.444± 0.066 3.882± 0.026

14th 3.570± 0.026 3.891± 0.023 3.648± 0.050

15th 3.873± 0.022 3.921± 0.025

transmit pulse was between 1.685 MHz (MB1) and 1.788 MHz

(MB3). The mean and SD values of these components were

1.727± 0.039 MHz, with 4×SD corresponding to 9% of the

calculated mean value. The harmonic frequency components

that corresponded to ≈ 2 × f1, ranged between 3.141 MHz

(MB6) and 3.265 MHz (MB5). Their mean and SD values

were 3.206± 0.038 MHz, with 4×SD corresponding to 4.6%
of the calculated mean value. This result is not significantly

different to the h1 (3.211 MHz) of the transmit pulse (sub-

section III-B). Likewise, the harmonic frequency components

that corresponded to the ≈ 2×f2, ranged between 3.366 MHz

(MB1) and 3.648 MHz (MB5). Their mean and SD values

were 3.468±0.100 MHz, with 4×SD corresponding to 11.6%
of the calculated mean value. This result indicates a shift to

larger values compared to the h2 (3.297 MHz) of the transmit

pulse. Note, that in the f2, h1, and h2 ranges there were

several MB responses that provided more than one frequency

components, thus showing a larger variability compared to

the SCS responses. Similar to the SCS spectra, there were

several frequencies from the Table VI separated by less than

0.250 MHz, and were therefore resolved only after using

the PSE. The minimum ∆f was found to be 0.056 MHz

which was the distance between the 7th and the 8th frequency

estimates from the results of the MB9 pulse. Importantly

∆f was similar to that found in subsection III-C, which

demonstrates the consistency of the algorithm. Table VI also

shows that there were a number of frequencies between 2 MHz

and 3 MHz, that did not reveal a particular trend between the

resulting frequency values of the MB responses. Further, it

is seen from Table VI that all SD values were kept below

0.147 MHz, and the average SD value was 0.045 MHz.

IV. RESULTS: DATA CLASSIFICATION

A. Classification Features

All resulting frequency estimates were put into two sep-

arate cumulative histograms one for the SCS and one for

the MB responses, with a 0.020 MHz bin width. The two

histograms are shown together in Fig. 10. The PSE of the
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SCS responses showed that most echoes from linear scatterers

included specific frequency components, forming relatively

high and narrow histogram peaks in the frequency ranges pri-

marily between 3 MHz and 3.8 MHz and secondarily between

1.5 MHz and 1.8 MHz. This is related to the fact that in each

of the two fundamental and two harmonic signatures there

was only one frequency value found, apart from two cases

mentioned in subsection III-C. By contrast, the MB frequency

values in Fig. 10 were more spread across the bandwidth.

There were several less pronounced peaks, that were shorter

and broader compared to the SCS population, which reflected

the larger variability and overlap in frequency values across the

MB responses. These histograms show frequency distribution

patterns that may help differentiate the two populations.

Kernel smoothing functions were employed to fit the data

around the 5 most significant spectral peaks of the two

histograms [38]. Such functions perform better than normal

distribution fits with continuously distributed samples as these

shown in Fig. 10. They were used here to confirm the equiv-

alent f1, f2, h1, h2 frequency components that were obtained

from the individual analysis of the SCS and MB responses in

subsections III-C and III-D respectively, without taking into

account the transmit pulse frequency estimates. This is closer

to a real imaging setting, where the knowledge of the transmit

pulse is not provided. The mean frequency estimates and

their standard deviations derived by the smoothing functions,

are shown in Table VII. The first 4 frequency estimates in

Table VII for the SCS responses, compare well to the mean

values calculated in subsection III-C, from Table V. The first

3 frequency estimates in Table VII for the MB responses, are

also not significantly different from the mean values calculated

in subsection III-D, from Table VI. Only the 4th frequency

estimate (3.585 ± 0.060 MHz) is significantly different from

the value calculated in subsection III-D (3.468±0.100 MHz).

By visual inspection, the latter value correlates to a lower and

wider histogram peak (Fig. 10) between the two peaks which

provided the 3rd and 4th mean frequency values in Table VII

for the MB responses. This is an extra indicator of the larger

variability across the MB population compared to the SCS

one.

TABLE VII
FIVE HIGHEST PEAKS (MEAN ± SD IN MHZ) FROM THE CUMULATIVE

FREQUENCY DISTRIBUTION HISTOGRAMS INCLUDING ALL THE RJMCMC
REALIZATIONS FOR ALL SCS AND MB RESPONSES

Frequencies SCS Frequencies MB

1st 1.573± 0.056 1st 1.586± 0.037

2nd 1.751± 0.029 2nd 1.705± 0.044

3rd 3.264± 0.021 3rd 3.194± 0.092

4th 3.457± 0.025 4th 3.585± 0.060

5th 3.737± 0.027 5th 3.872± 0.027

B. SCS and MB Differentiation

Mixed plots are shown in Fig. 11 in an attempt to distinguish

the MB from the SCS responses and classify any of the 18
given signals as either linear or non-linear scatter. The plots

aim to exploit the different frequency values and respective

uncertainties found in the SCS and MB populations as de-

scribed above. In Fig. 11(a) the f1 frequency was plotted over

the h2 − h1 difference resulting in a concentration of 8 out

of 9 SCS data points in a narrow-band area (between 0.15-

0.2 MHz) in the centre of the graph. In Fig. 11(b) the f1
frequency was plotted over the h1 frequency with the SCS

data points concentrated on the centre-top area of the graph.

This is a diagonal band for the SCS signals, while the MB

population was less clearly defined. However the SCS and

MB populations were not fully differentiated, as shown by the

errorbar overlap. In Fig. 11(c), the h1 frequency was plotted

over the h2 frequency resulting in the concentration of most

SCS data points in a narrow centre-right region.

Fig. 12 is a similar comparison to that of Fig. 11 including

the output from all rjMCMC realizations instead of average

values, which enabled classification using a standard k-means

clustering method. In Fig. 12(a), the two centroids were

calculated to (1.566, 0.181) MHz and (1.609, 0.374) MHz for

the SCS and the MB data respectively. The centroids fitted

well with the values displayed in Table VII and resulted in

90.1% correct classification for any given input signal. Sim-

ilarly, Fig. 12(b) is the equivalent to Fig. 11(b) and includes

the signal classification information. The two centroids were

calculated to (1.568, 3.268) MHz and (1.604, 3.166) MHz for

the SCS and the MB data respectively, and the percentage

of correct signal classification is 82.8%. Finally, Fig. 12(c)

corresponded to Fig. 11(c). In this case, the two centroids were

calculated to (3.256, 3.441) MHz and (3.189, 3.566) MHz for

the SCS and the MB data respectively, and the percentage of

correct signal classification was 88.2%.

V. DISCUSSION

The spectral estimation of ultrasound scatter signals can

be achieved with high accuracy using parametric methods.

Closely spaced frequencies 0.053 MHz apart can be resolved,

while the signal duration does not allow less than 0.250 MHz

separation for any non-parametric method. These figures are

approximately a 5−fold improvement in frequency resolution

(∆f ). For the example signals examined here, this resulted

in double the amount of detected frequencies compared to

Fourier Transform based methods. The parametric spectral es-

timation was particularly efficient in detecting frequencies with

low amplitudes in the FFT spectrum, such as all components

> 3 MHz in Figs. 7(c), 8(c) and 9(c) (harmonic content). The

frequency estimates were also associated with low standard

deviations (SD) always below 0.150 MHz and ≈ 0.050 MHz

on average, for frequency values in the MHz range. These SD

values are up to 5 times lower compared to these reported

in [21]. The improvement is due to the post-processing which

uses a larger number of rjMCMC realizations and separates

the frequency estimates based on the model order of each

realization (subsection II-D). Such low SD values resulted in

revealing: (a) the similarity of the SCS and MB signals with

that of the transmit signal in the pair of fundamental frequency

components, (b) the fundamental and harmonic components

reproducibility across the population of the 9 SCS signals,

which also suggests that 9 signals is an adequate sample size

for the SCS population in order to characterize its spectral

content. These results confirm the linearity of the SCS which

had different sizes.
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Fig. 10. Cumulative frequency distribution histograms from 9 MB and 9 SCS responses respectively, using 500 rjMCMC realizations. The bin width was set
to 0.020 MHz.

Fig. 11. Plots for SCS and MB differentiation using various combinations of mean frequency values and their standard deviations obtained by the parametric
spectral estimation. (a) The f1 is plotted over the h2− h1 difference based on the frequency estimates of the 9 SCS and the 9 MB responses. (b) The f1 is
plotted over the h1 and (c) the h1 is plotted over the h2.

Fig. 12. Scatter plots and k-means clustering using frequency estimates from all rjMCMC realizations, for the 9 SCS and the 9 MB responses. (a) The f1 is
plotted over the h2− h1 difference resulting in 90.1% correct signal classification. (b) The f1 is plotted over the h1 and (c) the h1 is plotted over the h2
with 82.8% and 88.2% correct signal classification respectively.

In addition to the automatic spectral estimation, the pro-

posed system allows the simultaneous accurate localization of

each pulse. This is expected as it is inherent to the function of

the algorithm, i.e. a specific number of frequencies is expected

within the bounds of one signal, which helps differentiate

with accuracy the time domain of the signal from that of the

surrounding noise. This is not the case for non-parametric

methods that provide several miscalculations of the signal

boundaries, while they are also unable to handle signals

including multiple pulses. Therefore, this new method may be

part of a robust tool to estimate ultrasound signal information

in both time and frequency domains. The linear (SCS) and

non-linear (MB) data showed that the super-resolved frequency

detection may lead to differentiating their echo signals and

classify them into one of the two types successfully even with

small sample sizes.

The SCS responses result in a similar number of frequency

components (10±1), narrow spectral peaks (Figs. 8(c) and 10)
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and low standard deviations between the different spectra

(Tables V and VII) also seen in the transmit pulse (Fig. 7(c)),

while in the MB signals the number of frequency components

varies and their values tend to overlap (Fig. 9 and Table VI).

The increased spread of MB signal response invites further

work in this differentiation process. Unlike the SCS, and

despite the reproducibility of the specific spectral signature,

the MB sample size here is not adequate to characterize its

population. Thus, the characterization of a MB population

requires a large sample size. However, the comparison and

classification using the PSE affords a large number of degrees

of freedom such as number of spectral peaks, their values

and their estimation uncertainty, and the comparison of all

these to the transmit signal. The initial difference in these

statistics shown here, was attributed to both the high repro-

ducibility of the SCS responses as well as the variability of

the MB responses, and shows promise in the identification

of a single signal in the future. The SCS fundamental and

harmonic frequency pairs are due to their linear response,

fairly similar to those of the transmit pulse. It is not entirely

clear why the harmonic location is different to that of the

transmit (subsection III-C). Physical processes like non-linear

propagation, attenuation and speed of sound variations may

play a role and this merits further investigation.

The large variability in the MB responses (Fig. 10) may

be attributed to their variable physical behaviour. The varying

state of resonance due to the variable MB size distributions

in addition to the dispersion of shell mechanical properties

(not all MBs of the same size behave the same) [39], may

provide adequate explanation. While the experimental setup

is well controlled, in a real ultrasound imaging situation this

variability may be further enhanced. First, different locations

in the ultrasound beam with different ultrasound field char-

acteristics provide exposure to different field amplitudes and

frequencies [40]. Second, the consecutive pulse exposure may

result in a varying echo evolution state [12], [13] and third,

the different vessel confinements in-vivo may also affect the

MB response as arteries and veins vary from micrometres to

millimetres in diameter [14], [41]. The comparison of the

fundamental and harmonic responses from MBs and SCSs

(Figs. 11 and 12) is a first step towards utilizing physical

understanding in the examination and characterization of their

signals, but a much larger sample size is required for broad

conclusions. However, the robustness of the methodology

suggests that all these results may help elucidate mechanisms

that may be possible to quantify using PSE.

Further, the study of single MB acoustics [11], [42] may

help develop new UCI signal processing with the aim to

enhance the MB response. The detection of MB specific

signatures may help in further increasing sensitivity of UCI.

This may operate in the context of conventional UCI where

large concentrations of microbubbles are injected as a bolus or

intravenously, with the aim to provide images of the vascular

bed. Specific spectral signatures may be used to further en-

hance those signals. It is important to note that the theoretical

modelling of MB physics behaviour has not been of great

assistance to signal processing development. Pulse modulation

(amplitude or phase) that is used in current ultrasound contrast

modes [43] is more successful in tissue signal cancellation than

MB echo enhancement, as its basic aim is set to differentiate

linear from non-linear scatter. This is partly due to the inability

of the FFT to resolve spectral signature and partly due to the

cumulative effect of the above ultrasound propagation factors

and MB characteristics that contribute to the echoes within an

image pixel, when large MB concentration are utilized. The

result should not be significantly different to the cumulative

effect presented in Fig. 10, which has provided 90% successful

differentiation.

The gains from super-resolved spectral analysis may be

more appropriate for single MB processing that is currently

the subject of the newly emerging field of super-resolution

UCI [44], [45]. The method draws from the localization

microscopy and shows potential for an order of magnitude

improvement in spatial resolution. It deals with detecting and

localizing single MBs, and subsequently tracking them in the

vascular bed. Conventional ultrasound transmissions utilize

pulses that are short in order to maximize spatial resolution

at the expense of frequency resolution. So far these methods

are mainly image-based, and may benefit from the technique

presented here which has been shown to work well with short

duration raw signals. The wide range of MB responses stated

above and the ability of the spectral analysis method here to

provide high sensitivity information on each individual echo

may be beneficial to super-resolution UCI as: (a) the location

of the MB pulse can be found accurately and automatically,

(b) the MB pulses can be robustly differentiated from linear

signals and noise, (c) signal processing may be deployed to

adaptively enhance the individual characteristics of each MB

and (d) each MB may be recognized thus enabling the identifi-

cation of the next MB pulse location as a result of consecutive

ultrasound exposures, which will improve the identification

of their path. In other areas of sensing, it is possible to

implement adaptive beamforming methods to create images

of improved quality [46]–[48] that will work as an adjunct to

the above. This is a developing and exciting area of research

for ultrasound imaging.

The current algorithm requires further development in order

to provide amplitude, phase and noise estimation. For example,

the inclusion of amplitude may remove the ambiguity regard-

ing the definition of fundamental and harmonic frequencies

noted here by increasing the degrees of freedom of the com-

parison and thus resulting in improved signal classification.

Further, the capability for pulse localization and separation

will be thoroughly characterized and the dependence of the

robustness of the technique to the pulse energy, bandwidth and

SNR will be understood. The optimization of the algorithm

needs to be performed using real diagnostic ultrasound imag-

ing conditions, where the transmit pulse might not available

and only the image/signal data can inform this process. Also,

conventionally ultrasound transmissions utilize pulses that are

as short as possible in order to ensure maximization of spatial

resolution. This reduces the available energy and widens

the bandwidth in the received signals. Single MB imaging

that deploys highly sensitive spectral analysis may afford

longer pulse transmission without loss of spatial resolution

as localization methods are more dependant on the SNR and
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less in the pulse duration.

VI. CONCLUSION

This paper presented a novel estimation system for echo

signals from linear (solid copper spheres) and non-linear (con-

trast microbubbles) ultrasound scatter. The parametric model

system provided the spectral and temporal parameter estima-

tion simultaneously and automatically within the Bayesian

framework. As the posterior density function cannot be solved

in a closed form and the dimension of the parameters changes,

a reversible jump MCMC algorithm was adopted to give the

accurate estimation automatically. To speed up the conver-

gence, a non-parametric coarse estimation for both time and

frequency domains was incorporated. The results displayed

precise pulse localization compared to that achieved using

non-parametric methods that may provide a miscalculation of

the change-points of a pulse. In addition, the parametric esti-

mation method provided super-resolved frequency spectra that

resulted in increased number of detected frequencies compared

to the number of peaks detected by Fourier Transform based

methods. Further, the spectra of echo signals from linear and

non-linear scatter provided different characteristics, which may

be deployed to advance UCI signal processing in the future.
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