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Abstract

To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-

alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding

mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic

Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space

vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and

precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-

SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that

the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use

of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases

the reliability of the system.

Keywords: Self-excited induction generator, Virtual flux oriented control, Back-to-back converter, Super twisting

sliding mode control, PI-fuzzy controller; wind energy

1 Introduction

A quarter of world’s population live in rural villages and

isolated sites where most are not connected to electrical

networks. Therefore they use fossil fuels for their energy

needs, which causes ecological and economic problems.

In recent years new energy sources have been developed

to tackle climate change and pollution caused by fossil

fuels.

The stand-alone induction generator connected to a

wind turbine presents many advantages such as low cost

and reduced maintenance being rugged, of simple con-

struction, and with a brushless rotor (squirrel cage).

However, the control of the output voltage of the gener-

ator transmitted to the consumer during changes in

speed and load condition is challenging [1–4].

In [5–9], a vector controlled back-to-back converter is

used between the SEIG and the load, while a simplified

system with PWM rectifier and the load connected to its

output in parallel with the DC bus voltage has also been

proposed. The main objective of this technique is to en-

sure constant DC voltage at the output of the PWM rec-

tifier for a constant amplitude and constant frequency at

the output of the inverter. Generally, four PI controllers

in a cascade configuration are used, i.e., two respective

external loops for the flux and DC voltage, and two

inner d- and q-axis loops for current control. In some

cases, only two outer controllers are used for flux and

DC voltage while the currents are controlled using hys-

teresis controllers. The major advantage of this control

technique is its simplicity of implementation. However,

the difference between the DC bus voltage and its refer-

ence reaches up to 5% for speed variation and 10% for

load variation. Moreover, to obtain a decoupled control

of the flux and torque it requires accurate SEIG
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parameters. Any variations of the stator and rotor resis-

tances as well as magnetizing inductance can lead to a

diminution of control performance due to the discrep-

ancy between the real and reference flux vectors. Hence,

it is necessary to estimate and compensate for the vari-

ation of these parameters [10], leading to a complicated

control scheme. In order to solve the problem of SEIG

voltage variation, large undershoot/overshoot of electro-

magnetic torque, and DC link voltage variation, many

studies have proposed replacing the conventional PI by a

Fuzzy logic controller (FLC) and a neural network con-

troller. The results obtained are more efficient compared

to conventional controllers though the dynamics can de-

teriorate in the event of significant variations in driving

speed or load [11, 12].

Voltage oriented control (VOC) proposed and imple-

mented by [9, 13–15] guarantees high dynamic and

static performance via internal current control loops.

The DC bus voltage at the output of the PWM rectifier

is controlled by a voltage loop, in which a PI controller

acts on the DC voltage error to generate references for

the AC currents in the stationary (abc) or rotating (dq)

reference frame. The PI current controller guarantees a

good continuation of the input currents compared to

the references, though the performance of this control

technique depends largely on the quality of the applied

current control technique. It has several advantages such

as low current total harmonic distortion (THD), fixed

switching frequency, and easy implementation. However,

as this technique requires a phase-locked loop (PLL) to

determine the phase angle, it requires line voltage

sensors.

Another control technique proposed and implemented

in [14] is composed of a diode bridge rectifier and a fil-

ter, and a PWM inverter. The purpose of this technique

is to stabilize the amplitude and frequency output of the

inverter for an autonomous energy generation system. It

has good dynamics with a low harmonic current and

voltage of the inverter (THD current =2–3%, THD volt-

age = 0.12–0.2%), which are well within the 5% limit im-

posed by IEEE-519. However, the major drawback of

such a system is the large stator current harmonics

caused by the diode bridge rectifier.

Direct torque control (DTC) also has been proposed

based on the orientation of stator flux [16–20]. The con-

trol considers the finite control voltage vectors produced

by the generator side PWM rectifier. The absence of the

current control loop and park transformation makes the

implementation of the DTC control simpler than the

VOC, while it manifests itself by the rapid dynamic re-

sponse. However, it has major drawbacks, such as the

determination of switching states has to be based on in-

formation on the trends in flux and torque evolution

from non-linear elements of the hysteresis type, and the

variable switching duration, which leads to torque

oscillations.

In this paper, a super-twisting sliding mode control

(STSMC) regulator is proposed to replace the traditional

(PI and PI-Fuzzy) controller. To enhance system robust-

ness, system uncertainties are taken into consideration.

The dynamic performance of DC voltage regulation is

improved and the harmonics in the stator current are

reduced.

VOC with virtual flux estimation using the proposed

STSMC (STSMC-VFOC) with a two-level back-to-back

converter is applied, where virtual flux is estimated as a

function of the DC bus voltage and the control states of

the rectifier. This technique makes it possible to simplify

the control system and to improve the accuracy of esti-

mation of the flux position. The principles of VOC,

STSMC, SVM, and virtual flux estimator are combined

for improved robustness and minimized ripples. To

highlight the advantages of the proposed structure,

simulation results are compared between the proposed

strategy (STSMC-VFOC-SVM) and the conventional

method (FLC-VFOC-SVM).

This rest of the paper is organized as follows: the mod-

eling of the self-excited induction generator is briefly

summarized in Section 2. VOC with virtual flux estima-

tion is developed in Section 3 and the proposed STSMC

strategy is described in detail in Section 4. The criteria

employed to measure the efficiency of system response

are presented in Section 5.The simulation results are

presented and discussed in Section 6, and a conclusion

is drawn in Section 7.

2 Mathematical model of induction generator

The mathematical model of an SEIG in a stationary d-q

reference frame is described as [1–4]:
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where Ls and Lr are the stator and rotor self inductances,

respectively. Lm is the magnetizing inductance, and Rr

and Rs are the rotor and stator resistances, respectively.

C is the capacitance of the excitation capacitor con-

nected at the stator terminals.
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The SEIG model can also be describe by the state

space equation as:

Ẋ½ � ¼ A½ � B½ � X½ � ð2Þ

where
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ð3Þ

The variation of the magnetizing inductance is the

main factor in the dynamic build up voltage and

stabilization in SEIG [4, 5]. It must be emphasized that

the generator needs residual magnetism so that the self-

excitation process can be started. The variation of the

magnetizing inductance Lm with phase voltage used in

this work is given in Fig. 1.

For self-excitation, the induction generator uses the

battery on the DC side to provide the initial voltage

across the capacitor and once the load voltage rises to a

value higher than the battery voltage, it is automatically

switched off by the diode.

3 Voltage oriented control
VOC with virtual flux estimation is implemented to im-

prove the performance of the classical VOC which is

based on PLL.

VOC or VFOC controls are similar to the flux-

oriented vector control of induction machines. The

method is based on the transformation between a sta-

tionary αβ coordinate and the synchronous rotating dq

coordinate [9]. VFOC provides better control of the rec-

tifier under poor line voltage conditions (operation with-

out an AC voltage sensor presents less noise because of

the low pass filter behavior of the integrator used in the

flux estimator).

3.1 Decoupled voltage control

The application of the decoupled control for the PWM

rectifier makes it possible to decouple the currents Id
and Iq, and to allow adequate regulation on each of the

two separately [9]:

ed ¼ Rid þ L
did

dt
þ vd þ ωLiq

ed ¼ Rid þ L
diq

dt
þ vq−ωLid

ð4Þ

The decoupling between the d- and q-axis is done by

the variables ud and uq as:

Fig. 1 Variation of magnetizing inductance with

phase voltage

Fig. 2 Schematic of decoupled control

Fig. 3 Closed-loop of current control

Fig. 4 Closed-loop of DC voltage control
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ud ¼ ed−vd−ωLiq ¼ Rid þ L
did

dt

uq ¼ eq−vq−ωLid ¼ Riq þ L
diq

dt

ð5Þ

where ud and uq are the output signals from the current

regulators.

After simplification, a decoupled state system is ob-

tained as:
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Currents of Id and Iq can be controlled separately by

the action on the components ud and uq.Figure 2 shows

the diagram of the current control loop.

Figure 3 shows the closed-loop transfer function of the

current control and can be written as:

GBF pð Þ ¼

k i

kp
pþ 1

L

k i
p2 þ Rþ kp

k i
pþ 1

ð7Þ

The control parameters can be set as ki = 2, ki = 2ζωn

− R, kp = Lωn
2 ki = 2ζω − R, ζ ¼

ffiffi

2
p

2 , ki = Lω2 while ωn de-

pends on the chosen response time.

The DC voltage regulation loop generates the refer-

ence current id
∗ as shown in Fig. 2. A Fuzzy-PI controller

is used as presented in Fig. 4. This is based on the error

from two inputs and its variation [21].

The expressions of the error (E) and its derivation (dE)

are:

E kð Þ ¼ V �
DC kð Þ−VDC ð8Þ

dE kð Þ ¼ E kð Þ−E k−1ð Þ ð9Þ

where VDC and V �
DC are the DC voltage and its refer-

ence, respectively.

The output of the regulator is given by:

I�d kð Þ ¼ du kð Þ−du k−1ð Þ ð10Þ

FE, FdE, and FdU are gains called “scale factor”. Fig-

ure 5 shows the function of membership of each input

signal (E, dE). There are 7 fuzzy subsets for each variable

giving 49 (7*7) possible rules, while the fuzzy subsets are

[21]:NB (Negative Big), NM (Negative Medium), NS

(Negative Small), Z (Zero), PS (Positive Small), PM

(Positive Medium), and PB (Positive Big) [22–24] (Table

1).

3.2 Virtual flux estimation

Given that R and L represent the stator resistance and

the stator leakage inductance of the virtual asynchronous

generator [13], the components of the flux vector in the

stationary αβ reference frame of the virtual generator

Fig. 5 Membership function

Table 1 Rules bases

dEn
En

NB NM NS Z PS PM PB

PB Z PS PM PB PB PB PB

PS NS Z PS PM PB PB PB

PS NM NS Z PS PM PB PB

Z NB NM NS Z PS PM PB

NS NB NB NM NS Z PS PM

NM NB NB NB NM NS Z PS

NB NB NB NB NB NM NS Z

Fig. 6 Virtual flux estimation for voltage sensorless 3-phase

induction generator synchronization

Fig. 7 Algorithm of control
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connected to the terminals of the PWM rectifier are de-

termined as:

ψsα ¼
Z

usα þ L
disα

dt

� �

dt

ψsβ ¼
Z

usβ þ L
disβ

dt

� �

dt

ð11Þ

The rectifier input voltages can be estimated as func-

tions of the DC bus voltage and rectifier switching states

as:

usα ¼
ffiffiffi

2

3

r

VDC sa−
1

2
sb þ scð Þ

� �

usβ ¼
1
ffiffiffi

2
p VDC sb−scð Þ

ð12Þ

As the voltage drop across leakage inductance is negli-

gible compared to the line voltage, the fluxes in the αβ

axis are expressed as:

ψsα ¼
2

3

Z

VDC sa−
1

2
sb þ scð Þ

� �

dt

ψsβ ¼
ffiffiffi

3
p

2

Z

VDC sb þ scð Þdt
ð13Þ

The virtual flux estimation method used for grid

synchronization (in this case three-phase induction gen-

erator) is shown in Fig. 6.

The global schematic of the proposed control is pre-

sented in Fig. 7.

4 Super-twisting sliding mode controls (STSMC)

In this section, the design of current controllers based

on STSMC is studied. A super twisting algorithm is de-

signed to perform continuous control with a two-order

sliding mode based on high order derivatives of the slid-

ing mode surface. It can be an alternative solution to re-

duce the chattering phenomenon while keeping the

same performance and robustness of sliding mode con-

trol [25, 26].

The super-twisting (ST) control law UST(t) is defined

by two parts u1 and u2, where u1 is given by its deriva-

tive and u2 is specified by the function of the sliding

variable as [25]:

UST ¼ u1 tð Þ þ u2 tð Þ ð14Þ

Fig. 8 Super-twisting sliding mode control with virtual flux

oriented control (VFOC) for induction generator

Fig. 9 DC voltage. a With STSMC. b With PI-Fuzzy

Fig. 10 Stator currents in (d,q) axis. a With STSMC. b

With PI-fuzzy

Bendjeddou et al. Protection and Control of Modern Power Systems            (2021) 6:18 Page 5 of 9



u2 ¼ −λ Sj jr sign Sð Þ þ u1
u̇1 ¼ −αsign Sð Þ

�

ð15Þ

where λ and α are positive gains used to synthesize a ro-

bust super-twisting controller [27].

The nonlinearity can be regulated by changing the co-

efficient r in order to maintain stability. It must be posi-

tive and its value is within 0 ≤ r ≤ 0.5.

Sufficient conditions to offer a finite time convergence

are provided in [28] and are chosen as follows:

α >
Φ

ΓM

λ≥
4ΦΓM αþΦð Þ
Γ3m αþΦð Þ

8

>

>

<

>

>

:

ð16Þ

where α, λ, Φ and ΓM are positive constants, Φ is the

positive bound of the uncertain function ϕ, ΓM and Γm
are the respective positive upper and lower bounds of

the uncertain function γ at the second derivative of the

sliding surface given as [27]:

€S ¼ ϕ x; tð Þ þ γ x; tð Þu̇ ð17Þ

To guarantee the convergence of the sliding surface to

zero in the presence of disturbances and uncertainties,

the function ϕ(x, t) and γ(x, t) must satisfy the following

conditions: Φ ≥ ϕ and ΓM ≥ γ ≥ Γm > 0 [29, 30].

Fig. 11 Harmonic spectra of the stator current. a With STSM

C. b With PI-fuzzy

Fig. 12 Stator current

Fig. 13 Rotor speed

Fig. 14 Output inverter voltages
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In order to control the dq axis currents, a super-

twisting sliding mode approach is considered. From the

following equations:

S dð Þ ¼ I�d−Id
S qð Þ ¼ I�q−Iq

�

ð18Þ

the first derivative is written as:

Ṡ dð Þ ¼ İ
�
d þ

R

L
İd−

1

L
u̇d ð19Þ

Ṡ qð Þ ¼ İ
�
q þ

R

L
İq−

1

L
u̇q ð20Þ

From (15), the control based on the super twisting al-

gorithm considered in [29] for the current controller is

given as:

V d ¼ −Kpd S dð Þj jr sign S dð Þð Þ þ ud
u̇d ¼ −K Id sign S dð Þð Þ

�

ð21Þ

V q ¼ −Kpq S qð Þj jr sign S qð Þð Þ þ uq
u̇q ¼ −K Iq sign S qð Þð Þ

�

ð22Þ

where the sliding variable S(d) and S(q) are the d- and

q-axis current errors, respectively.

The gains are chosen according to the conditions

stated in (16). The block diagram of STSMC is shown in

Fig. 8.

5 Performance criteria

The criteria employed to measure the efficiency of sys-

tem response need take into account the variations in

errors over the whole range of time. The three basic cri-

teria commonly employed, i.e., Integral of absolute error

(IAE), Integral of squared error (ISE), and Integral of

time multiplied by absolute error (ITAE) [31] are evalu-

ated as:

IAE ¼
Z

∞

0

j e tð Þ j dt ð23Þ

ISE ¼
Z

∞

0

e tð Þð Þ2dt ð24Þ

ITAE ¼
Z

∞

0

t j e tð Þ j dt ð25Þ

6 Simulation results and discussion
To verify the performance of the proposed control ap-

plied to the self-excited induction generator in remote

areas, a Matlab-based simulation is conducted. Results

presented in this section are for a 2 kW induction gener-

ator with the following electrical parameters: (Rs = 1.7 Ω,

Rr = 1.2 Ω, ls = 0.024 H, lr = 0.023 H, Lm = 0.023 H). Dur-

ing the simulation, the system is exposed to speed and

load variations to test the performance of the control.

The load contains three branches of resistances and in-

ductances, at t = 4 s the load changes from 200Ω, 3 mH

to 40Ω, 1 mH, and then to 250Ω, 8 mH at t = 8 s.

The DC bus voltage at the output of the rectifier is

shown in Fig. 9. It demonstrates that the desired refer-

ence value of 700 V is tracked very quickly at the start

without any significant overshoot. At t = 4 s and t = 8 s,

the control system is subjected to load variations. As can

be seen, the disturbances are rejected by the STSMC-

based controllers with a response time of 0.02 s and

overshoots of 0.7%.

Fig. 15 Output inverter currents

Fig. 16 Output inverter voltage amplitude

Fig. 17 SEIG output voltages
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Figure 10 shows the current tracking and the decoup-

ling between the d- and q-axis of both the STSMC and

PI-fuzzy controllers. However, the harmonic spectra of

the stator current for the two controllers compared in

Fig. 11 show that current THD is lower in the STSMC

technique (1.22%) compared to conventional PI-fuzzy

controller (1.68%). Figure 12 (a) and (b) show the stator

currents with the STSMC and PI-fuzzy controllers, re-

spectively, while the rotor speed is shown in Fig. 13.

Figures 14 and 15 show the output voltage and current

of the inverter, while Fig. 16 illustrates that the voltage

amplitude follows its reference without overshoot. The

output voltages generated by the SEIG change in ampli-

tude and frequency as shown in Fig. 17.

The efficiency of the proposed STSMC technique

based on the performance measures of IAE, ISE and

ITAE are indicated in Table 2, which show better per-

formance by the proposed controller.

7 Conclusion

In this paper, the super-twisting sliding mode approach

applied to virtual flux orientated control (STSMC-

VFOC) of a stand-alone induction generator is studied

and compared to the conventional PI-fuzzy control.

Simulation results prove that the proposed STSMC-

VFOC control system assures better dynamic perform-

ance and illustrates a considerable reduction in current

ripple compared to the PI-fuzzy controller.

8 Nomenclature
vds, vqs: Direct and quadrature stator voltages

ids, iqs: Direct and quadrature stator currents

idr, iqr: Direct and quadrature rotor currents

Ω: Synchronous speed

Ls, Lr: Stator and rotor self inductances

Lm: Magnetizing inductance

Rr, Rs: Rotor and stator resistance

C: Excitation capacitor

R, L: Stator resistance and stator leakage inductance of

the virtual motor

ψsα, ψsβ: Stator flux in the αβ axis

VDC: DC bus voltage

usα, usβ: Line voltage in the αβ axis

isα, isβ: Line current in the αβ axis

ud, uq: Output signals from the current regulators

μ: Flux estimator adjustment coefficient

UST: Super-twisting control law

λ, α: Positive gains used to synthesize a robust super-

twisting controller

α, λ: Positive constants

Φ: Positive bound

ΓM, Γm: Positive upper and lower bounds

γ: Second derivative of the sliding surface

ki, kp: Proportional and integral gains of the PI

regulators

FE, FdE, FdU: Scale factors of the PI-Fuzzy regulators

Abbreviations

STSMC: Super-twisting sliding mode control; PI: Proportional-integral;

VOC: Vector oriented control; VFOC: Virtual flux oriented control; SVM: Space

vector modulation; SEIG: Self-excited induction generator; AC: Alternating

current; PLL: Phase-locked loop; DC: Direct current; PWM: Pulse-Width

modulation; THD: Total harmonics distortion
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