
 Open access Proceedings Article DOI:10.1109/IROS.2006.281719

SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic
System — Source link

Behnam Salemi, Mark Moll, Wei-Min Shen

Institutions: University of Southern California

Published on: 01 Oct 2006 - Intelligent Robots and Systems

Topics: Self-reconfiguring modular robot, Mobile robot, Robot and Modular design

Related papers:

 M-TRAN: self-reconfigurable modular robotic system

 PolyBot: a modular reconfigurable robot

 Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics]

 Modular ATRON: modules for a self-reconfigurable robot

 Distributed Self-Reconfiguration of M-TRAN III Modular Robotic System

Share this paper:

View more about this paper here: https://typeset.io/papers/superbot-a-deployable-multi-functional-and-modular-self-
lunllcp5ug

https://typeset.io/
https://www.doi.org/10.1109/IROS.2006.281719
https://typeset.io/papers/superbot-a-deployable-multi-functional-and-modular-self-lunllcp5ug
https://typeset.io/authors/behnam-salemi-3h1o49p04j
https://typeset.io/authors/mark-moll-33491sp6v8
https://typeset.io/authors/wei-min-shen-2m0udk9jej
https://typeset.io/institutions/university-of-southern-california-255p3f56
https://typeset.io/conferences/intelligent-robots-and-systems-y4ymjudi
https://typeset.io/topics/self-reconfiguring-modular-robot-3ttpzplg
https://typeset.io/topics/mobile-robot-1is55hi3
https://typeset.io/topics/robot-2gtn7p2t
https://typeset.io/topics/modular-design-1qoktbue
https://typeset.io/papers/m-tran-self-reconfigurable-modular-robotic-system-5gow0gfpaw
https://typeset.io/papers/polybot-a-modular-reconfigurable-robot-yexerv18z2
https://typeset.io/papers/modular-self-reconfigurable-robot-systems-grand-challenges-c7a7dajv4r
https://typeset.io/papers/modular-atron-modules-for-a-self-reconfigurable-robot-3wl49p957g
https://typeset.io/papers/distributed-self-reconfiguration-of-m-tran-iii-modular-1rbephbvl6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/superbot-a-deployable-multi-functional-and-modular-self-lunllcp5ug
https://twitter.com/intent/tweet?text=SUPERBOT:%20A%20Deployable,%20Multi-Functional,%20and%20Modular%20Self-Reconfigurable%20Robotic%20System&url=https://typeset.io/papers/superbot-a-deployable-multi-functional-and-modular-self-lunllcp5ug
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/superbot-a-deployable-multi-functional-and-modular-self-lunllcp5ug
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/superbot-a-deployable-multi-functional-and-modular-self-lunllcp5ug
https://typeset.io/papers/superbot-a-deployable-multi-functional-and-modular-self-lunllcp5ug

SUPERBOT: A Deployable, Multi-Functional, and

Modular Self-Reconfigurable Robotic System

Behnam Salemi, Mark Moll, and Wei-Min Shen

Information Sciences Institute

University of Southern California

Marina del Rey, USA

{salemi, moll, shen}@isi.edu

 Abstract – Self-reconfigurable robots are modular robots that

can autonomously change their shape and size to meet specific

operational demands. Recently, there has been a great interest in

using self-reconfigurable robots in applications such as

reconnaissance, rescue missions, and space applications. Designing

and controlling self-reconfigurable robots is a difficult task. Hence,

the research has primarily been focused on developing systems that

can function in a controlled environment. This paper presents a

novel self-reconfigurable robotic system called SuperBot, which

addresses the challenges of building and controlling deployable

self-reconfigurable robots. Six prototype modules have been built

and preliminary experimental results demonstrate that SuperBot is

a flexible and powerful system that can be used in challenging real-

world applications.

 Index Terms – Modular Robots, Self-Reconfigurable Robots,

Distributed Robotics, Deployable Robots

I. INTRODUCTION

Self-reconfigurable robots are modular robots that can

autonomously change their shape and size to meet specific

operational demands. In domains where the task and
environment are known, it is often more efficient to build

fixed-shape special purpose robots [1]. However, in

applications such as reconnaissance, rescue missions, and

space applications where the task and environment are not

fully known self-reconfigurable robots can out-perform fixed-

shape robots.

Because of their self-reconfigurability, self-reconfigurable

robots are more versatile, fault-tolerant, and efficient
compared to their non self-reconfigurable counterparts. For

example, a self-reconfigurable robot can become a snakelike

robot to crawl through a narrow passage and then grow legs

and grippers to pick up and carry an object.

Building and controlling self-reconfigurable robots are

very difficult. Designing modules that are flexible and allow

for efficient performance of locomotion, object manipulation

and self-reconfiguration is very challenging. Connectors are
critical parts of a self-reconfigurable module [2]. A successful

connector design requires solving many challenging problems

for enabling modules to reliably dock/undock and create a

strong and effective robot.

In the past decade, researchers have addressed the

hardware and software challenges of building self-

reconfigurable robots. In the area of hardware design, Chain-

type [3,4,6,7], and Lattice-based [8,9,10,11] self-

reconfigurable robots have been developed. Lattice-based self-
reconfigurable robots consist of a set of modules that can only

attach to other modules in discrete locations on a lattice. They

require continuous self-reconfiguration for locomotion and

manipulation. Chain-type self-reconfigurable robotic systems

are made up of linear, looped, or branched chains of

homogeneous or heterogeneous modules. This class of self-

reconfigurable robots are able to separate locomotion from

reconfiguration and for locomotion and manipulation these
robots do not require continuous self-reconfiguration.

In the area of software, many centralized and distributed

software systems have been presented. Distributed approaches

include Digital-Hormone control [16,17], Role-Based control

[18], and local search approaches such as [19]. Centralized

approaches include gait-table control [1], and M-TRAN

control system [5]. Difficulties in controlling Self-

reconfigurable robots stem from the fact that a network of
self-reconfigurable modules is distributed in nature, modules

have limited information, and the overall behaviour of a robot

emerges from the coordinated actions of all constituting

modules. A control system for such robots needs to be

adaptive to dynamic topology of the robot, scalable, fault

tolerant and distributed to avoid introducing a single point on

failure in the system.

Fig. 1 A network of 6 SuperBot Self-reconfigurable modules

Due to the difficulties of designing and controlling self-

reconfigurable robots, in the past, almost all the research

efforts have been focused on developing hardware and

software systems that can function in the controlled indoor or
outdoor environment of a Lab. However, less attention has

been on designing fully functional self-reconfigurable robots

for real applications. Fortunately, recent advances in design

1-4244-0259-X/06/$20.00 ©2006 IEEE
3636

Proceedings of the 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems

October 9 - 15, 2006, Beijing, China

and control of self-reconfigurable robots have made this

dream become a possibility.

Transition from a controlled environment to a real-world

situation, however, introduces many new challenges to the
field of self-reconfigurable robotics. These challenges include

efficient performance of locomotion, manipulation, and self-

reconfiguration tasks in the presence of obstacles, power

management issues, modules mechanical and electronic

endurance and reliability in spite of being in contact with a

rough environment, dealing with dust, moisture, and strong

light sources, designing reliable and strong connectors,

sensing and meaningful interaction with the environment, and
efficient human-robot interaction and control.

In this paper, we present a novel deployable and multi-

functional self-reconfigurable robotic system called SuperBot.

SuperBot is being designed for NASA space exploration

programs and addresses the above-mentioned challenges.

Figure 1 shows a network of six connected SuperBot modules.

The form factor of SuperBot modules is similar to that of

the MTRAN modules [6]. However, SuperBot modules have
three degrees of freedom, and such capability has drastically

increased the mobility and flexibility of individual and

networked modules. SuperBot modules are designed to be

strong, flexible, and capable of performing efficient

locomotion, self-reconfiguration, and manipulation tasks.

Similar to MTRAN, a network of SuperBot modules can

perform as both lattice-based and chain-type self-

reconfigurable robots. A network of SuperBot modules is
capable of sharing power and communicating using high-

speed infra-red LEDs. The on-board multi-threaded software

controls modules’ functionalities and coordinates the

behaviours of the network of modules in a distributed fashion.

This paper is organized as follows: In Section two we

discuss the considerations in designing SuperBot. In section

three we will describe its hardware architecture. In section

four we will describe the software architecture. Section five
describes some performance evaluation experiments; and

section six will conclude and describes the future research

directions.

II. DESIGN CONSIDERATIONS

 The basic design philosophy of Superbot modules is to

develop flexible, powerful and sturdy modules that can

efficiently perform tasks in an uncontrolled environment

without requiring close attention. In order to accomplish this
goal six criterions were considered in the design and

construction of SuperBot.

 First, as SuperBot is intended to operate in a harsh and

rough environment, the design needed to allow for roughed

and sealable modules. Modules and connectors needed to

cover their internal electronic and mechanical components and

protect them from dust, moisture, and physical impact. The

building materials needed to be resistant to abrasion and other
deleterious effects.

 Second, SuperBot is required to perform locomotion,

manipulation and self-reconfiguration tasks in the presence of

obstacles in an uncontrolled environment. Therefore, it was

essential for the modules to have enough dexterity in order to

maneuver around obstacles to perform the task in hand and at

the same time conserve energy by minimizing the number of

required movements.
 Third, to be effective in real applications, SuperBot

modules should have enough torque to move and lift a

reasonable number of neighboring modules and exert force

whenever it is needed. This required maximizing the power of

actuators while the size and weight of the module are kept

minimal.

 Fourth, a network of SuperBot modules should be

cognizant of their environment through a series of sensors
which allow them to avoid obstacles and also navigate in the

environment. This also includes the ability of sensing and

communicating with other SuperBot modules. Due to the

distributed nature of a network of SuperBot modules, sensory

information is available in the network of modules in a

distributed form. The sensory information might have to be

fused for autonomous decision-making or being

communicated to a controller host.
 Fifth, available power in a network of SuperBot modules

should be efficiently used and managed. Some modules may

need to move more often and spend more energy while some

other modules may not move at all. In addition, the power

source of some modules may fail. In such situations, modules

should be able to share the available energy in the network. In

addition, SuperBot should be able to connect one of its

modules to a charging station and charge all connected
modules.

 Sixth, distributed control software was necessary for

effective use of SuperBot. The control software needed to be

real-time, fault tolerant and scalable. In addition, it had to

accept and execute high-level commands for locomotion,

manipulation and self-reconfiguration from a remote host

without requiring detailed instructions for individual modules.

 In addition to above considerations, the following
criterions were also considered in the design of the connectors:

First, the connectors needed to be genderless meaning that any

connector of a module had to be able to dock to any other

connector of another module. Second, two docked connectors

could be oriented relative to each other in 90◦ intervals. Third,

connectors needed to enable communication and power

sharing among modules. Fourth, either side of two docked

connectors had to be able to undock. This is necessary in a
situation where one side is dead. In this situation the other side

should be able to release itself. Fifth, the connector needed to

enforce necessary tension to hold docked faced together.

Sixth, connectors needed to sense and guide docking process.

Seventh, as it was mentioned earlier, connectors needed to be

sand and moisture proof and resistant to the abrasion.

 At the time of the preparation of this paper, several

designs that fulfill on all the above requirements were being
prototyped and tested. The analysis and experimental results

of the finalized connector design will be reported in the future

publications. For the time being, manual connectors have been

used for docking purposes.

3637

III. MECHANICAL DESIGN

The overall body of a SuperBot module is in the form of

two linked cubes. The dimensions of each cube are 84x84x84

millimeter and therefore each module is 168 mm long. The
current prototypes are made up of a hard aluminium alloy and

weigh about 500 grams including the electronics and batteries.

Each module consists of three main parts: Two end effectors

and a rotating central part. This allows a module to have three

degrees of freedom in the form of 180◦ yaw, 180◦ pitch, and

270◦ roll; see figure 2.This design gives the SuperBot module

the most flexible movements that we know in the literature,

and will allow a single module to bend and twist into many
different shapes and provide the needed flexibility for

multimode locomotion.

Connector (up)

Connector (front)

Connector (left)

Connector (right)

Connector (back)

Connector (down)

Fig. 2 SuperBot module design and Degrees of Freedom.

Other designs such as MTRAN [6] which do not have the

rolling ability of the central part can in many cases produce a
similar roll effect of a module through execution of a sequence

of bending, docking, and undocking actions. However, that

requires consumption of more energy and performing them

may not be possible in the presence of other obstacles. Figure

3 shows a prototype of Superbot module where as a result of

the 90◦ rotation of the central part the end effectors are in two

different modes. In figure 3a, the end effectors sweeping

planes are perpendicular to each other which are equivalent to
the CONRO [4] module design and in figure 3b the end

effectors sweeping planes coincide which are equivalent to the

MTRAN [6] module design.

(a) (b)

Fig. 3 Two modes of Superbot; similar to (a) CONRO and (b) M-TRAN

There are six connectors on each Superbot module; one on
each side of the end effectors; see figure 2. Any of the six

connectors of a module can connect to any connectors of

another module in all 90◦ interval orientations.

 The drive train of each degree of freedom of a module

consists of a MicroMo® DC electric motor, a planetary

gearbox, and an external gearbox; see figure 4. The DC motor

outputs between 5 to 21.18 milli-Newton-meter torque. The

gear ratio of the planetary gearbox is 1:86 and its efficiency is

70%. The gear ratio of the external gearbox is 1:5. Based on

the following calculation this results a maximum of 6.38 Nm

torque.

21.18 x 86 x 70% x 5 = 6375 mN-m = 6.38 N-m

 Given the size and weight of each module, this amount of

torque is enough for reliably lifting three neighboring

modules.

Fig. 4 SuperBot Motor, Gearboxes and end effector drive shaft

IV. HARDWARE ARCHITECTURE

 SuperBot possesses a modular hardware architecture.

Each module’s on-board hardware is responsible for
controlling the actuators, connectors and sensors, power

management, communicating with neighboring modules,

autonomous decision-making, and distributed control of high-

level behaviours.

 Each half module (cube) has a controller. The controller

of the half module containing the battery and one motor is

called the ‘master controller’ and the controller of the other

half is called the ‘slave controller’; see figure 5. Both
controllers are connected through power lines and a bi-

directional 400 Kb/S I2C bus. I2C is a two-wire bus and is

selected to provide enough bandwidth between half modules

and at the same time keep the number of wires among the

cubes low. Each controller is responsible for managing the

motors, sensors, communication, power and docking of its

corresponding cube. In addition, the master controller is

responsible for running the high-level behaviour controller in
each module.

Fig. 5 SuperBot hardware control Architecture

Each controller is based on a 16 MHZ ATmega128

microcontroller [20], which is an 8-bit low power AVR

processor with 128 Kbytes of flash program memory, 4

3638

Kbytes of EEPROM and 4 Kbytes of internal SRAM. The

ATmega128 also includes an 8-channel 10-bit ADC, three

timers, and several bus interfaces including two USARTs, SPI,

and I2C.

Figure 6 shows the details of the master controller. A wireless

receiver is considered for remote on/off, motor disable, to stop
modules while the control program is running, and receiving

serial commands. The Atmega128 can measure the voltage

and output current of the battery. PWM pulses are interfaced

to the motor through an H-bridge for controlling the motor

speed. The angular position of the end effector is sensed by a

potentiometer that is coupled to its shaft and is connected to an

A/D line of the Atemga128. A one Mb/s SPI communication

bus is used for communicating with dock faces. This provides
enough bandwidth to communicate with three dock faces that

communicate with their neighboring modules through 230K

Baud RS-232 lines. Details about the communication circuits

are given below. A 3D accelerometer/inclinometer is also

interfaced through the SPI bus. A JTAG port is used for

debugging purposes. Figure 7 shows the details of the slave

controller, which has a similar architecture.

Fig. 6 Master Controller Architecture

 Figure 8 shows the details of the communication interface

on a dock face. A communication interface has four infra-red

receiver LEDs and a transmitter LED. Any combinations of

the receiver channels can be selected which results the sum of

the received signals on each receiver LED to be delivered to a

buffer stage. The output of the buffer is connected to an A/D
channel of the corresponding controller. As a result the

controller can measure the intensity of the input signal. This

analogue value is proportional to the distance and angle of a

nearby docking face and is used for guiding the docking

process of two modules. This analogue value ranges from 0 to

4.5 volt for a transmitter LED at 40cm distance to coincided

docking faces, respectively. The four channels on each module

engaged in a docking process results eight channels of
information, which allows for guiding the docking process in

3D space. In addition, receivers of a module can read the

analogue value produced by the reflection of the module’s

own transmitter LED. This can be used to measure the

distance of a docking face from a reflective object.

Fig. 7 Slave Controller Architecture

 The amplifier stage is used to amplify and shape a digital

signal received from another module during communication.

Modules can communicate as far as up to one meter. The

communication speed is 230K Baud and an IrDA timing mode

is used. When a byte of data is received from a neighboring

module, the SPI/RS232 interface, via a MAX3100 chip,

generates an interrupt and the corresponding controller reads
the received byte through the SPI bus. This interrupt driven

architecture allows the controllers to use their time to perform

other tasks and attend to the communication module only

when there is a byte of information to be retrieved.

Fig. 8 Communication interface on a dock face.

In order to transmit a byte of data, a controller just needs to
write the byte into the SPI/RS232 interface buffer and the rest

of the process is taken care of by the interface. The output

infra-red light of the transmitter LED can also be modulated

through a command from a General Purpose Output (GPO)

pin. This will generate a continuous modulated infra-red light

to be received by the receiving LEDs for guiding the docking

process. The modulated signal in combination with the filter

module is used for removing DC level noise such as sun light
in an outdoor environment.

 Figure 9 shows the power sharing schematic. In each of

the six docking faces there is switch/diode combination, which

allows the current to always flow in. However, the out current

is only possible if the switches are closed, which are

controlled by the controller of the corresponding half module.

The default position of the switch connected to the battery is

on the charger side and the rest of the switches are normally
open.

3639

Fig. 9 Power Sharing circuit schematic.

In an initial situation where all the batteries of a connected

network of modules are fully discharged (all modules are

dead) as soon as a charging source is connected to one of the

connectors of a module, its battery starts charging through the

input current and the battery switch. Once the module battery

is charged, the controllers will become active and the output

switches can be connected one by one to allow other modules

to start charging without overloading the charging source. This
design allows modules to share the battery power at will and

in situations where the inside batteries fail, modules can get

power from other modules. In the current prototype a

1600mAh, 7.4 volt lithium-polymer battery is used.

V. SOFTWARE ARCHITECTURE

The control of the SuperBot system is a challenging task,

for modules must be able to dynamically reconfigure into

different configurations/functionalities and support plug-and

play with other types of devices. Our approach to this
challenge will build upon our previous work on (i) hormone

inspired distributed control, (ii) table based control for fast

prototyping, and (iii) phase automata for coordinating module

activities. This approach allows the SuperBot system to be:

� Distributed: to support decentralized control and avoid

single point failures (i.e., a single module failure would not

paralyze the entire system). A module must select its actions

based not on its absolute address or unique identifier, but

based on its topological location in the current configuration.

� Collaborative: to allow modules to negotiate the best

actions for a global task. For example, if a snake’s head
module wants to move forward while the tail wants to move

backward, then they must negotiate to select the best action for

the entire system.

� Dynamic: to be able to adapt to the topological changes

in the module network and support all possible configurations.

� Asynchronous: to synchronize modules actions without

a global clock.

� Scalable: to work for any configuration regardless of the

shape and size.

The SuperBot software consists of three main

components:

A. Low-level Software

The low-level software on the modules hides the details of

low-level control of the hardware from the behavior software

programmer and is built on top of AvrX, a small real-time

kernel for embedded processors [21]. All system-level and

user-level code is written in C language as separate tasks.

Associated with each task is a message queue. Tasks can

communicate with each other by placing messages into each

other’s queue. Tasks can be set up to run periodically or to be

run “on demand.” Figure 10 shows a simplified diagram of the
tasks running on a SuperBot module.

Fig. 10 Tasks running on a SuperBot module

The AvrX kernel runs on each of the Atmega128

controllers, together with a number of tasks. The Master and

Slave use I2C serial communication to send messages to each
other. The communication with other modules via the docks is

handled by the IR tasks. For simplicity, the IR related tasks for

only one dock on the Master and Slave are shown. Although

the large number of tasks seems to add significant complexity,

it actually minimizes the time that the CPU is blocked waiting

on a task or resource.

The handling of incoming data through IR and I2C is

interrupt-driven. I2C communication is very fast and relatively

reliable. The sending and receiving of data is therefore

wrapped into single task: in this case the task switching cost is

expected to be higher than the cost of not being able to send
and receive simultaneously. The motor task implements a PID

controller, which is being executed every one millisecond.

The IR communication is much slower and tends to be

noisier. For IR communication we have implemented the stop-

and-wait ARQ (Automatic Repeat reQuest) protocol. Once the

IR interrupt handler receives a complete packet, it passes the

packet on to a Receive Task. This task checks for transmission

errors. If no errors are found the Receive Task will place the

message into the appropriate message queue and ask the Send

Task to send an ACK signal (acknowledgment) to the original

sender. If there is an error, the Receive Task will ask the Send
Task to send a NACK signal. A task on a neighboring module

cannot directly send a message to a low-level task on a

module, but only to a behavior task. So a message received on

any of the docks is routed to a behavior task. If the destination

task specified in the header of the message does not run on a

receiving module, then the message is simply ignored.

The sensor task is executed by the behavior task and once

activated, it reports the status of the on-board sensors to the

behavior task directly or through I2C channel. The power

management task is responsible for checking each connector

current, the status of the battery, charging the battery, and

set/resetting the power switches in each docking face.

3640

B. Behavior-Level Software

The high-level behavior code runs only on the Master

controller. In figure 10 only one behavior task is shown, but in

principal several behavior tasks can run simultaneously.

Examples of behavior tasks are power management,

locomotion, manipulation, and self-reconfiguration. For
control and coordination of multi module robots we have used

a distributed approach, called “Digital Hormone Control”

[13,14,15,16,17].

B. Remote-Client Software

 This software module is the interface between the high-

level controller (usually a human) and SuperBot. The Remote-

client software is developed in Java and runs on a hand-held

PC. High-level commands are sent to SuperBot through the

wireless link; see figure 11.

Fig. 11 The SuperBot remote commander.

VI. EXPERIMENTS

We have conducted several experiments to evaluate the

performance of SuperBot modules. These experiments include

single and dual module gaits, and sensors.
Single module gaits demonstrate the outstanding ability of a

single SuperBot module to move around, flip and change its

direction. This ability is very critical in connecting detached

SuperBot modules to make a connected network.

 The dual module experiments have shown that SuperBot

modules can synchronize their activities using communication

and perform caterpillar-like, creep, drunken or S moving gaits

and also being able to change direction in each case. The

speed of creep gait has been 12.5cm/s. A dual module
Caterpillar-like SuperBot has been able to move of small rocks

and go through a pipe.

 We have used the 3D accelerometer/inclinometer sensor

to balance a cup of Dr Pepper. Also, we have used this sensory

information to develop single module gaits that are dependent

on the orientation of the module on the floor. As more

modules are assembled we will use them to perform multi-

module gaits, manipulation and self-reconfiguration tasks. For

videos of the above-mentioned and other experiments please

visit: http://www.isi.edu/robots/superbot/movies/.

VII. CONCLUSION AND FUTURE WORK

 SuperBot, A deployable, multifunctional self-

reconfigurable robotic system was presented. It was discussed

how SuperBot can be used in real applications which require

flexible, efficient, sturdy, strong, and durable Robots.

 In the future, we plan to assemble twenty SuperBot

modules and evaluate the performance of larger networks of

modules. We plan to add intelligent docking connectors and

evaluate self-reconfiguration tasks. We also plan to build
module using titanium and develop space qualified

electronics.

ACKNOWLEDGMENT

 This research is supported in part by NASA’s Cooperative

Agreement NNA05CS38A, and in part by US Army Research

Office under the grants W911NF-04-1-0317 and W911NF-05-

1-0134. The authors are also grateful to other members of the

Polymorphic Robotics Laboratory for their useful comments
on the earlier drafts of this paper.

REFERENCES

[1] Yim, M., Locomotion with a unit-modular reconfigurable robot (Ph.D.

Thesis), in Department of Mechanical Engineering. 1994, Stanford

University.

[2] Nilsson, M., Essential Properties of Connectors for Self-reconfiguring

Modular Robots, . 2001, Autonomous Functional Lab: Kista, Sweden.

[3] T. Fukuda, Y. Kawauchi, and F. Hara, "A Study on a Dynamically

Reconfigurable Robotic System "CEBOT"," Japan Soc. Mech. Eng.

(JSME) Int'l Journal , Series C, Vol. 37, No.1, pp.162-171 1994

[4] Castano, A., W.-M. Shen, P. Will, CONRO: Towards Miniature Self-

Sufficient Metamorphic Robots. Autonomous Robots, 2000.

[5] E. Yoshida, et al.: "A Self-Reconfigurable Modular Robot:

Reconfiguration Planning and Experiments", International Journal of

Robotics Research, Vol. 21, No. 10, pp.903-916, 2003

[6] Murata, S. et al M-TRAN: self-reconfigurable modular robotic system,

Mechatronics, IEEE/ASME Transactions on Volume: 7, Issue: 4

On page(s): 431- 441, 2002

[7] Yim, D. G. Duff, and K. D. Roufas, “PolyBot: a modular reconfigurable

robot,” in International Conference on Robotics and Automation, (San
Francisco, California, USA), IEEE, Apr. 2000. In press.

[8] Lee, W.H., Sanderson A. C. Dynamics and Distributed Control for

Tetrobot Robots. in ICRA. 1999. Detroit.

[9] Murata, S., H. Kurokawa, S. Kokaji. Self-Assembling Machine. in Proc.

IEEE Robotics and Automation. 1994.

[10]Murata, S., H. Kurokawa, E. Toshida, K. Tomita, and S. Kokaji. A 3-D

self-reconfigurable structure. in ICRA. 1998.

[11]Rus D., Marsette Vona: Crystalline Robots: Self-Reconfiguration with

Compressible Unit Modules. Auton. Robots 10(1): 107-124 (2001)

[12]Kotay, K., D. Rus, M. Vona, and C. McGray. The self-reconfiguring

robotic molecule. in ICRA. 1998.

[13]Salemi, B., WM. Shen and P. Will. Hormone Controlled Metamorphic

Robots. in ICRA. 2001.

[14]Salemi B., Peter Will, and Wei-Min Shen. "Distributed Task Negotiation

in Modular Robots". IEEE/Robotics Society of Japan, Special Issue on

"Modular Robots", 2003.

[15]Salemi B., Wei-Min Shen. "Distributed Behavior Collaboration for Self-

Reconfigurable Robots". International Conference on Robotics and

Automation. April - May 2004, New Orleans, LA, USA.

[16]Salemi B. Peter Will, and Wei-Min Shen. "Autonomous Discovery and

Functional Response to Topology Change in Self-Reconfigurable

Robots". International Conference on Intelligent Robots and Systems.

September - October 2004, Sendai, Japan.

[17]Shen, W.-M., Salemi, B., and Will, P. 2002. Hormone-Inspired Adaptive
Communication and distributed control for CONRO self-reconfigurable
robots. IEEE Transactions on Robotics and Automation, 18(5).

[18][Stoy 2002a] Stoy, K., Shen,WM., Will, P.,, Using Role-Based Control to

Produce Locomotion in Chain-Type Self-Reconfigurable Robots.

IEEE/ASME Transactions on Mechatronics, 2002. 7(4): p. 410.

[19]Bojinov, H., A.Casal,T.Hogg. Multiagent Control of Self-reconfigurable

Robots. in ICMAS. 2000. Boston,MA,USA.

[20] http://www.atmel.com/dyn/products/product_card.asp?part_id=2018

[21]L. Barello, “AvrX real time kernel real time kernel.” [Online]. Available:

http://www.barello.net/avrx/

3641

