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ABSTRACT Bilateral filtering (BF), which is an edge-preserving filtering (EPF) method, has been widely

recognized as a simple and efficient approach for hyperspectral image (HSI) feature extraction. However,

due to the limitation of spatial resolution and the influence of the complexity of land feature distribution in

HSIs, updating the target pixel through weighted averaging of neighbouring pixels is prone to generating

mixed pixels, i.e., the updated target pixel is mixed with the feature of other land objects in addition to

that of the target object, decreasing the quality of the image feature extraction. To address this problem,

in this study, we propose a superpixel-based BF algorithm, SuperBF. This algorithm divides a HSI into many

homogeneous regions via superpixel segmentation and then separately filters each homogenous region via

BF; this approach ensures that the pixel structure in the template after BF is similar to that in the filtering

process, reduces the probability of generating mixed pixels, and thus improves the quality of the image

feature extraction. To verify the effectiveness of this proposed method, a support vector machine (SVM)

classifier is used to classify the extracted SuperBF features. Experiments on three commonly employed HSI

datasets demonstrated that SuperBF is significantly superior to the traditional BF-based hyperspectral feature

extraction method and some new feature extraction methods.

INDEX TERMS Superpixel, bilateral filtering, feature extraction, hyperspectral images.

I. INTRODUCTION

Ahyperspectral image is a digital image of hundreds of

narrow spectral bands and visible infrared spectral bands

acquired by satellite sensors [1]–[4]. It can not only

provide spatial characteristic information about ground

objects [5]–[8] but also contain rich spectral characteristic

information that reflects the unique physical properties of

the ground objects [9]–[12], which enables accurate detec-

tion and recognition [13], [14] and attribute analysis of the

ground objects, even when the label information is contam-

inated by noise [15]–[17]. HSI has an active role due to

its unique advantages in the fields of precision agriculture,
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forest protection, marine monitoring, and military reconnais-

sance [18]–[21].

Feature extraction of HSIs is a key technology in remote

sensing science; numerous studies in this area have been

reported [22]. Chen et al. [23] used propagation filtering

to extract HSI features and improve the performance of a

classifier. Jiang and Ma [24] proposed a superpixel princi-

pal component analysis (SuperPCA) approach to integrate

spatial context information about a HSI into unsupervised

dimensionality reduction via superpixel segmentation and

extract the discriminative, compact, and noise-resistant fea-

tures. SuperPCA is a simple but very effective method. Just

like PCA, it can be easily added to the pre-processing of exist-

ing methods. Li et al. [25] proposed a classification paradigm

that utilized the texture features of HSIs and used a local
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FIGURE 1. Schematic of SuperBF-based Classification for HSIs (S is the number of regions after ERS segmentation).

binary pattern (LBP) to extract local image texture features,

obtaining excellent classification results. Zhou and Wei [26]

proposed a deep hierarchical model of a spectral space net-

work (SSN) and extracted spatial and spectral features of

HSIs. The results showed that the SNN has excellent robust-

ness and accuracy. Pan et al. [27] proposed the R-VCANet

deep learningmethod, which can combine spectral and spatial

features using a rolling guide filter (RGF) and extract the

depth features of HSIs using the new vertex component anal-

ysis network (VCANet). The obtained features had a more

powerful expression ability.

Recently, bilateral filtering (BF) was used to update

the target pixel by weighted averaging of the neighbour-

ing pixels through the spatial distance and the pixel value

distance within the template, which has been demon-

strated to be effective for feature extraction of HSIs [29].

Kang and Li [30] proposed a spectral-spatial feature extrac-

tion classification method that is based on edge-preserving

filtering (EPF) and employs BF and guided filtering to

ensure that a smooth probability is aligned with the edge

of the real object; the method obtains reasonable results.

Shen et al. [31] proposed a spectral-spatial feature extrac-

tion method for extreme learning machine (ELM) classi-

fiers, which can improve the accuracy of the kernel-based

ELM classifier by extracting spectral-spatial features via BF.

Wang et al. [32] applied a combination of BF and graphic

cutting technology to extract spectral-spatial features and

improve the classification performance. Soomro et al. [33]

combined elastic net regression and BF to extract spectral-

spatial features, which improved the accuracy of the

classifier.

However, due to the limitation of spatial resolution and

the influence of the complexity of land feature distribution

in hyperspectral remote sensing images, updating the tar-

get pixel through the weighted averaging of neighbouring

pixels is prone to generating mixed pixels, i.e., the updated

target pixel is mixed with the feature of other land objects

in addition to that of the target object, decreasing the qual-

ity of image feature extraction. A superpixel BF algorithm

(SuperBF) was proposed to extract HSI features. The specific

framework is shown in Fig. 1 schematic of SuperBF-based

Classification for HSIs. First, the HSI is segmented into

many different regions via superpixel segmentation, and each

region is considered to be a homogeneous region with a

similar structure [34]. Second, each of the segmented homo-

geneous regions is filtered using BF. As the structural simi-

larity of the pixels in the segmented homogeneous regions is

extremely high, the possibility that the updated target pixel

contains the features of other categories decreases, thus low-

ering the probability of mixed pixel generation. To verify the

validity of the extracted features, the extracted features are

classified using a common support vector machine (SVM)

classifier.

The remainder of the article is organized as follows.

The second section briefly introduces the entropy rate super-

pixel segmentation (ERS) algorithm and the related topic

of BF; it also describes the feature extraction algorithm for

HSIs based on SuperBF. The third section shows the exper-

imental results and analysis. The fourth section presents the

conclusion.

II. SUPERBF-BASED FEATURE EXTRACTION ALGORITHM

FOR HYPERSPECTRAL IMAGES

A. ERS METHOD

In reference [35], the source image is replaced with a

weighted undirected graph. Each pixel of the source image

is treated as a node of the undirected graph. The similarity

between the two nodes is employed as the weight between the

two nodes. An objective function that combines the entropy

rate of a random walk on a graph and a balancing term is

employed. The segmentation result is obtained by iteratively

maximizing this objective function. This method projects the

image to an undirected graph G = (V ,E), where V is the set

of vertices of the graph, E is the set of edges of the graph,

and the weights of the edges represent the similarity among

the vertices, which is quantified by the weight function ω :
E → R+ ∪ {0}. The graph is divided into connected subsets

by selecting a subset of A ⊆ E , and the undirected graph

G = (V ,E) is composed of smaller connected components /

subgraphs. In the objective function of ERS, the superpixel

segmentation is optimized by combining the entropy rate term
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FIGURE 2. Schematic of BF and SuperBF weighting (The red box is (2δα + 1) × (2δα + 1) BF template, the area within the purple boundary is a
homogeneous region, and different colours denote different categories.).

H (A) and the balancing term B (A).

A∗ = argmaxTr {H (A) + αB (A)} , s.t.A ⊆ E . (1)

where α is used to balance the contribution of the entropy

rate term H (A) and the balancing term B (A). This function

ensures a higher degree of similarity and homogeneity among

the pixels within the segmentation regions. The first term can

help form a uniform and compact cluster, while the second

term can be used to encourage the clusters of similar size.

B. PRINCIPLE OF BF

BF is a type of nonlinear filter. The weighting coefficient is

a nonlinear combination of a spatial distance measurement

function and a grey value distancemeasurement function. The

specific equations are expressed as follows:

Os =
1

Zs

∑

t∈Ns

ωs,t It (2)

Os =
1

Zs

∑

t∈Ns

Gδα (‖s− t‖)Gδγ (‖Is − It‖) It (3)

ωs,t = Gδα (‖s− t‖)Gδγ (‖Is − It‖) (4)

Zs =
∑

t∈Ns

Gδα (‖s− t‖)Gδγ (‖Is − It‖) (5)

where O is the output pixel grey value after filtering; I is

the input pixel grey value; Is and It represent the grey values

of the pixels s and t , respectively; ωs,t is the weight of the

pixel t; Zs is the filter normalization factor; δα is the filter

radius; δγ is the filter ambiguity; Ns is the template with the

centre as pixel s and the window size as (2δα +1)× (2δα +1);

and pixel t represents a pixel at any position in the template.

Gδα (‖s− t‖) is a spatial proximity measurement function,

‖s− t‖ is the Euclidean distance between any pixel t and the

target pixel s in the template, Gδγ (‖Is − It‖) is a pixel grey

scale similarity measurement function, and ‖Is − It‖ is the

pixel value distance between any pixel t and the target pixel s

in the template. These twomeasurement functions are defined

by Gaussian function:

Gδα (‖s− t‖) = exp

(

− ‖s− t‖2

2δ2α

)

(6)

Gδγ (‖Is − It‖) = exp

(

− ‖Is − It‖2

2δ2γ

)

(7)

C. SUPERBF-BASED FEATURE EXTRACTION

ALGORITHM FOR HSIS

According to Eq. 2 through Eq. 7, when BF is performed

for HSIs, if the distance between the non-structural similar

pixels and the target pixel is relatively small, i.e., ‖s− t‖ is

small, its influence on the output value may be greater than

that of the pixel points with a similar structure and large dis-

tance; accordingly, the proportion of non-structurally similar

pixels in the updated target pixels will increase, making the

method more prone to generating mixed pixels. As shown

in Fig. 2a, BF assigns the weights to all non-structural similar

pixels (such as the blue and the brown areas), which has

a large negative impact on the output value and increases

the abundance of non-structurally similar pixels, inevitably

resulting in mixed pixels. In addition, the features of HSIs

differ from those of general images. HSIs have many homo-

geneous regions, and the pixels in each homogeneous region

are more likely to be structurally similar [36]. As shown

in Fig. 2b, due to the limitations of BF and the characteristics

of HSIs, homogenous regions can be reasonably segmented

based on the homogeneity characteristics of HSIs, the area

within thepurple boundary is a homogeneous region; then

the homogenous regions can be separately filtered by BF,

the homogeneous region of the yellow part is filtered, which
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Algorithm 1 Algorithm of SuperBF-Based HSI Feature

Extraction

Data: HSI I = (I1, I2, · · · , In) ∈ Rd×n, d is the

dimension, n is the number of pixels, is the filter

radius, δα is the filter radius, δγ is the filter

ambiguity, and S is the number of regions after

ERS segmentation.

Result: O = (O1,O2, · · · ,On) ∈ Rd×n.
1 Segment the HSI into S homogeneous regions using

Eq. 8;

2 for i = 1:S do

3 Input the i-th homogeneous region;

4 Count the number m of pixels in the i-th

homogeneous region;

5 for s =1:m do

6 Calculate the weight coefficients of any pixel t

in the BF template of the i-th homogeneous

region using Eq. 6 and Eq. 7 and Eq. 4;

7 Calculate the pixel value Os of the pixel s output

by the BF filter operation using Eq. 2;
8 end

9 end

10 Output O = (O1,O2, · · · ,On) ∈ Rd×n.

substantially enhances the restriction of BF for non-structural

similar pixels and thus greatly decreases the abundance of

non-structurally similar pixels in the update target pixels; and

this process effectively avoids the generation of mixed pixels

and renders BF-extracted HSI features more significant and

distinguishable.

According to these ideas, a SuperBF algorithm was pro-

posed in this study; the algorithm reasonably divides an

image into homogeneous regions via superpixel segmen-

tation. As ERS has excellent performance in many HSI

superpixel segmentation methods, this study applied ERS

to perform hyperpixel segmentation on HSIs. The specific

equation is expressed as

I = US
k κk s.t. κk ∩ κg = ø, (k 6= g) (8)

where S represents the number of superpixels, and κk is the

k th superpixel.

As shown in Fig. 2b, the superpixel segmentation uses the

spatial continuity of the physical features to segment the HSI

into different spectrally similar homogenous regions. This

approach can considerably reduce the possibility of occur-

rence of pixels with large differences in non-structural simi-

larity in the BF template, enhance the influence of structurally

similar pixels in the BF template on the output value, and

solve the problem of the large negative impact of weighting of

non-structural similar pixels on the output value, effectively

avoiding the generation of mixed pixels.

After ERS is performed on the HSI to obtain S segmented

homogeneous regions, BF is used to filter each segmented

homogeneous region. Algorithm 1 describes the specific

process of the SuperBF-based HSI feature extraction. The

algorithm is divided into two steps. In the first step, ERS is

employed to segment the HSI and divide the pixels with sim-

ilar structure into the same region to segment the image into

multiple homogeneous regions. In the second step, the BF

algorithm is applied to filter the pixels in each homogeneous

region and extract the HSI features.

III. EXPERIMENTAL RESULTS AND ANALYSIS

This study compared the proposed SuperBF-SVM clas-

sification method with several currently popular classi-

fication methods, including SVM [37], BF-SVM [30],

EPF-SVM [30], LBP-ELM [25], HiFi [38], and R-VCANet-

SVM [27]. The SVM algorithm was implemented in the

libsvm [39] library with five-fold cross-validation, and the

default parameters in the references were employed in other

algorithms. PAN et al. constructed a hierarchical guidance

filtering (HiFi) and a matrix of spectral angle distance and

iteratively trained classifiers using the integrated learning

spatial and spectral information from different scales to

achieve good generalization performance. Similar to many

previous studies, the performance of different HSI classifi-

cations was evaluated using overall accuracy (OA), average

accuracy (AA), and kappa coefficients. The OA indicates the

probability that the classification results are consistent with

the reference classification results. The AA refers to the mean

of the percentage of correctly classified pixels for each class.

The kappa coefficient is used for consistency check.

A. DATA SET DESCRIPTION

To verify the effectiveness of the proposed method, three real

HSIs of Indian Pines, Salinas, and University of Pavia were

employed in the experiments.

The image of Indian Pine was acquired by an airborne

visible/infrared imaging spectrometer (AVIRIS) sensor. The

image shows an agricultural pine test site in northwestern

Indiana. The size of the image is 145×145, the spatial res-

olution is 20 m, and the spectral range extends from 0.4 to

2.45 µm. The image contains 224 bands, of which 24 bands

were removed due to water vapour absorption; 200 bands

remain.

The image of Salinas was acquired by an AVIRIS sensor.

The image shows Salinas Valley, California, USA. The size of

the image is 512×217, and the spatial resolution is 3.7 m. The

image contains 224 bands, of which 24 bands were removed;

200 bands remain.

The image of University of Pavia was acquired by the

reflective optical system imaging spectrometer (ROSIS) sen-

sor. The image shows the urban area around the University

of Pavia. The size of the image is 610×340, the spatial

resolution is 1.3 m, and the spectral range extends from

0.43 to 0.86 µm. The image contains 115 bands, of which

12 bands of the noise channels were removed; 103 bands

remain.

To ensure the objectivity of the experiment, the experiment

was repeated 10 times, and the average value was used as
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TABLE 1. Classification accuracy of different methods for Indian Pines.

TABLE 2. Classification accuracy of different methods for Salinas.

TABLE 3. Classification accuracy of different methods for the University of Pavia.

the result. 20 training samples were randomly selected in

each of the three data sets, and the remaining samples were

used as test samples to test the effectiveness of the proposed

method, as indicated in Tables 1 to 3. To test the stability

of the algorithm, 10-50 samples were randomly selected

from the three data sets to use as training samples, and the

147800 VOLUME 7, 2019
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TABLE 4. Classification accuracy of different training samples for Indian Pines.

TABLE 5. Classification accuracy of different training samples for Salinas.

TABLE 6. Classification accuracy of different training samples for University of Pavia.

remaining samples were used as test samples, as indicated

in Table 4 to 6.

B. PARAMETER ANALYSIS

The algorithm proposed in this study involves three important

parameters: the number of super-pixels S, the size of the

filter δα and the degree of ambiguity δγ . As shown in Fig. 3,

the influence of these three parameters on the OA of SVM

classifier in the three images was analysed. When one param-

eter was analysed, the other two parameters were fixed.When

the numbers of super-pixels S in the three scenarios of Indian

Pine, Salinas, and University of Pavia were 30, 10, and 110,

VOLUME 7, 2019 147801
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FIGURE 3. Influence of three parameters of S, δα and δγ on the three data sets: (a) Indian Pine, (b) Salinas, and
(c) University of Pavia.

respectively, the proposed method obtained the highest OA.

As the number of super-pixels S was increased, the exper-

imental results showed that the total performance initially

increased and then decreased. The superpixels with an exces-

sively small or large S can cause performance degradation of

the proposed SuperBF method because too many superpixels

can cause excessive concentration and all samples belonging

to a uniform region would not be fully utilized, while too

few superpixels can cause excessive decomposition and intro-

duce some non-homogeneous samples from different uniform

regions. The ideal effects were obtained when the δα of the

three scenarios of Indian Pine, Salinas, and University of

Pavia were 20, 52, and 47, respectively. If the δα is too small,

some useful spatial information will be disregarded; if the

δα is too large, an excessive amount of useless information

will be acquired. The classification performance was the best

when the δγ values of the three scenarios of Indian Pine,

Salinas, and University of Pavia were 0.2, 0.09, and 0.09,

respectively. If the δγ is too small, the result will not be

sufficiently smooth; if it is too large, the result will be too

smooth. Therefore, the parameters of the three scenarios in

this study were set as follows: Indian Pine: S = 30, δα = 20,

δγ = 0.2; Salinas: S = 10, δα = 52, δγ = 0.09; University

of Pavia: S = 110, δα = 47, δγ = 0.09.
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FIGURE 4. Classification results of the Indian Pines image.

C. EXPERIMENTAL RESULTS

The improvement for BF in SuperBF is effective. In image

segmentation, an image is segmented into many differ-

ent regions, and each region is considered to be homoge-

nous [35]. The regions form a segmentation map of the

spatial structure that can be employed for spectral-spatial

classification. As BF can filter in these segmentation ranges,

the extracted features are more effective, and the classifica-

tion accuracy is higher. As shown in Figs. 4 through 6 and

Tables 1 through 3, in the three scenarios of Indian Pine,

Salinas and University of Pavia, the OA, AA and kappa of

SurperBF were greater than those of BF. When the number

of training samples was 20, the OA was greater by 14.12%,

6.22%, and 5.25%. Compared with the improved EPF algo-

rithm based on BF, the OA, AA, and kappa of SurperBF were

also greater than those of EPF. When the number of training

samples was 20, the OA was greater by 10.66%, 7.57%, and

6.30%.

The SuperBF classification method is superior to some

advanced methods. As shown in Figs. 4 through 6 and

Tables 1 through 3, with the exception of the AA of

Indian Pine, the SuperBF method obtained the best OA, AA

and kappa. Compared with the three advanced methods of

LBP-ELM, HiFi, and R-VCANet methods of deep learning,

the OA values of the SuperBF classification method was

greater by 5.5%, 3.87%, and 10.46%, respectively, in the

Indian Pine scenario; greater by 4.12%, 8.48%, and 7.40%,

in the Salinas scenario; and greater by 10.01%, 4.82%, and

6.27%, in the University of Pavia scenario. AA was not

the best in Indian Pine as the classification accuracy of

grass_p was only 18.42%, which may be related to the small

number of grass_p; it was similar to grass_m, which causes

misclassification.

The SuperBF classification method has strong robustness.

As shown in Tables 4 through 6 and Figs. 7 through 9, when

the number of training samples was increased from 10 to 50,

the OA, AA and kappa also increased, and the highest OA

and kappa were obtained by SuperBF. Compared with other

classification methods, the OA was greater by a minimum

of 3.87%, and the OA in the Indian Pines scenario was

the highest, which was even greater than that of the SVM

method by 27.42%. Especially in the Salinas scenario, for

the condition in which the OA was greater by more than

90%, with the exception of the SVM method, the OA of

the proposed method exceeded that of other classification

methods by 4.12% to 14.01%.
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FIGURE 5. Classification results of the Salinas image.

FIGURE 6. Classification results of the University of Pavia image.

The robust expression of the SuperBF classification

method is effective for the problem of images with a small

sample size. Achieving a fine classification of HSIs is

challenging in the case of a small number of samples.

As reported in Tables 4 through 6 and Figs. 7 through 9, when

the number of training samples was small (for example, 10),
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FIGURE 7. Influence of the training samples on the Indian Pines dataset.

FIGURE 8. Influence of the training samples on the Salinas dataset.

FIGURE 9. Influence of the training samples on the University of Pavia dataset.

the OA of many classification methods was not high. In the

Indian Pines scenario, the OA of the SVM classification

method was only 57.43%; in the University of Pavia sce-

nario, the OA of the SVM classification method was only

67.02%. The OA of many methods ranged from 70% to 79%.

In this case, the method proposed in this study was effectively

improved for a small sample size. For example, in the Indian

Pines scenario, when the number of the training samples

was 10, compared with other methods, the OA increased

by 6.24-29.89%; in the Salinas scenario, the OA increased

by 7.47%-15.24%; and in the University of Pavia scenario,

the OA increased by 0.31%-15.12%. In the Salinas scenario,

when the number of the training samples was 10, the OA of

the SuperBF classification method was 97.88%, and the cat-

egory of the real objects was almost completely and correctly

identified. Therefore, the results of SuperBF are very compet-

itive when solving the problem of images with a small sample

size.

Statistical evaluation about the results: To further vali-

date whether the observed gains in kappa is statistically

significant, we use paired t-test to show the statistical eval-

uation about the results. T-test is popular in many related

works. We accept the hypothesis that the mean kappa of

SuperBF-SVM is larger than a comparedmethod only if Eq. 9

VOLUME 7, 2019 147805
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FIGURE 10. Box plot of kappa of different methods on three datasets. (a) Indian Pine (b) University of pavia (c)
Salinas 1. SVM 2. BF-SVM 3. EPF-SVM 4. LBP-ELM 5. HiFi 6. R-VCANet-SVM 7. SuperBF-SVM. The center line is the
median value, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
points, and the abnormal outliers are plotted by ‘+’.

is valid:

(ā1 − ā2)
√
n1 + n2 − 2

√

( 1
n1

+ 1
n2
)(n1s

2
1) + n2s

2
2

> t1−α[n1 + n2 − 2] (9)

where ā1 and ā2 are the means of kappa of SuperBF-SVM

and a compared method, s1 and s2 are the corresponding

standard deviations, n1 and n2 are the number of realizations

of experiments reported which is set as 10 in this paper.

Paired t-test shows that the increases on kappa are statistically

significant in all the three datasets (at the level of 95%), and

it can be also observed in Figure 10.

IV. CONCLUSION AND FUTURE WORK

This study proposed a simple and effective SuperBF based

algorithm for the feature extraction of HSIs. In this study,

a HSI is divided into multiple homogeneous regions with a

similar structure. The BF can effectively limit the influence of

non-structurally similar pixels on the target pixel during the

filtering process, which improves the effect of BF filtering

and more effectively extracts the HSI features. The exper-

imental results show that the proposed method is superior

to existing advanced feature extraction methods, especially

when solving the problem of images with a small sample size.

Our future work is data imbalance. By convention, in a

sample-size-related imbalanced data set, the classes with

small size are named minority classes, and the ones with

large size are named majority classes. The common situation

in performance assessment is that the correct classification

of large-size classes contributes more than that of small-size

classes. In SuperBF-SVM,AAwas not the best in Indian Pine

as the classification accuracy of grass_p was only 18.42%,

which may be related to the small number of grass_p i.e.

small class. Therefore, we will propose a novel solution to

solve the sample-size-related imbalanced data problem more

effectively. The new solution consists of two parts: one for

large-size and the other for small-size.
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