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ABSTRACT This paper proposes a super twisting-based nonlinear gain sliding mode controller

(STNGSMC) to achieve the position control of permanent-magnet synchronous motors (PMSMs). Non-

linear gain is developed to improve the position tracking performance of a super twisting sliding mode

controller (STSMC). The inclusion of nonlinear gain in the STSMC reduces chattering, and the stability

of the closed loop is mathematically proven using the Lyapunov theorem considering load torque. In the

proposed method, chattering is analyzed using the describing function method under unmodeled dynamics,

such as that corresponding to the quantization effect of the digital sensor, sensor resolution, and pulse-width

modulation (PWM) switching noise, in PMSM position control systems. Consequently, the STNGSMC

can improve the position tracking performance in steady-state responses. The performance of the proposed

method is verified using simulations. The experimental results demonstrate that chattering can be reduced

by the STNGSMC, consequently improving the position tracking performance.

INDEX TERMS Super twisting algorithm, sliding mode controller, position control, permanent-magnet

synchronous motors.

I. INTRODUCTION

P
ERMANENT-magnet synchronous motors (PMSMs)

are widely used in industrial applications owing to their

high power density, high efficiency, and enhanced reliability.

In addition, classical control methods such as proportional-

integral (PI) control and proportional-integral-derivative con-

trol are used for PMSMs owing to their ease of imple-

mentation [1], [2]. However, these classical control methods

cannot achieve good tracking performance owing to system

nonlinearities and parameter variations over a wide operating

range or external disturbances.

Various nonlinear control methods have been studied to

improve the control performance of PMSMs. A nonlinear

control method for field-weakening control and field-oriented

control was proposed in [3]. An adaptive control algorithm

was developed to enable speed tracking and minimize torque

ripple [4]. In addition, an internal model principle-based

controller was proposed to reduce sideband harmonics in

PMSMs with low-switching-frequency inverters [5]. In [6],

an adaptive law with type-2 fuzzy logic systems was designed

to compensate for interconnection effects, reconstruction

errors, and unknown functions. In [7], an adaptive fuzzy

controller was designed to compensate for the dynamic un-

certainty and external load effect in the speed loop of PMSM

drives. A backstepping control law with an extended state

observer was designed with input-output linearization in [8].

A nonlinear disturbance observer-based robust backstepping

compensator was designed for a position controller under

a lumped unknown disturbance in [9]. In [10], a predictive

algorithm using integration was designed with respect to time

step and ramp reference signals considering constraints such

as field weakening and current limitations. Model predictive

direct speed control was studied to overcome the limitations

of cascaded linear controllers and online predictions in [11].

A position tracking controller was designed to minimize the

quadratic index, and a recurrent wavelet-based Elman neural
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network was developed to improve control performance and

achieve robustness in [12]. These control methods have been

improved to achieve tracking performance in PMSMs from

different perspectives.

Sliding mode control (SMC) methods have been widely

implemented in PMSM control systems because of their

robustness and fast response [13]–[17]. However, chattering

is a major disadvantage associated with SMC, and various

methods have been studied to eliminate or reduce chatter-

ing. The signum function is replaced by certain smooth

approximations such as tangent, saturation, and hyperbolic

functions. A singular-perturbation-theory-based SMC was

applied to the position tracking control of PMSMs in [18].

A boundary layer integral SMC was designed based on a

quasi-linearized and decoupled model in [19]. These studies

used approximation functions in the control scheme to reduce

chattering. However, asymptotic stability cannot be ensured

using approximation functions. Thus, the convergence of the

steady-state error to zero cannot be mathematically verified.

Adaptive SMC and iterative learning control were designed

to ensure fast response and robustness and to reduce pe-

riodic torque ripples in [20]. However, the adaptive SMC

method is required because of the the long learning time

required to achieve robustness and fast response. To im-

prove both chattering and finite reaching time, high-order

sliding mode control (HOSMC) was developed in [21]. In

particular, super twisting algorithm-based HOSMC has been

commonly used to reduce chattering and achieve a finite

reaching time [22], [23]. Several super twisting sliding mode

controllers (STSMCs) have been developed to improve the

control of the PMSM [24]–[26]. The STMSC mathemati-

cally verifies the reduction in chattering, but chattering still

appears owing to the unmodeled dynamics, the quantization

effect of the digital sensor, sensor resolution, and PWM

switching noise. Thus, several STSMC methods have been

developed to reduce chattering using the upper-bound func-

tion of the disturbance [27], [28]. However, determining the

upper-bound function of the disturbance is difficult.

This paper proposed a super twisting-based nonlinear gain

sliding mode controller (STNGSMC) to achieve position

control of PMSMs. A nonlinear gain is developed to improve

the position tracking performance of the STSMC. The in-

clusion of nonlinear gain in the STSMC reduces chattering,

which is analyzed using the describing function method

under various unmodeled dynamics in PMSM position con-

trol systems. Consequently, the STNGSMC can improve the

position tracking performance in the steady-state responses.

We mathematically prove the stability of closed-loop systems

using the Lyapunov theorem and verify the performance of

the proposed method via simulations and experiments.

II. SUPER TWISTING NONLINEAR GAIN SLIDING MODE

CONTROLLER IN PMSM

Using a direct-quadrature transformation, the mathematical

model of the PMSM can be represented in the state-space

form [1] as follows:

θ̇ = ω

ω̇ =−
B

J
ω +

Km

J
iq −

τL

J

i̇d =
1

L
(−Rid +PωLiq + vd)

i̇q =
1

L
(−Riq −KEω −PωLid + vq)

(1)

where vd and vq are the direct and quadrature voltages [V],

respectively; id and iq are the direct and quadrature currents

[A], respectively; θ is the rotor (angular) position [rad];

ω is the rotor (angular) velocity [rad/s]; B is the viscous

friction [N·m·s/rad]; J is the inertia of the motor [kg·m2/rad];

R is the phase resistance [Ω]; L is the phase inductance [H];

P is the pole pair; Km is the torque constant [rad/s/A]; KE is

the back-EMF constant [V·s/rad]; and τL is the load torque

[N·m] and is assumed to be constant.

Mechanical tracking errors are defined as follows:

eθ = θd −θ

eω = ωd −ω
(2)

where θd is the desired position, and ωd = θ̇d is the desired

velocity. From (1) and (2), the tracking error dynamics are

obtained as follows:

ėθ = eω

ėω = ω̇d +
B

J
ω −

Km

J
iq +

τL

J
.

(3)

A sliding surface, s, is defined as follows:

s = k1eθ + k2eω (4)

where k1 and k2 are positive constants, and the derivative of

the sliding surface is derived as follows:

ṡ = k1ėθ + k2ėω

= k1eω + k2

(

ω̇d +
B

J
ω −

Km

J
iq +

τL

J

)

.
(5)

A. WITHOUT LOAD TORQUE

If the load torque is assumed to be zero, the control input

of the proposed controller for the mechanical dynamics is

designed as follows:

iq = ueq +
J

Km

(

λ1

k2

√

s2 + γ|s|sgn(s)−ui

)

(6)

where

ueq =
J

Km

(

k1

k2
eω + ω̇d +

B

J
ω

)

u̇i =−λ2 sgn(s).

(7)

λ1 and λ2 are positive constant numbers, and 0 < γ < 1.

Substituting the control inputs, (6) and (7), into (5), the

derivative of the sliding surface becomes

ṡ =−λ1

√

s2 + γ|s|sgn(s)+ui

u̇i =−λ2 sgn(s).
(8)
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
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FIGURE 1: Block diagram of the overall system model

The stability of the proposed method was proven using the

Lyapunov theory. The auxiliary state variables are defined as

follows:

ζ1 =
√

s2 + γ|s|sgn(s)

ζ2 = ui.

(9)

The dynamics of auxiliary state variables are defined as

follows:

ζ̇1 =
2|s|+ γ

2
√

s2 + γ|s|
(−λ1

√

s2 + γ|s|sgn(s)+ζ2)

ζ̇2 =−λ2 sgn(s).

(10)

The dynamics of auxiliary state variables are rewritten as

follows:

ζ̇ =
1

|ζ1|
Aζ +

|s|

|ζ1|
Rζ (11)

where

A =

[

−γλ1
2

1
2

−λ2 0

]

, R =

[

−λ1 1

0 0

]

. (12)

λ1 and λ2 are selected such that A is Hurwitz. The Lypunov

candidate function, V , is defined as follows:

V = ζ T Pζ (13)

where P is a positive definite such that AT P+PA = −I. The

derivative of (13) is derived as follows:

V̇ =
1

|ζ1|
ζ T AT Pζ +

1

|ζ1|
ζ T PAζ

+
|s|

|ζ1|
ζ T RT Pζ +

|s|

|ζ1|
ζ T PRζ

=
1

|ζ1|
ζ T (AT P+PA)ζ +

|s|

|ζ1|
ζ T (RT P+PR)ζ .

(14)

In (13), P is designed as follows:

P =

[

p11 p12

p12 p22

]

≻ 0. (15)

where

p11 =
1+2λ2

λ1γ
, p12 =−1, p22 =

λ1γ

2λ2
+

1+2λ2

2λ1γλ2
. (16)

With (15) and (16), V̇ becomes

V̇ =−
1

|ζ1|
‖ζ‖2 +

|s|

|ζ1|
ζ T (RT P+PR)ζ (17)

where

RT P+PR =

[

r1 r2

r2 r3

]

(18)

r1 =− 2(1+2λ2)
γ , r2 = λ1+

1+2λ2
γλ1

, and r3 =−2. The symmetric

matrix RT P+PR is semi-negative definite if and only if

r1 ≤ 0

r1r3 − r2
2 ≤ 0.

(19)

Condition (19) can be rewritten as

−
2(1+2λ2)

γ
≤ 0

−

(

λ1 −
1+2λ2

γλ1

)2

≤ 0.

(20)

The first condition can be satisfied with (1+2λ2)≥ 0 because

0 < γ < 1 . The second condition is always satisfied for both

λ1 and λ2. Consequently, if λ1 and λ2 are selected such that

A is Hurwitz, and (1+2λ2)≥ 0, we have

V̇ ≤−
1

|ζ1|
‖ζ‖2

. (21)

Thus, ζ converges to zero in a finite time.
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B. WITH LOAD TORQUE

In this section, the stability is proven for the load torque.

With the load torque, the dynamics of the sliding surface are

derived as follows:

ṡ = k1ėθ + k2ėω

= k1eω + k2

(

ω̇d +
B

J
ω −

Km

J
iq +d

)

.
(22)

where d is the load term, d =− τL
J

. Thus, (22) with (6) can be

rewritten as follows:

ṡ =−λ1

√

s2 + γ|s|sgn(s)+ui +d

u̇i =−λ2 sgn(s).
(23)

Let us define z := ui +d; then, ż := u̇i + ḋ and the system can

be written as

ṡ =−λ1

√

s2 + γ|s|sgn(s)+ z

ż =−λ2 sgn(s)+ ḋ.
(24)

Because ḋ = 0, (24) becomes

ṡ =−λ1

√

s2 + γ|s|sgn(s)+ z

ż =−λ2 sgn(s).
(25)

Because (25) is equivalent to (8), it can be proven that the

sliding surface, s, also converges to zero in finite time by the

same procedure.

After the sliding surface, s, reaches zero, then

0 = k1eθ + k2eω . (26)

Consequently, the position tracking error exponentially con-

verges to zero as follows:

ėθ =−
k1

k2
eθ . (27)

A block diagram of the overall system and controller is

shown in Fig. 1. The proposed methods (4), (6), and (7),

which are shown in Fig. 1, generates the current input iq.

The PI controllers are implemented for current-loop in the

PMSMs. The control gain tuning guide is as follows:

• λ1 and λ2 are selected such that A is Hurwitz and (1+
2λ2)≥ 0 for the stability.

• The positive constant γ was selected to be less than 1 to

reduce chattering.

III. ANALYSIS OF CHATTERING PHENOMENON

This section examines chattering in STSMC, STNGSMC,

and SMC under unmodeled dynamics in PMSM control sys-

tems. In [29], the chattering analysis is proven by describing

the function method with unmodeled dynamics. The block

diagram for the sliding surface dynamics, (8), in the presence

of the unmodeled dynamics is shown in Fig. 2. In Fig. 2, p is

the Laplace operator, µ is the unmodeled dynamics, and the

function of Ω is defined as follows:

Ω = λ1

√

s2 + γ|s|sgn(s). (28)

Proposed method

𝜆2sgn(s) න
𝜆1 𝑠2 + 𝛾 𝑠 sgn(s)

r(t)=0
+

+ 1(𝜇𝑝 + 1)2 න s

-

+ s

FIGURE 2: Block diagram of proposed method with unmodeled
dynamics

Following the describing function method, the chattering of

the sliding surface is considered to be Asin(ωt), and the input

of the nonlinearity is approximated as

u =
a0

2
+a1 cos(ωt)+b1 sin(ωt). (29)

The switching function, sgn(∗), is an odd function, and the

parameters of (29) are defined as follows:

a0 = a1 = 0. (30)

Therefore, (29) is rewritten as follows:

u = b1 sin(ωt) (31)

where b1 is given by the input of the controllers shown in

Fig. 2 such as λ2 sgn(s) and λ1

√

s2 + γ|s|sgn(s). The sliding

surface is considered as, Asin(ωt), where b1 is given by

b1 = b11 +b12

b11 =
1

π

∫ π

−π
λ2 sgn(Asin(δ ))sin(δ )dδ

b12 =
2

π

∫ π

0
λ1

√

A2 sin2(δ )+ γ|Asin(δ )|sgnδ sin(δ )dδ .

(32)

Using inequalities such as a2 +b2 ≥ 2ab and

sgn(Asin(δ ))sin(δ ) = sin(δ ), the equation for b1 is rewritten

as follows:

b11 =
4λ2

π

b12 >
λ1

π

∫ π

0
2Asin2(δ )+ γ sin(δ )dδ = λ1A+

2λ1γ

π
.

(33)

To obtain the describing function, b1 is divided by A, that is

given by

N11(A) =
4λ2

πA

N12(A)> λ1 +
2λ1γ

πA
.

(34)

The transfer function of the sliding surface with unmodeled

dynamics is given by

G(p) =
1

p(µ p+1)2
. (35)

Replacing the Laplace parameter p by jω yields

G( jω) =
1

jω(µ jω +1)2
. (36)
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FIGURE 3: Chattering amplitude by unmodeled dynamics

The inverse transfer function of the sliding surface with

unmodeled dynamics, g( jω) = 1
G( jω) , is given as follows:

g( jω) =−(2µω2)− j(µ2ω3 −ω). (37)

To complete the analysis, equating N(A) to −g( jω) is de-

rived as

4λ2

πAp
+λ1 +

2λ1γ

πA
= (2µω2)+ j(µ2ω3 −ω). (38)

If the imaginary part of (38) is equal to zero, ω is calculated

as follows:

ω =−
1

3µ

(

27µ44λ2 +
√

(27µ44λ2)2 −4(3µ2)3

2

)
1
3

−
1

3µ

(

27µ44λ2 −
√

(27µ44λ2)2 −4(3µ2)3

2

)
1
3

.

(39)

Therefore, A, which is chattering amplitude, is rewritten as

A =
2λ1γω

−λ1πω +2µπω3
. (40)

Substituting (39) into (40), the chattering amplitude of the

sliding surface under unmodeled dynamics is obtained. Ac-

cording to [29], the chattering of SMC and STSMC are

calculated as

A1 =
2µλ2

π

A2 =
µ2(πλ 2

1 +16λ2)
2

4λ 2
1 λ 2

2

(41)

where A1 is the chattering of SMC, and A2 is the chattering

of STSMC.

The chattering of SMC, STSMC, and STNGSMC is rep-

resented graphically in Fig. 3. The chattering amplitude of

the STSMC is greater than that of the conventional SMC

when µ > 0.15. However, the chattering amplitude of the

STNGSMC is less than that of the conventional SMC under

the condition of µ < 0.5.
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FIGURE 4: Position reference

IV. SIMULATION AND EXPERIMENTAL RESULTS

Simulations and experiments were conducted to validate the

performance of the proposed STNGSMC. For comparison,

the STSMC input was used for Case 1 as follows:

iq,1 = ueq +
J

Km

(

λ1

k2

√

|s|sgn(s)+ui

)

ueq =
J

Km

(

k1

k2
eω + ω̇d +

B

J
ω

)

u̇i = λ2 sgn(s).

(42)

The STNGSMC input, (6) and (7), were implemented for

Case 2. The smooth start sinusoidal signal θ d = 6π(1 −
e−5t)sin(0.4πt) rad was used as the desired position in

the simulations and experiments, as shown in Fig. 4. The

desired position is used for the industrial servo system to

prevent the peaking phenomenon. The nominal parameters

listed in Table 1 were used for the PMSM in the simulations

and experiments. The control gains listed in Table 1 were

implemented for Cases 1 and 2. An initial position displace-

ment, i.e., θ(0) = −0.008 rad, was set to study the transient

response.

TABLE 1: Nominal PMSM parameters and control gains

Parameter Value Gain Value

J 4.675×10−4[kg·m2/rad] k1 200

B 3.7×10−3[N·m·s/rad] k2 0.5

R 0.2 [Ω] λ1 2100

L 0.4×10−3[H] λ2 1000

Km 0.102 [V·s/rad] γ 0.5

A. SIMULATION RESULTS

Simulations were conducted using MATLAB/Simulink to

validate the performance of the proposed method. The con-

trol gains and parameters are listed in Table 1. In the sim-

ulation, the parameter uncertainties, which are a maximum

of ±20 % from the nominal value of Table 1, were applied to

verify the robustness of STSMC and STNGSMC. The sliding

surfaces of Cases 1 and 2 are shown in Fig. 5. The initial

position displacement generated a transient response, where

it was observed that the finite reaching time of STSMC is

as shown in Fig. 5 (b). After observing the finite reaching

time, chattering was observed for STSMC and STNGSMC,

as shown in Fig. 5 (c). The chattering in Case 2 was reduced

VOLUME 4, 2016 5
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FIGURE 5: Sliding surfaces in simulations

by STNGSMC. The position tracking performances of Cases

1 and 2 are shown in Fig. 6. The chattering of the sliding

surface near the origin affected the position tracking perfor-

mances of Cases 1 and 2. Therefore, we can observe that the

ripple of the position of Case 2 was smaller than that of Case

1, as shown in Fig. 6 (c). The current inputs for Cases 1 and

2 are shown in Fig. 7. There were fewer fluctuations in the

current input in Case 2 owing to the reduced chattering.

B. EXPERIMENTAL RESULTS

Experiments were performed using a PMSM testbed,

which consisted of ControlDesk, two RapidPro units, and a

SCALEXIO real-time system, as shown in Fig. 8, to validate

the performance of the proposed method. We generated a

real-time control code in MATLAB/Simulink to apply Con-

trolDesk. The control algorithm was applied to the same

simulink block used in the simulation. ControlDesk manages

the overall experimental conditions, control parameters, and

data acquisition. RapidPro was equipped with two “PS-

HCHBD 2/2” power-stage modules. The maximum ratings
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FIGURE 6: Position tracking performances in simulations

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-2

-1

0

1

2

C
u

rr
e

n
t 

[A
]

Case1 Case2

FIGURE 7: Current inputs in simulations

of the power-stage modules were 30 VDC and 19 Arms.

An incremental optical encoder (2500 lines/r) was used to

measure the position. The control sampling rate was set to

20kHz. The powder brake generates a load torque against the

velocity with a maximum value of 2N·m.

The experiments were conducted for the three conditions

as follows:

• Condition 1: Without disturbances

• Condition 2: With the parameter uncertainties

• Condition 3: With parameter uncertainties and the load

torque.
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FIGURE 8: PMSM experimental setup

1) Condition 1: Without Disturbances

In these experiments, the nominal values listed in Table 1

were used for PMSMs. The sliding surfaces of Cases 1 and 2

are shown in Fig. 9. The chattering was more reduced by the

STNGSMC in Case 2 than in Case 1. The frequency spectra

of the sliding surfaces are presented in Fig. 10. We observe

that near 200 Hz, the chattering of Case 2 was 3 dB smaller

than that of Case 2. For the secondary harmonics frequency

i.e., 460 Hz, the chattering was also reduced by 15 dB. The

position tracking performances of Cases 1 and 2 are shown in

Fig. 11. The ripple of the position in Case 2 was smaller than

that in Case 1 because the chattering of the sliding surface in

Case 2 was smaller than that in Case 1. The input currents are

shown in Fig. 12. The input ripple in Case 2 is smaller than

that in Case 1.

2) Condition 2: With the Parameter Uncertainties

To evaluate the robustness of the proposed method against

parameter uncertainties, the experiments were tested with

parameter uncertainties. The parameter uncertainties, which

are a maximum of 20 % from the nominal value of Table 1,

were applied, and the sliding surfaces are shown in Fig.

13. The chattering was more reduced by the STNGSMC in

Case 2 than in Case 1. The frequency spectra of the sliding

surfaces are shown in Fig. 14. We see that at 200 Hz, the

chattering of Case 2 was 3 dB smaller than that of Case

2. For the secondary harmonics frequency, i.e., 460 Hz, the

chattering was also reduced by 15 dB. The position tracking

performances of Cases 1 and 2 are shown in Fig. 15. The
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FIGURE 9: Sliding surfaces in Condition 1
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FIGURE 10: Frequency spectra of sliding surfaces in Condition 1

ripple of the position in Case 2 was smaller than that in Case

1 because the chattering of the sliding surface in Case 2 was

smaller than that in Case 1. The input currents are shown in

Fig. 16. The input ripple in Case 2 is smaller than that in Case

1.

3) Condition 3: With parameter uncertainties and the load

torque

To evaluate the robustness of the proposed method against

parameter uncertainties and load torque, the experiments
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were tested with the parameter uncertainties and load torque.

As shown in Fig. 17, a large load torque was applied. The

sliding surfaces of Cases 1 and 2 are shown in Fig. 18. Owing

to the large disturbance, including the parameter uncertain-

ties and load torque, the chattering for Condition 3 increased

more than that for Conditions 1 and 2. The chattering was

more reduced by the STNGSMC in Case 2 than in Case 1.

The frequency spectra of the sliding surfaces are presented

in Fig. 14. We see that near 200 Hz, the chattering of Case 2

was 3 dB smaller than that of Case 2. The position tracking

performances of Cases 1 and 2 are shown in Fig. 20. The

ripple of the position in Case 2 was smaller than that in Case
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FIGURE 13: Sliding surfaces in Condition 2
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FIGURE 14: Frequency spectra of sliding surfaces in Condition 2

1 because the chattering of the sliding surface in Case 2 was

smaller than that in Case 1. The input currents are shown in

Fig. 21. The input oscillations are similar between Cases 1

and 2. However, the chattering and oscillation were reduced

in Case 2.

V. CONCLUSION

In this paper, we proposed the STNGSMC to improve the

position control performance of PMSMs, and the nonlinear

gain was developed to improve the position tracking perfor-
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FIGURE 15: Position tracking performances in Condition 2
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mance of the STSMC. The inclusion of nonlinear gain in

the STSMC was demonstrated to reduce chattering. Based
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FIGURE 18: Sliding surfaces in Condition 3
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FIGURE 19: Frequency spectra of sliding surfaces in Condition 3

on the results obtained, we proved the stability of closed-

loop systems using the Lyapunov theorem, and we experi-

mentally verified the performance of the proposed method.

The chattering phenomenon was calculated by describing

function methods. The chattering was compared for conven-

tional SMC, STSMC, and STNGSMC along with unmodeled

dynamics, such as the PWM switching noise, sensor noise,

and quantization effect. In the simulations and experiments,

the STNGSMC reduced the chattering phenomenon in SMC.

In Condition 1, the sine wave position reference was used

without uncertainties. Furthermore, to evaluate the robust-

ness of the proposed method, Condition 2 was conducted

under parameter uncertainties, and in Condition 3, the load
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FIGURE 20: Position tracking performances in Condition 3
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FIGURE 21: Current inputs in Condition 3

torque was applied. The robustness of the proposed method

is mathematically proven in Section II. The chattering was

reduced in the steady state because of nonlinear gain. Using

the analysis of the frequency spectra, the chattering magni-

tude was reduced by 3 dB on average, which means that the

chattering width of the proposed method was reduced by up

to half that of STSMC. The simulation and experimental re-

sults demonstrated that the chattering width was observed in

both the time domain and frequency spectra. The chattering

affected the position tracking performance in transient and

steady-state responses, and the simulation and experimental

results demonstrate that position error ripples are reduced.

A wide chattering width was observed in the experimental

results owing to unmodeled dynamics. Therefore, a low

oscillation was observed in the control input, which is the

quadrature current.
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