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1 Introduction and outline of the results

The BMS group consisting of the infinite-dimensional commuting supertranslation sub-

group and the Lorentz subgroup has been established as the asymptotic symmetry group

of asymptotically flat spacetimes with original (Bondi, van der Burg, Metzner and Sachs)

boundary conditions [1, 2]. Supertranslation symmetry leads to a Ward identity in pertur-

bative quantum gravity which is equivalent to Weinberg’ soft graviton theorem [3]. The
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corresponding Noether charge is the flux of supertranslation charge at null infinity, which

can be interpretated as a localized notion of energy on the celestial sphere [4]. Also, su-

pertranslations shift a canonical field defined at the future and past of future null infinity

I+
± , the supertranslation field [4], whose finite differences encode the displacement mem-

ory effect [5]. This leads to a triangle relationship between supertranslation symmetry,

Weinberg’ soft graviton theorem [6] and the displacement memory effect [7–11], see [12, 13]

for reviews.

A second subleading triangle has been suggested involving at its corners the subleading

soft graviton theorem [14], the spin memory effect1 [16] and super-Lorentz symmetry2 [17,

18] (see also [19]). However, the nature of the relationship is more subtle at several levels.

First, two distinct extensions of the original BMS group have been proposed as asymptotic

symmetry groups of Einstein gravity at null infinity:

(i) The Barnich-Troessaert group (Vir ×Vir) n S [17, 20, 21] (see also [19]);

(ii) The Campiglia-Laddha group Diff(S2) n S [18, 22].

In each case, S is the abelian subgroup of commuting supertranslations. In the first case,

the Lorentz transformations are extended to meromorphic and anti-meromorphic transfor-

mations (with poles on the sphere), which thereby requires by consistency of the algebra

that supertranslations with poles should also be considered. In the second case, the Lorentz

transformations are extended to arbitrary (smooth) diffeomorphisms on the 2-sphere and

supertranslations are unchanged.

The definition of a set of boundary conditions invariant under an asymptotic symmetry

group is consistent if and only if the following set of conditions are met: (a) the asymp-

totic symmetries should preserve the boundary conditions; (b) all charges associated with

asymptotic symmetries should be finite; (c) all charges should be well-defined (integrable).

In the particular case of boundary conditions defined at null infinity, since null infinity is

permeable to energy flux, the third condition (c) has to be relaxed and a prescription to

define the surface charge from the infinitesimal canonical charge has to be given [23].

The boundary conditions leading to the first extension (i) of the BMS group can-

not obey the second condition (b) assuming the standard bulk definition of surface

charges [24–26]. Indeed, the singular supertranslation surface charges of the Kerr black

hole diverge [21].3 A consistent phase space therefore requires a renormalization of the

symplectic structure, consistently with the ambiguity of adding boundary terms to the

symplectic structure [25], which leads to additional contribution to the surface charges [27].

1Note that it has not (yet) been proven to be a memory effect in the sense that the observable can be

expressed solely from the initial and final state. For another related effect, see [15].
2We find convenient to denote the extensions of the Lorentz transformations as the super-Lorentz trans-

formations. Any 2-vector on the sphere can be decomposed into a divergence-free part and a rotational-free

part. A super-Lorentz transformation whose pull-back on the celestial sphere is divergence-free is a super-

rotation. This generalizes the rotations. A super-Lorentz transformation whose pull-back on the celestial

sphere is rotational-free is a superboost. This generalizes the boosts.
3More dramatically, the surface charges are linearly divergent in r at the location of the meromorphic

poles, as can be deduced from our analysis, see (5.30).
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The boundary conditions proposed in [22] for the second extension (ii) obey neither the first

condition (a)4 nor (b).5 Instead, more general boundary conditions are required which lead

to a radial divergence of the standard surface charges. Again, renormalization is necessary

for boundary conditions admitting the symmetry group (ii). The need for a renormaliza-

tion procedure can be most simply understood from the fact that both proposed symmetry

groups modify the metric at leading order and in that sense are overleading.6

The subleading soft graviton theorem implies the Ward identities of Virasoro super-

Lorentz symmetries [28]. However, the converse is not true. Non-meromorphic super-

Lorentz transformations are required in order to derive all instances of the subleading soft

graviton theorem [18]. Instead, the Ward identities of Diff(S2) symmetry (labelled by

2 arbitrary functions on the sphere) are equivalent to the subleading soft graviton the-

orem [18].7 The 2 arbitrary functions on the sphere of a super-Lorentz transformation

are parametrically equivalent to the two polarizations and the soft momentum of the soft

graviton. The classical limit of this Ward identity is the conservation of a localized notion

of angular momentum on the celestial sphere which is encoded in the Bondi angular mo-

mentum aspect [30], itself also entirely determined on-shell by 2 arbitrary functions on the

sphere. For these reasons, the most relevant symmetry group for the subleading infrared

structure of general relativity is the symmetry group (ii).

Our main objective is to propose a definition of renormalized phase space for the sym-

metry group (ii) and derive some of its structure. One can think of this renormalized phase

space as an extended phase space which contains the standard phase space of BMS [1, 2]

containing e.g. binary black hole mergers [31] and additional “cosmic events” which are

usually discarded. The solutions particular to the extended phase space include Robinson-

Trautman spacetimes [32] and their impulsive limit [33–36]. Impulsive gravitational waves

can be understood as a cosmic string decay which separates two Minkowski vacua related

by a super-Lorentz transformation [36–38]. With respect to the standard BMS phase space,

the super-Lorentz transformations are outer symmetries [39] in the sense that they are not

tangent to the phase space but they are still associated with finite charges (see also [40]).

The existence of outer symmetries is sufficient to imply the existence of Ward identities

at tree-level.

After a review of Einstein gravity in BMS gauge in section 2, we derive in section 3

the closed-form expression of the vacua that carry a non-linear action of the extended

Diff(S2)×S BMS group. This construction generalizes to arbitrary Diff(S2) super-Lorentz

transformations the one of [39, 41]. It allows to define the canonical fields at null infinity

4The surface charges are defined using the boundary condition CAB = o(u−1), which is not preserved

by the action of the symmetry group due to the inhomogenous transformation law of CAB with a term of

order u1.
5The boundary condition CAB = o(u−1) still leaves the symplectic flux linearly divergent in r except

around the boundaries I+
± .

6The Virasoro symmetries (i) also change the boundary metric on the sphere by adding singular poles.
7Note that the subleading part of the supertranslation charge also takes a form similar to the super-

Lorentz charge and its Ward identity is implied by the subleading soft theorem [29]. However, it is not

clear how an equivalence can be obtained given that a supertranslation is labelled by a single function on

the sphere.
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that transform under the extended BMS group and that label inequivalent vacua. Among

the super-Lorentz transformations, a particular role is played by the superboosts. The

associated canonical variable, the superboost field, determines the leading part of the news

tensor at I+
± as the trace-free part of the stress-tensor of an Euclidean Liouville theory.

In section 4, we use the identification of the superboost field to reinterpret the

Robinson-Trautman spacetimes and impulsive gravitational waves as superboost transi-

tions. We identify the class of observers around null infinity which display the refraction

memory or velocity kick effect [42–44], depending whether one considers respectively null

or timelike geodesics. Any gravitational wave leads to a velocity kick of probe objects be-

cause energy is transmitted from the gravitational wave to the probes [45] (see also [46–49]

and references therein). In contrast, the velocity kick/refraction memory that we describe

here is specific to the observers close to null infinity and can be described in terms of

superboost field transitions. We will also describe a new non-linear displacement mem-

ory effect at null infinity distinct from [7–11] which occurs in joined supertranslation and

superboost transitions.

In section 5, we define an extended phase space invariant under the action of the

generalized BMS group but which does not allow superboost transitions. We show that

our final surface charge prescription reproduces in the standard BMS phase space the fluxes

required for the leading and subleading soft graviton theorems following [3, 18]. Notably,

we obtain a new expression for the angular momentum in the standard phase space which

differs from the expressions given in [30, 40] or identified as the integrable charge in [21]. We

finally derive a general canonical bracket between BMS surface charges which generalizes

the one of [21].

Note added. In the final stages of preparation of this manuscript we received [50] where

surface charges associated with super-Lorentz transformations are proposed that are con-

sistent with the leading and subleading soft theorems. Their expressions for the charges in

the standard BMS phase space, and in particular their expression for angular momentum,

agree with ours.

2 A review of Einstein gravity in Bondi gauge

In this section we set up our notation and compare them with the literature. We will

mainly follow the conventions of [20]. We will consider a solution space obeying fall-off

conditions that are larger than required to define a consistent phase space. We will impose

the remaining boundary conditions only in section 5.1. The solution space is large enough

to accomodate either the double copy Virasoro asymptotic symmetry group [17, 19] or the

Diff(S2) asymptotic symmetry group [18]. For simplicity, we do not consider the coupling

to matter, see [40] for a partial generalization.

2.1 Bondi coordinates and assumptions

We choose a set of Bondi coordinates (u, r, xA) where u labels null outgoing geodesic

congruences, r is the affine parameter along these geodesics, and xA are 2 coordinates on
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the 2-sphere. The most general 4-dimensional metric can be written in this gauge as

ds2 =
V

r
e2βdu2 − 2e2βdudr + gAB(dxA − UAdu)(dxB − UBdu). (2.1)

Bondi gauge is reached by imposing the determinant condition

∂r

(
det(gAB)

r4

)
= 0, (2.2)

which singles out r as the luminosity distance.

Each metric coefficient is provided with suitable fall-off conditions. Here, we assume

that there is a polynomial fall-off in r at least at second order in the asymptotic expansion

for all components. We take

V

r
= V̊ +

2M

r
+O(r−2),

β =
β̊

r2
+O(r−3),

gAB = r2qAB + rCAB +DAB +O(r−1),

UA =
ŮA

r2
− 2

3

1

r3

[
NA − 1

2
CABDCCBC

]
+O(r−4)

(2.3)

where all functions appearing in the expansions of 1
r depend upon u and xA. All 2-sphere

indices in (2.3) are raised and lowered with qAB, and DA is the Levi-Civita connection

associated to qAB. The determinant condition (2.2) imposes in particular that qABC
AB = 0.

CAB is otherwise completely arbitrary, and its time derivative NAB = ∂uCAB is the Bondi

news tensor which describes gravitational radiation.

Furthermore, we impose the technical restriction

∂uqAB = 0, (2.4)

which prevents evolution among distinct boundary metrics. It is possible to relax this

restriction but the expressions become lengthy and we will not derive them here. We refer

the reader to Barnich-Troessaert [20] for a partial generalization where all the dependence

in u of the boundary metric is in an overall conformal factor.

2.2 Equations of motion

Einstein’s equations imply

V̊ = −1

2
R̊, β̊ = − 1

32
CABCAB, ŮA = −1

2
DBC

AB, DAB =
1

4
qABC

CDCCD, (2.5)

where R̊ is the Ricci scalar of qAB. Einstein’s equations are then fully obeyed at this order

in the Bondi expansion except for the following two additional constraints:

∂uM = −1

8
NABN

AB +
1

4
DADBN

AB +
1

8
DAD

AR̊, (2.6)

∂uNA = DAM +
1

16
DA(NBCC

BC)− 1

4
NBCDACBC

− 1

4
DB(CBCNAC −NBCCAC)− 1

4
DBD

BDCCAC (2.7)

+
1

4
DBDADCC

BC +
1

4
CABD

BR̊.
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Here M(u, xA) is the Bondi mass aspect, NA(u, xB) is the angular momentum aspect.

Concerning this quantity, our conventions are those of Barnich-Troessaert [20, 21] (also

followed by [50]), but differ from those of Flanagan-Nichols (FN) [40] and Hawking-Perry-

Strominger (HPS) [30]. Here is the dictionary to match the different conventions:

N
(FN)
A = NA +

1

4
CABDCC

BC +
3

32
∂A(CBCC

BC), (2.8)

N
(HPS)
A = N

(FN)
A − uDAM. (2.9)

2.3 Residual diffeomorphisms

The infinitesimal residual diffeomorphisms ξµ∂µ preserving Bondi gauge are given by

ξu = f(u, xA),

ξA = Y A(u, xA) + IA, IA = −DBf

∫ ∞
r

dr′(e2βgAB),

ξr = −1

2
r(DAY

A +DAI
A − UBDBf),

(2.10)

with ∂rf = ∂rY
A = 0. The additional fall-offs (2.3) and (2.4) require

LξguA = O(r0) =⇒ ∂uY
A = 0⇐⇒ Y A = Y A(xB),

Lξgur = O(r−2) =⇒ ∂uf =
1

2
DAY

A ⇐⇒ f = T (xB) +
u

2
DAY

A,
(2.11)

and nothing else. We can perform the radial integration in (2.10) to get a perturbative

expression of the infinitesimal residual diffeomorphisms using (2.5):

ξu = f, (2.12)

ξA =Y A− 1

r
DAf+

1

r2

(
1

2
CABDBf

)
+

1

r3

(
− 1

16
CBCC

BCDAf

)
+O(r−4), (2.13)

ξr =−1

2
rDAY

A+
1

2
DAD

Af+
1

r

(
−1

2
DAC

ABDBf−
1

4
CABDADBf

)
+O(r−2). (2.14)

The residual diffeomorphisms are spanned by arbitrary Diff(S2) super-Lorentz transforma-

tions generated by Y A(xB) and by (smooth) supertranslations generated by T (xA). We

will therefore denote them as ξ(T, Y ).

2.4 Commutator algebra

In order to obtain the algebra of infinitesimal residual diffeomorphisms under the Lie

bracket [·, ·], it is sufficient to consider the leading order vectors ξ(T, Y ) = f∂u + Y A∂A,

where f and Y A satisfy (2.11). Defining

[ξ(T1, Y1), ξ(T2, Y2)] = ξ(T[1,2], Y[1,2]) (2.15)

we find

T[1,2] = Y A
1 DAT2 +

1

2
T1DAY

A
2 − (1↔ 2),

Y A
[1,2] = Y B

1 DBY
A

2 − (1↔ 2).
(2.16)

– 6 –
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This defines the generalized BMS algebra g. It consists of the semi-direct sum of the

diffeomorphism algebra on the celestial 2-sphere diff(S2) and the abelian ideal s of super-

translations, consisting of arbitrary smooth functions on the 2-sphere.

g = diff(S2) h s. (2.17)

As in [20], it can be checked that, taking (2.11) into account, the bulk vectors (2.10) form

a faithful representation of that algebra for the modified Lie bracket

[ξ1, ξ2]M = [ξ1, ξ2]−
(
δgξ1ξ2 − δgξ2ξ1

)
, (2.18)

where δgξ1ξ2 denotes the variation of ξ2 caused by the Lie dragging along ξ1 of the metric

contained in the definition of ξ2.

2.5 Representation on the solution space

The vectors (2.10) preserve the solution space in the sense that infinitesimally

Lξ(T,Y )gµν [φi] = gµν [φi + δ(T,Y )φ
i]− gµν [φi] (2.19)

where φi = {qAB, CAB,M,NA} denotes the collection of relevant fields that describe the

metric in Bondi gauge. The action of the vectors preserve the form of the metric but

modify the fields φi, in such a way that the above equation is verified. We can show that

δ(T,Y )qAB = 2D(AYB)−DCY
CqAB, (2.20)

δ(T,Y )CAB =

[
f∂u+LY −

1

2
DCY

C

]
CAB−2DADBf+qABDCD

Cf, (2.21)

δ(T,Y )NAB = [f∂u+LY ]NAB−
(
DADBDCY

C− 1

2
qABDCD

CDDY
D

)
, (2.22)

δ(T,Y )M =

[
f∂u+LY +

3

2
DCY

C

]
M− 1

2
DAfD

AV̊ +
1

4
NABDADBf+

1

2
DAfDBN

AB,

(2.23)

δ(T,Y )NA = [f∂u+LY +DCY
C ]NA+3MDAf−

3

16
DAfNBCC

BC+
1

2
DBfN

BCCAC

− 1

32
DADBY

BCCDC
CD+

1

4
(DBfR̊+DBDCD

Cf)CAB

− 3

4
DBf(DBDCCAC−DADCC

BC)+
3

8
DA(DCDBfC

BC)

+
1

2

(
DADBf−

1

2
DCD

CfqAB

)
DCC

BC . (2.24)

Note that the boundary Ricci scalar R̊ (or V̊ ) transforms as

δ(T,Y )R̊ = Y ADAR̊+DAY
AR̊+D2DBY

B. (2.25)
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3 Vacuum structure

A special role is played by the action of the generalized BMS group on the Minkowski

metric. The orbit of Minkowski spacetime under the BMS group is defined as the class of

Riemann-flat metrics obtained by exponentiating a general BMS transformation starting

from Minkowski spacetime as a seed. The subset of this orbit where only supertranslations

act are the non-equivalent vacua of asymptotically flat spacetimes which are character-

ized, contrary to Minkowski spacetime, by non-vanishing super-Lorentz charges while all

Poincaré charges remain zero [39]. In this standard case, the exponentiation leads to a sin-

gle fundamental field labeling inequivalent vacua: the supertranslation field C(xA). The

displacement memory effect is a transition among vacua mediated by gravitational or other

null radiation which effectively induces a supertranslation of C [5].

For the double copy Virasoro asymptotic symmetry group, this exponentiation leads

to two fundamental fields: the supertranslation field and what we will call the superboost

or Liouville field Φ. The corresponding solution in Bondi and Newman-Unti gauges was

constructed in [39]. Here, we extend the construction to finite Diff(S2) super-Lorentz trans-

formations following methods similar to the appendix of [41]. The corresponding boundary

fields will also be the supertranslation C and superboost Φ fields, complemented by an ad-

ditional superrotation field Ψ. In order to understand the memory effects associated with

super-Lorentz transformations, we therefore start by deriving the structure of the vacua.

3.1 Generation of the vacua

We start from the Minkowski metric written in complex plane coordinates:

ds2 = −2ducdrc + 2r2
cdzcdz̄c. (3.1)

We define the background structures

γab =

[
0 1

1 0

]
, εab =

[
0 1

−1 0

]
(3.2)

with inverse γab = γab, ε
ab = εab. The goal is to introduce a diffeomorphism to Bondi gauge

(uc, rc, zc, z̄c) → (u, r, z, z̄) that exponentiates Diff(S2) super-Lorentz transformations and

supertranslations. Requiring that (u, r, z, z̄) are Bondi coordinates leads to 2 conditions:

B The coordinate r is the affine parameter along null radial geodesics grr = grA = 0.

B r represents the luminosity distance in the sense of Sachs, so ∂r(r
−4 det gAB) = 0

(where gAB = gµν∇Axµ∇Bxν).

The first condition yields

rc = rc(r, u, z
c), (3.3)

uc = W (u, z, z̄)− r−1
c γabH

a(u, zc)Hb(u, zc), (3.4)

zac = Ga(zc)− r−1
c Ha(u, zc), Ha(u, zc) = −D−1

G εabγbcε
AB∂AW∂BG

c (3.5)

– 8 –
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where DG = det(∂AG
b) = 1

2!εabε
AB∂AG

a∂BG
b. The second condition fixes the functional

dependence of rc as

rc(r, u, z
c) = R0(u, zc) +

√
r2

(∂uW )2
+R1(u, zc). (3.6)

Here R0 and R1 are respectively obtained by requiring that the determinant condition

is obeyed up to second and third order in 1/r. The information at subleading orders is

propagated with the power expansion of the functional dependence in r.

Requiring that guu is finite in r and restricting the boundary metric as (2.4), we have

to impose that ∂2
uW = 0, so W is at most linear in u. Moreover, regularity implies that it

is nowhere vanishing. Therefore,

W (u, zc) = exp

[
1

2
Φ(z, z̄)

]
(u+ C(z, z̄)). (3.7)

Expanding gAB in powers of r as in (2.3), we can read the boundary metric as

qAB = qvac
AB ≡ e−Φ∂AG

a∂BG
bγab. (3.8)

It is indeed the result of a large diffeomorphism and a Weyl transformation. The shear

CAB is found to be the trace-free part (TF) of the following tensor

CAB = Cvac
AB ≡

[
2

(∂uW )2
∂u (DAWDBW )− 2

∂uW
DADBW

]TF

. (3.9)

Introducing (3.7), it comes

Cvac
AB[Φ, C] = (u+ C)Nvac

AB + C
(0)
AB,

Nvac
AB =

[
1

2
DAΦDBΦ−DADBΦ

]TF

;

C
(0)
AB = −2DADBC + qABD

2C.

(3.10)

We find that all explicit reference on γab or Ga disappeared. Moreover, the news tensor of

the vacua Nvac
AB is only built up with Φ. It can be checked that the boundary Ricci scalar

is given in terms of Φ as

R̊ = D2Φ, (3.11)

which implies

DAN
AB
vac = −1

2
DBR̊. (3.12)

We can therefore add a trace to Nvac
AB to form the conserved stress-tensor

TAB[Φ] =
1

2
DAΦDBΦ−DADBΦ +

1

2
qAB

(
2D2Φ− 1

2
DCΦDCΦ

)
. (3.13)

Its trace is equal to D2Φ. The tensor TAB is precisely the stress-tensor of Euclidean

Liouville theory

L[Φ; qAB] =
√
q

(
1

2
DAΦDAΦ + ΛeΦ + R̊[q]Φ

)
, (3.14)
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where the parameter Λ is zero in order to satisfy (3.11). Note that in order to derive

the stress-tensor from the Lagrangian, one needs to set the Liouville field off-shell by not

imposing the equation (3.11) but considering the metric as a background field. Under a

super-Lorentz transformation

δY (D2Φ− R̊) = (LY +DAY
A)(D2Φ− R̊). (3.15)

Therefore, imposing the Liouville equation is consistent with the action of super-Lorentz

transformations.

Using this boundary metric and shear, one can work out the covariant expressions for

R0 and R1 in (3.6). They are given by

R0 =
1

2
e−ΦD2W and R1 =

1

8
e−ΦCABC

AB. (3.16)

Finally, after some algebra, one can write the full metric as

ds2 = −R̊
2

du2 − 2dρdu+

(
ρ2qAB + ρCvac

AB +
1

8
Cvac
CDC

CD
vac qAB

)
dxAdxB +DBCvac

ABdxAdu

(3.17)

where ρ =
√
r2 + 1

8C
vac
CDC

CD
vac is a derived quantity in terms of the Bondi radius r. The

metric is more natural in Newman-Unti gauge (u, ρ, zA) where gρµ = −δρµ.

Let us also comment on the meromorphic extension of the Lorentz group instead of

Diff(S2). When super-Lorentz transformations reduce to local conformal Killing vectors

on S2 i.e. Gz = G(z) and Gz̄ ≡ Ḡ(z̄), the boundary metric after a diffeomorphism is the

unit round metric on the sphere

q̄ABdz
AdzB = 2γsdzdz̄, γs =

2

(1 + zz̄)2
(3.18)

(and R̊ = 2) except at the singular points of G(z). The Liouville field reduces to the sum

of a meromorphic and an anti-meromorphic part minus the unit sphere factor

Φ = φ(z) + φ̄(z̄)− log γs. (3.19)

The metric (3.17) then exactly reproduces the expression of [39] with the substitu-

tion T
(there)
AB = 1/2Nvac

AB . We have therefore found the generalization of the metric of

the vacua for arbitrary Diff(S2) super-Lorentz transformations together with arbitrary

supertranslations.

3.2 The superboost, superrotation and supertranslation fields

A general vacuum metric is parametrized by a boundary metric qvac
AB, the field C that

we call the supertranslation field and Φ that we will call either the Liouville field or the

superboost field. Under a BMS transformation, the bulk metric transforms into itself, with
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the following transformation law of its boundary fields,

δT,Y q
vac
AB = DAYB +DBYA − qABDCY

C , (3.20)

δT,Y Φ = Y A∂AΦ +DAY
A, (3.21)

δT,Y C = T + Y A∂AC −
1

2
CDAY

A. (3.22)

Only the divergence of a general super-Lorentz transformation sources the Liouville field.

Since rotations are divergence-free but boosts are not, we call Φ the superboost field. In

general, one can decompose a vector on the 2-sphere as a divergence and a rotational part.

For a generic superotation there should be a field that is sourced by the rotational of Y A.

We call this field the superrotation field Ψ and we postulate its transformation law

δT,Y Ψ = Y A∂AΨ + εABDAYB. (3.23)

Where is that field in (3.17)? In fact, the boundary metric qvac
AB is not a fundamental field.

It depends upon the Liouville field Φ and the background metric γab. Since it transforms

under superrotations, the metric (3.8) should also depend upon the superrotation field Ψ.

The explicit form qvac
AB[γab,Φ,Ψ] is not known to us. We will call the set of boundary fields

(Φ,Ψ) the super-Lorentz fields.

Under a BMS transformation, the news of the vacua Nvac
AB and the tensor C

(0)
AB transform

inhomogenously as

δT,YN
vac
AB = LYNvac

AB −DADBDCY
C +

1

2
qABD

2DCY
C , (3.24)

δT,Y C
(0)
AB = LY C(0)

AB −
1

2
DCY

CC
(0)
AB − 2DADBT + qABD

2T. (3.25)

From (3.17), one can read off the explicit expressions of the Bondi mass and angular

momentum aspects of the vacua

M = −1

8
Nvac
ABC

AB
vac ,

NA = − 3

32
DA(Cvac

BCC
BC
vac )− 1

4
Cvac
ABDCC

BC
vac .

(3.26)

The Bondi mass is time-dependent and its spectrum is not bounded from below because

∂uM = −1
8N

vac
ABN

AB
vac as observed in [39]. Yet, the Weyl tensor is identically zero so the

standard Newtonian potential vanishes. This indicates that the mass is identically zero.

The relationship between the Bondi mass and the mass will be given below in section 5.7

after introducing a consistent phase space in which the conserved charges will be defined.

4 Superboost transitions

The main interest of the non-trivial vacua lies in the dynamical processes that allow to tran-

sition from one vacuum to another. In what follows, we will relax the condition ∂uqAB = 0

in order to allow for transitions of the super-Lorentz fields. We will study several examples

of transitions and study the related memory effects at null infinity.
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4.1 Robinston-Trautman spacetimes

The simplest example of spacetime containing a transition of the superboost field Φ is the

general Robinson-Trautman spacetime8

ds2 = −

(
−r∂uΦ +

R̊

2
− 2M

r

)
du2 − 2dudr + 2r2e−Φdζdζ̄ (4.1)

where Φ = Φ(u, ζ, ζ̄) obeys the constraint

D2R̊+ 12M∂uΦ = 0. (4.2)

The Ricci scalar of the boundary metric is related to Φ by R̊ = D2Φ, which is the Liouville

equation (3.11).

We consider a configuration where there is a transition between a perturbed vacuum

at u = ui which relaxes to a new vacuum at u = uf . The metric represents a transition

from the Schwarzschild black hole equipped with an initial superboost field Φ(ui, ζ, ζ̄) =

Φi(ζ, ζ̄) with ∂uΦ(u = ui) 6= 0 to the Schwarzschild black hole with a final superboost

field Φ = Φf (ζ, ζ̄), ∂uΦ(u = uf ) ≈ 0. In other words, the Robinston-Trautman spacetime

with M 6= 0 describes a gravitational wave emission process that evolves the Schwarzschild

black hole with superboost hair.

The impulsive limit of the Robinson-Trautman type N of positive 2-curvature (M = 0,

R̊ = 2) can be rewritten after a coordinate transformation as the metric of the impulsive

gravitational waves of Penrose [33, 34] as shown in [35, 36]9

ds2 = −du2 − 2dρdu+

(
ρ2qAB + uρΘ(u)Nvac

AB +
u2

8
Θ(u)Nvac

CDN
CD
vac qAB

)
dxAdxB, (4.3)

where Nvac
AB =

[
1
2DAφfDBφf −DADBφf

]TF
. The vacuum news coincides with (3.10)

after substituting Φ = − log γs + φf as in (3.19). This metric is in Newman-Unti gauge,

not in Bondi gauge. It represents the transition between two vacua labelled by distinct

meromorphic superboost fields10 (initial φi = 0 for u < 0 and final φf = φ(z) + φ̄(z̄)

for u > 0). The metric qAB is the unit sphere metric globally for u < 0 and locally for

u > 0 but it contains singularities at isolated points for u > 0. These singularities can be

understood as a cosmic string decays [36–38].

4.2 General impulsive gravitational wave transitions

In general, both the supertranslation field C and the superboost field Φ can change with

hard (finite energy) processes involving null radiation reaching I+. This null radiation can

8This metric is exactly (28.8) of [32] with P (u, ζ, ζ̄) = eΦ(u,ζ,ζ̄)/2 after fixing the reparametrization

ambiguity to set M to a constant.
9It is exactly the solution (2.10) of [42] with ε = +1 upon substituting U → u/

√
2, V → −

√
2ρ,

H → −1/2Nvac
zz . Strictly speaking guu = −1 − D2φ

2
at the poles of the meromorphic function φ(z), but

guu = −1 otherwise.
10The singular impulsive limit requires to consider singular diffeomorphisms transitions which turn out

to reduce to meromorphic superboost transitions.
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originate in matter or in gravity itself. Such processes induce vacuum transitions among

initial (C−,Φ−) and final (C+,Φ+) boundary fields. The difference between these fields

can be expressed in terms of components of the matter stress-tensor and metric potentials

reaching I+. The simplest possible transition between vacua are shockwaves which carry

a matter stress-tensor proportional to a δ(u) function, as in the original Penrose construc-

tion [33]. A distinct vacuum lies on each side of the shockwave and the transition between

the boundary fields is dictated by the matter stress-tensor. Such a general shockwave takes

the form

ds2 = −R̊
2

du2 − 2dρdu+

(
ρ2qAB + ρCAB +

1

8
CCDC

CDqAB

)
dxAdxB +DBCABdxAdu

(4.4)

where

qAB = Θ(−u)qvac
AB[Φ−] + Θ(u)qvac

AB[Φ+], (4.5)

CAB = Θ(−u)Cvac
AB[Φ−, C−] + Θ(u)Cvac

AB[Φ+, C+] (4.6)

where qvac
AB[Φ] and Cvac

AB[Φ, C] are given in (3.8) and (3.10). The metric (4.3) is recovered

for Φ− = − log γs, Φ+ = − log γs + φ(z) + φ̄(z̄) as in (3.19) and C+ = C− = 0.

4.3 Conservation of the Bondi mass aspect and the center-of-mass

In the absence of superboost transitions and for the standard case of the unit round celestial

sphere, the integral between initial ui and final retarded times uf of the conservation

equation for the Bondi mass aspect (2.6) can be reexpressed as the differential equation

determining the difference between the supertranslation field ∆C = C+ − C− between

initial and final retarded times after assuming suitable fall-off conditions [5]

−1

4
D2(D2 + 2)∆C = ∆M +

∫ u+

u−

du Tuu (4.7)

where Tuu = 1
8NABN

AB and ∆M is the difference between the Bondi mass aspects after

and before the burst. The four lowest spherical harmonics ` = 0, 1 are zero modes of

the differential operator appearing on the left-hand side of (4.7). Recall that translations

precisely shift the supertranslation field as (3.22). The 4 lowest harmonics of C can thus be

interpretated as the center-of-mass of the asymptotically flat system. This center-of-mass

is not constrained by the conservation law (4.7).

A new feature arises in the presence of a superboost transition. The four zero modes

of the supertranslation field C are now determined by the conservation equation. This can

be seen in the context of impulsive transitions (4.4). For simplicity, we take C− = 0 and

Φ− = − log γs (qAB[Φ−] = q̄AB the unit round sphere metric). Given that the Bondi mass

aspect and the Bondi news of the vacua are non-zero (3.26), we first define the renormalized

Bondi mass aspect and Bondi news as

M̂ = M +
1

8
CABN

AB
vac [Φ+], (4.8)

N̂AB = NAB −Θ(u)Nvac
AB [Φ+], (4.9)

which are zero for the vacua (3.17). This mass will be obtained in section 5 in (5.50).
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After integration over u of (2.6) and using of the corollary of the Liouville equa-

tion (3.12) we obtain

−1

4
D2(D2 + R̊)C+ +

1

4
NAB

vac [Φ+]DADBC+ +
1

8
C+D

2R̊ = ∆M̂ +

∫ u+

u−

du Tuu (4.10)

where Tuu = 1
8N̂ABN̂

AB and ∆M̂ act as sources for C+ and all quantities are evaluated

on the final metric qAB[Φ+]. We have that ∆M̂ = 0 for transitions between vacua but we

included it for making the comparison with (4.7) more manifest.

The lowest ` = 0, 1 spherical harmonics of C are not zero modes of the quartic dif-

ferential operator on the left-hand side of (4.10) for any inhomogeously curved boundary

metric. Therefore, the center-of-mass is also determined by the conservation law of the

Bondi mass aspect.

4.4 Refraction/velocity kick memory

We will mostly consider the simplified case where the change of the boundary metric is

localized at individual points. This happens for impulsive gravitational wave transitions

which relate the initial and final boundary metric by a meromorphic super-Lorentz trans-

formation (which is a combination of superboosts and superrotations). One example is

the original Penrose construction [33]. In these cases we will consider observers away from

these singular points so that we can ignore these singularities.

We can consider either timelike or null geodesics leading respectively to the velocity

kick and refraction memory. Let us first discuss a congruence of timelike geodesics that

evolve at finite large radius r in the impulsive gravitational wave spacetime (4.3). Such

observers have a velocity vµ∂µ = ∂u + O(ρ−1). The deviation vector sµ between two

neighboring geodesics obeys ∇v∇vsµ = Rµαβγv
αvβsγ where the directional derivative is

defined as ∇v = vµ∇µ. We have RuAuB = −ρ
2∂

2
uCAB + O(ρ0) where CAB = uΘ(u)Nvac

AB

and therefore

qAB∂
2
us
B =

1

2ρ
δ(u)Nvac

ABs
B +O(ρ−2). (4.11)

We deduce that sA = sAlead(xA) + 1
ρs
A
sub(u, xA) +O(ρ−2) and after two integrations in u,

sAsub =
u

2
Θ(u)qABNvac

BCs
C
lead. (4.12)

Before the shockwave, there is no relative angular velocity between observers. After the

shockwave, there will be a relative angular velocity at order ∝ ρ−1. This is the velocity

kick between two such neighboring geodesics due to the shockwave [42–44]. This is a qual-

itatively distinct effect from the displacement memory effect [7–11] and the spin effect [16].

Analogously, one can consider a congruence of null geodesics which admits a constant

leading angular velocity ΩA(xB)∂A, with total 4-velocity

vµ∂µ =
(√

ΩAqABΩB +O(ρ−1)
)
∂u +O(ρ−1)∂ρ +

1

ρ
(ΩA +O(ρ−1))∂A. (4.13)
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We consider again a deviation vector of the form sA = sAlead(xA) + 1
ρs
A
sub(u, xA) +O(ρ−2).

The deviation vector obeys again (4.12). Null geodesics are refracted by the shockwave.

This is the refraction memory effect usually described in the bulk of spacetime [42–44]. We

identified here the class of null geodesics which displays the refraction memory effect close

to null infinity.

Let us now shortly discuss the case where the change of boundary metric is not local-

ized at individual points. This occurs in the example of Robinson-Trautman superboost

transitions. The main point is that timelike geodesics will now admit non-trivial deviation

vector already at leading order ∝ ρ0, sA = sAlead(xA) +O(ρ−1), with

1

2
qAB∂

2
us
B
lead +

1

2
∂2
u(qABs

B
lead) = −1

2
∂2
uqABs

B
lead. (4.14)

A velocity kick will therefore already occur at order ρ0.

4.5 A new non-linear displacement memory

We also would like to point out that there is a non-linear displacement memory induced by

a superboost transition, when it is accompanied by a supertranslation transition. This case

was not considered in [42–44] where all supertranslation transitions were vanishing. In order

to describe the effect, we can consider either timelike or null geodesics. For definiteness, we

consider a congruence of timelike geodesics that evolve at finite large radius r in the general

impulsive gravitational wave spacetime (4.4). For simplicity we assume global Minkowski

in the far past and we only consider the simplified case where the change of the boundary

metric is localized at individual points. In other words, we assume Φ− = − log γs (qvac
AB[Φ−]

is the unit sphere metric), C− = 0, Φ+ = − log γs+φ(z)+φ̄(z̄) and C+ = C+(z, z̄) arbitrary.

The velocity is now vµ∂µ =
√

2
R̊
∂u + O(ρ−1). We have RuAuB = −ρ

2∂
2
uCAB + O(ρ0).

Following the same procedure as above, we obtain sA = sAlead(xA) + 1
ρs
A
sub(u, xA) +O(ρ−2)

and away from the singular points on the sphere,

sAsub =
1

2
qABCBCs

C
lead. (4.15)

=
1

2
Θ(u)qABCvac

BCs
C
lead. (4.16)

=
1

2
qAB(uΘ(u)Nvac

BC + Θ(u)C
(0)
BC + Θ(u)CNvac

BC)sClead. (4.17)

The first term ∝ uΘ(u) leads to the velocity kick memory effect. The second term ∝
Θ(u)C

(0)
BC leads to the displacement memory effect due to a change of supertranslation field

C between the final and initial states [5]. The third and last term ∝ Θ(u)CNvac
BC is a new

type of non-linear displacement memory effect due to change of both the superboost field Φ

and the supertranslation field C. The four lowest spherical harmonics ` = 0, 1 of C, inter-

pretated as the center-of-mass, do not contribute to the standard displacement memory ef-

fect because they are zero modes of the differential operator C
(0)
AB. Here, they do contribute

to the non-linear displacement memory effect. The transition of the supertranslation field

and in particular of the center-of-mass are determined by (4.10), as discussed earlier.
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5 Renormalized phase space at I+

In this section, we will define an extended phase space invariant under the action of Diff(S2)

super-Lorentz transformations and supertranslations. Super-Lorentz transformations are

overleading in the sense that they change the boundary metric which is usually fixed in

standard asymptotically flat spacetimes. We can therefore expect that a renormalization

procedure will be required.

5.1 Boundary conditions

Following Campiglia and Laddha [22], we fix the boundary metric determinant to be the

one of the unit round sphere,

√
q = γs, γs = 2(1 + zz̄)−2. (5.1)

We use the fall-off conditions discussed in section 2.1. In addition, we impose the

leading equations of motion (2.5), namely

V̊ = −1

2
R̊, β̊ = − 1

32
CABCAB, ŮA = −1

2
DBC

AB (5.2)

as a part of the boundary conditions.

The inhomogenous part of the transformation law of the news tensor under super-

boosts (2.22) exactly matches with the transformation law of the vacuum news Nvac
AB de-

fined in (3.24). Moreover, the inhomogenous part of transformation law of Cvac
AB (3.10)

also matches with the one of CAB in (2.21). We are therefore led to introduce the initial

(C−,Φ−,Ψ−) and final (C+,Φ+,Ψ+) boundary supertranslation and super-Lorentz fields

and consider the following boundary conditions on the qAB and CAB tensors at I+
± ,

q±AB ≡ lim
u→±∞

qAB = qvac
AB[γab, γs,Φ±,Ψ±] + o(u0), (5.3)

lim
u→±∞

CAB = Cvac
AB[q±AB,Φ±, C±] + o(u0), (5.4)

where qvac
AB and Cvac

AB are defined in (3.8), (3.10). It follows that

lim
u→±∞

NAB = Nvac
AB [q±AB,Φ±] + o(u−1) (5.5)

where Nvac
AB is defined in (3.10). The initial fields (C−,Φ−,Ψ−) can change along u with

hard (finite energy) processes involving null radiation reaching I+. In general this null

radiation can originate from matter or from gravity itself. Here we restrict ourselves to

gravity only.

Our technical restriction (2.4),

∂uqAB = 0 ⇒ q−AB = q+
AB (5.6)

prevents transitions between the initial and final superboost and superrotation fields

Φ ≡ Φ+ = Φ−, Ψ ≡ Ψ+ = Ψ−. The class of spacetimes that we are considering is therefore

more general than the ones considered in [22, 51] but not general enough to consider
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superboost transitions. We leave the contruction of a more general phase space for future

endeavor.

In addition, we impose that the topological Euler number of qAB is the one of the

round sphere

χ ≡ 1

4π

∫
√
qR̊[q] = 2. (5.7)

Since this condition is diffeomorphic and Weyl invariant, it is consistent with the action

of super-Lorentz transformations and supertranslations. We finally restrict the boundary

metrics by imposing the Liouville equation

D2Φ = R̊[q]. (5.8)

As shown in (3.15), imposing the Liouville equation is consistent with both the structure

of the vacua and with the action of super-Lorentz transformations.

The group of symmetries that preserve the boundary conditions are all the residual

symmetries consisting of Diff(S2) super-Lorentz transformations and supertranslations. As

we will see, after a suitable renormalization procedure, the canonical charges associated

with these symmetries will be finite and non-trivial. The asymptotic symmetry group will

therefore be the group of Diff(S2) super-Lorentz transformations and supertranslations. In

what follows, we will discuss the action principle, the symplectic structure and the charges.

All in all, these well-defined structures will allow to promote the solution space described

in section 2 to a phase space, after imposing the boundary conditions.

5.2 Examples of solutions

The Kerr black hole is obviously part of the phase space. Any vacuum gravitational field

configuration that admits a wave-zone region and that does not contain incoming radiation

is also part of this phase space since it admits a polynomial Bondi expansion [31]. These

solutions have a trivial boundary metric, the unit round metric on S2.

An example of solution with non-trivial boundary metric is the following. The most

general Robinson-Trautman metrics, i.e. the general vacuum solution admitting a geodesic,

shearfree, twistfree but diverging null congruence, are not part of the phase space because

of our restriction (2.4). However, a subset of Robinson-Trautman metrics is part of the

phase space. Let us start from (28.8) of [32] with P (ζ, ζ̄) = eΦ(ζ,ζ̄)/2,

ds2 = −
(
D2Φ(ζ, ζ̄)

2
−

2M + u
4D

2D2Φ(ζ, ζ̄)

r

)
du2 − 2dudr + 2r2e−Φ(ζ,ζ̄)dζdζ̄. (5.9)

Here D2 = DAD
A = 2e4Φ∂z∂z̄ and Φ(ζ, ζ̄), M is arbitrary. This is the Schwarzschild black

hole dressed with a superboost field. Note that the Ricci scalar of the boundary metric

is R̊[q] = D2Φ. In order to obey the determinant condition (5.1) we need to consider a

diffeomorphism ζ(z, z̄), ζ̄(z, z̄) with e−Φ(∂zζ∂z̄ ζ̄−∂z̄ζ∂z ζ̄) =
√
q̄ = 2(1+zz̄)−2. The metric

is then in Bondi gauge. One can write Φ = − log
√
q̄ + log(∂zζ∂z̄ ζ̄ − ∂z̄ζ∂z ζ̄). Since a

diffeomorphism does not affect the topological condition (5.7), one can evaluate it using

ζ = z, ζ = z̄ and check that it is obeyed using D2(− log
√
q̄) = 2. The metric (5.9) in

coordinates (u, r, z, z̄) is therefore part of the phase space.
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Figure 1. Contour for the variational principle.

5.3 Action principle

We consider the variation of the action on the spacetime volume M bounded in the fol-

lowing contour indicated in figure 1. We denote as I+
Λ and U± the hypersurfaces r = Λ

and u = u±, respectively. We consider the limit Λ→ +∞, u± → ±∞.

The variation of the bare Einstein-Hilbert action is

δSEH =

∫
M

du dr d2Ω

{
−
√
−g

16πG
Gµνδgµν + ∂µΘµ[g, δg]

}
(5.10)

where

Θu = rΘu
(div) + Θu

(0) + r−1Θu
(1) +O(r−2), (5.11)

Θr = rΘr
(div) + Θr

(0) +O(r−1). (5.12)

We have Θu
(div) ∝ δ

√
q and therefore Θu

(div) = 0 as a result of the boundary condition (5.1).

Also,

Θu
(1) = −8

√
q

16πG
δ

[
1

32
CABC

AB + β̊

]
= 0 (5.13)

as a result of the boundary conditions (5.2). The other components are

Θu
(0) =

√
q

16πG

1

2
CABδq

AB, (5.14)

Θr
(div) = 2

√
q

16πG
δV̊ − 1

2

√
q

16πG
NABδq

AB, (5.15)

Θr
(0) =

√
q

16πG
δ
[
2∂uβ̊ + 2M +DAŮ

A
]

+ Θ̄flux −
√
q

16πG
DA(ŮBδq

AB), (5.16)

where we define with hindsight the important quantity

Θ̄flux ≡
√
q

16πG

[
1

2
NABδC

AB +
1

2
V̊ CABδq

AB + ŮBDAδq
AB

]
. (5.17)

After using (2.5), we note that one can isolate a total derivative and a total variation as

Θu
(0) = −∂rY ur, (5.18)

rΘr
(div) = −∂uY ru + δ(−√qR̊ r) = −∂uY ru − ∂AY rA (5.19)
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where Y ur = −Y ru = −r 1
2

√
q

16πGCABδq
AB and Y rA = r 1

16πG ΘA
2d(δq; q) is r times the

presymplectic potential of the 2-dimensional Einstein-Hilbert action, ∂AΘA
2d = δ(

√
qR̊).

Since the boundary of a boundary is zero, the corner terms ∝ Y ur in the variational prin-

ciple drop. After integration over the sphere, the total derivatives ∝ ∂Av
A also drop. The

radially divergent contribution to the action is therefore

1

16πG
δ

[
r

∫ uf

ui

duχ[q]

]
(5.20)

where χ[q] is the Euler number of the boundary metric. Under an infinitesimal smooth

variation, a topological number cannot change. If we allow singular infinitesimal changes,

such as the ones generated by singular super-Lorentz transformations that arise in the

snapping of cosmic strings, the boundary topology changes and one would require to add

a boundary term in the action to cancel this divergence. Instead, this divergent term is

zero using our boundary condition (5.7).

We are led to consider the Einstein-Hilbert action supplemented by a boundary term

S = SEH −
1

16πG

∫
I+

du d2Ω
√
q

(
2M − 1

8
CABNAB

)
. (5.21)

We do not provide a covariant formulation of this boundary term, or the boundary terms

Y µν , which would require geometrical tools on boundary null surfaces [52–55] or a pre-

scription from holographic renormalization [56, 57]. The variation of the total action is

δS =

∫
U+

Θu
interior −

∫
U−

Θu
interior +

∫
I+

Λ

Θ̄flux, (5.22)

where Θu
interior = Θu−Θu

(0) = O(r−2). All terms are radially finite and can be interpreted as

follows. The spacetimeM considered is an open system with physical flux leaking through

the surface I+
Λ . This leak needs to be exactly compensated by the difference between the

fluxes on constant u = u+ and u = u− slides in order to have a well-defined variational

principle. Our analysis is insufficient to prove the existence of a variational principle but

is compatible with its existence.

5.4 Symplectic structure

The bare Lee-Wald presymplectic form is given by ω(0)[δ1g, δ2g] = δ1Θ(0)[g, δ2g]−δ2Θ(0)[g, δ1g].

We already obtained that the bare presymplectic potential Θ(0) is divergent while studying

the variation of the action, see (5.11)–(5.12). However, it is ambiguous under the change

Θ(0) → Θ(0) + dY where Y is a co-dimension spacetime 2 form. While studying the

variational principle, we already identified in (5.18)–(5.19) the counterterms required to

make the presymplectic potential finite.
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Let us discuss this point in detail starting from the bare presymplectic form. We have

ωu(0) =

√
q

16πG

(
1

2
δ1qABδ2C

AB

)
+O(r−2)−(1↔ 2), (5.23)

ωr(0) = r

√
q

16πG

(
1

2
δ1NABδ2q

AB

)
(5.24)

+

√
q

16πG

[
1

2
δ1

(
NAB+

1

2
R̊qAB

)
δ2CAB+

1

2
δ1(DAD

CCBC)δ2q
AB

]
+O(r−1)−(1↔ 2).

Clearly, such a presymplectic form is divergent. After choosing the boundary term Y

as (5.18)–(5.19), the presymplectic form becomes well-defined,

ωu =O(r−2)−(1↔ 2), (5.25)

ωr =

√
q

16πG

[
1

2
δ1

(
NAB+

1

2
R̊qAB

)
δ2CAB+

1

2
δ1(DAD

CCBC)δ2q
AB

]
+O(r−1)−(1↔ 2).

(5.26)

(Note that since Y Ar is exact, it does not contribute here.)

Since we specified a specific radial foliation in order to define these boundary terms, our

construction is not explicitly covariant, but depends on additional background structures

close to I+. We will not need to detail these boundary structures in the following. However,

we expect that the counterterm subtraction procedure that we used will lead to anomalies

in the algebra of charges. It will be confirmed below, see (5.68).

This defines the symplectic structure at I+

Ω =

∫
du d2Ω

√
q

16πG

[
1

2
δ1

(
NAB +

1

2
R̊qAB

)
δ2CAB +

1

2
δ1(DAD

CCBC)δ2q
AB

]
− (1↔ 2)

=
1

16πG

∫
du d2Ω

(
δ1Θ̄flux(δ2)− δ2Θ̄flux(δ1)

)
, (5.27)

where Θ̄flux is defined in (5.17), after discarding a boundary term.

5.5 Surface charges

5.5.1 Infinitesimal surface charges

The bare Iyer-Wald surface charge 2−form is

kur[g, δg] = −δQξ[g] +Qδξ[g] + iξΘ(0)[g, δg]. (5.28)

Expanding in powers of 1/r, we get

kur[g, δg] = rkur(div) + kur(0) +O(r−1). (5.29)

We define /δH̄ξ =
∮
S2 k

ur
ξ [g, δg]. The divergent term is

/δH̄
(div)
ξ =

1

16πG

∮
d2Ω

[
−2δ(Y AŮA)− fδR̊− 1

2
fNABδq

AB +
1

4
DCY

CqABδC
AB

]
(5.30)

– 20 –



J
H
E
P
1
1
(
2
0
1
8
)
2
0
0

while the finite term is

/δH̄
(0)
ξ =

1

16πG

∮
d2Ω

[
δ

(
4fM+2Y ANA+

1

16
Y ADA(CBCC

BC)

)]
(5.31)

+
1

16πG

∮
d2Ω

[
1

2
f

(
NAB+

1

2
qABR̊

)
δCAB−DA(fŮB)δqAB− 1

4
d2fqABδC

AB

]
.

Clearly, the charges are neither finite nor integrable.

Incorporating the boundary counterterm Y as defined in (5.18)–(5.19), the charges

become

kurξ → kurξ − δY ur[g,Lξg] + Y ur[g,Lδξg] + (ξu∆Θr − ξr∆Θu). (5.32)

In details,

−δY ur[g,Lξg] =

√
q

16πG
rδ
(
CABδ(T,Y )q

AB
)

; (5.33)

Y ur[g,Lδξg] = 0, (5.34)

where the last equation follows from the fact that the fields are not modified by δξ at

leading order in r. Moreover,

ξu∆Θr = f(∂uY
ur+∂AY

Ar) =
1

2
r

√
q

16πG
fNABδq

AB+

√
q

16πG
r
(
fδR̊

)
; (5.35)

−ξr∆Θu =−ξr(∂rY ru) =−1

4

√
q

16πG
rDCY

CCABδq
AB+

1

4

√
q

16πG
DCD

CfCABδq
AB. (5.36)

Here, the O(1) part in (5.36) is due to the O(1) contribution from ξr, and exactly cancels

the last non-integrable term at O(1) in the charges (5.31).

We see that any term divergent will disappear thanks to this choice of Y ur, and the

infinitesimal surface charges reduce to

/δHξ =
1

16πG

∮
d2Ω

[
δ

(
4fM + 2Y ANA +

1

16
Y ADA(CBCC

BC)

)]
+

1

16πG

∮
d2Ω

[
1

2
f

(
NAB − 1

2
qABR̊

)
δCAB −DA(fŮB)δqAB

]
. (5.37)

When qAB is the fixed unit metric on the sphere, it reproduces the expression of Barnich-

Troessaert [21]. After discarding a boundary term, the non-integrable term in the second

line can also be written as

Ξξ[g, δg] ≡ 1

16πG

∮
iξ∗(Θ̄flux[g, δg] dudΩ) (5.38)

where ξ∗ is the pull-back of ξ defined in (2.10) on constant r surfaces close to I+. The net

presymplectic potential flux Θ̄flux was defined in (5.17). The infinitesimal surface charges

can therefore be written as

/δHξ[g, δg] = δH int
ξ [g] + Ξξ[g, δg] (5.39)
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where we defined the integrated charge as in Barnich-Troessaert [21] or Flanagan-

Nichols [40]

H int
ξ [g] =

1

16πG

∮
d2Ω

(
4fM + 2Y ANA +

1

16
Y ADA(CBCC

BC)

)
(5.40)

but where Y A is now an arbitrary vector. Of course, the canonical Hamiltonian cannot be

deduced solely from the relation (5.39) since one can shift Hξ as

/δHξ[g, δg] = δ(Hξ[g] + ∆Hξ[g]) + Ξξ[g, δg]− δ∆Hξ[g]. (5.41)

We therefore need additional input to fix the finite Hamiltonian.

Moreover, the infinitesimal charges are still divergent in u. This divergence can be

rooted to the action principle. In (5.22), Θ̄flux = O(u) which leads to divergences at I+
±

that require further renormalization. In principle, these can be absorbed by including the

contribution of radially finite boundary counterterms Y ur which were left unfixed so far.

Such additional boundary counterterms also regularize the u divergences of the symplectic

structure (5.27). This procedure amounts to shift both H int
ξ [g] and Ξξ[g, δg] with a priori

distinct contributions that depend upon the boundary fields defined at I+
− , (C−,Φ−, q

−
AB).

This counterterm subtraction therefore is more general than the shifts (5.41). In this

procedure, there remains a finite ambiguity due to the finite counterterm Y ur
ambiguity(xA)

that only depends upon the boundary fields (C−,Φ−, q
−
AB). This remaining ambiguity

takes a very specific form since according to (5.32) it shifts the surface charge as

/δHξ 7→ /δHξ − δ
∮

d2Ω
(
Y ur

ambiguity[C−,Φ−, q
−
AB; δ(T,Y )C−, δ(T,Y )Φ−, δ(T,Y )q

−
AB]
)
. (5.42)

General theorems on the uniqueness of conserved charges in gravity are insufficient to

remove such an ambiguity [26, 58]. Only for exact Killing vectors this ambiguity vanishes.

In summary, covariant phase space methods only fix the infinitesimal charge variation, not

the finite charge variation due to the lack of integrability and, moreover, the counterterm

subtraction procedure suffers from an ambiguity (5.42). A prescription is therefore required

to define the finite charge associated with the asymptotic symmetries.

5.5.2 Finite charge

In order to define the finite charges Hξ associated with ξ we will follow a more direct route

which we will justify by its consistency with the soft theorems, the action of asymptotic

symmetries and the vanishing energy of the vacua. Following the Wald-Zoupas proce-

dure [23], it would be natural to request that the flux ∂uHξ[g] is identically zero in the

absence of news. However, the news tensor transforms inhomogeneously under (both Vira-

soro and Diff(S2)) super-Lorentz transformations so this condition is not invariant under

the action of the asymptotic symmetry group. Instead, we request that the flux ∂uHξ[g] is

identically zero in the absence of shifted news N̂AB,

N̂AB = NAB −Nvac
AB [Φ−]. (5.43)
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Since the latter transforms homogeneously under super-Lorentz transformations, this pre-

scription is invariant under the action of all asymptotic symmetries.11 For future use, we

define the shifted ĈAB tensor

ĈAB = CAB − uNvac
AB [Φ−], (5.44)

such that ∂uĈAB = N̂AB. In order to obtain our ansatz, let us start with the charge (5.40).

The flux associated to (5.40) reads as

∂uH
int
ξ [g] = − 1

32πG

∫
d2Ω

[
fNABN

AB − 2fDADBN
AB − fDAD

AR̊− Y AHA(N,C)

+ Y ADBD
BDCCAC − Y ADBDADCC

BC − Y ACABD
BR̊
]
. (5.45)

Here we defined for later convenience the bilinear operator on rank 2 spherical traceless

tensors PAB and QAB:

HA(P,Q) ≡ 1

2
∂A(PBCQ

BC)− PBCDAQBC +DB(PBCQAC −QBCPAC) (5.46)

which enjoys the property HA(P, P ) = 0. When N̂AB = 0 we are left with

∂uH
int
ξ |N̂AB=0 = − 1

32πG

∫
d2Ω

[
fNvac

ABN
AB
vac − Y AHA(Nvac, C)− Y ACABD

BR̊

+Y ADBD
BDCCAC − Y ADBDADCC

BC
] (5.47)

after using the relation (3.12) which follows from (5.8). We now want to define a countert-

erm that is only built out of the fields at I+ (qAB, CAB, NAB) and out of Nvac
AB , which is

the only boundary field that appears in the condition (5.43). Our prescription that cancels

the right-hand side of (5.47) is

∆Hξ[g;Φ]≡ 1

16πG

∮
d2Ω

[
u

2
Y ADBD

BDCCAC−
u

2
Y ADBDADCC

BC−u
2
Y ACABD

BR̊

+
1

2
TCABN

AB
vac −

u

2
Y AHA(Nvac,C)+

u2

8
DCY

CNvac
ABN

AB
vac +

u2

4
Y ANvac

ABD
BR̊

]
.

(5.48)

There is a considerable ambiguity in defining this ansatz since we could add terms of

the form N̂ABAAB(q, C,Nvac) + f(q,Nvac) + ĈABBAB(q,Nvac) where AAB, f and BAB

are arbitrary functions linear in either T or Y . We will justify our ansatz by showing

consistency with the leading and subleading soft theorems, and consistency for defining

the charges of the vacua.

Our final prescription for the canonical charges is Hξ[g] = H int
ξ [g] + ∆Hξ[g]. The

charges are conveniently written as

Hξ[g] =
1

16πG

∮
d2Ω

[
4TM̂ + 2Y AN̂A

]
(5.49)

11Our definition of the invariant news tensor is motivated from the structure of the vacua and differs

from the one of [59, 60] defined from the “2d Weyl” tensor of Geroch [61].
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where the final mass and angular momentum aspects are given by

M̂ =M+
1

8
CABN

AB
vac ; (5.50)

N̂A =NA−u∂AM+
1

32
∂A(ĈCDĈ

CD)+
u

16
∂A(ĈCDNvac

CD)− 1

32
u2∂A(Nvac

BCN
BC
vac ) (5.51)

−u
4
HA(Nvac, Ĉ)−u

4
ĈABD

BR̊+
u

4
DBD

BDCĈAC−
u

4
DBDADCĈ

BC−u
2

8
Nvac
ABD

BR̊.

This is a new prescription for the charges. In the standard asymptotically flat spacetimes

where the boundary metric is the round sphere (qAB = q̄AB with R̊ = 2), our expressions

reduce to

M̂ = M ;

N̂A = NA − u∂AM +
1

32
∂A(CCDC

CD) +
u

4
DBD

BDCCAC −
u

4
DBDADCC

BC .
(5.52)

The Lorentz charges differ from the existing prescriptions [21, 30, 40] since the angular

momentum aspect is now enhanced with the two soft terms linear in u. We will show that

our prescription correctly reproduces the fluxes needed for the subleading soft theorem.

5.6 Flux formulae for the soft Ward identities

Let us show that our expressions for the fluxes reproduce the expressions of the literature

used in the Ward identities displaying the equivalence to the leading [6] and subleading [14]

soft graviton theorems. The final flux can be decomposed in soft and hard parts, where

the soft terms (resp. hard terms) are linear (resp. quadratic) in ĈAB or its time variation

N̂AB. We have ∫
du ∂uHξ[g] = QS [T ] +QH [T ] +QS [Y ] +QH [Y ] (5.53)

where

QS [T ] =
1

16πG

∫
du d2Ω ∂u

(
TDADBĈ

AB
)
, (5.54)

QH [T ] =
1

16πG

∫
du d2Ω

(
−1

2
TN̂ABN

AB

)
, (5.55)

QS [Y ] =
1

16πG

∫
du d2Ω u ∂u

(
ĈABsAB

)
, (5.56)

QH [Y ] =
1

16πG

∫
du d2Ω

(
1

2
Y AHA(N̂ , Ĉ) +

u

2
Y ANCDDAN̂CD +

u

2
NCD

vac Y
ADAN̂CD

)
(5.57)

and

sAB =

[
DADBDCY

C +
R̊

2
D(AYB) −

1

2
D(A

(
D2 +

R̊

2

)
YB)

]TF

(5.58)

after integrations by parts on the sphere.

In the standard case where Nvac
AB = 0, the flux of supermomenta reproduces (2.11)

of [3] up to a conventional overall sign, which itself agrees with previous results [59]. After
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one imposes the antipodal matching condition on M̂ at spatial infinity, one can equate the

flux on I+ with the antipodally related flux on I−. The result of [3] is precisely that the

quantum version of this identity is the Ward identity of the leading soft graviton theorem.

We have now obtained a generalization in the presence of superboost background flux.

We now consider the hard terms for super-Lorentz transformations. Using the identities

DAĈBCN̂
BC = DBĈCAN̂

BC + N̂ABDCĈ
BC ,

DAN̂BCĈ
BC = DBN̂CAĈ

BC + ĈABDCN̂
BC ,

(5.59)

and integrating by parts, it can be shown that (5.57) can be rewritten as

QH [Y ] =
1

16πG

∫
du d2Ω

[
−1

2
N̂AB

(
LY ĈAB −

1

2
DCY

CĈAB +
u

2
DCY

CN̂AB

)
+ uNAB

vac Y
CDCN̂AB

]
= − 1

32πG

∫
du d2Ω

[
N̂ABδHY ĈAB − 2uNAB

vac Y
CDCN̂AB

]
(5.60)

where δHY is the homogeneous part of the transformation of ĈAB. After restricting to stan-

dard configurations where Nvac
AB = 0, the expression matches (up to the overall conventional

sign) with equation (40) of [22].

Next, we consider the soft terms for super-Lorentz transformations. Noting that

DCδY qAC = DCD
CYA + R̊

2 YA we can rewrite (5.58) as

sAB =

[
DADBDCY

C +
R̊

2
D(AYB) −

1

2
D(AD

CδY qB)C

]TF

. (5.61)

The tensor sAB is recognized as the generalization of equation (47) of [22] in the presence

of non-trivial boundary curvature. After some algebra, we can rewrite it in terms of the

inhomogeous part δIY CAB of the transformation law of CAB (2.21):

−usAB = δIY CAB ≡ −u
(
DADBDCY

C +
1

2
qABDCD

CDEY
E

)
. (5.62)

Now that we identified our expressions with the ones of [22], we can use their results. After

imposing the antipodal matching condition on N̂A at spatial infinity, one can equate the

flux of super-Lorentz charge on I+ with the antipodally related flux on I− as originally

proposed in [30] (but where the expression for N̂A should be modified to (5.52)). The result

of [22] is precisely that this identity is the Ward identity of the subleading soft graviton

theorem [14].

We end up with two further comments. Note that the soft charges for super-Lorentz

transformations agree with equation (41) of [22] (up to an overall conventional sign) after a

partial integration on u and after using the restrictive boundary condition ĈAB = o(u−1),
√
q

16πG

∫
du ĈABsAB =

√
q

16πG

[
uĈABsAB

]I+
+

I+
−
−
√
q

16πG

∫
du (uN̂ABsAB)

= −
√
q

16πG

∫
du (uN̂ABsAB) = −QS [Y ].

(5.63)
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However, the boundary condition ĈAB = o(u−1) is not justified since displacement memory

effects lead to a shift of C, e.g. in binary black hole mergers. Therefore, using the more

general boundary conditions, the valid expression for the soft charge is only given by (5.56).

Finally, considering only the background Minkowski spacetime (qAB = q̄AB the unit

metric on the 2-sphere and Nvac
AB = 0), one can check that in stereographic coordinates one

has szz = ∂3
zY

z = D3
zY

z. The soft charge then reads as

QS [Y ] =
1

16πG

∫
du

∮
S2

d2z γzz̄ (uN̂ zzD3
zY

z + uN̂ z̄z̄D3
z̄Y

z̄) (5.64)

where we keep Y A∂A = Y z(z, z̄)∂z+Y
z̄(z, z̄)∂z̄ arbitrary. In the case of meromorphic super-

Lorentz tranformations, this reproduces equation (5.3.17) of [12] (up to a conventional

global sign). This concludes our checks with the literature. It shows that the Ward

identities of supertranslations and super-Lorentz transformations are equivalent to the

leading and subleading soft graviton theorems following the arguments of [3, 18].

5.7 Charges of the vacua

Using the values (3.26) in our prescription (5.49) we deduce the mass and angular momenta

of the vacua

Hvac
ξ [Φ, C] =

1

8πG

∮
dΩ
[
2TM̂vac + Y ANvac

A

]
(5.65)

where

M̂vac = 0,

N̂vac
A = −1

4
ĈABDCĈ

BC − 1

16
∂A(ĈCDĈ

CD),
(5.66)

and ĈAB = CNvac
AB − 2DADBC + qABD

CDCC in this case.

The supermomenta are all identically vanishing. Remember that the Lorentz genera-

tors are uniquely defined as the 6 global solutions Y A to the conformal Killing equation

DAYB +DBYA = qABDCY
C . In general, the Lorentz charges as well as the super-Lorentz

charges are non-vanishing.

For the round sphere metric qAB = q̄AB (Φ = − log γs), we have R̊ = 2, Nvac
AB = 0 and

DBĈAB = DBC
(0)
AB = −DA(D2 + 2)C. The charges then reduce to

Hvac
ξ [C] =

1

8πG

∮
dΩ

[
T × 0 + Y A

(
−1

4
C

(0)
ABDCC

BC
(0) −

1

16
∂A(C

(0)
CDC

CD
(0) )

)]
. (5.67)

As shown in the appendix A.3 of [39], the Lorentz charges are identically zero. The differ-

ence of charges between our prescription and the one of [39] are the last two terms of (5.52)

which exactly cancel for the vacua with a round sphere boundary metric. Therefore, we

confirm that the vacua with only the supertranslation field turned on do not carry Lorentz

charges. The super-Lorentz charges are conserved and non-vanishing in general, which

allows to distinguish the vacua.
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5.8 Charge algebra

After an involved computation, we get the following charge algebra

δξ1Hξ2 + Ξξ1 [g, δξ2g] +Aξ1 [g, δξ2g] = H[ξ2,ξ1][g] +Kξ1,ξ2 [g]. (5.68)

In this relation,

Ξξ1 [g, δξ2g] =
1

16πG

∮
d2Ω

[
1

2
f1

(
NAB − 1

2
qABR̊

)
δξ2CAB −DA(f1ŮB)δξ2q

AB

]
, (5.69)

Aξ1 [g, δξ2g] =
1

16πG

∫
d2Ω

(
DAf1Ů

B +
1

4
DCD

Cf1C
AB

)
δξ2qAB − δξ2∆Hξ1 . (5.70)

Furthermore, the 2-cocycle Kξ1,ξ2 [g] is antisymmetric and satisfies

K[ξ1,ξ2],ξ3 + δξ3Kξ1,ξ2 + cyclic(1, 2, 3) = 0. (5.71)

Its explicit expression depends on the choice we make in the split of integrable and non-

integrable parts in (5.37). For our prescription, choosing (5.49) as integrable part, we

have

Kξ1,ξ2 [g] =
1

16πG

∫
d2Ω

[
1

2
f2DAf1D

AR̊+
1

2
CBCf2DBDCDDY

D
1

]
+ δξ1(∆Hξ2) +

1

2
∆H[ξ1,ξ2] − (1↔ 2)

(5.72)

where ∆Hξ[g] was given in (5.48).

The form of the charge algebra (5.68) contains new terms as compared with the one

of [21]. When the boundary metric is varied, it admits a new anomalous term (5.70) and

new terms in Kξ1,ξ2 . The first anomalous term in (5.70) takes its origin from the presence

of a non-integrable term in Qδξ[g] in the decompositon of the surface charge (5.28). The

second anomalous term in (5.70) takes its origin from the finite contribution of the boundary

counterterm Y ur (5.36). Even staying on the unit round sphere qAB = q̄AB and δξqAB = 0,

the charge algebra differs from [21] because of the shift of the charge (5.48) which reduces to

∆Hξ[g] =
1

16πG

∮
d2Ω

[u
2
Y ADBD

BDCCAC −
u

2
Y ADBDADCC

BC
]
. (5.73)

6 Conclusion

Supertranslation BMS symmetry, the leading soft graviton theorem and the diplacement

memory effect form three corners of a triangle describing the leading infrared structure of

asymptotically flat spacetimes at null infinity [12]. The three edges of the triangle can be

described in the language of vacuum transitions, Ward identities and Fourier transforms,

see figure 2a. In the case of super-Lorentz BMS symmetry, one needs to distinguish the

symmetry in itself which is overleading since it modifies the leading order metric at null

infinity, and the charges that describe the subleading structure of gravitational fields, and
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Figure 2. The infrared structure of asymptotically flat spacetimes at null infinity.

in particular, their angular momentum. Two edges have been previously drawn relating

super-Lorentz charges to the subleading soft graviton theorem by Ward identities [18,

22, 28], and relating the subleading soft graviton theorem to the spin effect by a Fourier

transformation [16]. In this paper, we clarified how the superboost transitions lead to

the refraction or velocity kick memory effect at null infinity. This suggests to describe

this overleading/subleading structure by an (incomplete) square instead of a triangle as

in figure 2b. We expect that a similar overleading/subleading square structure will also

appear in the description of other gauge and gravity theories.

At the technical level, we obtained a new definition of the angular momentum for

standard asymptotically flat spacetimes which is consistent with the fluxes required for

the subleading soft graviton theorem. We also derived a generalized charge algebra and

described a non-linear displacement memory effect that occurs in the case of combined

superboost and supertranslation transitions. The renormalized phase space that we con-

structed is only a first step in the definition of a general notion of asymptotic flatness. The

counterterm prescription that we used requires further justification by a geometric con-

struction. Also, superboost transitions remain to be included in the renormalized phase

space. We leave these more general constructions for future endeavor.

Acknowledgments

The work of G.C. is supported by the ERC Starting Grant 335146 “HoloBHC”. G.C. is a

Research Associate and A.F. is Research Fellow of the Fonds de la Recherche Scientifique

F.R.S.-FNRS (Belgium). R.R. is a FRIA (F.R.S.-FNRS) Research Fellow. We thank

G. Barnich, I. Korovins and C. Troessaert and all participants of the Solvay workshop of

May 2018 on “Infrared physics” for interesting discussions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 28 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
1
(
2
0
1
8
)
2
0
0

References

[1] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general

relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962)

21 [INSPIRE].

[2] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat

space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

[3] T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft

graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

[4] A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152

[arXiv:1312.2229] [INSPIRE].

[5] A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft

Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].

[6] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].

[7] Y.B. Zel’dovich and A.G. Polnarev, Radiation of gravitational waves by a cluster of

superdense stars, Sov. Astron. 18 (1974) 17.

[8] D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys.

Rev. Lett. 67 (1991) 1486 [INSPIRE].

[9] L. Blanchet and T. Damour, Tail Transported Temporal Correlations in the Dynamics of a

Gravitating System, Phys. Rev. D 37 (1988) 1410 [INSPIRE].

[10] L. Blanchet and T. Damour, Hereditary effects in gravitational radiation, Phys. Rev. D 46

(1992) 4304 [INSPIRE].

[11] J. Frauendiener, Note on the memory effect, Class. Quant. Grav. 9 (1992) 1639.

[12] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory,

arXiv:1703.05448 [INSPIRE].

[13] G. Compère and A. Fiorucci, Advanced Lectures in General Relativity, arXiv:1801.07064

[INSPIRE].

[14] F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem,

arXiv:1404.4091 [INSPIRE].

[15] D.A. Nichols, Center-of-mass angular momentum and memory effect in asymptotically flat

spacetimes, Phys. Rev. D 98 (2018) 064032 [arXiv:1807.08767] [INSPIRE].

[16] S. Pasterski, A. Strominger and A. Zhiboedov, New Gravitational Memories, JHEP 12

(2016) 053 [arXiv:1502.06120] [INSPIRE].

[17] G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at

null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].

[18] M. Campiglia and A. Laddha, Asymptotic symmetries and subleading soft graviton theorem,

Phys. Rev. D 90 (2014) 124028 [arXiv:1408.2228] [INSPIRE].

[19] J. de Boer and S.N. Solodukhin, A Holographic reduction of Minkowski space-time, Nucl.

Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].

[20] G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010)

062 [arXiv:1001.1541] [INSPIRE].

[21] G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213]

[INSPIRE].

– 29 –

https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://inspirehep.net/search?p=find+J+%22Proc.Roy.Soc.Lond.,A269,21%22
https://doi.org/10.1098/rspa.1962.0206
https://inspirehep.net/search?p=find+J+%22Proc.Roy.Soc.Lond.,A270,103%22
https://doi.org/10.1007/JHEP05(2015)151
https://arxiv.org/abs/1401.7026
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.7026
https://doi.org/10.1007/JHEP07(2014)152
https://arxiv.org/abs/1312.2229
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2229
https://doi.org/10.1007/JHEP01(2016)086
https://arxiv.org/abs/1411.5745
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5745
https://doi.org/10.1103/PhysRev.140.B516
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,140,B516%22
https://doi.org/10.1103/PhysRevLett.67.1486
https://doi.org/10.1103/PhysRevLett.67.1486
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,67,1486%22
https://doi.org/10.1103/PhysRevD.37.1410
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D37,1410%22
https://doi.org/10.1103/PhysRevD.46.4304
https://doi.org/10.1103/PhysRevD.46.4304
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D46,4304%22
https://doi.org/10.1088/0264-9381/9/6/018
https://arxiv.org/abs/1703.05448
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.05448
https://arxiv.org/abs/1801.07064
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.07064
https://arxiv.org/abs/1404.4091
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4091
https://doi.org/10.1103/PhysRevD.98.064032
https://arxiv.org/abs/1807.08767
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.08767
https://doi.org/10.1007/JHEP12(2016)053
https://doi.org/10.1007/JHEP12(2016)053
https://arxiv.org/abs/1502.06120
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06120
https://doi.org/10.1103/PhysRevLett.105.111103
https://arxiv.org/abs/0909.2617
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2617
https://doi.org/10.1103/PhysRevD.90.124028
https://arxiv.org/abs/1408.2228
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2228
https://doi.org/10.1016/S0550-3213(03)00494-2
https://doi.org/10.1016/S0550-3213(03)00494-2
https://arxiv.org/abs/hep-th/0303006
https://inspirehep.net/search?p=find+EPRINT+hep-th/0303006
https://doi.org/10.1007/JHEP05(2010)062
https://doi.org/10.1007/JHEP05(2010)062
https://arxiv.org/abs/1001.1541
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.1541
https://doi.org/10.1007/JHEP12(2011)105
https://arxiv.org/abs/1106.0213
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0213


J
H
E
P
1
1
(
2
0
1
8
)
2
0
0

[22] M. Campiglia and A. Laddha, New symmetries for the Gravitational S-matrix, JHEP 04

(2015) 076 [arXiv:1502.02318] [INSPIRE].

[23] R.M. Wald and A. Zoupas, A General definition of ‘conserved quantities’ in general relativity

and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].

[24] T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of

General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].

[25] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

[26] G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws

and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].

[27] G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25

(2008) 195014 [arXiv:0805.1902] [INSPIRE].

[28] D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the

quantum gravity S-matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].

[29] E. Conde and P. Mao, BMS Supertranslations and Not So Soft Gravitons, JHEP 05 (2017)

060 [arXiv:1612.08294] [INSPIRE].

[30] S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and Supertranslation

Hair on Black Holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].

[31] L. Blanchet and T. Damour, Radiative gravitational fields in general relativity I. general

structure of the field outside the source, Phil. Trans. Roy. Soc. Lond. A 320 (1986) 379

[INSPIRE].

[32] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of

Einstein’s field equations, Cambridge University Press (2003) [INSPIRE].

[33] R. Penrose, The geometry of impulsive gravitational waves, in General Relativity, Papers in

Honour of J.L. Synge, Clarendon Press (1972), pg. 101.

[34] Y. Nutku and R. Penrose, On Impulsive Gravitational Waves, Twistor Newslett. 34 (1992) 9.

[35] J. Podolsky and J.B. Griffiths, Expanding impulsive gravitational waves, Class. Quant. Grav.

16 (1999) 2937 [gr-qc/9907022] [INSPIRE].

[36] J.B. Griffiths, J. Podolsky and P. Docherty, An Interpretation of Robinson-Trautman type N

solutions, Class. Quant. Grav. 19 (2002) 4649 [gr-qc/0208022] [INSPIRE].

[37] J.B. Griffiths and P. Docherty, A Disintegrating cosmic string, Class. Quant. Grav. 19

(2002) L109 [gr-qc/0204085] [INSPIRE].

[38] A. Strominger and A. Zhiboedov, Superrotations and Black Hole Pair Creation, Class.

Quant. Grav. 34 (2017) 064002 [arXiv:1610.00639] [INSPIRE].

[39] G. Compère and J. Long, Vacua of the gravitational field, JHEP 07 (2016) 137

[arXiv:1601.04958] [INSPIRE].
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