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Super-resolving material microstructure image via deep

learning for microstructure characterization and mechanical

behavior analysis
Jaimyun Jung1,6, Juwon Na2,6, Hyung Keun Park3, Jeong Min Park3, Gyuwon Kim 2, Seungchul Lee 2,4✉ and Hyoung Seop Kim 5✉

The digitized format of microstructures, or digital microstructures, plays a crucial role in modern-day materials research.

Unfortunately, the acquisition of digital microstructures through experimental means can be unsuccessful in delivering sufficient

resolution that is necessary to capture all relevant geometric features of the microstructures. The resolution-sensitive

microstructural features overlooked due to insufficient resolution may limit one’s ability to conduct a thorough microstructure

characterization and material behavior analysis such as mechanical analysis based on numerical modeling. Here, a highly efficient

super-resolution imaging based on deep learning is developed using a deep super-resolution residual network to super-resolved

low-resolution (LR) microstructure data for microstructure characterization and finite element (FE) mechanical analysis.

Microstructure characterization and FE model based mechanical analysis using the super-resolved microstructure data not only

proved to be as accurate as those based on high-resolution (HR) data but also provided insights on local microstructural features

such as grain boundary normal and local stress distribution, which can be only partially considered or entirely disregarded in LR

data-based analysis.
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INTRODUCTION

Accurate representation of digital microstructure (DM) plays a
pivotal role in modern-day materials research as the DM
encompasses an extensive amount of data valuable for applica-
tions ranging from microstructure visualization and characteriza-
tion to microstructure-based numerical modeling. To date, an
extensive amount of effort has been put forth in developing tools
and methods to take full advantage of DMs1–8. Optical microscopy
(OM), scanning electron microscopy (SEM), and electron back-
scatter diffraction (EBSD) techniques have been textbook
approaches to visualize and characterize DMs for decades.
Furthermore, 3-dimensional (3D) visualization and characterization
of DMs using EBSD combined with a focused ion beam (FIB)1 or X-
ray tomography2,3 have nowadays been popularly used in the
field of advanced structural materials. Likewise, in the modeling
sector, DMs are used to predict or analyze a wide variety of
microstructure-sensitive properties such as strength and ductility4,
thermal properties5, corrosion6, recrystallization7, and phase
transformation8.
Data fidelity of DMs is inevitably compromised upon the

acquisition or processing of DM data. A recent work by Bao et al.9

defined and quantified the missing information of DMs. The work
stated that there are various sources that contribute to the loss of
information, and some of these sources include instrumental
resolution, technical specifications, and distribution of micro-
structural features9. One of the most commonly confronted
problems due to information loss in dealing with DM data such
as EBSD data is the poor resolution issues. Because the properties
of a material heavily depend on the geometric details of its

microstructure, limited spatial resolution may be critical in
studying the mechanical behavior of the material. In particular,
microstructure-based models that fully exploit DMs can suffer
gravely depending on how the material properties of interest
depend on the information lost. For instance, the damage
behavior of high-strength steels with complex microstructures is
significantly governed by stress localization and local phase
morphology2,10, meaning that an accurate and precise represen-
tation of local morphological features is critical in understanding
the damage evolution of the high strength steels. Consequently,
restoration or regeneration of information lost during the
acquisition or processing of the DMs can be vastly valuable for
accurate and comprehensive materials analysis. A possible
solution to address the poor resolution issue in a DM is by
enhancing the resolution of the DM image via super-resolution
(SR) imaging. Conventional methods for SR imaging include
upsampling low-resolution (LR) images through interpolation
techniques such as the nearest neighbor, bicubic, or bilinear
interpolations. Advanced SR techniques include reconstructing
high-resolution (HR) microstructure from existing HR 2D distance
correlation functions (DCFs) using algorithms such as cellular
automata11, Markov random field12, and two-point exchange13.
However, these methods not only require DCFs but also employ
an iterative approach in upsampling LR images, which may be
computationally exhaustive and time-consuming.
Concurrent with the rise of data-driven analysis in the past

decade, amazing strides in SR imaging have been accomplished
through deep learning algorithms such as those based on
convolutional neural network (CNN)14–18. In particular, Hagita
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et al.17 and Haan et al.18 have successfully utilized deep learning to
upscale greyscale SEM images. These works demonstrated that
regeneration of data fidelity in terms of image resolution is
feasible with a deep learning approach within the structural
materials landscape. These works mostly deal with SEM images,
which are grayscale image data. However, there are other DMs
that are in demand of SR imaging, namely EBSD image data,
which contains more information than SEM images and is prone
to produce jagged feature edges and oversimplification of
features upon resolution loss. Moreover, most works dealing with
SR of structural materials pay little attention to how SR can be
effective in both microstructure characterization and numerical
material behavior analysis.
In this work, we present a fast and accurate deep learning-

based SR technique called SR residual network (SRResNet) to
super-resolved LR EBSD image data. While we utilize synthetic
microstructure images rather than actual microstructure images
with the purpose of the network training to overcome insufficient

data problems, our network is evaluated using both actual and
synthetic microstructure images. We validate the super-resolving
performance of the network through conventional image

similarity measurement and microstructure characterization. We
further demonstrate the effectiveness of super-resolving EBSD
microstructure images by conducting finite element (FE)

mechanical analysis on a super-resolved EBSD microstructure
image. The results show that the developed SRResNet enables
rapid acquisition of super-resolved EBSD images that are
comparable to HR EBSD images based on image similarity metrics,
microstructure characterization, and mechanical analysis using
microstructure-based FE simulations.

RESULTS AND DISCUSSION

SR network

Residual neural network (ResNet)19, a specially structured con-
volutional neural network for allowing the training of deeper
networks, is widely known to possess a powerful representation
ability and achieves superior performance compared to conven-
tional approaches in ill-posed problems such as SR and deblurring.
Thus, ResNet approach has been considered in this study for SR
(SRResNet)16 to enhance the resolution of DM images, which are
inverse pole figure (IPF), Euler, and phase map images (Fig. 1a).
The HR images are downsampled using nearest-neighbor inter-
polation as shown in Fig. 1b. The network performs to upsample
LR microstructure images as input data into HR microstructure
images as output data, with upsampling factors such as 4×, 8×,
and 16x× defined by the network architecture shown in Fig. 1c. In
detail, the network is composed of two modules: (i) a residual

Fig. 1 Overall scheme in data acquisition and super-resolution neural network. a Synthetic HR microstructure images of both set of IPF and
phase images and set of orientation and phase images, b downsampling process of an HR image, and c the architecture of super-resolution
network.
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block that consists of convolutional layers, ReLu activation
function, a convolutional layer, and skip-connection. (ii) an
upsampling layer that uses repetition modules consisting of
convolutional layers, pixel shuffle, and ReLu activation function
according to the targeted upsampling factor, where pixel shuffle is
to rearrange feature maps of H ´W ´ C � r2 shape to form
rH ´ rW ´ C shape20. The network’s input data, LR image patches
of orientation and phase map, pass through the convolutional
layer, ReLu activation function, 16 residual blocks, and convolu-
tional layer in turn. Then, skip-connection is used to connect the
output feature maps of the last convolutional layer and the input
feature maps of the residual blocks. The resulting feature maps are
passed to the upsampling layer, which is either 4×, 8×, or 16×
upsampling module, followed by a convolutional layer. Finally, the
output layer generates a super-resolved microstructure image
with a sigmoid activation function. We build the networks for 16×,
8×, and 4× upsampling, respectively, which only differ in the
upsampling module. For example, each network generates a
1000 ´ 1000 image, from a 64 ´ 64, 125 ´ 125; and 250 ´ 250 LR
images, respectively. The parameters, such as kernel size, channel
size, pad, and stride, are shown in Table 1.
We train these networks using the Adam optimization

algorithm21 with a learning rate set to 0.0005 during 50,000
iterations. Mini-batch size is set to 40, and the number of input
image channels is set to 4 (3 orientation channels and 1 phase
channel). Xavier initializer is used as the kernel initializer, and
ReLu22 is used as the non-linear activation function. We use the
mean absolute error (MAE) as a loss function instead of the mean
squared error (MSE) used in the original SRResNet. The reason is
that MSE encourages a network to find pixel averages of plausible
solutions, leading to excessively smooth images to be restored,
while MAE reduces the average error and results in sharper images
being generated. The networks are trained on an NVIDIA TITAN Xp
GPU and implemented with Tensorflow. Other training details are
shown in Table 2.

Image similarity measurement

We demonstrate that our SRResNet can transform LR micro-
structure images into HR images with remarkable performance in
terms of image similarity metrics that are commonly used in the
field of computer vision. We compare the results of our SRResNet
with the results of conventional methods (bilinear, bicubic and
nearest neighbor) in 4×, 8×, and 16× upsampling cases. We
conduct SR experiments on sets of IPF and phase images and sets
of orientation and phase images. For this, we first collect LR and
HR microstructure images. The HR images are produced using as
shown in Fig. 1a, where three Euler angles that represent an
orientation are converted into RGB values by multiplying Euler
angles by 255/360. The LR images are synthetically generated
using the nearest neighbor interpolation, as shown in Fig. 1b. The
nearest neighbor downsampling method synthetically generates
LR images having sharp and discrete edges similar to actual LR
EBSD images. We note that applying an anti-aliasing filter to

prevent aliasing effects during the downsampling process is not
suitable for EBSD images with sharp and discrete edges. The
reason is that an anti-aliasing filter transforms jagged edges,
which are high-frequency components and an intrinsic character-
istic of EBSD images, into blurred edges, which are low-frequency
components and rarely observed in EBSD images. Once our
SRResNet is trained on the pairs of LR and HR images, the network
can improve the resolution of any size of LR microstructure
images. Figure 2 shows the qualitative result of 4×, 8×, and 16×
upsampling of the LR test images that are 10% of the total
collected 12,000 images. The first column shows the input LR
images, the second column shows the HR images (ground-truth),
the third, fourth, fifth, and sixth columns are the super-resolved
images of the LR images using bilinear, bicubic, nearest-neighbor
interpolation, and the SRResNet results, respectively. The rows
represent results of 4×, 8×, and 16× upsampling for each of
orientation and phase images. Although Fig. 2 includes only
qualitative results for orientation and phase images due to a lack
of paper margins, the same tendency is observed for IPF and
phase images. One can see that results of our method are
qualitatively more similar to the ground-truth, and shows clear
boundaries in 4× upsampled case, compared to the bilinear,
bicubic, and nearest-neighbor interpolation. For 8× and 16× cases,
our SR images slightly differ from the ground-truth, but still, have
the most plausible morphology. We also compare our SRResNet
quantitatively with conventional methods using two image
similarity metrics: peak signal to noise ratio (PSNR) and structural
similarity index measure (SSIM), where larger values correspond to
the higher similarity between super-resolved image and ground-
truth. The PSNR metric, which calculates the average error for all
pixels, may overlook reconstruction errors caused by grain
boundaries since the errors are averaged with those caused by
an in-grain area that occupies almost all pixels within an EBSD

Table 1. The parameters of our network.

Layer Output shape Kernel size Channel size Pad Stride

Input (224/r, 224/r, 4) – – – –

Convolution 1 (224/r, 224/r, 64) 9 64 8 1

Residual block #1–16 (224/r, 224/r, 64) 3 64 2 1

Convolution 2 (224/r, 224/r, 64) 3 64 2 1

Upsampling 1 (224, 224, 64) 3 256 2 1

Convolution 3 (224, 224, 4) 9 4 8 1

Output (224, 224, 4) – – – –

Table 2. Hyper-parameters used for our network.

Hyper-parameter Setting

The number of input channels 4 (3 orientation and 1 phase channel)

The shape of input data 224 × 224

Kernel initializer Xavier

Activation function ReLu (rectified linear unit)

Loss function L1 (mean absolute error)

Optimizer Adam

Learning rate 0.0005

Learning rate schedule Constant

Mini-batch size 64

Iteration 50,000

Percentage of training data 80%

Percentage of validation data 10%

Percentage of test data 10%
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image. Considering that reconstruction error within EBSD images
is mostly caused by grain boundaries than in-grain area, the SSIM
metric, which measures structural similarity, is more suitable than
the PSNR metric as a quantitative metric for EBSD image
restoration. Figure 3 shows the quantitative results on all of the
test sets of IPF and phase images and the test sets of orientation
and phase images by an average of their results in terms of PSNR
and SSIM. In Fig. 3a, b, for the 4× upsampling case, where 1000 ×
1000 microstructure images are produced from 250 ´ 250 micro-
structure images, it can be observed that the SR results from the
proposed method are very close to the ground-truth in terms of
SSIM. It also outperforms conventional approaches in terms of
PSNR. For an 8x upsampling case, where 1000 × 1000 micro-
structure images are produced from 125 ´ 125 microstructure
images, the SSIM value of our network is approximately 0.95,
which is similar to the SSIM value of conventional methods in a 4×
upsampling case. Finally, 64 ´ 64 microstructure images are
transformed into 1000 × 1000 microstructure images for the 16×
upsampling case. Although its quantitative and qualitative
performance is significantly degraded compared to 4× and 8×
cases due to extreme loss of information in the LR input images,
our networks perform better than other methods in terms of both
SSIM and PSNR. We also evaluate the performance of the network
using IPF maps obtained from EBSD data that are used in23–26 and
IPF map images directly captured from6,27,28 are shown in Fig. 3c,

d. We preprocess the data obtained from6,27,28 using total
variation (TV) denoising filter29 and high pass filter for image
sharpening since the SRResNet is trained with a sharp and noise-
free image. Also, the IPF images are cropped to remove scale bars
and legends. One can see that the overall performance decreased
when published data are used instead of synthesized test data.
This is expected since the test data obtained from published
works not only include very strong in-grain misorientation but also
contain noise and blur that cannot be completed addressed with a
TV denoising filter and sharpening filter. Nevertheless, the
SRResNet still outperforms other conventional upsampling
techniques.

Impact of SR on microstructure characterization

Microstructure images obtained using EBSD techniques can be
characterized by sharp and discrete edges. An exemplary HR
microstructure image and its nearest neighbor interpolated LR
counterparts are shown in Fig. 4. One can see that with the
decreasing resolution, grain boundaries and phase interfaces
become increasingly jagged. For polycrystalline materials,
the average grain size and morphological details of each grain
are pertinent to the performance of materials. Therefore, the
influence of resolution and the effect of SR in characterizing the
average grain size and morphological details of each grain is
studied in this section.

Fig. 2 Result of 4×, 8×, and 16× upsampling of LR test images. Comparison among input LR, ground truth (HR), bilinear upsampled, bicubic
upsampled, nearest neighbor upsampled, and SRResNet upsampled images for qualitative assessment.
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Microstructure characterizations are conducted with synthetic
HR microstructure image data, which consist of 1000 × 1000 pixels,
its downsampled LR microstructure image data, which consist of
either 250 ´ 250 (4× case) or 125 ´ 125 (8× case) pixels, and super-
resolved microstructure image data, which are reconstructed
solely from either one of the LR microstructure images. A Matlab
toolbox MTEX was used for characterization30. Area fraction-based
average grain sizes of HR, LR, and super-resolved microstructures
are calculated using their respective IPF and Euler map images.
Microstructural features are segmented based on the RGB values
of microstructure images. It should be noted that the SRResNet
may result in a very small change in the RGB values of some grains
in the input LR image. This change is generally negligible, but an
IPF image that has neighboring grains with very small color
differences may require a lower segmentation criterion for grain
segmentation. Assuming that a pixel in HR microstructure images
corresponds to one micrometer, we used the mean relative error
defined in Eq. (1) to quantify the accuracy in utilizing LR and
super-resolved images to calculate average grain sizes. The mean
relative error is defined as

1

N

X

N

i

di;ground truth � di;test
�

�

�

�

di; ground ruth
; (1)

where di;ground truth, di;test, and N represent the average grain size
calculated from ith HR microstructure image, the average grain
size calculated from LR or super-resolved microstructure image
that corresponds to the ith HR microstructure image, and the
number of microstructure images used to evaluate the mean
relative error, respectively. The tested images had average grain
sizes less than 100 μm to avoid images that only capture a few

grains. The mean relative error of average grain sizes calculated
using 250×250 LR images was 0.014. Similarly, the mean relative
error in average grain sizes calculated using images super-
resolved from the LR images was 0.012. Both average grain size
calculations were relatively accurate. The mean relative error of
average grain sizes calculated using 125 × 125 LR images was
0.045, which is 3.2 times larger than those based on 250 × 250 LR
images. On the other hand, the mean relative error of average
grain sizes calculated using images super-resolved from the 125 ×
125 LR images was 0.016. That is, grain size calculation errors
stemming from insufficient image resolution can be partly
resolved by super-resolving LR microstructure images via
SRResNet.
Local geometries of grain and phase boundaries may govern the

localized behavior of a material. The effects of interfaces may
initially be localized, but it is known that these effects substantially
influence the final structural performance of materials. For
example, grain and phase boundaries are known to act as a
preferential site for void nucleation and growth. Void nucleation
due to interface decohesion is strongly influenced by interface
normal stress and accumulated plastic strain31. Hence, in a
continuum framework, damage initiation at an interface heavily
relies on the direction of applied stress with respect to the
interface normal31,32. For images with pixel data, interface normal
can be estimated using the Sobel operator. The Sobel operator is a
differential operator kernel that is popularly used for edge
detection. By applying convolution between the Sobel operator
and an image, one can estimate local derivatives of the image. Two
Sobel operators for x- and y-directions are used to quantify the
interface direction of any given microstructure. Given a point of

Fig. 3 Performance different upsampling methods in terms of PSNR and SSIM. Quantitative result of 4×, 8×, and 16× upsampling of the LR
test images in terms of a PSNR and b SSIM for synthesized test data, and c PSNR and d SSIM for literature IPF map data6,23–28. The boxplot
depicts the first quartile (Q1), median, and third quartile (Q3), as well as lines showing a 1.5 interquartile range.
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convolution, the grain to which the point belongs is assigned a
unit value and all other grains are assigned a value of zero. The
resulting gradient map of one-fourth portion of an HR micro-
structure and its respective LR and super-resolved microstructures
are shown in Fig. 5. Naturally, one can see that grain boundaries
are very thick and jagged for the LR microstructure because the
size of each pixel relative to the image it belongs to is large. For
small features, most or entire pixels will belong to their respective
boundaries. This may have important ramifications in properly
assessing localized mechanical behaviors such as in-grain deforma-
tion heterogeneity and stress localization near boundaries. The

thick boundary issue can be partly addressed by upsampling the
image size using conventional nearest-neighbor interpolation. This
conventional technique is very fast and simple. The nearest
neighbor interpolation upsampling is simply splitting each pixel
into multiple pixels with the same RGB values. As shown in Fig. 5d,
the grain boundary thickness of the nearest neighbor upsampled
microstructure is comparable to its respective HR and super-
resolved microstructures. However, because conventional image
upsampling techniques do not properly deal with the jagged
edges, the grain boundary normal of the nearest neighbor
upsampled microstructure is notably biased toward either x- or

Fig. 4 Synthetic inverse pole figure (IPF) and phase map images. a High resolution (1000 × 1000) microstructure IPF image and its b low
resolution (125 × 125) counterpart with phase maps as inset figures.

Fig. 5 Normalized gradient map of microstructure images. Normalized x-gradient (top), y-gradient (middle), and gradient magnitude
(bottom) maps of a high-resolution, b low-resolution (4x), c SRResNet super-resolved, and d nearest neighbor upsampled microstructure
images.

J. Jung et al.
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y-direction. Furthermore, other conventional upsampling techni-
ques such as bilinear or bicubic interpolation upsampling yield
very blurry images, resulting in extreme difficulty in properly
defining grain boundaries. On the other hand, the grain boundary
normal of the SRResNet super-resolve microstructure strongly
resembles that of the HR microstructure.
The benefits of applying SRResNet for microstructure character-

ization not only reside in accurate characterization of micro-
structural features but also in rapid acquisition of HR
microstructure data. That is, in a fraction of a second, the super-
resolved EBSD image data successfully regenerated a wealth of
microstructural details, which was seemingly lost in the LR image
data. LR EBSD scan typically takes less than 5min, meaning that
obtaining 4× or 8× upsampled HR EBSD data can take up to 80 or
320min. Using the developed SRResNet in an NVIDIA TITAN Xp
GPU environment, one can super-resolve LR EBSD data into 4×,
8×, or 16× upsampled data in only 0.11, 0.08, or 0.07 s,
respectively. This provides an extremely time-efficient deep
learning-based solution to obtain HR EBSD data. This high-speed
acquisition of HR EBSD data is immensely valuable in amassing
EBSD data, obtaining large area EBSD scans, and restoring
information lost due to instrumental resolution limit.

Impact of SR on mechanical analyses

Small variations in microstructural features of material can
substantially affect the mechanical behavior of the material.
Mechanical modeling has been frequently utilized to understand
how microstructural changes in a material can affect the
mechanical behavior of the material. Among existing methods

of modeling, the microstructure-based FE method has been a
prevalent choice in studying the effect of microstructure on the
mechanical behavior of advanced structural materials. Micro-
structure based FE method requires DMs as input, meaning that
resolution issues associated with the input DMs may influence the
simulated mechanical behavior of the DMs. Accordingly, informa-
tion loss in DMs may limit the extent of FE-based mechanical
analysis of the DMs.
To identify the impact of resolution on FE-based mechanical

analysis, microstructure-based FE simulations using HR, LR, and
super-resolved microstructures of a dual-phase HEA used in23 are
conducted. The LR microstructure data is created by nearest
neighbor downsampling of HR microstructure data, and the SR
microstructure data is recovered from the LR data using our
SRResNet trained on synthetic microstructure images. Figure 6
shows the stress-strain curves of high entropy alloy using HR, LR,
and super-resolved microstructures. The image resolutions are
240 ´ 712 pixels for the HR and the super-resolved microstructure
images and 60 ´ 178 pixels for the LR microstructure image. One
can see that the overall flow stresses for HR and super-resolved
microstructures are almost identical. The flow stress for LR
microstructure is slightly higher than those for HR and super-
resolved microstructures. This is because more intense strain
localization occurred in HR and super-resolved microstructures
than in the LR microstructure due to insufficient mesh resolution
in the model using the LR microstructure.
Stress distributions of HR, LR, and super-resolved microstruc-

tures after 5% tension are shown in Fig. 7. In this case, HR and
super-resolved microstructures exhibit similar stress distribution
characterized by stress localized near the peripheral of hard
secondary phase constituents. Meanwhile, in the case of LR
microstructure, stress distribution seems to be less localized for
small secondary phase constituents because LR microstructure
does not retain sufficient resolution to adequately capture stress
distribution within the small secondary phase constituents. This
can also mean that average stress values for very small secondary
phase particles calculated using the LR microstructure will be high
compared with those calculated using either HR and super-
resolved microstructures, which may partly contribute to higher
flow stress for LR microstructure compared to those for HR and
super-resolved microstructures. The discrepancy in stress localiza-
tion behavior between HR and LR microstructures can be
addressed by upsampling the LR microstructure image using
nearest-neighbor interpolation. One can see that the nearest
neighbor upsampled microstructure exhibits stress localized near
the peripheral of the secondary phase constituents (Fig. 7).
However, typical upsampling techniques such as nearest neighbor
are limited in their ability to restore morphological details of a
microstructure (Fig. 2), which heavily impacts one’s ability to
conduct a thorough mechanical analysis that relies on such
details. For any dual phase microstructures, normal stress acting
on interfaces between soft and hard phases plays a vital role in
damage initiation during deformation31,32. One can calculate the
normal stress acting on either side of the interfaces using FE
simulated stress tensor and Sobel operator-defined interface
normal. Hence, the normal stress acting on the hard phase side of
the interface is calculated by using the stress tensor of all
elements belonging to the hard phase that is adjacent to an
element belonging to the soft phase and the interface normal of
the hard phase element defined by the Sobel operator. Figure 8
represents the distribution of normalized normal stress from the
hard phase region after 1 and 5% tensile elongation using HR,
nearest neighbor upsampled, and super-resolved microstructures.
The mean normal stresses were 262, 257, and 246MPa for HR,
super-resolved, and nearest neighbor upsampled microstructures,
respectively, for the 1% tension case. The mean normal stresses
were 347, 343, and 317 MPa for HR, super-resolved, and nearest
neighbor upsampled microstructures, respectively, for the 5%

Fig. 6 Experimentally obtained and simulated stress–strain
curves of a high entropy alloy. The curves are obtained from the
literature (square dot)23, high-resolution microstructure data (line
with an upward triangle), super-resolved microstructure data (line
with a downward triangle), and low-resolution microstructure data
(line with circle). The microstructure images below are Euler and
phase maps used for finite element simulations.
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tension case. One can clearly see that the distribution obtained
using super-resolved microstructure strongly resembles the
distribution obtained using the HR microstructure. Conversely,
the normal stress distribution obtained using nearest neighbor
upsampled microstructure resembles a bimodal type distribution,
which is different from the normal distributions obtained using
other microstructures. The bimodal distribution is observed
because the interface normal of the nearest neighbor upsampled
microstructure is biased toward either x- or y-direction.

Super-resolving experimentally obtained LR EBSD data

To verify the effectiveness of the SRResNet in super-resolving
experimentally acquired LR EBSD image data, three sets of
experimentally acquired LR and HR EBSD data were utilized. The
first set of HR and LR EBSD data are CoCrFeMnNi high-entropy
alloy (HEA) used in24. The HR and LR EBSD were processed to have

square grids with step sizes of 300 nm and 1200 nm, respectively.
The second and third sets of HR and LR EBSD data are additively
manufactured CoCrFeMnNi HEAs containing 1 at% carbon used
in26. The HR and LR EBSD were processed to have square grids
with step sizes of 750 and 3000 nm, respectively. The results are
represented in Fig. 9. The SRResNet super-resolved images
strongly resemble HR images. In contrast, grain boundaries of
microstructure images upsampled through conventional techni-
ques are either jagged or jagged and blurry. The SRResNet not
only successfully super-resolves experimentally acquired LR EBSD
microstructure images, but also poses a clear advantage over
conventional techniques. Furthermore, the success of super-
resolving LR images using the SRResNet heavily relies on the
data used to train the network. The synthetic microstructures used
for training the SRResNet were noise-free and single orientation
per grain. Interestingly, one can see from the triangle region in
Fig. 9, in-grain misorientation is super-resolved as long as the LR

Fig. 7 Simulated Mises stress distribution of the outlined region after 5% tension. From left to right are the stress distribution obtained
using high-resolution, super-resolved, low-resolution, and nearest neighbor upsampled microstructure data.

Fig. 8 Distribution of normalized normal stress from the hard phase side of the interface after 1 and 5% tensile elongation. From left to
right are the distribution obtained using high resolution, super-resolved, and nearest neighbor upsampled microstructure data.
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EBSD data can resolve some level of in-grain misorientation. Also,
as shown in the circled region in Fig. 9, the SRResNet might treat
the noise as very small grains. Thus, denoising filters or pre-
processing of the EBSD data is required when a significant level of
noise is present. The SRResNet, however, cannot super-resolve
information that cannot be resolved from LR EBSD data. One can
see from the squared region in Fig. 9, LR EBSD data failed to detect
small twin boundaries. This limits the performance of the
SRResNet as shown in the squared region in Fig. 9.
The SRResNet is not trained to handle information related to

confidence index (CI) image quality (IQ), or band contrast that can
be used to identify martensite and bainite structure in steels.
Because the SRResNet discerns one phase from another via phase
map, phase segmentation based on CI values33 by processing raw
EBSD data will be necessary prior to super-resolving steel
microstructures with martensite or bainite structures.

METHODS

Collection of synthetic microstructure data

In general, the development of a deep neural network (DNN) is hampered
by the limited size of the experimental data available. Recent efforts to
overcome the limitation have been based on producing a synthetic
database that strongly resembles experiment ones34,35. In particular, Cecen
et al.34. successfully trained DNNs using a synthetic microstructure
database. In this work, a database consisting of dual-phase microstructures
to train SRResNet was created using the open-source software
DREAM.3D36. Data acquired using EBSD typically consists of phase and
orientation data. Within an EBSD data, microstructural features such as
grains, crystallites, phases, inclusions, and interfaces are distinguished from
one another by Euler angles and phase indices. There are two methods of
attaining EBSD microstructure data. The first is to access IPF or grain-based
RGB colored-coded images with phase maps through published literature
such as Fig. 1a. The second approach is to obtain actual or processed EBSD
data with orientation information. We have trained our SR network with IPF
images as well as images with RGB values obtained by multiplying Euler
angles by 255/360 so that the network can super-resolve LR EBSD data
acquired from either of the methods. Examples of the resulting images
with Euler angle and phase information are shown in Fig. 1a.
In order to train the SRResNet, a database of microstructure images with

various features is necessary. In this work, a database of two-phase
microstructure images composed of 1000 × 1000 pixels was generated

using open-source software DREAM.3D36. The volume fraction, grain size
distribution, shape, aspect ratio, and orientation of each phase were
adjusted to create diverse classes of microstructures.
Two sets of microstructures were generated. The first set was composed

of two primary phases, and the other set consisted of one primary phase
and one precipitation phase. The primary phase was produced with a
mean value of grain size in the range of 20–200, with standard deviations
randomly set between 10% and 50% of the determined grain size. The
minimum (σmin) and maximum (σmax) cut-off values in size distribution
were fixed to 3.0 for both. The aspect ratio of a 3D particle is defined as
R1 : R2 : R3ðR1 � R2 � R3Þ where Ri is the length of a particle along i-axis.
To adjust the aspect ratio of the primary phase, R1 was decided to be a
random value between 1 and 30, while R2 and R3 were fixed to one. The
phase shape was randomly selected from three sets: ellipse, super-ellipse,
and cube octahedron. Since the 2D image would be extracted in the z-
plane direction, particle orientation was controlled by changing only φ, or
the rotation around the z-axis in Euler angles. The rotation angle φ was
randomly set in the range of 0° to 180°, and the weight of the orientation
was adjusted between 1 and 105. In the case of two primary phases, the
volume fraction of one phase was randomly set between 0 and 50%, while
the other phase occupied the entire remaining volume. In the case of
precipitation, all conditions of microstructural features were the same as
the conditions for the generation of the primary phase, except for mean
grain size and phase fraction. Precipitation is generated by overlaying on
the already created primary phase, so it is generally appropriate for a
phase of smaller size and volume. Therefore, the mean value of grain size
of precipitation was set to be in the range of 10–100 μm, which is half of
the primary phase, and the volume fraction was set between 0 and 25%. It
should be noted that the synthetic microstructures assumed a noise-free
single orientation per grain state. Thus, in-grain misorientation and noisy
scan points due to low CI were not taken into account in training the
SRResNet.

Data preprocessing

DNNs require a large amount of data for training, in which the input data
are IPF or orientation and phase images in LR, and the target data are
corresponding images in HR. Figure 1a, b shows HR microstructure images
produced by DREAM.3D, and the process of generating LR images using
nearest neighbor downsampling, respectively. It should be noted that we
do not use an anti-aliasing filter in the downsampling process of EBSD
images at the expense of distortion artifacts since an anti-aliasing filter
transforms jagged edges into blurred edges that are not an inherent
characteristic of EBSD images. We have collected 12,000 pairs of LR and HR
images for each of three downsampling factors, 4, 8, and 16. The pairs are

Fig. 9 Experimentally obtained high-resolution, experimentally obtained low-resolution, and super-resolved inverse pole figure (IPF)
maps. From left to right are of CoCrFeMnNi24 and x-plane and z-plane of the additively manufactured CoCrFeMnNi with 1 at% C26. The x-
direction is the laser scan direction and the z-plane is the building plane for the additively manufactured CoCrFeMnNi with 1 at% C.
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separated by 80%, 10%, and 10% for training, validation, and test,
respectively. We preprocess the pairs before training our network. First, the
pixel values of all the pairs are scaled in the range of [0,1] to stabilize the
learning process. Then, we randomly crop the LR images and the
corresponding HR images, which are sized 224=r ´ 224=r and 224 ´ 224,
respectively, where r is the downsampling factor. In the training stage, the
cropped low and HR patches are used as input and target data,
respectively. Note that we directly feed any size of LR images into our
trained network during testing.

Image similarity measurement

To quantitatively test image similarity measures, we used two well-known
IQ metrics: the peak-signal-to-noise ratio (PSNR) and the SSIM. PSNR shows
the ratio of the signal’s maximum power (denoted as MAX) to its noise
(denoted as MSE). MAX is equal to 255 when image pixels are represented
by an 8-bit resolution. MSE is defined as

MSE ¼ 1

mn

X

m�1

i¼0

X

n�1

j¼0

x i; jð Þ � y i; jð Þ½ �2; (2)

where x and y represent original and degraded image data, respectively,
and m and n represent the number of rows and columns, respectively.
PSNR is expressed as

PSNR ¼ 20 � log10
MAX
ffiffiffiffiffiffiffiffiffi

MSE
p

� �

(3)

SSIM is composed of three comparative measurements: luminance,
contrast, and structural, as follows:

l x; yð Þ ¼
2μxμy þ c1

μ2x þ μ2y þ c1
; (4)

c x; yð Þ ¼ 2σxσy þ c2

σ2x þ σ2y þ c2
; (5)

s x; yð Þ ¼ σxy þ c3

σxσy þ c3
; (6)

where μx and μy denote the average of x and y, σx and σy denote the
variance of x and y, respectively, and σxy denote covariance of x and y. The
constant c1 , c2 , c3 are used to stabilize the division. SSIM is then a weighted
combination of the three comparative measurements, as follows:

SSIM x; yð Þ ¼ l x; yð Þ � c x; yð Þ � s x; yð Þ½ � (7)

Micromechanical modeling

A crystal plasticity model is used to assess the micromechanical behavior
of LR, HR, and super-resolved microstructures of Al0.5CoCrFeMnNi HEA23.
The LR microstructure is generated by the nearest neighbor downsampling
the HR microstructure. The crystal plasticity framework used in this work is
based on the work by Kalidindi et al.37. In the framework, slip is
incorporated as

Lp ¼
X

Ns

α

_γ
αSαslip; (8)

Sαslip ¼ M� N; (9)

where, Lp , _γ
α, Ns , and Sαslip denote the plastic velocity gradient, the plastic

shearing rate in slip system α, the total number of slip systems, and Schmid
tensor with slip direction M and slip plane N, respectively. The plastic
shearing rate in slip system α can be described using a power-law form37:

_γ
α ¼ _γ0 τ

α=sαj j1=msign τ
α=sαð Þ; (10)

here, _γ0, τ
α , sα , and m refer to the reference shear rate, resolved shear

stress, slip resistance of the α slip system, and strain rate sensitivity,
respectively. The hardening law associated with each slip system can be

described as

_sα ¼ hsð1� sα=ss0Þ
X

slip

_γ
k

(11)

where _sα , ss0 , and hs refer to the change in the slip resistance rate, the
saturation value associated with slip system α, and the hardening rate,
respectively.
The FE simulation was conducted using the commercial ABAQUS (ver.

6.9. EF2) standard software. The EBSD data and hardening curve used for
the crystal plasticity constitutive equations were based on those for HEA23.
The EBSD data was processed to remove in-grain misorientation. The
parameters for the crystal plasticity constitutive equation are shown in
Table 3. The elastic constants of the primary FCC phase in Table 3 were
obtained from ref. 38. The second phase was assumed to undergo isotropic
J2 plasticity without hardening. The constitutive parameters of the second
phase included elastic modulus, Poisson ratio, and yield strength of
210 GPa, 0.3, and 2141MPa25, respectively. A two-dimensional plane strain
condition with displacement periodic boundary conditions was imposed
for all simulations.
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