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SUPER-RIGIDITY FOR HOLOMORPHIC MAPPINGS
BETWEEN HYPERQUADRICS WITH POSITIVE
SIGNATURE

M.S. BAOUENDI & XIAOJUN HUANG

Abstract

We study local holomorphic mappings sending a piece of a real
hyperquadric in a complex space into a hyperquadric in another
complex space of possibly larger dimension. We show that these
mappings possess strong super-rigidity properties when the hy-
perquadrics have positive signatures. These results are applied in
the context of holomorphic mappings between classical domains
in complex projective spaces of different dimensions.

1. Introduction

In this paper, we study holomorphic mappings from a piece of a
real hyperquadric with positive signature into a hyperquadric in a com-
plex space of larger dimension. We will prove that, unlike in the case
of Heisenberg hypersurfaces (i.e., hyperquadrics with O-signature), the
maps possess strong super-rigidity properties. This phenomenon is some-
what analogous to that encountered in the study of holomorphic maps
between irreducible bounded symmetric domains of rank at least two
(see e.g., the book of Mok [18] for results and extensive references on
this matter). We first state our results in the context of holomorphic
mappings between classical domains in complex projective spaces of dif-
ferent dimensions.

For 0 < ¢ < n, denote by B} the domain in CP" given by

By := {[20,--,2n] € CP" : [20]* + -+ + |20)* > |2041]* + -+ - + |2 *}-

For 0 < k < m, let E ;) denote the m X m diagonal matrix with its
first k£ diagonal elements —1 and the rest +1, and define

In what follows, we will regard U(n+1,¢+ 1) as a subgroup of the
automorphism group of CP" by identifying an element A in
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380 M. BAOUENDI & X. HUANG

U(n+ 1,¢+ 1) with the holomorphic linear map o € Aut(CP") defined
by o([z0,---,2n]) = [20,---,2n]A. Then, it is clear that U(n + 1,¢ 4 1)
can actually be identified with a subgroup of Aut(B}), acting transi-
tively on OB}. In fact, it is well known that, with this identification, we
have U(n + 1, + 1) = Aut(B}) (see e.g., [5], Section 1) or Remark 5.1
below). We can now state our first result.

Theorem 1.1. For 0 < ¢ <n —1, let p be a boundary point of B}
and let Uy be an open neighborhood of p in CP" with U, NB} connected.
Assume that F is a holomorphic map from U, "B} into IB%éV for N > n.
Suppose that for any sequence {Z;} C U, N B} with lim;_. Z; € OB},
all the limit points of the sequence {F(Z;)} lie in OBY . Then, F extends
to a totally geodesic embedding from B into Bé\[, i.e., there exist o €
Un+1,+1) and T € UN + 1,0+ 1) such that

ToFoo([z0,.--y2n]) = [205---32n,0,...,0].

It should be mentioned that by making use of a theorem of Siuand
Ivashkovich ([22], [17]), it suffices to prove Theorem i.Ir under the
additional assumption that the map F in Theorem {1, extends holo-
morphically to U, (see Section & below). As an immediate application
of Theorem il ., we have the following global super-rigidity result.

Corollary 1.2. Any proper holomorphic map from B} to IB%éV s a
totally geodesic embedding whenever 0 < £ <n —1 and N > n.

In Corollary 1.2, the case £ = 0 has to be excluded. Indeed, we do
know that super-rigidity does not hold for general holomorphic maps
between Bj and IBE(])V with N > n > 1, unless more restrictions are
imposed. For instance, the Whitney map given by W([zo, 21, 22]) :=
[23, 2120, 2122, 23] maps properly B3 into BY, and is not linear. Estab-
lishing various rigidity results for the case ¢ = 0 has attracted much
attention since the work of Poincaré [21]. Here, we mention the work
in 2340, &), W2, [, 7. [, 4. G5 o0 name a few. We refer
the reader to the second author’s papers [15], [[16] for more references.

We remark that there are no proper holomorphic maps from B} into
Bé\[ for ¢/ < ¢ (see Section ¥ below). Also, one cannot expect, in general,
that Corollary .2 holds for any ¢ > ¢. For instance, we have the
following:

Example 1.3. Let F([z0, 21, 22, 23]) = [28, V22021, 23, 23,/ 22223, 23).
Then, F' maps properly B} into B3, and clearly, F is not linear.

However, with the same arguments used in the proof of Theorem 1.1,
we can also prove the following results:
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Theorem 1.4. Let p be a boundary point of B} and let U, be a
neighborhood of p in CP" with U, N B} connected. Assume that F is a
holomorphic map from U, NB} into B?i]f fork>0and0 <l <n—1.
Suppose that for any sequence {Z;} C U, N B} with lim;_.., Z; € OB},
all the limit points of the sequence {F(Z;)} lie in 818?:,5. Then, F
extends to a totally geodesic embedding from B) into B?i]f Namely,
there existc € Un+ 1,4+ 1) and T € Un+k+ 1,0+ k+ 1) such that
ToFoo([z0,...y2n]) = [20y--+)2n,0,...,0].

Corollary 1.5. Any proper holomorphic map from B} to IB%E_FIf 1S a

totally geodesic embedding whenever 0 < £ <n —1 and k > 0.

In light of Example 1.3, the target dimension n+k cannot be improved
in the statements of Theorem il.4 and Corollary i.5. Our proofs of the
above results are of local nature. In fact, we will reduce the proofs to
statements for local holomorphic mappings between hyperquadratics as
stated earlier. Before we state our main technical result, we introduce
the following notation. For 0 < ¢ < n — 1, we define the generalized
Siegel upper-half space

Sy = {(z,w) =(21,...,2p—1,w) € C" 1 w=u+1v,

¢ n—1
TP M
j=1 j=t+1
where the first sum is understood to be 0 if £ = 0. The boundary of S}
is the standard hyperquadric

Hy := {(z,w) =(21,...,2p—1,w) €C" 1w =u+1v,

¢ n—1
==kl + Y I}

j=1 j=t+1
Here, £ is called the signature of Hj. If 0 < £ <n — 1, it is well known
that any CR function defined over a connected open piece M of H ex-
tends to a holomorphic function in a neighborhood of M in C" (see e.g.,
[2]). We denote by Auto(HY) the stability group of the local biholomor-
phisms of C" preserving a piece of Hj near the origin and sending 0 to

itself. We now can state the main technical result of the paper.

Theorem 1.6. Let M be a small neighborhood of 0 in Hy with 0 <
¢ < n—1. Suppose that F = (f1,..., fN-1,9) is a holomorphic map
from a neighborhood U of M in C" into CN with F(M) C HY, N > n,
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and F(0) = 0. Suppose either { < (n—1)/2 or F preserves sides in the
sense that F(U NS}) C S). Then, the following hold:

(i) If g—g(O) # 0, then F is linear fractional. Moreover, there exists
w
T € Autg(HY) such that either

ToF(z1,...,2p-1,w) = (21,.+,2n-1,0,...,0,w), or
ToF(z1,. .y 2n—1,W) = (Zog1s -y Zn1,21, -+, 20,0,...,0,—w),
and the latter can only happen when ¢ = (n — 1)/2.
(ii) If S—Z(O) =0, then F(U) C HY. More precisely, there is a con-

stant (N — £ — 1) x £ complex matriz V', with VvV = Idy_¢_1,
such that

9g=0,  (fi,--  fo) = (frg1,-- s fIn-1)V-

When N = n, Theorem .6, Part (i), is a classical result of Tanaka
[23] and Chern—Moser [§]. For n < N < 2n — 2, Theorem i[.G, Part (i),
was first obtained in ajoint work of the second author with Ebenfelt and
Zaitsev [@]. The proofs in [g] are based on a new normal space for the
Chern—Moser operator and are different from those given in the present
paper. It should be mentioned that the approach in [E] cannot be used
to derive Theorem 4. (i) when N > 2n — 1. We should mention that
when £ > (n — 1)/2, the side preserving assumption in Theorem .6 is
crucial for the conclusion (i) to hold as shown by the following example.

Example 1.7. Let F(z21, 22, 23,w) = (23,23, 21, 29, 22, —w). Clearly,
F embeds Hj into HS, but does not preserve sides. Although g,,(0) # 0,
F'is not linear fractional.

For holomorphic maps sending a piece of Hj in Hé\f with ¢/ > ¢, we
have the following result.

Theorem 1.8. Let M be a small neighborhood of 0 in Hj} with 0 <
t<n—1. Fork >0, let F = (f1,..., fntk—1,9) be a holomorphic map
from a neighborhood U of M in C" into C"** with F(M) C H?j:,f, and
F(0) = 0. Suppose that F' preserves sides in the sense that F(UNS}) C

S?Lf Then, the following hold:

0
(i) If 8_9(0) # 0, then F' is linear fractional. Moreover, there exists
w
TE Auto(ng]f) such that either

ToF(z1,...,2n—1,w) = (21,.+.,2n-1,0,...,0,w).
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(ii) If g—g(O) = 0, then F(U) C H?j-_lf More precisely, there is an
w

(n—10¢—1) x ({ + k) constant complex matriz V, with VTV =
Id,,_¢_1, such that

gEO, (fl)"'ufé-f-k)E(ff'i‘k‘-i-l?”'ufn-f—k—l)‘/'

It can be easily checked that the non-vanishing of (0g/0w)(0) in Part
(i) of Theorem {.§ (resp. Theorem 1.8) is equivalent to the transver-
sality at 0 of the mapping F' to the hypelrrgllrface HY (resp. H?Lf)
This means, say, in the context of Theorem 1.6, that the non-vanishing
condition (dg/0w)(0) # 0 is equivalent to the transversality condition
F'(0)(To(C™)) + ToHY = ToCY. In the equidimensional case, such con-
ditions were previously considered for local holomorphic mappings from
C" to C" sending a hypersurface into another (see e.g., [B]).

2. Normalization and Chern—Moser—Gauss Equation

In this section, we set up some basic notation to be used throughout
the rest of the paper. We then derive a fundamental equation, called
the Chern—Moser equation or Gauss equation, for embeddings in hyper-
quadrics. This equation geometrically reflects the curvature relations
of the hyperquadrics. Let Hj} C C" and ]H[é\,[ C C¥ be the standard
hyperquadrics defined by

n—1
(2.1) Hy : =< (z,w =u+ i) € C", v:Imw:Z<5j7g\zj\2 ;
j=1
N-1
HY : =< (%, w* =u* +iv*) e CV, v* = Z 801257
j=1

Here and in what follows, we denote by d; » the symbol which takes value
—1 when 1 < j < ¢ and 1 otherwise. For ¢/ > /¢ and N >n > /{— 1, we
define

N-1
(2.2) Hé\,fegn =< (2w e CV) Imw* = Z (5]'7@,[/,”‘2’;’2
j=1

with 8¢, = —1forj<lorn<j<n+l —{¢—1,and 6;pp, =1
otherwise. Notice that ]H[évz/ ,, is the same as ]H[é\,[ for ¢/ =¢. When ¢ > ¢,
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Hé\f is holomorphically equivalent to Hé\,ff/,n by the linear map

(2.3)  oppp(zfw*) =

* * * * * * * * *
(B s 20 2 ts s 2y 10 2 Ls w2 20> 2o 5 N1 W),

Write L; = 22’(5]»74,27% + % forj=1,....n—1and T = é% Then,
J

{Li,...,L,_1} forms a global basis for the complex tangent bundle
T(LO)]H[}1 offlj, and T is a tangent vector field of HJ transversal to
T(LO)HQ U T(O’l)H}?. Parameterize H}} by (z,%,u) through the map
(z,Z,u) — (z,u+1 Z;L;ll 85.¢12]?). In what follows, we will assign the
weight of z and u to be 1 and 2, respectively. For a non-negative integer
m, a function h(z,Z,u) defined in a small neighborhood M of 0 in HJ
is said to be oy (m), if h(tz,tz,t%u)/[t|™ — 0 uniformly for (z,u) on
any compact subset of M for t € R,t — 0. (In this case, we write
h = owt(m)). By convention, we write h = 0y (0) if h(z,Z,u) — 0 as
(2,Z,u) — 0. For a smooth function h(z,z,u) defined in U, we denote by
h*)(2,Z,u) the sum of terms of weighted degree k in the Taylor expan-
sion of h at 0. We also denote by h(*)(2,Z, 1) a weighted homogeneous
polynomial of weighted degree k, (even if there is no specified function
h). When h¥)(z, Z,u) extends to a weighted holomorphic polynomial
of weighted degree k, we write it as h¥)(z,w), or h¥)(2) if it depends
only on z. Here again, z has weight 1 and w has weight 2.

For two m-tuples © = (x1,...,Zm),y = (Y1, .., Ym) of complex num-
bers, we write

m m
(@, y)e = Sjemjy;, and [z} =6 lzy)*
=1 =1

For /! > ¢ and £ — 1 < n < m, we write (z,y)o e, = Z;nzl 8i 0.0/ nTjYj.
When (x,7)een =0, we write z L, y.

Let FF = (f1,...,fn-1,9) = (f, g) be a non-constant holomorphic
map from an open neighborhood M of 0 in Hj into ]H[é\,[ with 1 < /7 <
n—1and 1 < /¢ < N — 1. For the rest of this section, we shall assume
that g, (0) = X\ # 0.

Write f = zA +wa+ O(|(z, w)[2) with A an (n— 1) x (N — 1) matrix
and a an (N — 1)-row vector. Applying L* = L{*---Lo"7", where
a=(a1,...,0n-1), to the equation on M

N-1
(2.4) Im(g) = > 8wl
j=1
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and then evaluating at 0, we see that
(2.5) g(z,0) = 0.

Hence, we have g = Aw + O(|(z,w)|?). Collecting terms in (2.4) of
weighted degree 2, we have

~ —_—t
Im(w) = fY ) Ep n-1yfO(2), w=u+iz[f,

with B n_1) as defined above. Since u and z are independent variables,
taking the coefficients of u and identifying the coefficients of z;z;, we
conclude that A € R\ {0} and

—t
(2.6) AE(n_1) = ABp n_1)A".
Counting the number of negative eigenvalues in both sides of (2.6) and

using elementary linear algebra, we conclude the following;:

Lemma 2.1. Let F' be a holomorphic map as above sending a neigh-
borhood of 0 in Hy into HJ)) with F(0) =0 and A = g,,(0) # 0. Then,
necessarily A € R\ {0}, N > n, and Rank (A) = n — 1. Moreover, one
has the following:

(a) If A > 0, then ¢/ > £.

(b) If ;£ < (n—1)/2, then A > 0.

(c) If ¢ = (n—1)/2, composing F on the right by the linear map

(2.7) 000(2, W) = (2041, -+ s Zn—1, 21, - -, 20, —W) € Aut(H’(znil)/Q)
if necessary, one can assume A > 0.

In what follows, we shall always assume that N > n and ¢ > ¢. We
now write,

F= (le’g) = (flv"'vfn—lafna"'7fN—1ag) L=
(f7¢7g) = (flv"'vfn—17¢17"'7¢N—nag)'

Then, oy, o F' sends Hj into ]H[évz/ .- For simplicity of notation, we
still write, in what follows, F for o, o F. Hence (2.6), associated to
the new F', reads as

—t
(2.8) AE(n—1)=AEgpnN-1)4,

where Eg ¢, y—1y is an (N — 1) x (N — 1) diagonal matrix with —1 for
its first ¢ diagonal elements as well as elements at position n — 1 + 7,
1 <j <V —/¢,and with 1 for the remaining diagonal elements. Similarly
to Lemma 2.1 we have the following.

Lemma 2.1'. Let F' be as above, mapping a neighborhood of 0 in Hj
into Hé\,[e/,n with F(0) = 0 and X\ = ¢,(0) # 0. Then, the rank of A is
n —1 and the statements (b) and (c) of Lemma 2.1 hold.



386 M. BAOUENDI & X. HUANG

For the rest of this section, we shall assume A > 0. Write

aq
(2.9) A=
Ap—1
where a1, ..., a,_1 are (N —1)-row complex vectors. We get, from (2.8),

(@) ern = A3j 0, 1< jk<n—1
Here, 5;‘? is the usual Kronecker symbol. Let
Sn,1 = Span{alu s 7047171} - CN?l?

L, .
and let Snff m < CN-1 be the orthogonal complement of S, 1 with
respect to the Hermitian form (-,%) ¢ ,,. When N > n, we claim that

. Loorn _
there is a vector o, € Snf’f" such that ‘a”‘%l’,n = (an, )0 n # 0. To

prove this claim, we argue by contradition. If there is no such vector

L,
Qp, then for any «, (€ nff ™. we have

0= |a + ﬂﬁ,é’,n = |a|§,f/,n + |ﬂ|3,é’,n + 2Re <Q,B>g’g/7n

=2Re (@, B)¢pr -

Replacing by i3, we conclude that (o, 3)¢ ¢, = 0. Hence, any 3 €

Ly . . Lo ormn L X .
o1 is also in (S, 7 ")7e¢n = S,_;. This contradicts the non-

degeneracy of the Hermitian form (-,%)y ¢ . Hence, we can choose o, €
L, . .

S, 20" such that (o, @)ee, = £A. By induction, we can further find

Qj, N < j < N —1, such that <ozj,a_j>g74/7n = £\ and Q; J—Z,Z’,n «,. for

1 <r < j. Hence, denoting by A the invertible (N —1) x (N —1) matrix,

whose rows are the vectors aq,...,ayn_1, we have

(2.10) AEypnN-1A = A\E,

where E is an (N — 1) x (N — 1) diagonal matrix whose first (n — 1)
diagonal elements are the same as those of E,,_1) and the remaining
ones are +1. Since A > 0, by comparing the number of the negative
eigenvalues in (2.10) and changing the order of a; for j > n — 1 if
necessary, we can make £ = F ¢, y_1). Hence, we have the following

~ —=t
(210/) AE(sz/vnval)A — AE([,@’,TL,N*I)'

Define the invertible linear map of CV by

* * * * 4 — 1 *
(2.11) Ty 4% W) = <z A I,Xw ) :
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It easily follows from (2.10') that Vi€ Auto(HY, ). We define the
first normalization of F' by setting 7

— ~~ 1
Fr=(f*9") =1 10 F = <fA_1’Xg>'

Clearly, F* maps M into Hé\,fegn with g* = w + O(|(z,w)|?) and f* =
(2,0) + aw + O(|(z,w)|?). Let r = Re(d%g*/0w?)(0) and let G €
Auto(Hé\fg,yn) be defined by

*

w ay [ —aw” w ]
(2.12) Gra(z",w") = <A(z*,w*)’ A(z*,w*))’ with

A(Z*, w*) =1+ 2i<z*,§>g’g/7n + (’I” — i(a, §>g’g/7n)w*.

We then define the second normalization F** of F' to be the composition
of F* with G on the left. Namely, we have

(2.13) F*™ = (f**,¢™,¢") = (f**,g**) = GraoF*=Gyao0T, j0F.

We then still have the basic equation on M:

N—-1

(2.13) Im(g™) = Z Sjeenti FFF

j=1
n—1 N—n

=D G+ Y Ge-edT T
j=1 j=1

Now as in the Heisenberg hypersurface case ([14], Lemma 5.2), by col-
lecting terms of weighted degree 2, 3 and 4 in (2.13"), we derive the
following fundamental equation, called the Chern—Moser equation or
the Gauss equation for the embedding of a neighborhood of 0 in HJ
into Hé\’fg,yn:

(2.14) *(z,w) =z + %a(”(z)w + 0wt (3),

f
¢ (z,w) = 7P (2) + 0 (2),
97" (z,w) = w + ow(4), with

0—0 N-n
(aV@).7) 12 ==2 167D+ X 160 E)P
j=1 =0 —L+1

where a(!)(2) is an (n — 1)-vector valued linear function in z without
constant term. Summarizing the above, we have



388 M. BAOUENDI & X. HUANG

Lemma 2.2. Let ¢/ > 0 >0 and N > n > 1. Assume that F =
(f,®,9) is a holomorphic map from M, a neighborhood of 0 in HY,
into ]H[é\fz/,n with F(0) = 0 and ¢g,(0) = A > 0. Then, there exists
TE Auto(]H[é\fz/m) such that F** = 1 o F has the normalization with the
Gauss—Chern—Moser identity as in (2.14). Further, when ¢ > 0, and
either 0! =0 orN —n = ' — {, we also have ¢**)(z) = 0.

Proof of Lemma 2.2. From the above discussion preceding the state-

ment of the lemma, it suffices to take 7 := G, 4 0 T; It where G 5 and
T; ; are given by (2.11) and (2.12). Tt remains only to prove the last
statement in the lemma. Indeed, when ¢/ = ¢ or N —n = ¢’ — ¢, we have
from the last identity in (2.14) + Z;V:_ln ]¢;*(2)]2 = 2|2 < aW(2),Z >, .
Since ¢ > 0, the equation ]z\% = 0 defines a real analytic hypersurface
in C"~1\ {0}. Hence, it is a uniqueness set for holomorphic functions.

Since on the set defined by |z|7 = 0, we necessarily have gb;*@)(z) =0,
we conclude that gb;*@)(z) = 0 for any j. This, together with (2.14),
completes the proof of Lemma 2.2. q.e.d.

3. Application of the group structure to the
Gauss—Chern—Moser equation

In this section, we prove the following result.

Theorem 3.1. Let F' = (f, ¢, g) be a holomorphic map from a neigh-
borhood M of 0 in HJ into Hﬁfé,m with /' > £ >0, N >n > 1. Suppose
that F satisfies the normalization condition (2.1}). (Namely, the second
normalization F** of F is the same as F). Assume that either ¢ = {
orl! =0 =N —n. Then, F(z,w) = (z,0,...,0,w).

Combining Theorem 5.1 with Lemma 2.2 and observing that G and
7, 4 are linear fractional, we can easily get the following:

Corollary 3.1'. Let F = (f,$,g9) be a holomorphic map from a
neighborhood M of 0 in HJ into Hé\jﬁ’,n (0 >¢>0,N>n>1). Suppose
that F(0) = 0 and g,,(0) > 0. Assume that either ¢’ = ort'—¢ = N—n.
Then, F is a linear fractional map, F(z,w) = Q(z,w)/(1 + q(z,w)) with
Q(z,w) a vector valued linear polynomial and q(z,w) a linear scalar
polynomial vanishing at 0.

Proof of Theorem 3.1. For any p € M close to the origin, we can asso-
ciate a map Fj, from a small neighborhood of 0 in Hj to Héve, , With
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F,(0) =0, defined by

(31) Fp - TpF o FOO'g = (fpa¢pagp)7
where for each p = (z0,wg) € M, we write ngo,wo) € Aut(H}) for

the map sending (z,w) to (2 + 2o, w + wo + 2i(z,Zp)¢) and we define
T(F € Aut(HY, ) by

20,w0)

F
T(Zo,wo)(z*’ w”)

= (Z* - f(zo,wo)ﬂl)* — g(20,wo) — 2i<2*, f('zO)wO»é,f’,n) .

Here, we used again the notation F' = (J?, g) as in the previous section.
Notice that 02(0) = p and Tzf(F(p)) = 0. Consistent with the notation
in Section ¥, we write

(32 M) = (9)u(0) = 9u(p) ~ 2i (fulp). F(p))

Then, for p close to 0, one still has A(p) > 0. Now, a direct computation
shows that, for 1 <1, r, s <n — 1, we have

(3.2))

a(p) = <(Z—J:§) ‘0

o

— afp,l afp,nfl a¢p,1 8¢p,N,n B ~
B < Oz 0m T 9z 0z ‘O—Ll(f)(p),
(3.2")
0%,
8zr823( )
anpl 82fpn—1 82¢p1 82¢pN—n ~
= —, ... : — =L L
<8z’f‘azs’ ’ az'razs ’aZlaZs7 ’ 821828 >‘0 r S(f)(p)

By Lemma 2.1’; the rank of {a;(p),...,an—1(p)} is (n — 1). Consistent
with the notation of the previous section, we write A(p) for the (n —
1) x (N — 1) matrix, whose j"-row is the vector a;(p). As in Section 2,
we can choose again a;(p) for n < j < N — 1 such that

~ — t
(3.3) Ap) Eqpn,n—1) AP) = ANP)EwenN-1)

where the (N —1) x (N — 1) matrix A(p) has a;(p) as its j™-row. Define,
as in Section 2,

Fr=(f 0 = (o) s (o)1 (@) (0p) 1 00)
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~ ~ B
by £y o= (fp 1 95) = (fp A(p)~H Ap) 1gp)- Define a(p), r(p) and G(p)
in a similar way as in Section 2. Then, we arrive at the second normal-
ization F** = G(p) o F;y of F,,. Hence by Lemma 2.2, we have

(3.4) ()P () =0, (f,)P(2)=0.

Making use of (3.3), we have

A(p) ™ = Mp) " Eup 1) AD) B nn-1)-

Hence,

fp = AP) o B om0 A®) B nn-1)

=Ap) "' fp Eqpnn-1D(p),
with
D(p) = A(p)' Ege.ormn—1) = (D1(p):--.. Dn-1(p)),
where, for each j, D;(p) = :l:ag- (p) are column vectors. Hence,

(3.5) (67)p = ﬁ (b D),
Write N
a(p) = %(0) = (a1(p),...,an—1(p)).
By (2.13), we have, for 1 <j < N —n,
(3.6) (9,7);

_ _ (#3); — an-1+5(P)g; '
1+ 2i< ;7@>Z,Z’,n - (—’I”(p) + i<a(p)7@>€,é’,n)g;

Collecting coefficients of z.z5,1 < r,s < n — 1, in the Taylor expansion
at 0 of the right-hand side of (3.6), we get by (3 4) and (3.5)

0% f,
1< <N —
<azr8,zs j+n 1w 0 =J= "
and hence, by the definition of D;(p), we have
0% f,
1<j<N—n.
<8zr8,zs @jn-1(p) 0, =7 = "
0,0 n
By the orthogonality relation (3.3), we conclude that
0? fp

(3.7) m(o) € Span{a; ()}
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Hence, from (3.2') and (3.2”), we conclude that there are unique d}*(p)
such that

n—1

(3.8) LeLof(p) =Y d5* ()L () (p)-

j=1

Since A(p) has rank (n — 1) and the map F' is holomorphic near 0, it
is easy to see that the d;*(p) depend real analytically on p in a neigh-
borhood of 0 in Hj. Considering only the ¢-components in (3.8), we
have:

n—1

(3.8 LeLed(p) = > _ di*(p)L;(¢) ().

j=1

Applying L and L, L to (3.8'), respectively, we conclude that there is a
matrix valued function ¥(p), with elements depending real analytically
on p, such that

(3.9) D*¢(p) = D(p) ¥(p).

Here, D¢ and D?¢ represent, respectively, all the first and the sec-
ond partial derivatives of ¢. Using the normalization condition ¢(0) =
0, Dp(0) = 0 and appying a standard uniqueness argument for the
complete ODE system (3.9), we conclude that ¢ = 0. Now, since the
¢ component of the map F' = (f, ¢, g) vanishes identically in a neigh-
borhood of 0 in HY, and since by assumption of Theorem g.1, we have
the normalization f(z,w) = z + owt(3), g(z,w) = w + 0w(4), we can
apply the the equi-dimensional result of Chern-Moser [5] to the map
(f,9) (which maps a neighborhood of 0 in HJ} into H}}) to conclude that
(f(z,w),g9(z,w)) = (z,w). This completes the proof of Theorem 3.1.

q.e.d.

4. A Hopf lemma for holomorphic maps

We keep the notation of Section §. In this section, we first prove the
following lemma.

Lemma 4.1. Let F' = (f,¢,g) be a holomorphic map from a neigh-
borhood M of 0 in H} into Hé\,fe’,m 0'>0>0,N>n>1, with F(0) = 0.
Assume that either {’ <n—1or N—{'—1 <n—1. For eachp € M, let
F, = (f;,gp) be defined as in (3.1). If (gp)w(0) = 0 for all p sufficiently

close to the origin, then there exists a constant (N —¢' —1) x V' complex
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matrixz V with VVt = Idny_p_1 such that

(41) gEO7 (fl?”'7f€7fn7"'7fn+é’—f—l)E
(ff-i—lw .. 7fn717fn+f/—f7° e 7fN71) V.

Before proceeding with the proof of Lemma 4.1, we first give the
following elementary lemma.

Lemma 4.2. Suppose A is a complex (n — 1) x (N — 1) matriz,
N >n > 1, satisfying

(%) AEqp n_1) At =0.

Assume that either 0 < ' <n—1or N—¥¢'—1<n—1. Then, the rank
of A is strictly less than (n — 1).

Proof of Lemma 4.2. Write o, 1 < j < n — 1, for the row vector of A
and write o; = (¢, y0)) with 20) an ¢/-row vector whose components
are the first ¢’ elements of a; and y\9) the row vector with the remaining
components of ;. The assumption (x) then implies that, for 1 < j,k <
n—1,

(%) (2D 20 = (y0) y®)),.

The rest of the assumption of the lemma indicates that either the
{xU )}?;11 or the {y) ?;11 are lineraly dependent. Without loss of gen-
erality, we may assume the former. Hence, there exists a non-zero se-

quence {ai,...,a,—1} of complex number such that Z?;ll ajx(j) = 0.
Then, (x*) easily implies that 27;11 a;y¥) = 0. Hence, 27;11 aja; =0,
which completes the proof of the lemma. q.e.d.

Proof of Lemma 4.1. Tt follows from (3.1) that we have

(4.2) 9o =900y —g(p) = 2i(f o op, F(p))e.0 -
Hence, it follows that

(gp)w(o) = guw(20,wo0) — 2i{ fu (20, w0), f (20, w0)>é,€’,na
where p = (29, wg) € M. Therefore, by the assumption in Lemma #.1
and taking the complexification of (4.2), we get the following equation

gw(z7w) = 2i(fw(z,w), f(X7w - 2’i<Z, X>f)>é,€/,n
where z € C"',w € C,x € C*" ! are independent variables near the
origin. Equivalently, we have, for z € C" ', 7 € C,x € C" near the
origin,

(43) gw(zv T+ 2’L'<Z, X>€) = 2Z<ﬁu(zv T+ 2i<2’, X>€)7 f(Xv T)>€,Z’,n-
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Letting x = 0,7 = 0, we get from (4.3)
(4.4) guw(z,0) = 0.

Applying 0/0x;, j =1,...,n — 1, to (4.3) and letting x = 0,7 = 0, we
obtain

(4.5) 210502942 (2,0) = 2i{fu(2,0), fz, (0))e.0 -
Since we assumed that g,,(0) = A = 0,{ ., (0) ?;11 are linearly dependent

by (2.8) and a slight variant version of Lemma #.2. Hence, there is a
non-zero (n — 1)-tuple (ay,...,a,—1) such that Z;L;ll ajf.,(0) = 0. It
thus follows from (4.5) that

n—1

Za_jdj,gzj Guw2(2,0) = 0.

j=1
Since Zj @;0j0z; # 0, we conclude that g,2(2,0) = 0. In particular,
we have g,2(0) = 0. Applying the previous argument to Fj,, we then
also have (g;),2(0) = 0 for p close to 0. Applying 9?/0w? to (4.2) and
evaluating at 0, we obtain

G2 (Za ’U)) = 2i<.]?w2 (Zv ’U)), f(zv ’U))>Z7£’,n

for (z,w) € M close to the origin. Hence, after complexification, we get

(46) G2 (Z7 T+ 2’L'<Z, X>€) = 2Z<ﬁ112 (Zv T+ 2’L'<Z, X>€)7 f(X7 T)>€,€’,n-

Applying 0/0x; to (4.6) and letting x = 0,7 = 0, we have, with the
same argument as above, that

Ju3(2,0) = 0.
By an induction argument, we conclude that g,x(z,0) = 0 for any k >

1. Together with (2.§), we have proved that g = 0. Considering F},
instead of F', we also have g, = 0 for p € M close to 0. By (4.2),

this gives that (fo ag(z,w),f(p Yoo n = 0 for any (z,w) € C" close
0

to 0, and any p € M close to 0. Since o, is an automorphism, we

also have (f(z,w), f(p))ern = 0 for (z,w) and p as before. Since p —

(f(z,w), f(p))ee »n is holomorphic in p and since M is a uniqueness set

for holomorphic functions, in particular, we get (f(z,w), f(z, W) n =
0 for (z,w) € C" close to the origin. We complete the proof the Lemma
by applying a result of D’Angelo [[7] (Proposition 3, p. 102). q.e.d.

Next, we give the following version of the Hopf lemma for holomorphic
maps:
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Lemma 4.3. Let F = (f,¢,9) be a holomorphic map sending a
neighborhood M of 0 in HJ into Hé\jﬁ’,n’ with F(0) =0,0< /¢ <n—1,
>0, and N > n > 1. Assume that g,(0) = 0 and either ' = ¢ or
' — 0 = N —n. If either (gp)w(0) > 0 for any p € M close to 0, or
0'=10<(n—1)/2, then (4.1) holds.

Proof of Lemma 4.3. We shall prove the lemma by contradiction. As-
sume that one of the two conditions in (4.1) does not hold. By Lemma {.1
there would be a point p € M arbitrarily close to the origin such that
(9p)w(0) # 0. By Lemma 2.1 (b), we necessarily have (g,).(0) > 0 in
the case ¢/ = ¢ < (n—1)/2. When ¢/ = ¢ = (n —1)/2, we have either
(9p)w(0) > 0 or (g, 0 000)w(0) > 0. (See (2.7) for the definition of agp.)
Hence, by Corollary 3.1, F,, (or F}, o o), and thus F', must be linear
fractional. That is, F(Z) = CZ/(1 + q(Z)) with C an (n x N) complex
constant matrix and Q(Z) a vector valued linear polynomial vanishing
at 0. Since ¢g(z,0) = 0 and g,,(0) = 0, we conclude immediately that
g = 0. We, therefore, have on M the identity

L 0 —l4+n—1 n—1 N-1
(4.7) SNIHP+ D 15P= D0 6P+ > 161
j=1 j=n j=0+1 =0 —Ll+n

Claim 4.4. Suppose that > .., |hi? = > 1<j<ms |k;|? on M,
where h; and kj; are homogeneous first order holomorphic polynomials,
and my1, mgy are p051tlve integers. Then, >y, |h; |? = D 1<i<ms 1K ?
on C".

Proof of Claim 4.4. Write h; = zaﬁ- + cjw and k; = zbﬁ- + djw, where
aj,bj are (n — 1)-vectors and ¢;j, d; are complex numbers. Then, we
have

mi -

Z (za% + cj(u+ il2[7)) (zag- +6G(u— z|z|§))

j=1
Z (2% + dj(u+ilz[7)) (%%—d_j(u—z]z\%)) .

Identifying terms of weighted degree 2, 3, and 4, we can easily see that
the above also holds if we replace |z|7 by an independent variable .
This completes the proof of Claim 4.4. q.e.d.

We now return to (4.7). After multiplying by the common denomi-
nator |1 + ¢(Z)|? and applying Claim 4.4, we conclude that (4.7) holds
in a neighborhood of the origin U in C". Hence, since g = 0, we have
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FU) c ]H[évz/ - In particular, with the choice of the point p € M as
above, we have for (z,w) in a neighborhood of 0 in C"

(4.8) (9p) (2, w) = (9p) (2, w) + 2i((fp) (2, w), (fp) (2, w)) .07 -

Differentiating (4.8) with respect to w and evaluating at (z,w) = 0,
we obtain a contradiction to the fact that (gp),(0) # 0. The proof of
Lemma .2 is complete. q.e.d.

5. Proofs of the main theorems

We now complete the proofs of the theorems stated in the introduc-
tion.

Proofs of Theorem 1.6 and 1.8. We give here only the proof of Theo-
rem 1.6, since the proof of Theorem 1.8 follows from the same argu-
ments. Let F be as in Theorem 1.6, Assume that A = ¢, (0) # 0.
Recall that X is real-valued. Then, we know by Lemma 2.1 that A > 0
when ¢ < (n—1)/2. Also, a simple computation shows that when
F preserves sides, ¢,(0) > 0. (See the argument below, especially,
(5.2) and (5.4).) Hence, by Lemma 2.2 and Theorem 3.1, there is a
7 € Autg(HY) such that 7o F(z,w) = (2,0,w). The same conclu-
sion holds when ¢ = (n—1)/2 and A\ > 0. If / = (n—1)/2 and
A < 0, applying the above argument to I o oo, (see (2.7)), there
exists a 7 € ]H[é\fz,m such that 7 o F o ogo(z,w) = (2,0,w). Hence,
To F(z,w) = (2p41, -y 2n—1,21,---,20,0,...,0,—w). This completes
the proof of Part (i) of Theorem i.6. The proof of Part (ii) of Theo-
rem il.G follows from Lemma 4.3, and the observation that if F preserves
sides, then so does F), for any p € M close to 0, and hence (gp),,(0) > 0.

q.e.d.

Proof of Theorem 1.1. Let F' be the holomorphic map given in Theo-
rem .. Since the Levi form of the boundary of B} has at least one
negative eigenvalue at any point, by making use of a result of Siu and
Ivashkovich (see [22], [17]), we can assume that I extends to a holo-
morphic map in a neighborhood of p in CP" into CPY. Hence, by the
assumption of the theorem, F' sends a piece of the boundary of B} into
the boundary of BYY. Next, since U(N + 1, ¢+ 1) acts transitively on the
boundary of Bé\f , after composing F' by automorphisms, we can assume
that p = [1,0,...,0,1] and F([1,0,...,0,1]) = [1,0,...,0,1]. Now for
(z,w) = (21, ., Zn-1,w) € C", let

(5.1) U, (z,w): =[i+w,2zi—w] € CP"



396 M. BAOUENDI & X. HUANG

be the Cayley transformation which biholomorphically maps the gen-
eralized Siegel upper-half space S} and its boundary HJj into B} \
{[20,---,2n] + 20+ 2, = 0} and OB} \ {[20,...,2n] : 20 + 2, = 0}, re-
spectively. Let F = \Ilj\,l 0oFoW,. Then, F maps an open neighborhood
M of 0 in HY into H)Y and F(0) = 0. For Z* = (2f,...,25_,w*) €
CN w* = u* + iv*, let

y4 N—-1
(5.2) P25 7)==+ ) 5P+ D 152
j=1 j=t+1

Then, by the assumption on F, we have p(Fp(z,w),Fp(z,w)) < 0 for
(z,w) € S} close to 0 and p € M close to 0. In particular,

p(Fp(O, v), Fp(oa v)) <0
for small positive v, and hence

0 N =
% [,0( p(ov U)? Fp(ov U))]

(5.3)

v=0

As in Section B, we write Fj, = (fp,gp). Since §,(0) is real valued,

=

combining (5.3) with the Cauchy-Riemann equation, we obtain:

(5.4 (3p)0) = 222090 ) >
v

Since F' does not map U, N B} into 8183?7 and hence F' does not map a
neighborhood of 0 in C™ into HY, it follows from (5.4) and Lemma 4.3
that we necessarily have (§),(0) > 0. By Corollary 3.1’, we thus
conclude that F(z,w) is linear fractional. Since F = Wy o F o ¢!,
we conclude that F' is a linear map in the homogeneous coordinates
Z = [z0,...,2n), namely, F[Z] = Z-C with C an (n+1) x (N +1) com-
plex matrix. Since F' sends a piece of B near [1,0,...,0,1] into 8183?[,
we conclude that CE(HLNNH) C = Er1n41)- We extend C to an

(N 4+ 1) x (N + 1)- matrix C as in the proof of Lemma 2.1', (see (2.8)—

~ —=t
(2.10)") such that C Eyy1 n41)C = Eyg1,n41) and define 7(Z2%) =
~ ~ —=t
Z*C~ ! for Z* € CPV. Since we have C~! = Eurin+1)C Eup1,n+1)

we can easily see that 7o F[Z] = [Z,0]. This completes the proof of
Theorem 1.1. q.e.d.

Proof of Theorem 1.4. Since Corollary 3.1" and Lemma #.3 apply also
to the case N —n = ¢’ — £, The proof of Theorem 1.4 follows the same
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lines as those for the proof of Theorem 1.1. We omit repeating the
details here. q.e.d.

Remark 5.1. The argument used here to prove Theorem il.1, in the
case N = n > 1, also gives the fact that any proper holomorphic self-
map of By, n > 1, £ >0, is an element in U(n+1,¢+1). (For the case
of £ = 0, this is the well-known theorem of Alexander [d].)
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