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Abstract

Our goal is to obtain a noise-free, high resolution (HR)
image, from an observed, noisy, low resolution (LR) im-
age. The conventional approach of preprocessing the im-
age with a denoising algorithm, followed by applying a
super-resolution (SR) algorithm, has an important limita-
tion: Along with noise, some high frequency content of the
image (particularly textural detail) is invariably lost during
the denoising step. This ‘denoising loss’ restricts the perfor-
mance of the subsequent SR step, wherein the challenge is to
synthesize such textural details. In this paper, we show that
high frequency content in the noisy image (which is ordinar-
ily removed by denoising algorithms) can be effectively used
to obtain the missing textural details in the HR domain. To
do so, we first obtain HR versions of both the noisy and the
denoised images, using a patch-similarity based SR algo-
rithm. We then show that by taking a convex combination of
orientation and frequency selective bands of the noisy and
the denoised HR images, we can obtain a desired HR image
where (i) some of the textural signal lost in the denoising
step is effectively recovered in the HR domain, and (ii) ad-
ditional textures can be easily synthesized by appropriately
constraining the parameters of the convex combination. We
show that this part-recovery and part-synthesis of textures
through our algorithm yields HR images that are visually
more pleasing than those obtained using the conventional
processing pipeline. Furthermore, our results show a con-
sistent improvement in numerical metrics, further corrobo-
rating the ability of our algorithm to recover lost signal.

1. Introduction

Noise corruption is a ubiquitous phenomenon that affects

many image processing tasks. Image denoising algorithms

have evolved from local averaging based techniques to non-

local, patch similarity driven state-of-the-art approaches [3,

1, 14]. In methods such as BM3D [3] and non-local means

(NLM) [1], each noisy patch is denoised by seeking several

similar patches within the noisy image and computing their

mean, with the intention of averaging out the noise, while

retaining the underlying image structure. Such approaches

are justified by studies on statistics of natural images which

suggest that patches in an image tend to recur within the

1A part of the research was done while A. Singh interned with F. Porikli
at Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA.
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Figure 1. (a) Noisy low resolution image as input. (b) Result obtained us-
ing the conventional processing approach of denoising followed by super-
resolving, using state-of-the-art methods [3, 7]. (c) Result obtained by
super-resolving first, followed by denoising. (d) Our result.

same image [23].

Like denoising, the single image super-resolution (SR)

problem is also commonly addressed using patch-similarity.

Many current state-of-the-art SR algorithms are based

on seeking high-resolution (HR) versions of each low-

resolution (LR) image patch, using a training database

of LR-HR pairs [22, 6]. In [7, 4, 20], refined versions

of this approach are proposed wherein the LR-HR train-

ing database is created using scaled down version(s) of

the given LR image itself. Such self-similarity based ap-

proaches are again driven by natural image statistics which

suggest that patches recur in an image not just at one scale

but at multiple scales [7, 23].

While both denoising and SR use patch-similarity based

priors, they are used towards different objectives. The goal

in denoising is to seek a large number of similar patches so

as to average out noise. On the other hand, SR increases

the level of similarity required, to seek more similar, usu-

ally fewer, patches, at different scales, so as to obtain the

best estimate of the high frequency textural content for each

patch. While denoising seeks similar patches among noise

corrupted patches, SR assumes a noise free database. In a

noisy image, the SR algorithm would tend to match even the

noise part, and would thus ‘overfit’ while searching for sim-

ilar patches, in an effort to preserve textural details. Due to

these conflicting objectives, it is difficult to simultaneously

perform denoising and SR of a noisy LR image under a uni-
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fied patch-recurrence driven algorithm.

To super-resolve an image with considerable noise, the

conventional approach is therefore to first preprocess with a

denoising algorithm, followed by using an SR algorithm of

choice2. However, being an ill-posed problem, denoising is

subject to inherent performance bounds [2, 11, 10]. Some

components of the underlying signal are bound to be atten-

uated or lost by any denoising algorithm. In general, such

losses are more severe in areas containing complex struc-

tures such as fine textures. This loss of textural detail is

particularly detrimental if the subsequent operation to be

performed is super-resolution, since the synthesis of such

high frequency details is the challenge in SR algorithms.

Our Contributions. In this paper, we propose a frame-

work for obtaining a clean, HR image from a noisy LR im-

age. We attempt to overcome the signal loss caused by de-

noising as a preprocessing step, when the subsequent oper-

ation is super-resolution. Our algorithm begins by obtain-

ing two HR images from the given noisy LR image. The

first image is obtained by denoising the given LR image fol-

lowed by super-resolving it (as is conventionally done). We

call this the denoised HR image. The second image is ob-

tained by directly super-resolving the noisy LR image. We

call this the noisy HR image. While also containing noise,

the noisy HR image contains some of the textural compo-

nents which are not present in the denoised HR image due

the denoising loss. In order to obtain a noise-free image

that also contains these textural details, we propose a linear

framework that obtains the desired HR image as a convex

combination of the denoised HR image and the noisy HR

image. This linear combination is performed on orientation

and frequency selective bands of the two images, such as

those obtained using the steerable pyramid decomposition

[17, 18]. As we show in Section 2, on doing so we can ob-

tain a desired HR image where 1) a part of the denoising

loss is recovered in the HR domain and 2) additional tex-

tures can be synthesized by appropriately constraining the

parameters of the linear combination. These parameters are

determined based on our experiments which reveal where

(in spatial and oriented frequency domains) signal loss is

most prevalent. We describe these constraints and proce-

dures to obtain the parameters in Sections 3, 4, 5.

We show that this part-recovery and part-synthesis of

textures using our approach yields HR images that are are

visually more pleasing and richer in textural content than

those obtained using the conventional processing pipeline.

To corroborate our hypothesis that our algorithm does in-

deed recover lost textural components and not just hallu-

cinates them, we also compute quantitative metrics (PSNR

and SSIM [25]) over several test images and observe a con-

sistent improvement in these metrics.

2Note that the reverse approach of super-resolving first, followed by
denoising, yields unacceptable results as shown in Fig. 1. This happens
because SR introduces spatial correlation in the noise, and most denoising
algorithms fail at removing correlated noise.
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Figure 2. Summary of proposed approach for obtaining a noise-free HR
image from a noisy LR image. Using a linear convex combination frame-
work, our algorithm facilitates part-recovery and part-synthesis of lost tex-
tures. Our result (blue box) appears richer in texture as compared to the
current state-of-the-art (red box).

2. Proposed Model

Notation. We use capital letters to denote images/matrices,

as well as scalar constants, as appropriately defined. We

use scripted letters (S,U ,B etc.) to denote operators, and/or

sets, as appropriate. We use the tilde symbol to denote HR

versions of LR images. Therefore, if S is a super-resolution

operator, Ĩ = S(I). We denote indices using super-scripts.

Consider a noisy observation In = I + N(σ) of an LR

image I under additive white Gaussian noise N(σ) of vari-

ance σ. Our goal is to obtain the best estimate of the HR

version Ĩ of the noise free image I .

Let D be a denoising operator such that Idn = D(In). If

D(σ) is the signal loss caused by D, we can write, Idn =
I−D(σ). Now, on super-resolving this denoised image Idn
(and assuming the SR operation to be linear3), we get,

Ĩdn = Ĩ − D̃(σ) (1)

Here Ĩdn denotes the denoised HR image. Ĩdn is the result

obtained using the conventional approach of denoising as

a preprocessing step before super-resolving. Such an ap-

proach results in loss of signal, given by D̃(σ).

3Although most SR algorithms are not linear, we make this assumption
to simplify our analysis and clarify the motivation of our algorithm.



Can we obtain a better estimate for Ĩ than (1)? To answer

this, let us now super-resolve the noisy LR image In,

Ĩn = Ĩ + Ñ(σ) (2)

Now, consider a new estimate Ĩnew of Ĩ that is obtained by

taking a convex combination of Ĩdn and Ĩn,

Ĩnew = (1−A) · Ĩdn +A · Ĩn (3)

where ‘·’ denotes Hadamard or entry-wise product, and the

weighting matrix A contains values in [0, 1]. Substituting

Ĩdn and Ĩn from (1) and (2),

Ĩnew = (1−A) ·
[

Ĩ − D̃(σ)
]

+A ·
[

Ĩ + Ñ(σ)
]

(4)

= Ĩ − (1−A) · D̃(σ) +A · Ñ(σ) (5)

= Ĩdn +A · D̃(σ) +A · Ñ(σ) (6)

We now compare this new estimate Ĩnew of (6), with the

conventionally obtained image Ĩdn in (1). We observe that

in addition to Ĩdn that is obtained by conventional process-

ing, (6) contains two more terms: The first additive term,

A · D̃(σ), recovers a fraction (A) of the underlying textu-

ral signal that is lost during the denoising step. The second

term, A · Ñ(σ), introduces high frequency (noisy) compo-

nents into Ĩnew. As we describe later, appropriately filtering

the noisy components to align with underlying local image

structure serves as a way to synthesize additional texture.

In order to facilitate such texture synthesis, we reformulate

the convex combination model of (3) in terms of orientation

and frequency selective bands of the images [17]. Given

an image I , let {B(r,s)}, r = 1, ..., R, s = 1, ..., S denote

its responses to a filter bank consisting of S scales and R
orientation bands per scale. We rewrite the model of (3) in

terms of frequency bands as,

B̃(r,s)
new = (1−A(r,s)) · B̃

(r,s)
dn +A(r,s) · B̃(r,s)

n (7)

Note that we have now replaced the weighting matrix A,

with a set of weighting matrices A(r,s), one for each band

(r, s). We propose a further re-parameterization of A(r,s) to

the form,
A(r,s) = αV ·W (r,s) (8)

As we discuss below, such a re-parameterization allows for

incorporation of several prior constraints, without which,

determining the optimal coefficients for the convex linear

combination of Ĩdn and Ĩn is difficult.

The matrix V with values in [0, 1] is called the variance

map, and for every pixel location in the scene, it measures

the “textureness” of the local neighborhood. We explain our

procedure for its estimation in detail in Section 3. The vari-

ance map allows us to perform the linear mixing of (7) in a

spatially selective manner. In smooth, textureless regions,

V favors greater influence from the denoised HR image,

since there is little textural loss expected in such regions.

Our convex combination model presents a tradeoff: We

see in (6) and (7) that choosing high values of the mixing

weights would help recover more of the signal lost dur-

ing denoising, but would also introduce more noise through

Ñ(σ) (present in Ĩn). We show through experiments in

Section 4 that at any location in the image, denoising loss

is prevalent only in the most dominant orientation bands.

Therefore, instead of uniformly combining all orientation

bands of Ĩn and Ĩdn, it would suffice to combine only those

bands corresponding to the dominant local texture orienta-

tion. The advantage of doing so is that only a filtered ver-

sion of the noisy components from Ĩn would be introduced

in the resulting image Ĩnew. Such orientation selective ad-

dition of noisy components in fact serves to perceptually

enhance the local texture. Indeed, this has been the key idea

behind several “texture-from-noise” synthesis algorithms in

the literature [8, 15, 19]. The matrices W (r,s) allow us to

perform the linear mixing in such a band selective manner.

We elaborate more on this in Section 4.

The scalar parameter α ∈ [0, 1] globally controls the rel-

ative weights of the overly smooth Ĩdn and the noisy Ĩn in

the resultant linear combination Ĩnew. While V and W (r,s)

determine where to blend and which frequencies to blend,

the scalar parameter α ∈ [0, 1] determines how much to

blend Ĩdn and Ĩn. We choose an optimal α such that the

resultant image Ĩnew obeys the kurtosis invariance prop-

erties of noise-free natural images [24]. We elaborate this

procedure in Section 5.

Once we have determined the weights of the linear com-

bination, we use (7) to combine the bands of Ĩdn and Ĩn.

The resulting bands are used to invert the bandpass decom-

position to obtain our final result. Fig. 2 summarizes our

algorithm.

3. Spatial Constraint

In this section we discuss the estimation of the vari-

ance map V , which can be easily computed as a by-product

of any patch-based SR algorithm, without significant over-

head. We first briefly outline the SR algorithm that we use,

and then explain how we obtain V from it.

Super-Resolution Algorithm. The SR algorithm we

use follows the self-similarity principles described in [7, 4].

Given an LR image I , we first create a database of LR-HR

image patches, from the image I as follows: We first cre-

ate a smoothed version of the input image IL = U(L(I)),
by downsampling the input image I using the operator L,

and then upsampling using a simple (bicubic or bilinear) in-

terpolator U . We then create two sets of image patches P
and PL, that contain corresponding patches extracted from

I and IL respectively. The sets PL and P serve as our

database of LR-HR training patches.

To super-resolve the given image I to Ĩ , we first create

a bicubic upsampled image IU = U(I), which has missing

high frequency components. Now, for every patch pU in

IU , we find its most similar patch p′U in the LR set PL. Let

p ∈ P be HR patch corresponding to p′U . We replace pU by

p in IU , and repeat for all patches to obtain the HR image Ĩ .

Variance Map Estimation. The above SR procedure

replaces each patch of the LR image with its best match-
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Figure 3. Given an LR image (a), we use a patch-similarity based SR al-
gorithm to obtain the HR image (c). In the process, we obtain the variance
map (d), by computing the variance across multiple predictions obtained
through overlapping patches, for every HR pixel (shaded square in (b)).

ing HR patch in the database. To avoid blocking artifacts,

overlap is allowed between the extracted patches. There-

fore, if the patch size is 5-by-5, each pixel in the HR image

would belong to 25 overlapping patches, and would receive

25 predictions during the SR process. In textural regions,

these multiple explanations for the pixel are likely to be in-

consistent since finding high quality patch-matches in tex-

tured regions is difficult [23]. Therefore, the variance of

the multiple predictions of a pixel obtained during the SR

procedure serves as a measure of the textural content of its

local neighborhood. We compute this variance across all

the pixels in the HR image and normalize the values to lie

between 0 and 1 to thus obtain the variance map V . Fig. 3

illustrates this procedure with an example.

We now verify through an experiment that V does indeed

indicate pixels where signal loss occurs in the denoised SR

image. We obtain 50 images from the Berkeley segmen-

tation database [13], downsample them by a factor of two,

and add Gaussian noise. This creates set of noisy LR ob-

servations. We then denoise the images using the BM3D

algorithm [3], and super-resolve the denoised images using

the algorithm presented above, to yield the denoised HR im-

ages. In the process, we also obtain the variance maps for

each image. We then extract around 1000 7-by-7 patches

from all the variance maps. For each patch, we plot its aver-

age variance map value against its intensity domain RMSE

value (difference between the denoised HR image and the

ground truth image). In Fig. 3, we show the resulting scat-

ter plot. Clearly, there is a strong correlation between the

values in the variance map and the amount of signal lost in

the denoised HR image. Regions with high values in the

variance map lose more signal and are therefore expected to

benefit more using our proposed convex combination model

of (3), justifying our use of V in (8).

4. Frequency Domain Constraint

In this section we discuss the estimation of the param-

eters W (r,s) that facilitates frequency and orientation band

selective blending.

We first examine the behavior of signal power in small,

textured patches of Ĩdn and Ĩn, across oriented frequency

bands. We again use 50 images from the Berkeley database

Input Image

Figure 4. The steerable pyramid yields a jointly-localized (in space and
frequency) invertible decomposition of an image into multi-orientation and
multi-scale bands (3 orientations and 3 scales in this example).
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Figure 5. Average distribution of patch energy, across orientation and

scale, for the denoised HR image (Ĩdn), noisy HR image (Ĩn) and the

ground truth HR image. The signal lost in Ĩdn as compared to the ground
truth is primarily in the first few largest orientation bands.

and create sets of noisy HR and denoised HR images,

along with their variance maps. We then compute a steer-

able pyramid decomposition for each image in the two

sets. The steerable pyramid provides jointly-localized

(space/frequency) representation of images using an in-

vertible multi-scale, multi-orientation image decomposition

[17, 18, 5], as shown in Fig. 4. We use S = 4 scales and

R = 16 orientations for the decomposition. We then ex-

tract around a 1000 patches of size 7-by-7 across all bands

from the 50 images, from areas containing significant tex-

tures (V > 0.5). We compute the average energies in these

patches, in the different orientation and scale bands. To

achieve rotation invariance, for each patch we sort the orien-

tation bands in decreasing order of energy before averaging.

Fig. 5 shows the average distribution of energy across

two scales and all orientation bands, for patches from the

denoised HR images (red bars), the noisy HR images (green

bars) and the corresponding ground truths (blue bars).

We make a simple yet important observation: Signal loss

is most prevalent in the orientation bands with higher ener-

gies. In the high energy bands, we observe that the ground

truth bands lie within the convex hulls of the corresponding

denoised HR and noisy HR bands. This, in a way, further

justifies our convex combination model of 3.

Based on this, we propose the following technique for

choosing the weight matrices W (j), given a noisy HR im-

age Ĩn and the denoised HR image Ĩdn: For any spatial lo-

cation x, we first consider a patch centered at x in the image

Ĩdn. Let B
(s)
λ (x) be the set of the most dominant orientation

bands in the scale s in this image patch, as shown in Fig. 6.

This set is determined by a scalar parameter λ ∈ (0, 1) that

controls the fraction (in terms of energy) of the total num-

ber of orientation bands, that are present in the set B
(s)
λ (x).

For the location x, we assign W (r,s)(x) the following binary
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Figure 6. Given a patch (red box) at any location x, and its oriented band-

pass decomposition, the set B
(s)
λ

(x) contains the most dominant orienta-
tion bands in the patch. The proposed convex combination is selectively
done only on these bands. See text for details.

valued weight:

W (r,s)(x) =

{

1 if r ∈ B
(s)
λ (x)

0 else
(9)

The above weights effectively allow for blending the im-

ages Ĩdn and Ĩn only along the most dominant orientations

of Ĩdn. As noted from the above experiment, these are the

bands where maximum signal loss occurs. As far as the

noise in Ĩn is concerned, it is also added into Ĩnew, only

along the direction of the underlying texture. Adding noise

which is filtered along the texture orientation has the effect

of perceptually enhancing the texture. We illustrate this in

Fig. 7. In this simplified example, since the third orienta-

tion band has the highest energy among all bands in Ĩdn, it

is combined with the corresponding band of Ĩn to obtain the

band for Ĩnew. The other bands of Ĩnew are simply copied

from Ĩdn. The resulting patch Ĩnew appears richer in texture

than Ĩdn.

Figure 7. A simplified example showing how the orientation bands of Ĩdn
and Ĩn are combined to get Ĩnew . Since the third orientation band has the

most energy in Ĩdn, the convex combination is performed on this band.

Although, in this process, noise is also introduced from Ĩn, it is done so

only along the texture orientation. This enhances the texture in Ĩnew .

5. Global Constraint

We now discuss the estimation of the scalar parameter

α of (8). A low value results in an overly smooth image

(close to Ĩdn), whereas high values may result in excessive

high frequency content.

To optimally choose α, we again resort to the statisti-

cal behavior of natural images across bandpass decomposi-

tions. It is well known that the marginal responses of natural

images to bandpass filters is highly non-Gaussian [16, 21].

This deviation from Gaussian model can be measured by

the kurtosis of the responses. In fact, studies have shown

that the kurtosis of natural images remains constant across

different frequency bands [9, 24].
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Figure 8. Lenna. The plot shows the kurtosis values across bandpass

decompositions, for the denoised HR image (Ĩdn), noisy HR image (Ĩn)

and our result (Ĩnew). Higher component numbers correspond to higher
frequency bands. The images above the plot shows visual comparison of
the results. Textures are better recovered in our image. The numbers below
the images denote (PSNR in dB, SSIM).

Kurtosis of a distribution is defined as, κ = µ4

σ4 − 3,

where µ4 is the fourth moment about the mean, and σ is the

standard deviation of the distribution. By this definition,

the kurtosis of a Gaussian is zero. It has been shown in [24]

that in noisy images, the kurtosis values in higher frequency

bands are smaller than those in lower frequencies. This is

indeed expected since noise (which predominantly affects

higher frequency bands) has Gaussian statistics, and there-

fore has the overall effect of reducing kurtosis. We observe

that on the other hand, excessive smoothing dramatically

increases the kurtosis values of the high frequency bands.

We propose to choose the α that results in minimum vari-

ation of the kurtosis values across bands. Let κ
(r,s)
new (α) be

the kurtosis value of the band B̃
(r,s)
new of our image Ĩnew. We

obtain the optimum α as,

α∗ = argmin
0≤α≤1

∑

r,s

[

κ(r,s)
new (α)− κ̄new(α)

]2

. (10)

κ̄new(α) is the mean kurtosis value across all bands. We

numerically solve the above optimization problem. Alter-

natively, one may use MATLAB’s fminsearch function.

6. Results

Implementation Details. We implement our method

with both non-local means (NLM) [1] and BM3D [3] de-

noising algorithms. Both these algorithms require the noise

variance as an input. Although most of our noisy images

are simulated by adding noise of known variance, we use

the algorithm of [12] to estimate noise variance from the

noisy images. This is then fed to the denoising algorithms.

In all our images, we found the estimated variance to be
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Figure 9. Lama. Textures on the fur, and on rocks in the background are much better reconstructed in our result as compared to the conventional BM3D-SR.
The numbers in bracket denote (PSNR in dB, SSIM).

Input ( =20) Ours with NLM (30.87, 0.8324)NLM-SR (30.59, 0.8204)Ground truth HR

Figure 10. Baby. The woolen cap in our result is significantly richer in texture as compared to the conventional NLM-SR approach. The numbers in bracket
denote (PSNR in dB, SSIM).

within ±5% of the true variance. We run our algorithm with

several different noise levels. We use S = 4 scales in the

steerable pyramid decomposition. Scale levels of 5 or more

required much larger images. For each scale, we computed

decompositions along R = 16 orientation bands, which is

the maximum allowable in the available implementation by

Simoncelli. We set the band energy threshold parameter

λ = 0.6 in most cases, but we also study the effects of

changing it

Qualitative Results. Fig. 8 shows our result on the

Lenna image. We plot the kurtosis values of our result

across all frequency bands, and compare it to those of the

denoised HR image (red markers) and the noisy HR image

(green markers). Higher component numbers correspond

to higher frequency bands. Due to noise, the kurtosis val-

ues in the higher frequencies of the noisy HR image are low,

whereas they are very high for the denoised HR image. Sub-

ject to our constraints, our algorithm yields kurtosis values

as shown by the black markers. Fig. 8 also shows our result-

ing image. Textural details are better preserved as compared

to the denoised HR image, both visually and quantitatively.

Noise variance was σ = 20 in this experiment.

Henceforth, we refer to the denoised HR images as

BM3D-SR or NLM-SR, depending on the denoising al-

gorithm used. This indicates the conventional processing

approach of first denoising (BM3D or NLM), followed by

super-resolution (SR).

Fig. 10 shows our results with the NLM denoising algo-

rithm, on the Baby image. As compared to NLM-SR, we

recover significantly more texture in the woolen cap. Fig. 9

shows our result while using the BM3D algorithm, on the

Lama image. Again, textural details such as the fur, and the

rocks behind are significantly well preserved as compared

to BM3D-SR. Fig. 11 shows the results of both the NLM

and BM3D based algorithms on the Horse image. Textures

like the grass and the horse fur are visually and quantita-

tively better recovered by our approach, using either NLM

or BM3D. Using BM3D gives slightly better results.

Fig. 12 shows results of using a different SR algorithm in

our framework, on the Dog image. Our results improve over

the corresponding baseline for both the self-similarity based

SR (SsSR) algorithm as described in Section 3, as well as

the sparse-coding based SR (ScSR) algorithm of [22]. Tex-

tures on the dog fur, grass, and the wooden pole are better

in our results.

Quantitative Analysis. We use 50 natural images from

the Berkeley segmentation database [13]. We run our al-

gorithm(s) on these images and compute PSNR and SSIM

[25]. We first analyze the quantitative performance of our

algorithm(s) with different noise levels. Fig. 13 plots our re-

sults. We observe that our algorithms consistently improve

over the conventional methods, across different noise lev-

els. Fig. 15 shows the visual results of varying noise on a

test image. All our images are visually better as well.



Input ( =25)

NLM-SR (23.85, 0.5335) Ours with NLM (24.13, 0.5613)

BM3D-SR (23.99, 0.5472) Ours with BM3D (24.17, 0.5659)

Ground truth HR

Figure 11. Horse. For both NLM and BM3D, our algorithms significantly
improve over the respective baselines, both visually and numerically. The
grass, flowers and horse fur show significant visual improvement. The
numbers in brackets denote (PSNR in dB, SSIM).

In our algorithm, we have introduced a parameter λ ∈
(0, 1) that controls the fraction (in terms of energy) of the

orientation bands that are involved in the blending proce-

dure. A very low value would combine only the first few

(largest) bands, resulting in improvement in texture only

along these specific orientations. A higher value would

combine more number of bands, resulting in better recov-

ery of texture. However, an excessively high value of λ
(e.g. close to 1), would tend to copy the noisy HR image

‘as is’, and may introduce noisy components in the result-

ing image. Indeed, this is what we observe quantitatively

as well, as shown in Fig. 14; both PSNR and SSIM first

increase with increasing λ, and then drop slightly at around

λ = 0.8. Nevertheless, throughout the range, our perfor-

mance remains significantly higher than the conventional

results, as can be seen from the plots. Fig. 16 shows the

result of varying λ on a test image.

Real-world Image. We use our algorithm to enlarge a

part of an image captured with camera on a high ISO set-

ting, resulting significant sensor noise in the image. Fig.

17 shows the result of our algorithm. While in smooth re-

gions our result looks similar to the conventionally obtained

result, in textured areas our image appears better.

7. Conclusion

We have presented an algorithm for denoising and super-

resolving noise corrupted images. Contrary to the conven-

Input (  =20)

BM3D-SsSR (27.92, 0.7081) Ours with SsSR (28.19, 0.7288)

Ground truth HR

BM3D-ScSR (28.14, 0.7201) Ours with ScSR (28.33, 0.7337)

Figure 12. Dog. Using either self-similarity based SR (SsSR, described
in Section 3), or sparse-coding based SR (ScSR [22]), our algorithm sig-
nificantly improves over the respective baselines, both visually and numer-
ically. The fur, grass and tree trunk show the most improvement visually.
The numbers in brackets denote (PSNR in dB, SSIM).
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Figure 13. The plots show average SSIM (left) and PSNR (right) as func-
tions of noise variance. Our algorithm(s) consistently improve over their
corresponding baselines for all noise levels tested.
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Figure 14. The figures plot average SSIM (left) and PSNR (right) as a
function of the band energy threshold parameter λ. For a wide range of λ
values, our performance remains significantly higher than the correspond-
ing baselines.

tional strategy of denoising first and subsequently super-

resolving the denoised image only, our algorithm, in ad-

dition, super-resolves the noisy image as well in order to

extract some of the information missing in the denoised

image. We have proposed an algorithm that partly re-

stores missing texture, and partly synthesizes it from the
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(27.65, 0.8029) (26.87, 0.7789)

Figure 15. Procupine. Our algorithm can be seen to be both visually and
quantitatively better than the conventional approach for a range of noise
levels.

Ground truth HR NLM - SR Ours (            )  Ours (            ) 
(26.5982, 0.7072 ) (26.8682, 0.7277) (26.9885, 0.7395)

Figure 16. Fur. A small value of λ results in relatively smaller (but still
noticeable) improvement in results. A very high value recovers more tex-
ture but may also yield a relatively more ‘noisier’ image.

Figure 17. Real world example. Although the estimated noise variance
(5.3) in this real world image is quite lower than in any of our simula-
tions, our result still shows perceivable improvement in visual quality as
compared to the BM3D-SR baseline.

noise components present in the noisy image. We have

demonstrated that our algorithm considerably outperforms

the conventional processing methodology in regions con-

taining stochastic textures. A possible limitation of our al-

gorithm is in handling more regular (non-stochastic) tex-

tures (such as in Fig. 18). A possible solution would be

(a) BM3D-SR (b) Our Result
Figure 18. Failure case. While our algorithm yields better results in re-
gions of irregular/stochastic texture (green box), our approach does not do
as well in regions containing regular textures (red box), where our result
appears slightly more noisy than the baseline.

to use more elaborate texture segmentation algorithms and

use this additional information in our constraints. In this

paper we have restricted ourselves to testing the basic idea

wherein the weighting parameters can be easily estimated.
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