
Super-Samples from Kernel Herding

Yutian Chen
Department of Computer Science

University of California, Irvine

Irvine, CA 92697

Max Welling
Department of Computer Science

University of California, Irvine

Irvine, CA 92697

Alex Smola
Yahoo! Research

Santa Clara, CA

Abstract

We extend the herding algorithm to continuous

spaces by using the kernel trick. The resulting

“kernel herding” algorithm is an infinite mem-

ory deterministic process that learns to approx-

imate a PDF with a collection of samples. We

show that kernel herding decreases the error of

expectations of functions in the Hilbert space at

a rateO(1/T)which is much faster than the usual

O(1/
√
T) for iid random samples. We illustrate

kernel herding by approximating Bayesian pre-

dictive distributions.

1 INTRODUCTION

Herding has been understood as a weakly chaotic, non-

linear dynamical system in parameter space, i.e. one can

think of it as a mapping wt+1 = F (wt) [Welling, 2009a,b,

Welling and Chen, 2010, Chen and Welling, 2010]. The

discrete states x play the role of auxiliary variables in this

view. However, under this interpretation it has proven diffi-

cult to extend herding to continuous spaces. The basic rea-

son is that a finite number of features can not sufficiently

control the infinite number of degrees of freedom in con-

tinuous spaces leading to strange artifacts in the pseudo-

samples1. To overcome this we wish to perform herding on

an infinite number of features implying the need to switch

to a kernel representation.

To achieve that, we will first reinterpret herding as an in-

finite memory process in the state space x where we now

“marginalize out” the parameters w. Thus, we can con-

sider herding as a mapping xt+1 = G(x1, ...,xt,w0).
With two additional very natural assumptions, herding is

seen to minimize the squared error between expected fea-

ture values evaluated at the true distribution and the em-

pirical distribution obtained from herding. In this new

1For instance, herding in a continuous space with features
given by the mean and variance will produce two delta-peaks in-
stead of a Gaussian.

−6 −4 −2 0 2 4 6
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Figure 1: First 20 samples form herding (red squares) ver-

sus i.i.d. random sampling (purple circles).

formulation the kernel trick is then straightforward. The

main result of this paper is that the error in approximating

any function in the RK-Hilbert space defined by the ker-

nel through a Monte Carlo sum decreases as O(1/T). This

is significantly faster than the standard O(1/
√
T) conver-

gence obtained for iid random samples from p. In fact, un-

der the assumption that we perform an unweighed Monte

Carlo sum, O(1/T) convergence is known to be optimal

[Kuo and Sloan, 2005]. The reason for the fast conver-

gence is due to negative autocorrelations: the process re-

members all previous samples and steers away from re-

gions which have already been (over) sampled. This is

illustrated in Figure 1 for a mixture of Gaussians. Simi-

lar ideas are the basis for methods such as Quasi Monte

Carlo sampling, Quadrature integration and more recently

Bayesian integration [Rasmussen and Ghahramani, 2002].

For kernel herding one needs to be able to convolve the

density p with the kernel of choice. While this is possi-

ble for some rare cases it is hard in general. However,

kernel herding can still be very useful if we want to re-

duce a large collection of samples obtained from a MCMC

procedure. Oftentimes, the positive auto-correlations in-

herent in most MCMC chains are reduced by subsampling.

Even in the case when all auto-correlations have been re-

moved this is actually suboptimal, because negative auto-

correlations may further improve the Monte Carlo approx-

imation. Herding can be used to sub-select a small collec-

tion of “super-samples” from a much larger set of MCMC

samples. Due to the faster error reduction of herding, in

theory we would only need
√
T samples to obtain the same

order of error as T iid random samples. While in practice

this is a little optimistic, in our experiments we will show

significant boosts in sampling efficiency by using herding.

We argue that a small collection of super-samples can be

beneficial in situations where we wish to average predic-

tions over many predictors. While we may have suffi-

cient time to train up many predictors off-line (through e.g.

Bayesian posterior sampling or bagging on bootstrap sam-

ples), we may want to be flexible in deciding over how

many predictors we average at test time2. Herding will pre-

cisely organize the samples in an order that is optimal in

terms of reducing the error most at every iteration3. These

ideas are validated with some numerical experiments.

2 KERNEL HERDING

We directly describe the herding algorithm in terms of Re-

producing Kernel Hilbert Spaces and (potentially) contin-

uous index spaces (note that previous work by [Welling,

2009b,a] cast it in terms of finite-dimensional spaces and

discrete domains).

2.1 Herding

Let x ∈ X denote some state over an index set X (typically

the space of covariates) and let φ : X → H denote a fea-

ture map into a Hilbert Space H with inner product 〈·, ·〉.
Given a probability distribution p(x), herding consists of

the following update equations for a weight-vector w ∈ H

xt+1 = argmax
x∈X

〈wt,φ(x)〉 (1)

wt+1 = wt + Ex∼p[φ(x)]− φ(xt+1) (2)

with suitable initialization w0. We may view this

as a weakly chaotic, nonlinear dynamical system over

w [Welling and Chen, 2010, Chen and Welling, 2010] by

2One can imagine a bank trying to present users with person-
alized ads once they have logged into their website. Depending
on the server load the number of predictors used may vary.

3Note that this does not imply that the herding set is optimal
if we are given the number of samples we are going to be using
ahead of time.

“maximizing out” the states x. In this case, we may un-

derstand herding as taking gradient steps of size 1 on the

following (concave, non-positive, scale-free, piecewise lin-

ear) function,

G(w) =
〈

w,Ex∼p[φ(x)]
︸ ︷︷ ︸

:=µp

〉

−max
x∈X

〈w, φ(x)〉 (3)

Here µp denotes the mean operator associated with the

distribution p in H, i.e. for f(x) = 〈w, φ(x)〉 we have

Ex∼p[f(x)] = 〈w, µp〉. However, we may also take the

“dual view” where we remove w in favor of the states x.

This is possible because we can express:

wT = w0 + Tµp −
T∑

t=1

φ(xt) (4)

using (2). For ease of intuitive understanding of herding,

we temporarily make the assumptions (which are not nec-

essary for proposition 1 to hold):

1. w0 = µp

2. ‖φ(x)‖2
H

= R2 for all x ∈ X

This condition is easily achieved, e.g. by renormalizing

φ(x) ← φ(x)
‖φ(x)‖ or by choosing a suitable feature map φ

in the first place.

Given the above assumptions and the further restrictions of

finite-dimensional discrete state spaces [Welling, 2009b,a],

one can show that herding greedily minimizes the squared

error E2
T defined as

E
2
T :=

∥
∥
∥µp −

1

T

T∑

t=1

φ(xt)
∥
∥
∥

2

. (5)

We therefore see that herding will generate pseudo-samples

that greedily minimize this error at every iteration (condi-

tioned on past samples). Note that this does not imply that

the total collection of samples at iteration T is jointly opti-

mal. We also note that herding is an “infinite memory pro-

cess” on xt (as opposed to a Markov process) because new

samples depend on the entire history of samples generated

thus far [Welling and Chen, 2010].

If we manage to find the optimal state xt exactly at every

iteration then the error in (5) decreases at a rate O(T−1).
The proof of this statement follows directly from [Welling,

2009a, Proposition 1 and 2] which was independent of

the extra assumptions above. This fast convergence is ac-

tually quite remarkable. Note for instance that by gen-

erating independent identically distributed random sam-

ples (iid) from p we get O(T− 1

2) convergence while an

MCMC method with positive auto-correlation converges

even slower. The fact that herding exhibits faster conver-

gence can be understood by the fact herding pushes sam-

ples away from already explored regions of state space and

as such has negative auto-correlations. This behavior is

reminiscent of Quasi Monte Carlo integration and Bayesian

quadrature methods [Rasmussen and Ghahramani, 2002],

and is also related to the idea of fast weights for persistent

contrastive divergence [Tieleman and Hinton, 2009].

2.2 Convergence in Hilbert Space

The work of [Welling, 2009b,a] implicitly assumed that

there are many more discrete states than features. This

has the effect that we only “control” the error in a small

subspace of the full state space. The natural question is

whether we can take the (nonparametric) limit where the

number of features is infinite. This is in fact rather straight-

forward because (1) only depends on the inner product

k(x,x′) := 〈φ(x), φ(x′)〉 (6)

if we plug (4) into (1). This then results in,

xT+1 = (7)

argmax
x∈X

〈w0, φ(x)〉 + TEx
′∼p[k(x,x

′)]−
T∑

t=1

k(x,xt)

If we initialize w0 = µp (Assumption 1), and restrict

‖φ(x)‖ = R for all x ∈ X (Assumption 2), the kernel

herding procedure becomes:

xT+1 = argmax
x∈X

Ex
′∼p[k(x,x

′)]− 1

T + 1

T∑

t=1

k(x,xt)

(8)

and we can see that herding is performing greedy mini-

mization of the error ET :

E
2
T =

∥
∥
∥µp −

1

T

T∑

t=1

φ(xt)
∥
∥
∥

2

H

(9)

=Ex,x′∼p[k(x,x
′)]− 2

T

T∑

t=1

Ex∼p[k(x,xt)]

+
1

T 2

T∑

t,t′=1

k(xt,xt′).

The error measures the distance between p and the empiri-

cal measure p̂T (x) =
1
T

∑T
t=1 δ(x,xt) given by the herd-

ing samples.

This algorithm iteratively constructs an empirical distribu-

tion p̂T (x) that is close to the true distribution p(x). At

each iteration, it searches for a new sample to add to the

pool. It is attracted to the regions where p is high but

repelled from regions where samples have already been

“dropped down”. The kernel determines how we should

measure distances between distributions. Note that for

many distributions explicit expressions for Ex
′∼p[k(x,x

′)]

have been obtained. See [Jebara and Kondor, 2003] for de-

tails.

The central result of this paper is now that the pseudo-

samples generated by kernel herding inherit the fast

O(T−1) decrease in error. For a good characterization we

need to define the marginal polytope M. It is given by

M := conv {φ(x)|x ∈ X} .

It follows that µp ∈ M since X contains the support of p.

If ‖φ(x)‖ ≤ R for all x ∈ X it follows that ‖µp‖ ≤ R
and consequently by the triangle inequality we have that

‖µp − φ(x)‖ ≤ 2R, ∀x.

Proposition 1 Assume that p is a distribution with sup-

port contained in X and assume that ‖φ(x)‖ ≤ R for all

x ∈ X. Moreover assume µp is in the relative interior of

the marginal polytope M. Then the error ET of (9) will

decrease as O(T−1).

Proof We first show that ‖wt‖ is bounded for all t. For this

we introduce the centered marginal polytope

C := M− µp = conv {φ(x) − µp|x ∈ X} . (10)

Using C the update equations become

wt+1 = wt − ct where ct := argmax
c∈C

〈wt, c〉 . (11)

This allows us to write the increment in the norm of the

parameter vector ‖wt+1‖ via

‖wt‖2 − ‖wt+1‖2 = 2 〈wt, ct〉 − ‖ct‖2 (12)

≥ 2 ‖ct‖
[

‖wt‖
〈

wt

‖wt‖
,

ct

‖ct‖

〉

− R

]

The inequality follows from ‖ct‖ ≤ 2R. If we can show
〈

wt

‖wt‖
,

ct

‖ct‖

〉

=: γt ≥ γ∗ > 0 (13)

for all w then it follows immediately that ‖w‖ ≤ R/γ∗: in

this case we have ‖w‖ γt −R ≥ (R/γ∗)γ∗ −R = 0.

To see (13) recall that µp is contained inside the relative

interior of M, i.e. there exists an ǫ-ball around µp that is

contained in M. Consequently γ∗ ≥ ǫ.

Since ‖wt‖ =
∥
∥
∥w0 + Tµp −

∑T
t=1 φ(xt)

∥
∥
∥ ≤ R/γ∗ it fol-

lows by dividing by T that
∥
∥
∥
∥
∥
µp − T−1

T∑

t=1

φ(xt)

∥
∥
∥
∥
∥
≤ T−1[‖w0‖+R/γ∗]. (14)

This proves the claim of O(T−1) convergence to µp.

The requirement that µp ∈ M is easy to check: it oc-

curs whenever p has full support with respect to the do-

main of optimization (provided that φ(x) is characteristic

and therefore leads to unique representations).

Corollary 2 Herding converges at the fast rate even when

(1) is only carried out with some error provided that we

obtain samples xt+1 ∈ X which satisfy

〈
wt

‖wt‖
,

φ(xt+1)− µp

‖φ(xt+1)− µp‖

〉

≥ ρ̄ > 0 (15)

This condition is reminiscent of Boosting algorithms where

the weak learner is not required to generate the optimal

solution within a given set of hypotheses but only one

that is sufficiently good with regard to a nonzero mar-

gin. It is also related to the perceptron cycling theorem

[Block and Levin, 1970] where X is assumed to have finite

cardinality but which guarantees convergence even when

ρ̄ = 0.

We can allow µp to lie on a facet of M in which case we

have the following corollary.

Corollary 3 Whenever µp lies on a facet of the marginal

polytopeM it suffices that we restrict ourselves to optimiza-

tion over the vertices generating the facet. In this case, µp

lies within the relative interior of the now restricted poly-

tope.

We finally want to show that the O(T−1) convergence of

the error ET as proved above implies that the error of any

integral over a function in our RKHS will also converge at

the same fast rate:

Proposition 4 For any f ∈ H, the error |E[f]p − E[f]p̂T
|

will decrease as O(T−1). Moreover this condition holds

uniformly, that is sup‖f‖≤1 |E[f]p−E[f]p̂T
| also decreases

at rate O(T−1).

To prove this we will need the following lemma,

Lemma 5 (Koksma Hlawka Inequality) For any f ∈ H

we have

|E[f]p − E[f]p̂T
| ≤ ‖f‖

H
‖µp − µp̂T

‖
H

(16)

The above inequality is the simply a consequence of the

Cauchy Schwartz inequality. It is known as the Koksma-

Hlawka inequality in the analysis of Quasi Monte Carlo

methods. Clearly, with this lemma proposition 4 follows.

In fact, this technique was used by [Song et al., 2008] in

the context of density estimation. The key novelty in the

present paper is that we have a simple and explicit algo-

rithm for obtaining fast rates of approximation which are

considerably better than the O(T− 1

2) rates usually avail-

able via sampling.

For some special kernel functions, we can get better prop-

erties for the samples generated by herding. Since the error

in (9) converges to 0, following Lemma 4 in [Gretton et al.,

2008], we know the maximum mean discrepancy (MMD)

on the unit ball of H also converges to 0. If the RKHS H

is universal, combining with Theorem 3 in the same paper,

it suggests that the probability distribution of herding sam-

ples p̂T converges to the true distribution p at rate O(T−1)
as T →∞. Examples of kernels with universal RKHS are

Gaussian and Laplace kernels defined on a compact space.

Corollary 6 An active learning algorithm selecting labels

in accordance with the herding algorithm has guaranteed

rate of convergence in terms of its bias of O(T−1). More-

over, the submodular greedy algorithm of [Guestrin et al.,

2005] has therefore also at least the same approximation

rate since it is within a constant fraction (1− e−1) of opti-

mality.

In summary, kernel herding generates samples that are

much more informative than iid samples: for every n herd-

ing samples we will need O(n2) iid samples to achieve the

same error reduction. For this reason we will call herding

samples super-samples from now on.

3 Experiments

In this section, we want to show that herding is able to draw

better samples than random sampling from the true distri-

bution. We first illustrate the behavior of herding on low

dimensional synthetic data, compare the approximation of

integrals between the super samples and iid samples, and

then we show an application where we compress the size

of a collection of posterior samples required for computing

the predictive probability of Bayesian logistic regression.

3.1 Synthetic Data

3.1.1 Matching the True Distribution

We first visualize herding on a 2-D state space. We ran-

domly construct a 2 dimensional Gaussian mixture (GM)

model with 20 components whose equiprobability contours

are shown in Figure 1. With a Gaussian kernel, the integral

in (8) can be analytically calculated implying that we can

run herding directly on the GM distribution.

A few random samples are first drawn to provide reason-

able seeds for the maximization. Then, we sequentially

generate super-samples by (8). At each iteration, starting

from the best auxiliary sample that maximizes (8), we run

a gradient ascent algorithm to obtain a new super sample.

Figure 2 shows the linear increase of 1/ET as a function of

T .

In Figure 1, the first 20 super samples are plotted in com-

parison with 20 iid samples from the GM model. For iid

samples, due to the inherent randomness, some modes re-

ceive too many points while others get too few or even

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

f(x)=x, err∝T
 −0.92

Herding

Random sampling

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

f(x)=x
2
, err∝T

 −0.89

10
0

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

f(x)=x
3
, err∝T

 −0.80

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

f(x)=sin(||x||), err=T
 −0.92

Figure 3: Error in estimating the expectation of four functions, by herding (blue) and random sampling (green) as a function

of the number of samples. The decreasing speed of the upper bound of the error is shown on top of each figure.

none. In contrast, the samples from herding always try to

repel from each other and are distributed optimally (given

earlier samples) to represent the density function.

Since the expectation of any function in a model can be

approximated by summation over its samples, we are inter-

ested in how well the super samples can be used to estimate

these averages. We generate a 5 dimensional GM model

with 100 components as the target distribution p. We com-

pute the error of the expectation on four functions: the first

three moments, and a nonlinear function. For the m’th mo-

ment, m = 1, 2, 3, we first calculate the average of xm
i,t

over t (the index of herding samples) in each dimension as

a function of T (the number of super samples). Then the

RMSE of the estimated moments over all the dimensions is

computed as

err(ST) =

(

1

d

d∑

i=1

(〈xm
i 〉ST

− 〈xm
i 〉p)2

) 1

2

(17)

For the fourth function, we use a sine of the norm of a point:

f(x) = sin ‖x‖. In comparison, we compute the mean and

standard deviation of the errors obtained by a set of ran-

dom samples as the benchmark. The results are shown in

Figure 3 with their estimated convergence rates. The error

of approximation by herding is much smaller than random

sampling with the same number of points for all the 4 func-

tions, also their convergence rates are close to the theoreti-

cal value O(T−1).

3.1.2 Matching empirical distribution

When the integration in (8) can’t be computed analytically,

it would be difficult to run herding to accurately match

the true distribution especially in high dimensional spaces.

However, if we have a set of random samples, D, from the

distribution, it is straightforward to run herding to match

the empirical distribution. We can thereby represent the

true distribution by the super samples S with the same ac-

curacy as D but with many fewer samples. A set of 105 iid

samples is drawn from a 5-D GM model, and then herding

is run taking D as the true distribution. Since in this case

p in the (8) is taken to be the empirical distribution, the

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

f(x)=x, err=T
 −0.92

Herding, error on D

Herding, error on p

Random sampling

Error on p

Error on D

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

f(x)=x
2
 err=T

 −0.90

Error on p

Error on D

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

f(x)=x
3
, err=T

 −0.96

Error on p

Error on D

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

f(x)=sin(||x||), err=T
−0.92

Error on p

Error on D

Figure 4: Error in estimating the expectation of four functions by herding on the true distribution p (red) and the empirical

distribution D (blue) as a function of the number of samples. The convergence rate of the error on D (measured as slope

of the upper bound of the herding error) is shown on top of each figure. The error of random sampling on p (green) is also

plotted for comparison.

integral is simply a summation over all the points in D.

We again compare the estimation of function expectations

between herding and random samples. However, this time

we can compute two errors, one on the empirical distri-

bution D and the other on the true distribution p. Since the

distribution of S will converge to the empirical distribution,

the error between S and D will keep decreasing as in Fig-

ure 3 while the error between S and p will not. Instead,

it will converge to the error incurred by the empirical dis-

tribution relative to p and this is the point where the set S

is large enough to replace D. We can find from Figure 4

that for 105 iid samples, we only need at most 2000 super

samples for the first three functions, and 104 for the last

function to achieve similar precision. This is a significant

reduction whenever evaluating f is expensive, e.g. for user

interaction data.

3.2 Approximating the Bayesian Posterior

Next we consider the task of approximating the predictive

distribution of a Bayesian model. Alternatively, this idea

can be applied to find a small collection of good predic-

tive models to be used in bagging. Assume we have drawn

a large number of parameters, D, using MCMC from the

posterior distribution (or we have learned a large number of

predictors on bootstrap samples). For reasons of computa-

tional efficiency, we may not want to use all the samples at

test time. One choice is to down-sample the MCMC chain

by randomly sub-sampling from D. Another choice is to

run herding on the empirical distribution. With the conver-

gence property on any function in the Reproducing Kernel

Hilbert Space, we know that prediction by S will converge

to that by D. Furthermore, we can get a significant speed

up with a few super samples during the prediction phase

without much loss of accuracy.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

nr. of samples

1
/E

Figure 2: Linear relationship between 1/ET and T

We use the spambase data set from the UCI machine learn-

ing repository4 for the experiment, which has 4601 in-

stances with 57 real attributes and 1 binary class label. The

data set is split into a training set of 3000 data points and

a test set of 1601 data points. A logistic regression model

is built with a Gaussian prior on the weights θ. The train-

ing set is whitened by PCA and then fed into the model

to draw posterior samples by the Metropolis-Hasting algo-

rithm with a Gaussian proposal distribution. The resulting

set D consists of 105 samples sub-sampled by a factor of

100 from the Markov chain to reduce the autocorrelation.

We whiten D using PCA and run herding on this empirical

distribution with an isotropic Gaussian kernel with σ = 10.

This is equivalent to run herding on the original parame-

ter set with a Gaussian kernel whose covariance matrix is a

multiple of the covariance matrix of D. At each iteration,

we use the sample of θ from D that maximizes (8) as a

new super sample, without any further local maximization.

This corresponds to running herding in the discrete domain,

X = D, and all the theoretical conclusions in section 2 also

apply to this case.

We compare the predictions made by S with those made by

the whole set D on the test data. Figure 5 shows the RMSE

of the predictive probability by herding over all the test data

points as a function of the number of super samples.

RMSE2(ST ,D) (18)

=
1

N

N∑

n=1




1

T

T∑

t=1

p(yn|xn, θt)−
1

|D|

|D|
∑

i=1

p(yn|xn, θi)





2

For comparison, we randomly draw a subset of D by boot-

strap sampling and compute the error in the same way

(the performance of down-sampling the Markov chain or

4http://archive.ics.uci.edu/ml/

randomly sampling without replacement is very similar to

random sampling, and is thus not shown in the figure).

We can easily observe the advantage of herding over ran-

dom sampling. The error of herding decreases roughly as

O(T−0.75), while the error of random sampling decreases

as O(T−0.5).

Now we’d like to estimate how many super samples are

needed to achieve the same precision as D on the true

posterior. Assume for now that the samples in D are iid.

Then the average predictive probability p(xn|yn,D) =
1

|D|

∑|D|
i=1 p(yn|xn, θi) is the average of |D| independent,

unbiased estimates. Since we can compute the stan-

dard deviation of these estimates on D, the standard

deviation of the average predictive probability becomes

std(p(yn|xn,D)) = std(p(yn|xn, θi))/
√

|D|, and then its

mean over all test data points gives an estimate to the stan-

dard deviation of the error in general, which is the dashed

line in Figure 5.

We can decompose the error of herding on the true posterior

RMSE(ST , p) ≤ RMSE(ST ,D) + RMSE(D, p)

≈ RMSE(ST ,D) + std(p(yn|xn,D).

When the first term is smaller than the second term, the er-

ror of herding mainly comes from the error of D, and we

can claim that more herding samples will not improve the

prediction much. Since the MCMC samples in D are not

independent, the error of D can only be larger than the es-

timated value, and we’ll need even fewer samples to reach

the same accuracy. In our experiment, for a set of 105 sam-

ples, we only need 7000 super samples.

In fact, we have drawn another much larger set of 2.5×106

posterior samples, p̃, and estimate the error of S on p by

RMSE(S, p̃) (the red line in Figure 5). We find that the

line starts to level off with even fewer (about 3000) super

samples and the converged value equals RMSE(D, p̃). In

summary, we can compress the set of parameters by 93%
or 97%.

In Figure 6, we show the classification accuracy of herd-

ing on the test set. In comparison, we also draw the ac-

curacy of the whole sample set (red), and 10 random sub-

sets of D. The prediction of herding converges fast to that

of D which is considered ground truth for the herding al-

gorithm. In contrast, the prediction made by random sub-

sets fluctuates strongly. In particular, we only need about

20 super-samples to get the same accuracy as D, while we

need about 200 random samples.

4 DISCUSSION

Kernel herding extends the original herding algorithm to

continuous spaces, and generates samples that contain

more information than IID samples. For a few distributions

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

Error of predicted probability

nr. of samples

R
M

S
E

 o
f
p
re

d
ic

ti
o
n
 o

n
 t
e
s
t
s
e
t

Herding, error on D

Herding, error on p
Random subset
by bootstrapping
std of the error of D

Figure 5: RMSE of the predicted probability of herding

(blue) and a random subset (blue) w.r.t. the whole sample

set.

10
0

10
1

10
2

10
3

10
4

10
5

0.91

0.915

0.92

0.925

0.93

nr. of samples

P
re

d
ic

ti
o
n
 a

c
c
u
ra

c
y

Random subset

Herding

Prediction on whole set

Figure 6: Prediction accuracy of herding (black), 10 ran-

dom subsets (cyan) and the whole sample set (red).

on which we can compute the convolution between p and

the kernel, herding samples approximate the expectation

of any function in the Hilbert space at a rate of O(T−1),
much faster than the Monte Carlo method. For other distri-

butions, given a collection of samples, KH filters out part of

its inherent randomness, and converts it into a much more

compact set of super samples with the same accuracy as the

empirical distribution.

Despite the power of KH already shown in this paper, we

only use a Gaussian kernel without utilizing much infor-

mation about the function of interest. If we already know

the function we want to integrate over or a distribution of

functions, it will be possible to design a better kernel that

minimizes the expected error w.r.t. to that distribution. This

is a promising future research direction.

Also, the idea of repelling samples from those areas that

have been explored is not only useful for herding. Incor-

porating the negative auto-correlation between samples to

MCMC or other methods should help speed up mixing.

And in the other direction, introducing stochastic meth-

ods to approximate the convolution in (8) should make KH

more practical in applications where general distributions

p are required.

References

HD Block and SA Levin. On the boundedness of an itera-

tive procedure for solving a system of linear inequalities.

Proceedings of the American Mathematical Society, 26

(2):229–235, 1970.

Y. Chen and M. Welling. Parametric herding. In Proceed-

ings of the Thirteenth International Conference on Arti-

ficial Intelligence and Statistics, 2010.

A. Gretton, K.M. Borgwardt, M. Rasch, B. Schölkopf,

and A.J. Smola. A kernel method for the two-sample-

problem. Journal of Machine Learning Research, 1:1–

10, 2008.

C. Guestrin, A. Krause, and A. Singh. Near-optimal sen-

sor placements in gaussian processes. In International

Conference on Machine Learning ICML’05, 2005.

T. Jebara and R. Kondor. Bhattacharyya and expected

likelihood kernels. In B. Schölkopf and M. Warmuth,

editors, Conference on Computational Learning Theory

(COLT), volume 2777 of LNCS, pages 57–71, Heidel-

berg, Germany, 2003. Springer-Verlag.

F.Y. Kuo and I.H. Sloan. Lifting the curse of dimensional-

ity. Noties of the AMS, 52(11):1320, 2005.

C.E. Rasmussen and Z. Ghahramani. Bayesian monte

carlo. In NIPS, pages 489–496, 2002.

L. Song, X. Zhang, A. Smola, A. Gretton, and

B. Schölkopf. Tailoring density estimation via reproduc-

ing kernel moment matching. In ICML, 2008.

T. Tieleman and G.E. Hinton. Using fast weights to im-

prove persistent contrastive divergence. In Proceedings

of the International Conference on Machine Learning,

volume 26, pages 1064–1071, 2009.

M. Welling. Herding dynamical weights to learn. In Pro-

ceedings of the 21st International Conference on Ma-

chine Learning, Montreal, Quebec, CAN, 2009a.

M. Welling. Herding dynamic weights for partially ob-

served random field models. In Proc. of the Conf. on

Uncertainty in Artificial Intelligence, Montreal, Quebec,

CAN, 2009b.

M. Welling and Y. Chen. Statistical inference using weak

chaos and infinite memory. In Proceedings of the Int’l

Workshop on Statistical-Mechanical Informatics (IW-

SMI 2010), pages 185–199, 2010.

	INTRODUCTION
	KERNEL HERDING
	Herding
	Convergence in Hilbert Space

	Experiments
	Synthetic Data
	Matching the True Distribution
	Matching empirical distribution

	Approximating the Bayesian Posterior

	DISCUSSION

