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 Abstract – Self-reconfigurable robots are modular robots that 

can autonomously change their shape and size to meet specific 

operational demands. Recently, there has been a great interest in 

using self-reconfigurable robots in applications such as 

reconnaissance, rescue missions, and space applications. Designing 

and controlling self-reconfigurable robots is a difficult task. Hence, 

the research has primarily been focused on developing systems that 

can function in a controlled environment. This paper presents a 

novel self-reconfigurable robotic system called SuperBot, which 

addresses the challenges of building and controlling deployable 

self-reconfigurable robots. Six prototype modules have been built 

and preliminary experimental results demonstrate that SuperBot is 

a flexible and powerful system that can be used in challenging real-

world applications. 

 
 Index Terms – Modular Robots, Self-Reconfigurable Robots, 

Distributed Robotics, Deployable Robots 

 

I.  INTRODUCTION 

Self-reconfigurable robots are modular robots that can 

autonomously change their shape and size to meet specific 

operational demands. In domains where the task and 
environment are known, it is often more efficient to build 

fixed-shape special purpose robots [1]. However, in 

applications such as reconnaissance, rescue missions, and 

space applications where the task and environment are not 

fully known self-reconfigurable robots can out-perform fixed-

shape robots. 

Because of their self-reconfigurability, self-reconfigurable 

robots are more versatile, fault-tolerant, and efficient 
compared to their non self-reconfigurable counterparts. For 

example, a self-reconfigurable robot can become a snakelike 

robot to crawl through a narrow passage and then grow legs 

and grippers to pick up and carry an object.  

Building and controlling self-reconfigurable robots are 

very difficult. Designing modules that are flexible and allow 

for efficient performance of locomotion, object manipulation 

and self-reconfiguration is very challenging. Connectors are 
critical parts of a self-reconfigurable module [2]. A successful 

connector design requires solving many challenging problems 

for enabling modules to reliably dock/undock and create a 

strong and effective robot. 

In the past decade, researchers have addressed the 

hardware and software challenges of building self-

reconfigurable robots.  In the area of hardware design, Chain-

type [3,4,6,7], and Lattice-based [8,9,10,11] self-

reconfigurable robots have been developed. Lattice-based self-
reconfigurable robots consist of a set of modules that can only 

attach to other modules in discrete locations on a lattice. They 

require continuous self-reconfiguration for locomotion and 

manipulation. Chain-type self-reconfigurable robotic systems 

are made up of linear, looped, or branched chains of 

homogeneous or heterogeneous modules. This class of self-

reconfigurable robots are able to separate locomotion from 

reconfiguration and for locomotion and manipulation these 
robots do not require continuous self-reconfiguration.  

In the area of software, many centralized and distributed 

software systems have been presented. Distributed approaches 

include Digital-Hormone control [16,17], Role-Based control 

[18], and local search approaches such as [19]. Centralized 

approaches include gait-table control [1], and M-TRAN 

control system [5]. Difficulties in controlling Self-

reconfigurable robots stem from the fact that a network of 
self-reconfigurable modules is distributed in nature, modules 

have limited information, and the overall behaviour of a robot 

emerges from the coordinated actions of all constituting 

modules. A control system for such robots needs to be 

adaptive to dynamic topology of the robot, scalable, fault 

tolerant and distributed to avoid introducing a single point on 

failure in the system. 

 

 
 

Fig. 1 A network of 6 SuperBot Self-reconfigurable modules 

 

Due to the difficulties of designing and controlling self-

reconfigurable robots, in the past, almost all the research 

efforts have been focused on developing hardware and 

software systems that can function in the controlled indoor or 
outdoor environment of a Lab. However, less attention has 

been on designing fully functional self-reconfigurable robots 

for real applications. Fortunately, recent advances in design 
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and control of self-reconfigurable robots have made this 

dream become a possibility. 

Transition from a controlled environment to a real-world 

situation, however, introduces many new challenges to the 
field of self-reconfigurable robotics. These challenges include 

efficient performance of locomotion, manipulation, and self-

reconfiguration tasks in the presence of obstacles, power 

management issues, modules mechanical and electronic 

endurance and reliability in spite of being in contact with a 

rough environment, dealing with dust, moisture, and strong 

light sources, designing reliable and strong connectors, 

sensing and meaningful interaction with the environment, and 
efficient human-robot interaction and control.  

In this paper, we present a novel deployable and multi-

functional self-reconfigurable robotic system called SuperBot. 

SuperBot is being designed for NASA space exploration 

programs and addresses the above-mentioned challenges. 

Figure 1 shows a network of six connected SuperBot modules.  

The form factor of SuperBot modules is similar to that of 

the MTRAN modules [6]. However, SuperBot modules have 
three degrees of freedom, and such capability has drastically 

increased the mobility and flexibility of individual and 

networked modules. SuperBot modules are designed to be 

strong, flexible, and capable of performing efficient 

locomotion, self-reconfiguration, and manipulation tasks. 

Similar to MTRAN, a network of SuperBot modules can 

perform as both lattice-based and chain-type self-

reconfigurable robots. A network of SuperBot modules is 
capable of sharing power and communicating using high-

speed infra-red LEDs. The on-board multi-threaded software 

controls modules’ functionalities and coordinates the 

behaviours of the network of modules in a distributed fashion.  

This paper is organized as follows: In Section two we 

discuss the considerations in designing SuperBot. In section 

three we will describe its hardware architecture. In section 

four we will describe the software architecture. Section five 
describes some performance evaluation experiments; and 

section six will conclude and describes the future research 

directions. 

II. DESIGN CONSIDERATIONS 

 The basic design philosophy of Superbot modules is to 

develop flexible, powerful and sturdy modules that can 

efficiently perform tasks in an uncontrolled environment 

without requiring close attention. In order to accomplish this 
goal six criterions were considered in the design and 

construction of SuperBot.  

 First, as SuperBot is intended to operate in a harsh and 

rough environment, the design needed to allow for roughed 

and sealable modules. Modules and connectors needed to 

cover their internal electronic and mechanical components and 

protect them from dust, moisture, and physical impact. The 

building materials needed to be resistant to abrasion and other 
deleterious effects. 

 Second, SuperBot is required to perform locomotion, 

manipulation and self-reconfiguration tasks in the presence of 

obstacles in an uncontrolled environment. Therefore, it was 

essential for the modules to have enough dexterity in order to 

maneuver around obstacles to perform the task in hand and at 

the same time conserve energy by minimizing the number of 

required movements. 
 Third, to be effective in real applications, SuperBot 

modules should have enough torque to move and lift a 

reasonable number of neighboring modules and exert force 

whenever it is needed. This required maximizing the power of 

actuators while the size and weight of the module are kept 

minimal.  

 Fourth, a network of SuperBot modules should be 

cognizant of their environment through a series of sensors 
which allow them to avoid obstacles and also navigate in the 

environment. This also includes the ability of sensing and 

communicating with other SuperBot modules. Due to the 

distributed nature of a network of SuperBot modules, sensory 

information is available in the network of modules in a 

distributed form. The sensory information might have to be 

fused for autonomous decision-making or being 

communicated to a controller host. 
 Fifth, available power in a network of SuperBot modules 

should be efficiently used and managed. Some modules may 

need to move more often and spend more energy while some 

other modules may not move at all. In addition, the power 

source of some modules may fail. In such situations, modules 

should be able to share the available energy in the network. In 

addition, SuperBot should be able to connect one of its 

modules to a charging station and charge all connected 
modules. 

 Sixth, distributed control software was necessary for 

effective use of SuperBot. The control software needed to be 

real-time, fault tolerant and scalable. In addition, it had to 

accept and execute high-level commands for locomotion, 

manipulation and self-reconfiguration from a remote host 

without requiring detailed instructions for individual modules. 

 In addition to above considerations, the following 
criterions were also considered in the design of the connectors: 

First, the connectors needed to be genderless meaning that any 

connector of a module had to be able to dock to any other 

connector of another module. Second, two docked connectors 

could be oriented relative to each other in 90◦ intervals. Third, 

connectors needed to enable communication and power 

sharing among modules. Fourth, either side of two docked 

connectors had to be able to undock. This is necessary in a 
situation where one side is dead. In this situation the other side 

should be able to release itself. Fifth, the connector needed to 

enforce necessary tension to hold docked faced together. 

Sixth, connectors needed to sense and guide docking process. 

Seventh, as it was mentioned earlier, connectors needed to be 

sand and moisture proof and resistant to the abrasion. 

 At the time of the preparation of this paper, several 

designs that fulfill on all the above requirements were being 
prototyped and tested. The analysis and experimental results 

of the finalized connector design will be reported in the future 

publications. For the time being, manual connectors have been 

used for docking purposes. 
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III.  MECHANICAL DESIGN 

The overall body of a SuperBot module is in the form of 

two linked cubes. The dimensions of each cube are 84x84x84 

millimeter and therefore each module is 168 mm long. The 
current prototypes are made up of a hard aluminium alloy and 

weigh about 500 grams including the electronics and batteries. 

Each module consists of three main parts: Two end effectors 

and a rotating central part. This allows a module to have three 

degrees of freedom in the form of 180◦ yaw, 180◦ pitch, and 

270◦ roll; see figure 2.This design gives the SuperBot module 

the most flexible movements that we know in the literature, 

and will allow a single module to bend and twist into many 
different shapes and provide the needed flexibility for 

multimode locomotion.  

   

 

                                

Connector (up) 

Connector (front) 

Connector (left) 

Connector (right) 

Connector (back) 

Connector (down) 

 
Fig. 2 SuperBot module design and Degrees of Freedom. 

 

Other designs such as MTRAN [6] which do not have the 

rolling ability of the central part can in many cases produce a 
similar roll effect of a module through execution of a sequence 

of bending, docking, and undocking actions. However, that 

requires consumption of more energy and performing them 

may not be possible in the presence of other obstacles. Figure 

3 shows a prototype of Superbot module where as a result of 

the 90◦ rotation of the central part the end effectors are in two 

different modes. In figure 3a, the end effectors sweeping 

planes are perpendicular to each other which are equivalent to 
the CONRO [4] module design and in figure 3b the end 

effectors sweeping planes coincide which are equivalent to the 

MTRAN [6] module design.  

    
(a)                                                        (b) 

Fig. 3 Two modes of Superbot; similar to (a) CONRO and (b) M-TRAN  

 

There are six connectors on each Superbot module; one on 
each side of the end effectors; see figure 2. Any of the six 

connectors of a module can connect to any connectors of 

another module in all 90◦ interval orientations. 

 The drive train of each degree of freedom of a module 

consists of a MicroMo® DC electric motor, a planetary 

gearbox, and an external gearbox; see figure 4. The DC motor 

outputs between 5 to 21.18 milli-Newton-meter torque. The 

gear ratio of the planetary gearbox is 1:86 and its efficiency is 

70%. The gear ratio of the external gearbox is 1:5. Based on 

the following calculation this results a maximum of 6.38 Nm 

torque.  

21.18 x 86 x 70% x 5 = 6375 mN-m = 6.38 N-m  
 

 Given the size and weight of each module, this amount of 

torque is enough for reliably lifting three neighboring 

modules. 

 

Fig. 4 SuperBot Motor, Gearboxes and end effector drive shaft 

IV.  HARDWARE ARCHITECTURE 

  SuperBot possesses a modular hardware architecture. 

Each module’s on-board hardware is responsible for 
controlling the actuators, connectors and sensors, power 

management, communicating with neighboring modules, 

autonomous decision-making, and distributed control of high-

level behaviours. 

 Each half module (cube) has a controller. The controller 

of the half module containing the battery and one motor is 

called the ‘master controller’ and the controller of the other 

half is called the ‘slave controller’; see figure 5. Both 
controllers are connected through power lines and a bi-

directional 400 Kb/S I2C bus. I2C is a two-wire bus and is 

selected to provide enough bandwidth between half modules 

and at the same time keep the number of wires among the 

cubes low. Each controller is responsible for managing the 

motors, sensors, communication, power and docking of its 

corresponding cube. In addition, the master controller is 

responsible for running the high-level behaviour controller in 
each module. 

 

Fig. 5 SuperBot hardware control Architecture 

 
Each controller is based on a 16 MHZ ATmega128 

microcontroller [20], which is an 8-bit low power AVR 

processor with 128 Kbytes of flash program memory, 4 
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Kbytes of EEPROM and 4 Kbytes of internal SRAM. The 

ATmega128 also includes an 8-channel 10-bit ADC, three 

timers, and several bus interfaces including two USARTs, SPI, 

and I2C.  

Figure 6 shows the details of the master controller. A wireless 

receiver is considered for remote on/off, motor disable, to stop 
modules while the control program is running, and receiving 

serial commands. The Atmega128 can measure the voltage 

and output current of the battery. PWM pulses are interfaced 

to the motor through an H-bridge for controlling the motor 

speed. The angular position of the end effector is sensed by a 

potentiometer that is coupled to its shaft and is connected to an 

A/D line of the Atemga128. A one Mb/s SPI communication 

bus is used for communicating with dock faces. This provides 
enough bandwidth to communicate with three dock faces that 

communicate with their neighboring modules through 230K 

Baud RS-232 lines. Details about the communication circuits 

are given below. A 3D accelerometer/inclinometer is also 

interfaced through the SPI bus. A JTAG port is used for 

debugging purposes. Figure 7 shows the details of the slave 

controller, which has a similar architecture.  

 

 

Fig. 6 Master Controller Architecture  

 Figure 8 shows the details of the communication interface 

on a dock face. A communication interface has four infra-red 

receiver LEDs and a transmitter LED. Any combinations of 

the receiver channels can be selected which results the sum of 

the received signals on each receiver LED to be delivered to a 

buffer stage. The output of the buffer is connected to an A/D 
channel of the corresponding controller. As a result the 

controller can measure the intensity of the input signal. This 

analogue value is proportional to the distance and angle of a 

nearby docking face and is used for guiding the docking 

process of two modules. This analogue value ranges from 0 to 

4.5 volt for a transmitter LED at 40cm distance to coincided 

docking faces, respectively. The four channels on each module 

engaged in a docking process results eight channels of 
information, which allows for guiding the docking process in 

3D space. In addition, receivers of a module can read the 

analogue value produced by the reflection of the module’s 

own transmitter LED. This can be used to measure the 

distance of a docking face from a reflective object. 

 

Fig. 7 Slave Controller Architecture 

 The amplifier stage is used to amplify and shape a digital 

signal received from another module during communication. 

Modules can communicate as far as up to one meter. The 

communication speed is 230K Baud and an IrDA timing mode 

is used. When a byte of data is received from a neighboring 

module, the SPI/RS232 interface, via a MAX3100 chip, 

generates an interrupt and the corresponding controller reads 
the received byte through the SPI bus. This interrupt driven 

architecture allows the controllers to use their time to perform 

other tasks and attend to the communication module only 

when there is a byte of information to be retrieved.  

 

Fig. 8 Communication interface on a dock face. 

In order to transmit a byte of data, a controller just needs to 
write the byte into the SPI/RS232 interface buffer and the rest 

of the process is taken care of by the interface. The output 

infra-red light of the transmitter LED can also be modulated 

through a command from a General Purpose Output (GPO) 

pin. This will generate a continuous modulated infra-red light 

to be received by the receiving LEDs for guiding the docking 

process. The modulated signal in combination with the filter 

module is used for removing DC level noise such as sun light 
in an outdoor environment.  

 Figure 9 shows the power sharing schematic. In each of 

the six docking faces there is switch/diode combination, which 

allows the current to always flow in. However, the out current 

is only possible if the switches are closed, which are 

controlled by the controller of the corresponding half module. 

The default position of the switch connected to the battery is 

on the charger side and the rest of the switches are normally 
open. 
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Fig. 9 Power Sharing circuit schematic. 

In an initial situation where all the batteries of a connected 

network of modules are fully discharged (all modules are 

dead) as soon as a charging source is connected to one of the 

connectors of a module, its battery starts charging through the 

input current and the battery switch. Once the module battery 

is charged, the controllers will become active and the output 

switches can be connected one by one to allow other modules 

to start charging without overloading the charging source. This 
design allows modules to share the battery power at will and 

in situations where the inside batteries fail, modules can get 

power from other modules. In the current prototype a 

1600mAh, 7.4 volt lithium-polymer battery is used. 

V.  SOFTWARE ARCHITECTURE 

The control of the SuperBot system is a challenging task, 

for modules must be able to dynamically reconfigure into 

different configurations/functionalities and support plug-and 

play with other types of devices. Our approach to this 
challenge will build upon our previous work on (i) hormone 

inspired distributed control, (ii) table based control for fast 

prototyping, and (iii) phase automata for coordinating module 

activities. This approach allows the SuperBot system to be: 

� Distributed: to support decentralized control and avoid 

single point failures (i.e., a single module failure would not 

paralyze the entire system). A module must select its actions 

based not on its absolute address or unique identifier, but 

based on its topological location in the current configuration. 

� Collaborative: to allow modules to negotiate the best 

actions for a global task. For example, if a snake’s head 
module wants to move forward while the tail wants to move 

backward, then they must negotiate to select the best action for 

the entire system. 

� Dynamic: to be able to adapt to the topological changes 

in the module network and support all possible configurations.  

� Asynchronous: to synchronize modules actions without 

a global clock. 

� Scalable: to work for any configuration regardless of the 

shape and size.  

The SuperBot software consists of three main 

components: 

A. Low-level Software 

The low-level software on the modules hides the details of 

low-level control of the hardware from the behavior software 

programmer and is built on top of AvrX, a small real-time 

kernel for embedded processors [21]. All system-level and 

user-level code is written in C language as separate tasks. 

Associated with each task is a message queue. Tasks can 

communicate with each other by placing messages into each 

other’s queue. Tasks can be set up to run periodically or to be 

run “on demand.” Figure 10 shows a simplified diagram of the 
tasks running on a SuperBot module. 

  

 

Fig. 10 Tasks running on a SuperBot module 

The AvrX kernel runs on each of the Atmega128 

controllers, together with a number of tasks. The Master and 

Slave use I2C serial communication to send messages to each 
other. The communication with other modules via the docks is 

handled by the IR tasks. For simplicity, the IR related tasks for 

only one dock on the Master and Slave are shown. Although 

the large number of tasks seems to add significant complexity, 

it actually minimizes the time that the CPU is blocked waiting 

on a task or resource.  

The handling of incoming data through IR and I2C is 

interrupt-driven. I2C communication is very fast and relatively 

reliable. The sending and receiving of data is therefore 

wrapped into single task: in this case the task switching cost is 

expected to be higher than the cost of not being able to send 
and receive simultaneously. The motor task implements a PID 

controller, which is being executed every one millisecond.  

The IR communication is much slower and tends to be 

noisier. For IR communication we have implemented the stop-

and-wait ARQ (Automatic Repeat reQuest) protocol. Once the 

IR interrupt handler receives a complete packet, it passes the 

packet on to a Receive Task. This task checks for transmission 

errors. If no errors are found the Receive Task will place the 

message into the appropriate message queue and ask the Send 

Task to send an ACK signal (acknowledgment) to the original 

sender. If there is an error, the Receive Task will ask the Send 
Task to send a NACK signal. A task on a neighboring module 

cannot directly send a message to a low-level task on a 

module, but only to a behavior task. So a message received on 

any of the docks is routed to a behavior task. If the destination 

task specified in the header of the message does not run on a 

receiving module, then the message is simply ignored.  

The sensor task is executed by the behavior task and once 

activated, it reports the status of the on-board sensors to the 

behavior task directly or through I2C channel. The power 

management task is responsible for checking each connector 

current, the status of the battery, charging the battery, and 

set/resetting the power switches in each docking face. 
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B. Behavior-Level Software 

The high-level behavior code runs only on the Master 

controller. In figure 10 only one behavior task is shown, but in 

principal several behavior tasks can run simultaneously. 

Examples of behavior tasks are power management, 

locomotion, manipulation, and self-reconfiguration. For 
control and coordination of multi module robots we have used 

a distributed approach, called “Digital Hormone Control” 

[13,14,15,16,17]. 

B. Remote-Client Software 

 This software module is the interface between the high-

level controller (usually a human) and SuperBot. The Remote-

client software is developed in Java and runs on a hand-held 

PC. High-level commands are sent to SuperBot through the 

wireless link; see figure 11. 

 

Fig. 11 The SuperBot remote commander. 

VI. EXPERIMENTS  

We have conducted several experiments to evaluate the 

performance of SuperBot modules. These experiments include 

single and dual module gaits, and sensors. 
Single module gaits demonstrate the outstanding ability of a 

single SuperBot module to move around, flip and change its 

direction. This ability is very critical in connecting detached 

SuperBot modules to make a connected network.  

 The dual module experiments have shown that SuperBot 

modules can synchronize their activities using communication 

and perform caterpillar-like, creep, drunken or S moving gaits 

and also being able to change direction in each case. The 

speed of creep gait has been 12.5cm/s. A dual module 
Caterpillar-like SuperBot has been able to move of small rocks 

and go through a pipe.  

 We have used the 3D accelerometer/inclinometer sensor 

to balance a cup of Dr Pepper. Also, we have used this sensory 

information to develop single module gaits that are dependent 

on the orientation of the module on the floor. As more 

modules are assembled we will use them to perform multi-

module gaits, manipulation and self-reconfiguration tasks. For 

videos of the above-mentioned and other experiments please 

visit: http://www.isi.edu/robots/superbot/movies/. 

VII. CONCLUSION AND FUTURE WORK 

 SuperBot, A deployable, multifunctional self-

reconfigurable robotic system was presented. It was discussed 

how SuperBot can be used in real applications which require 

flexible, efficient, sturdy, strong, and durable Robots. 

 In the future, we plan to assemble twenty SuperBot 

modules and evaluate the performance of larger networks of 

modules. We plan to add intelligent docking connectors and 

evaluate self-reconfiguration tasks. We also plan to build 
module using titanium and develop space qualified 

electronics.   
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