
Superbubbles, Ultrabubbles, and Cacti

BENEDICT PATEN,1 JORDAN M. EIZENGA,1 YOHEI M. ROSEN,1 ADAM M. NOVAK,1

ERIK GARRISON,2 and GLENN HICKEY1

ABSTRACT

A superbubble is a type of directed acyclic subgraph with single distinct source and sink
vertices. In genome assembly and genetics, the possible paths through a superbubble can be
considered to represent the set of possible sequences at a location in a genome. Bidirected
and biedged graphs are a generalization of digraphs that are increasingly being used to
more fully represent genome assembly and variation problems. In this study, we define
snarls and ultrabubbles, generalizations of superbubbles for bidirected and biedged
graphs, and give an efficient algorithm for the detection of these more general structures.
Key to this algorithm is the cactus graph, which, we show, encodes the nested decompo-
sition of a graph into snarls and ultrabubbles within its structure. We propose and dem-
onstrate empirically that this decomposition on bidirected and biedged graphs solves a
fundamental problem by defining genetic sites for any collection of genomic variations,
including complex structural variations, without need for any single reference genome
coordinate system. Further, the nesting of the decomposition gives a natural way to de-
scribe and model variations contained within large variations, a case not currently dealt
with by existing formats [e.g., variant cell format (VCF)].

Keywords: genome assembly, genome graphs, genomic variation, sequence analysis, variant

discovery.

1. INTRODUCTION

Graphs are used extensively in biological sequence analysis, where they are often used to represent

uncertainty about, or ensembles of, potential nucleotide sequences. Several subtypes have become espe-

cially prominent for sequence representation, in particular the de Bruijn graph (de Bruijn, 1946; Pevzner et al.,

2001), the string graph (Myers, 2005), the breakpoint graph (Pevzner, 2000; Alekseyev and Pevzner, 2009), and

the bidirected graph (aka sequence graph; Edmonds and Johnson, 1970; Medvedev and Brudno, 2009).

In the context of de novo sequence assembly, several characteristic types of subgraph are recognized, in

particular the bubble (Zerbino and Birney, 2008), a pair of paths that start and end at common source and

sink nodes but are otherwise disjoint. In the context of sequence analysis, a bubble can represent a potential

sequencing error or a genetic variation within a set of homologous molecules. An efficient algorithm for

bubble detection was proposed by Birmelé et al. (2012).
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A generalization of the notion of a bubble, the superbubble is a more complex subgraph type in which

a set of (not necessarily disjoint) paths start and end at common source and sink nodes. This problem

was initially proposed by Onodera et al. (2013), who gave a quadratic solution. Brankovic et al. (2015)

recently provided a linear time algorithm for superbubbles on directed acyclic graphs (DAGs). This

result, when paired with a previous linear time transformation of the problem of superbubbles on

directed graphs to superbubbles on DAGs (Sung et al., 2015), yields a linear cost solution for computing

superbubbles on digraphs. For a review of superbubbles and their use in sequence analysis, refer

Iliopoulos et al. (2016). In this article, we generalize the idea of superbubble to the more general case of

a bidirected graph, connect a slight generalization of the superbubble, which we call the ultrabubble, and

show how it relates to the decomposition of the graph into 2- and 3-edge connected (2-EC and 3-EC)

components.

2. METHODS

2.1. Directed, bidirected, and biedged graphs

A bidirected graph D = (VD‚ ED) is a graph in which each endpoint of every edge has an indepen-

dent orientation (denoted either ‘‘left’’ or ‘‘right’’), indicating whether the endpoint is incident with the

left or right side of the given vertex. The sides of D are, therefore, the set VD · fleft‚ rightg, and each

edge in ED is a pair set of two sides (Fig. 1). We say for all x 2 VD, (x‚ left) and (x‚ right) are opposite

sides.

Any digraph is a special case of a bidirected graph in which each edge connects a left and a right side (by

convention, we here consider the right side to be the outgoing side and the left side the incoming side, so

that the conversion from a digraph to a bidirected graph is determined; Fig. 1).

A biedged graph is a graph with two types of edges: black edges and gray edges, such that each vertex is

incident with at most one black edge (Fig. 1C).

For any bidirected graph D, there exists an equivalent biedged graph B(D) = (VB(D)‚ EB(D)), where:

� VB(D) = VD · fleft‚ rightg, the sides of VD,
� EB(D) = SB(D) [ ED, where ED are the gray edges,
� and SB(D) = ff(x‚ left)‚ (x‚ right)gjx 2 VDg are the black edges.

For a vertex x 2 VB(D), we use the notation x̂ to denote its opposite side.

Clearly, the bidirected and biedged representations are essentially equivalent, and the choice to use either

one is largely a stylistic consideration. For the remainder of this article, we will mostly use the biedged

representation. As any digraph is a special case of a bidirected graph and any bidirected graph has an

equivalent biedged graph, so any digraph has an equivalent biedged graph.

A

B

C

FIG. 1. (A) A digraph. (B) A bidirected graph.

Each node is drawn as a box, and the orientation for

each edge endpoint is indicated by the connection

to either the left or right side of the node. The graph

excluding the dotted edges is the equivalent bidir-

ected graph for the digraph in (A); the dotted edges

encode an inversion that cannot be expressed in

the digraph representation. (C) A biedged graph

equivalent to the bidirected graph shown in (B).
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2.2. Directed walks on biedged and bidirected graphs

A directed walk on a bidirected graph is a walk that at each visited vertex exits the opposite side to that

which it enters. On a biedged graph, a directed walk is equivalent to a walk that alternates between black

and gray edges. A directed cycle is a closed directed walk that starts and ends either on the same side (e.g.,

a self-loop edge) or on opposites sides of a vertex (in which case the start and end is arbitrary due to

symmetry). A bidirected or biedged graph is acyclic if it contains no directed cycles.

These definitions are a generalization of a directed walk on a digraph. In a bidirected representation of a

digraph, all edges in a directed walk are left-to-right or all are right-to-left. A directed walk on a general

bidirected (or biedged) graph can mix these two types and additionally include edges that do not alternate

the orientation of their endpoints (e.g., left-right, right-right, and left-left edges).

Given these generalizing relationships, clearly a digraph D is acyclic if B(D) is acyclic. Note that any

acyclic biedged graph can also be converted into an equivalent DAG:

Lemma 1. For any acyclic biedged graph B(D), there exists an isomorphic biedged graph B(D) such

that D is a DAG.

Proof. For each connected component in B(D), use a depth first search (DFS) beginning at side x to label

the sides either ‘‘red’’ or ‘‘white’’: If x is not already labeled, then label x red and x̂ white. For each gray edge

incident with x̂, if the connected side is not labeled, label the connected side red and continue recursively

via DFS. In this way, all the sides in the connected component containing x will be labeled in a single DFS.

If during the recursion the connected side encountered is already labeled, then it must be labeled red, else

there would exist a directed cycle, a contradiction. Use the labeling to create B(D), isomorphic to B(D) but

replacing the orientation of the sides so that each side labeled white is a left side and each side labeled red is

a right side. All edges in B(D) connect a left and a right side.

2.3. Superbubbles, snarls, and ultrabubbles

Repeating the definition from Onodera et al. (2013), any pair of distinct vertices (x‚ y) in a digraph D is

called a superbubble (Fig. 2A) if:

� reachability: y is reachable from x.
� matching: The set of vertices, X, reachable from x without passing through y is equal to the set of

vertices from which y is reachable without passing through x (passing through here means to enter and

then exit a vertex on the path).

A

B

FIG. 2. (A) Superbubbles in a digraph. The superbubbles are indicated by pairs of numbered arrows, numbered

consistently with (B). (B) A biedged graph representation of the digraph in (A). The snarls are illustrated by numbered

arrows; the ultrabubbles are those numbered 1, 4, 9, and 12. Note, a side incident with a black bridge edge may be in

multiple snarls (see snarls numbered 10).
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� acyclicity: The subgraph induced by X is acyclic.
� minimality: No vertex in X other than y forms a pair with x that satisfies the criteria previously defined,

and similarly for y.

We call the subgraph induced by X the superbubble subgraph.

To generalize superbubbles for biedged graphs, we introduce the notion of a snarl, a minimal subgraph in

a biedged graph whose vertices are at most 2-black-edge-connected (2-BEC) to the remainder of the graph

(two vertices in a biedged graph are k-BEC if it takes the deletion of at least k black edges to disconnect

them). In a biedged graph B(D), a pair set of distinct, non-opposite vertices fx‚ yg are a snarl (Fig. 2B) if:

� separable: The removal of the black edges incident with x and y disconnects the graph, creating a

separated component X containing x and y and not x̂ and ŷ.
� minimality: No pair of opposites fz‚ ẑg in X exists such that fx‚ zg and fy‚ ẑg fulfills the criteria

described earlier.

We call a vertex not incident with a gray edge a tip (Zerbino and Birney, 2008). In a biedged graph B(D),

a snarl is an ultrabubble if its separated component is acyclic and contains no tips.

The following shows that a superbubble in a digraph is an ultrabubble in the equivalent biedged graph.

Lemma 2. For any superbubble (x, y) in a digraph D, the pair set fx0 = (x‚ right)‚ y0 = (y‚ left)g is an

ultrabubble in B(D).

Proof. Let d and e be the black edges incident with x0 and y0, respectively, and let X be the superbubble

subgraph of (x‚ y).

We start by proving that fx0‚ y0g satisfies the separable criteria. As y is reachable from x by definition, there

exists a directed path in B(D) between x0 (the right side of x) and y0 (the left side of y) that excludes d and e.

After the deletion of these black edges, x0 and y0, therefore, remain connected. If the separable criteria are not

satisfied, the deletion of d and e must, therefore, not disconnect x0 and y0 from either or both x̂0 and ŷ0, without

loss of generality assume x0 (and therefore y0) remains connected to x̂0.
If x̂0 is on a directed walk from x0 that excludes d, then the addition of d to this walk defines a directed

cycle in B(D). As all nodes reachable from x are in the separated component X, the existence of this cycle in

B(D) implies the existence of a corresponding directed cycle in X, a contradiction.

If there exists a non-directed walk from x0 to x̂0, then let z0 be the last node on the walk from x0 such that the

subwalk between x0 and z0 is a directed walk. By definition, there exists a directed walk from z0 to y0. The next

node on the walk from x0 to x̂0 after z0 is, by definition, not reachable from x0 but y0 must be reachable from this

node. This implies a contradiction of the matching criteria for the corresponding nodes in X.

We have, therefore, established that fx0‚ y0g fulfills the separable criteria. We have already established that if

a digraph is acyclic, its equivalent biedged graph is acyclic, therefore the separated component of fx0‚ y0g is

acyclic. As every node in X is reachable from both x and on a path from y, the separated component clearly

contains no tips.

It remains to prove that fx0‚ y0g fulfills the minimality criteria. If fx0‚ y0g do not satisfy the

minimality criteria without loss of generality, there exists a node z0 in the separated component of fx0‚ y0g
such that fx0‚ z0g are separable. It follows that all directed paths from x0 to y0 that exclude d and e visit z0,
and for the node z in D contained in z0, (x‚ z) fulfills (clearly) all the superbubble criteria, a contradiction.

2.4. Cactus graphs

A cactus graph is a graph in which any two vertices are at most 2-EC (Harary and Uhlenbeck, 1953). In a

cactus graph, each edge is part of at most one simple cycle, and, therefore, any two simple cycles intersect

at most one vertex.

For a graph G = (VG‚ EG), let G0 = (VG0‚ EG0 ) be a multigraph created by merging subsets of the vertices,

such that:

� VG0 is a partition of VG,
� EG0 = ffaG0(x)‚ aG0 (y)gjfx‚ yg 2 EGg is a multiset,

where aG0 : VG ! VG0 is a graph homomorphism that maps each vertex in VG to the set in VG0 that

contains it.
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Merging all equivalence classes of 3-EC vertices in a graph results in a cactus graph (Paten et al., 2011).

For a biedged graph B(D), let C(D) be the cactus graph created by first contracting all the gray edges in

B(D); then for each equivalence class of 3-EC vertices in the resulting graph merging together the vertices

within the equivalence class (Fig. 3A–C). As with G0 and G, VC(D) is a partition of the vertices of VB(D), and

EC(D) = ffaC(D)(x)‚ aC(D)(y)gjfx‚ yg 2 EB(D)g is a multiset.

For a vertex x 2 VB(D), we call aC(D)(x) its projection in C(D). Similarly for a set of vertices X � VB(D),

we call faC(D)(x)jx 2 Xg the projection of X in C(D). Let bC(D)(x) = faC(D)(x)‚ aC(D)(x̂)g, which is the

projection of the black edge incident with x in C(D).

Appendix 1 gives lemmas that make explicit the relationship between the edge connectivity of vertices in

B(D) and C(D), and that we use to prove the relationship between the snarls of B(D) and C(D).

2.5. Snarls and cacti

A pair set of distinct vertices fx‚ yg in B(D) are a chain pair if they project to the same vertex in C(D)

and their incident black edges project to the same simple cycle in C(D) (e.g., pairs of arrows in simple

cycles in Fig. 3C). A cyclic sequence of chain pairs within the same simple cycle in C(D) and ordered

according to the ordering of this simple cycle is a (cyclic) chain. Contiguous chain pairs in a chain share

two opposite sides of a black edge in B(D).

For a cactus graph C(D), the graph D(D) resulting from contracting all the edges in simple cycles in C(D)

is a called a bridge forest (Fig. 3D).

A pair set of distinct vertices fx‚ yg in B(D) are a bridge pair if they project to the same vertex in D(D)

and both their incident black edges are bridges (e.g., pairs of arrows numbered 1 and 2 in Fig. 3D). A

maximum sequence of bridge pairs within D(D) connected by incident nodes with degree 2 is an

(acyclic) chain. As with chain pairs, contiguous bridge pairs in a chain share two opposite sides of a

black (bridge) edge in B(D).

A

B

C

D

FIG. 3. (A) A biedged graph B(D) with the snarls indicated by pairs of numbered arrows. (B) The graph in (A) after

contracting the gray edges. (C) The cactus graph C(D) for B(D), constructed by merging the vertices in each 3-EC in

(B). (D) The bridge forest D(D), constructed by contracting the edges in simple cycles in (C). 3-EC, 3-edge connected.
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Theorem 1. The set of snarls in B(D) is equal to the union of chain pairs and bridge pairs.

Proof. Follows from Lemmas 10 and 11 given in Appendix 2.

Given Theorem 1 to calculate the set of snarls for a given biedged graph, it is sufficient to calculate the

cactus graph to give the set of snarls that map to chain pairs and the bridge forest to calculate the set of

snarls that map to bridge pairs. Constructing a cactus graph of the type described for a biedged graph is

linear in the size of the biedged graph [using the algorithm described in Paten et al. (2011)], and clearly

the cost of then calculating the bridge forest from the cactus graph is similarly linear. The number of chain

pairs is clearly linear in the size of the biedged graph; however, the number of bridge pairs is potentially

quadratic in the number of bridge pairs, so enumerating these latter snarls has potentially worst case

quadratic cost in terms of the size of the biedged graph. Next, we consider ways to prune the set of snarls

by using their natural nesting relationships to create a hierarchy of snarls that is at most linear in the size of

the biedged graph.

2.6. Compatible snarl families

One particularly attractive feature of superbubbles is that they have nested containment relationships.

That is, superbubbles have subgraphs that are either strictly nested or disjoint. Accordingly, a digraph is

partitioned into a set of top-level superbubble subgraphs and other graph members not contained in a

superbubble subgraph, and each top-level superbubble component then contains one or more child su-

perbubbles, forming a tree structure. The situation is more complex for snarls. The separated component of

snarls can overlap (Fig. 4) such that each partially contains the other. To create a properly nested hierarchy

of snarls, it is, therefore, necessary to exclude some snarls.

We will call a family of snarls compatible if all pairs of distinct snarls in the family have snarl subgraphs

that are either disjoint or nested. A compatible family of snarls has a nesting structure that is a forest,

similar to superbubbles. The following theorem provides a sufficient condition for constructing such a

family in many bidirected graphs.

Theorem 2. In a connected biedged graph with at least one black bridge edge, the family of snarls

whose subgraphs have no black bridge edges is compatible.

In addition, the next theorem shows that this family of snarls is a generalization of ultrabubbles.

Theorem 3. No ultrabubble contains a black bridge edge in its subgraph.

Proofs of these theorems are included in Appendix 3.

The bridge edge condition can also be used to construct a compatible family of snarls in a graph with no

black bridge edges. To do so, we break one black edge into two tips. Each of these tips is then a bridge edge,

so the family of snarls we construct from the modified graph is compatible. However, the family of snarls we

obtain will depend on our choice of a black edge to break. Heuristically, an edge corresponding to a highly

conserved genomic element should be chosen, since by construction it will not occur in any snarl’s subgraph.

Given a snarl decomposition, the following algorithm will filter them down to the compatible family we

have described:

� Iterate over the black bridge edges of the graph [i.e., the edges of D(D)].
� For a bridge edge (u‚ û), if either u or û is the boundary of a snarl, mark that snarl as not containing (u‚ û).
� Initialize a queue with u and û, and traverse outward in breadth-first order, ignoring restrictions on

directed biedged walks.
� On reaching a node x that is a boundary for a snarl fx‚ yg, if y, x̂, or ŷ has not been traversed, mark the

snarl as containing (u‚ û).

A B
FIG. 4. Overlapping snarls. (A) A bidirected graph, its

corresponding (B) cactus graph. The snarl numbered 2

contains the snarl numbered 4; similarly, the snarl num-

bered 3 contains the snarl numbered 1. The snarls num-

bered 2 and 3 overlap.

654 PATEN ET AL.



� On reaching a node x̂ whose opposite is boundary for a snarl fx‚ yg, if ŷ, x, or y has not been traversed,

mark the snarl as not containing (u‚ û).
� After completing every traversal, retain only snarls that were never marked as containing a black

bridge edge.

The validity of this algorithm is proved by Lemma 21. Naively, this algorithm requires

O(jEB(D)j(jVB(D)j + jEB(D)j)) time for the traversals, and O(jVB(D)j2) to mark all snarls. However, we can

implement optimizations that improve on this behavior. First, we can also stop the breadth first search

(BFS) traversals whenever they encounter a bridge edge. Lemmas 22 and 23 demonstrate that the

portion of the BFS traversal after a bridge edge is redundant. This reduces the time required for the

traversal to O(M(jVB(D)j + jEB(D)j)), where M = maxv2VD(D)
deg v. In general, M = O(jEB(D)j), so this does

not improve over the worst case asymptotic bound. However, in many practical cases, M is approxi-

mately constant.

We can also reduce the total number of snarls we need to filter by neglecting to produce some snarls a

priori. The quadratic bound on the number snarls is due to the fact that there is a bridge pair for all pairs of

edges incident on a node in D(D). However, Lemma 17 shows that none of these bridge pairs will pass the

filter. Accordingly, we can reduce the set of snarls we consider to only chain pairs and bridge pairs that

project to nodes of degree 2 in D(D), which we call simple bridge pairs. This reduces the total number of

snarls to O(jVB(D)j).

2.7. Ultrabubbles and cacti

Given Theorem 1, to determine the ultrabubbles in B(D), it is sufficient to check for each chain and

bridge pair if the separated component is acyclic and contains no tips.

Using Theorem 3, we can restrict the search to snarls whose separated component does not contain a

black bridge edge. This implies that we need only consider bridge pairs whose projection in D(D) is a

node whose degree is two, and we call such bridge pairs simple. The number of simple bridge pairs

must be less than the cardinality of D(D), and therefore the total number of chain pairs and simple

bridge pairs is less than or equal to jEB(D)j. Using D(D) and C(D), which both can be constructed in

O(jEB(D)j + jVB(D)j) time, we can clearly enumerate the set of simple chain pairs and bridge pairs in

O(jEB(D)j + jVB(D)j) time.

A simple algorithm to find the set of ultrabubbles enumerates all chain pairs and simple bridge pairs and

checks for each the acyclicity and tipless requirement by using a DFS, and is therefore worst case

O((jEB(D)j + jVB(D)j)2) time.

3. RESULTS

We implemented algorithms to create the cactus graph and bridge forest for an arbitrary bidirected graph

in the vg software package (http://github.com/vgteam/vg), where these structures are used to decompose

graphs into sites for variant calling.

Table 1. Coverage Statistics for the Ultrabubble Decomposition

of the Human Chromosome 1 Variant Graph

Structure Nesting level Count Coverage (bp) Coverage (pct)

Chains Top 1 221,715,143 86.60

Ultrabubbles Top 5,554,903 12,539,619 4.90

Snarls Top 75 21,775,387 8.50

Chains Second 919 20,594,450 8.04

Ultrabubbles Second 533,252 1,199,777 0.47

Snarls Second 0 0 0

Chains Third 67 495 0.00

Ultrabubbles Third 694 1623 0.00

Snarls Third 0 0 0

bp, base pairs; pct, percent.
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Families of compatible snarls are created by picking the longest path in the bridge graph of simple bridge

pairs, making this the top-level chain. The subset of ultrabubbles can also be computed by running vg stats -u.

In this study, we present the results of running this decomposition on a graph for human chromosome 1

constructed from the (*6.5 million) variant calls from phase 3 of the 1000 Genomes Project (Consortium

et al., 2015). The graph contained 19,917,881 nodes and 26,782,661 edges, and the runtime was 23 minutes

by using a maximum of 49G RAM on a single 2.27 GHz Intel Xeon core (4 minutes and 30G of RAM were

spent loading the graph into memory, a process that can be made an order of magnitude more efficient by

switching the implementation to use xg, vg’s succinct representation).

Table 1 shows the relative proportion of each of these structures. The first three rows describe the top-

level ultrabubble decomposition, which covers exactly every base in the input graph. The second three

rows display the same statistics but for structures that are entirely contained within top-level ultra-

bubbles or snarls. The remaining rows describe the third and deepest nesting level, which is contained

within second-level ultrabubbles or snarls. Every base within the graph is part of either a top-level

chain, ultrabubble, or snarl in this decomposition.

Figure 5 shows the size distribution of the top-level ultrabubble and snarl sizes. All but 22 top-level

ultrabubbles (totaling 3251 bases) are 100 bases long or shorter. If we consider such sites ‘‘easy’’ to call,

along with top-level chains, then we can assign roughly 91.5% of chromosome 1 into this category.

Figure 6 displays three examples of such small ultrabubbles. The remaining 9.5% of cases are found in a

small number of relatively large snarls.

A B

C

FIG. 6. Ultrabubbles found in the 1000 Genomes-derived graph for chromosome 1. (A) Two adjacent SNPs inside a

deletion (chr1:209,887,366). (B) A more complex combination of SNP and indel events (chr1:237,977,845). (C) Copy

number changes in a GT repeat (chr1:1,200,943). SNP, single nucleotide polymorphism.

FIG. 5. Histograms of top-level ultrabubble and snarl sizes in number of bases, as found in the 1000 Genomes graph

for chromosome 1.
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4. DISCUSSION AND CONCLUSION

We have presented a partial decomposition of a bidirected graph into a set of nested snarls and ultra-

bubbles. We believe this solves an important problem in using graphs for representing arbitrary genetic

variations by defining a decomposition that determines sites and alleles.

As the decomposition is only partial, not all elements in a graph will necessarily fit into one of the

ultrabubbles. However, we demonstrate that for an existing large library of variation (1000 Genomes), the

large majority of sites are either invariant or described by simple, top-level ultrabubbles.

For bases outside of these easy sites, it is possible to imagine further subclassification. For example,

classifying snarls that contain tips but are acyclic might define a useful class of subgraph that is common in

some subproblems (e.g., sequence assembly). Some structures representing dense or overlapping collec-

tions of sequence polymorphisms, insertions, and deletions cannot be fully described by using nested

ultrabubbles. We have previously shown that a generalization of the separability criterion for ultrabubbles

can describe sites in these cases (Rosen et al., 2017). Similarly, characteristic structures representing

genomic phenomena, such as inversions and translocations, are imaginable. Beyond our initial investiga-

tion, a more thorough evaluation of how much of a graph fits within a snarl, ultrabubble, or one of these

more complex structures would be a useful exercise. We propose that the compatible family of snarls we

constructed provides one path forward in this endeavor.

We can also envision that the nesting structure of snarls could play a powerful role in decomposing

genotyping problems. Nested graph structures often arise from nested indels and substitutions.

In the context of assembly, various error correction algorithms have been proposed to remove graph

elements and reduce the complexity of the graph. This increases the fraction of the graph that is contained

within an ultrabubble structure. We foresee the cactus graph structure providing a useful basis for exploring

such algorithms.

5. APPENDIX

5.1. Appendix 1

Lemma 3. A pair of vertices x, y are in the same component of B(D) if their projections are in the same

component of C(D).

Proof. IF: Follows given that, by definition, no pair of vertices not connected in B(D) project to the

same vertex in C(D). ONLY IF: Follows given that aC(D) is a graph homomorphism from B(D) to C(D) and

graph homomorphisms preverse connectedness.

Lemma 4. For a subset of edges X � EB(D), if the removal of the projection of X disconnects C(D),

then the removal of X disconnects B(D).

Proof. Follows given that graph homomorphisms preverse connectedness.

Lemma 5. The vertices in C(D) are the equivalence classes of 3-BEC in B(D).

Proof. Each pair of vertices B(D) that project to the same vertex in C(D) are either/or-both connected

by a path of gray edges (and hence 3-BEC) or connected by at least three black-edge-disjoint paths (using

Menger’s theorem).

Lemma 6. A black edge in B(D) is a bridge edge if its projection in C(D) is a bridge edge.

Proof. Let e = fx‚ x̂g 2 EB(D).

ONLY IF: Suppose e is a bridge. As e is a bridge, the vertices X reachable from x without visiting x̂ are

black-edge connected only by e to the vertices X0 reachable from x̂ without visiting x. Given Lemma 5, it

follows that the projection of X and the projection of X0 are disjoint, therefore the projection of e is a

bridge.
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IF: Suppose e is not a bridge but its projection is. By definition, there exists a path in B(D) from x to x̂

that does not include e. As aC(D) is a homomorphism, the projection of that path connects aC(D)(x) and

aC(D)(x̂) without traversing bC(D)(x), implying that it is not a bridge, a contradiction.

Lemma 7. A maximal set of vertices in C(D) is 2-EC if the union of its members is a 2-BEC

equivalence class of vertices in B(D).

Proof. Delete the black bridge edges in B(D) and the bridge edges in C(D) to create B(D)0 and C(D)0,
respectively. Each component is B(D)0 is, by definition, 2-BEC, and similarly each component in C(D)0 is

2-EC. The proof follows from Lemmas 3 and 6, by showing there exists a bijection between components in

B(D)0 and C(D)0 such that for each component X in B(D)0 all the vertices in X project to vertices in the same

component in C(D)0.
A cut pair is a pair of edges whose deletion disconnects the graph.

Lemma 8. A pair of edges in a 2-EC component of a cactus graph is a cut pair if both edges are

contained within the same simple cycle.

Proof. By definition, a 2-EC component of a cactus graph is a set of simple cycles connected by

articulation (cut) vertices. It is easily verified that such a graph is and can only be disconnected by a pair of

edges if they occur within one such simple cycle.

Lemma 9. A pair of black edges (d‚ e) in a 2-BEC component X of B(D) is a cut pair if its projection is

a cut pair in C(D).

Proof. Let X0 be a vertex-induced subgraph of the projection of X. By Lemma 7, X0 is a 2-EC

component in C(D).

IF: If the deletion of the projection of d and e disconnects X0, then, using Lemma 4, the deletion of d and

e disconnects X.

ONLY IF: If the projections of d and e are not a cut pair, by the definition of a cactus graph and Lemma 8,

the projections of d and e in X0 are each members of two distinct simple cycles. If the projection of d

(similarly e) were a self-loop, then its endpoints are 3-BEC, implying that after the deletion of d and e its

endpoints remain connected. This is impossible if the deletions of d and e disconnect the 2-EC component,

hence each simple cycle containing the projection of d or e has length >1. For any pair of distinct vertices x,

y in B(D) that project to the same vertex in C(D), there exists a path in B(D) that connects them that

excludes their incident black edges, because by Lemma 5 they are 3-BEC, and are therefore connected

either by a path of gray edges or by Menger’s theorem, connected by at least three edge disjoint paths

containing black edges. From this observation, it is easily verified that the endpoints of d (and similarly e)

must be connected by a path Y in B(D) that includes the black edges that project to the simple cycle

containing d, in the order of the cycle, and that excludes both d and e. This implies that the endpoints of d

(similarly e) remain connected after the deletion of d and e, contradicting the claim that they are a cut pair.

5.2. Appendix 2

Lemma 10. Each snarl fx‚ yg in B(D) is either a chain pair or a bridge pair.

Proof. Using Lemma 3, both x and y must project to a vertex in the same component of C(D) as they

are connected in B(D).

Let d and e be the black edges incident with x and y, respectively. If d is a bridge, then e must be a bridge,

or else, by definition, e connects two vertices in a 2-EC component X, the removal of d and e cannot

therefore disconnect X, and therefore y and ŷ, violating the snarl separation criteria. Using Lemma 6, in this

case the projections of d and e must, therefore, also be bridges. If both d and e are bridge edges but x and y

do not project to the same vertex in D(D) (and are, therefore, not a bridge pair), there exists an intermediate

bridge edge bD(D)(z‚ ẑ) on the path between aD(X)(x) and aD(X)(y). The deletion d, e and fz‚ ẑg for B(D)

disconnects B(D) into distinct components: One contains x and z, one contains ẑ and y, one contains x̂, and
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one contains ŷ. This implies that fx‚ zg and fẑ‚ yg each fulfill the separation criteria, contradicting the

minimality of fx‚ yg.
If d and e are not bridges, both must be in the same 2-BEC component or contradict the separation

criteria, by the same reasoning as earlier. In this case, Lemma 7 implies that both d and e must project edges

in the same 2-EC component in C(D). Lemmas 8 and 9 further imply that they must project to edges in the

same simple cycle. If x and y do not project to the same vertex in C(D) (and are, therefore, not a chain pair),

then there exists an intermediate black edge bC(D)(z‚ ẑ) on the path between aC(D)(x) and aC(D)(y) that

excludes dD(D)(x̂) and dD(D)(ŷ). As with the case that both d and e were bridge edges, this similarly

contradicts the minimality of fx‚ yg.

Lemma 11. Each chain pair or bridge pair fx‚ yg in B(D) is a snarl.

Proof. Lemmas 4 and 8 imply that fx‚ yg meet the separation criteria. It remains to prove that fx‚ yg is

minimal. If fx‚ yg is not minimal, then there must exist an intermediate edge bC(D)(z‚ ẑ) on a path between

aC(D)(x) and aC(D)(y) that excludes dC(D)(x̂) and dC(D)(ŷ), and that, using Lemma 10, forms chain or bridge

pairs with aC(D)(x) and aC(D)(y). As aC(D)(x) = aC(D)(y) if fx‚ yg is a chain pair, or aD(D)(x) = aD(D)(y) if fx‚ yg
is a bridge pair, this is clearly impossible.

5.3. Appendix 3

In this section, we prove Theorems 2 and 3, which characterize a sufficient condition to produce a family

of compatible snarls. We begin with two useful lemmas.

Lemma 12. Let fx‚ yg be a snarl with snarl subgraph X. If u is a node in X and v is a node that is not in

X, then any path from u to v includes the black edge incident on x or the black edge incident on y.

Proof. Suppose a path exists that does not include either of the black edges incident on x and on y. Then

u is not disconnected from v after deleting these edges, which contradicts the separability of fx‚ yg.

Lemma 13. Let fx‚ yg be a snarl with subgraph X. Then there exists a path from u to either x or y that

includes neither the black edge incident on x nor the black edge incident on y if u is in X.

Proof. First assume u is in X. Some path exists from u to either x or y, else u is not in the same

connected component as x and y. Consider the shortest such path. Without loss of generality, assume this

path is between u and x. Suppose the black edge incident on x or the black edge incident on y occurs

somewhere along the path. Without loss of generality, assume it is the black edge incident on x. By Lemma

1, x or y must occur in the prefix of the path between u and x̂. This implies that the path was not the shortest,

which is a contradiction. Therefore, there exists a path from u that contains neither the black edge incident

on x nor the black edge incident on y.

Next assume without loss of generality that a path exists from u to x that includes neither the black edge

incident on x nor the black edge incident on y. This path is preserved after removing these two edges. This

implies that u is in the same connected component as x (and hence also y) in the resulting graph, so u is in X.

Let fx1‚ y1g and fx2‚ y2g be two snarls with snarl subgraphs X1 and X2 respectively. We will say that

fx1‚ y1g splits fx2‚ y2g if either a) x2 is in X1 but y2 is not in X1 or b) y2 is in X1 but x2 is not in X1. This

condition clearly violates compatibility.

Lemma 14. Let fx1‚ y1g and fx2‚ y2g be snarls with snarl subgraphs X1 and X2. If fx1‚ y1g splits

fx2‚ y2g, then x1 and y1 are in X2.

Proof. We will proceed by showing that all other cases lead to contradictions. Without loss of gen-

erality, assume x2 is in X1 and y2 is not in X1.

Case I: x1 and y1 are not in X2

Consider the set of paths from x2 to y2 that do not pass through ŷ2 or x̂2. This set is nonempty, else X2 is

disconnected. By Lemma 12, any such path must include x1 or y1, which would imply that x1 is in X2 or y1

is in X2, respectively, by Lemma 13. This violates the assumption of the case, so this case is contradictory.
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Case II: x1 is in X2, and y1 is not in X2

Any path from x1 to y1 that does not include the black edges incident on x and y cannot include y2, else y2

is in X1 by Lemma 13. Therefore, it must contain the black edge incident on x2 by Lemma 12. Without loss

of generality, this implies that fx1‚ x2g and fx̂2‚ y1g are separable, which violates the minimality of fx1‚ y1g.
Thus, this case is contradictory as well.

Case III: y1 is in X2, and x1 is not in X2

Same as Case II.

This proves the lemma.

Lemma 15. Let fx1‚ y1g and fx2‚ y2g be snarls with snarl subgraphs X1 and X2. If fx1‚ y1g splits

fx2‚ y2g, then X1 contains a black bridge edge.

Proof. Without loss of generality, assume x2 is in X1 and y2 is not in X1. Then, there exists at least one

path from x̂2 to either x1 or y1, else X1 is disconnected. By Lemma 14, x1 and y1 are in X2, so all such paths

must include the black edge incident on x2 or the black edge incident on y2 by Lemma 12. Since y2 is not in

X1, all paths from x1 or y1 to x̂2 in X1 must include the black edge incident on x2. Therefore, the black edge

incident on x2 is a bridge edge by Menger’s theorem.

There are also cases that violate compatibility without splitting a snarl. The following lemmas charac-

terize these cases.

Lemma 16. Let fx1‚ y1g and fx2‚ y2g be snarls with distinct boundaries in a connected graph B(D)

whose snarl subgraphs are X1 and X2. If x1 and y1 are in X2, and x2 and y2 are in X1, then X1 [ X2 = B(D).

Proof. Let u be an arbitrary node that is not in X1 be arbitrary. There exists at least one path from u to a

node in X1, else B(D) is not connected. Let p1 be the shortest such path. Clearly, no node from X1 occurs in

p1 except at its terminus. In particular, p1 does not contain either x̂2 or ŷ2. By Lemma 12, p1 includes x1 or

y1, so one of these must be the terminal node. Without loss of generality, assume it is x1. Since x1 is in X2,

there also exists a path p2 from x̂1 to either x2 or y2 that does not include x̂2 or ŷ2 by Lemma 13. Note that

p1p2 is a path from u to either x2 or y2 that does not include the black edges incident on x2 and y2. Thus, u is

in X2 by Lemma 13. This implies X1 [ X2 = B(D).

Lemma 17. Let fx‚ y1g and fx‚ y2g be snarls with snarl subgraphs X1 and X2. If y1 6¼ y2, then both X1

and X2 contain a black bridge edge.

Proof. Suppose y2 is not in X1. Then, all paths from y2 to x must include the black edge incident on x or

the black edge incident on y1 by Lemma 12. There exists at least one path between x and y2 in X2, which

cannot include the black edge incident on x. Therefore, all paths between y2 and x must include the black

edge incident on y1. This implies without loss of generality that fx‚ y2g and fŷ2‚ y1g are separable, which

violates the minimality of fx‚ y1g: Thus, y2 is in X1. Note that the black edge incident on x is not in X1.

Therefore, removing the black edge incident on y2 from X1 disconnects x from ŷ2 because of the separa-

bility of fx‚ y2g. Thus, the black edge incident on y2 is a bridge edge in X1. Similarly, the black edge

incident on y1 is a bridge edge in X2.

Finally, we establish the relationship between pairs of snarls that allow for compatibility.

Lemma 18. Let fx1‚ y1g and fx2‚ y2g be snarls with snarl subgraphs X1 and X2. If both x2 and y2 are in

X1, and both x1 and y1 are not in X2, then X2 � X1.

Proof. Let u be an arbitrary node in X2. There exists a path p1 from u to x1 or y1 that consists of only

nodes in X2, else X2 is not connected. In particular, x̂1‚ ŷ1 =2 p1, else x1 or y1 would be in X2. There also exists

a path p2 from x2 to x1 that includes neither x̂1 nor ŷ1 by Lemma 13. The path p1p2 connects u to x1 and

includes neither x̂1 nor ŷ1. Thus, u is in X1 by Lemma 13.

Lemma 19. Let fx1‚ y1g and fx2‚ y2g be snarls with snarl subgraphs X1 and X2. If x2 and y2 are not in

X1, and x1 and y1 are not in X2, then X1 and X2 are disjoint.
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Proof. Let u be an arbitrary node in X1, and let p be any path from u to x2 or y2. By Lemma 12, p

includes x1 or y1. Thus, by Lemma 12, p includes x̂2 or ŷ2. Since p was chosen arbitrarily, this implies u is

not in X2 by Lemma 13. Therefore, X1 and X2 are disjoint.

Taken together, these results yield the sufficient condition for compatibility that we set out to prove.

Theorem 4. In a connected biedged graph with at least one black bridge edge, the family of snarls

whose subgraphs have no black bridge edges is compatible.

Proof. Let fx1‚ y1g and fx2‚ y2g be arbitrary snarls with snarl subgraphs X1 and X2 such that neither

subgraph contains a black bridge edge. By Lemma 15, neither snarl splits the other. By Lemma 17, the two

snarls cannot share a boundary node. Therefore, we also cannot have both x1 and y1 in X2, and x2 and y2 in

X1, else either X1 or X2 must contain the graph’s black bridge edge by Lemma 16. This leaves three cases:

1. x1 and y1 are in X2, and x2 and y2 are not in X1

2. x1 and y1 are not in X2, and x2 and y2 are in X1

3. x1 and y1 are not in X2, and x2 and y2 are not in X1

In the first two cases, one subgraph is nested in the other by Lemma 18. In the last case, the subgraphs are

disjoint by Lemma 19. Therefore, fx1‚ y1g and fx2‚ y2g are compatible.

We will now move on to proving that ultrabubbles are included in the family of snarls with no black

bridge edges.

Lemma 20. Let u be a terminal of a black bridge edge whose removal separates a graph B(D) into

connected components B1 and B2 with u in B1 and û in B2. Then, all snarls fx‚ yg have either both x and y in

B1 or both x and y in B2.

Proof. Suppose without loss of generality that x is in B1 and y is in B2. All paths between x and y

include the black edge incident on u. Therefore, fx‚ ug and fû‚ yg are separable. This contradicts the

minimality of fx‚ yg.

Theorem 3. No ultrabubble contains a black bridge edge in its subgraph.

Proof. Let fx‚ yg be an ultrabubble with subgraph X. Suppose X contains a black bridge edge with

terminals u and û. Removing this edge separates X into connected components X1 and X2 with u in X1 and û

in X2. By Lemma 20, we may assume without loss of generality that x and y are in X1.

Since X2 � X, there are no cyclic walks in X2. Moreover, there is at least one edge in X2, else the black

bridge edge is a tip. Let w be the longest biedged walk starting from û in X2. This walk must exist, since

walks of unbounded length could only exist if there is a cyclic biedged walk. Moreover, w is not empty

since X2 contains at least one edge.

Suppose the final edge in w is gray. Since x and y are not in X2, one endpoint of this gray edge must have

no black edge incident on it in the full graph, else w could be lengthened. This violates the definition of a

bidirected graph. Therefore, the final edge in w must be black. However, this implies that one endpoint of

this black edge has no gray edges incident on it, else w could be lengthened. That is, the black edge is a tip,

which contradicts the definition of ultrabubble. Therefore, X does not contain a black bridge edge.

Lemma 21. Let fx‚ yg be a snarl with subgraph X. Further, let u be any node, and let p be the shortest

path from u to either x or y and q be the shortest path from u to either x̂ or ŷ. If u is in X, then jpj < jqj, and

if u is not in X, then jqj < jpj.

Proof. First assume that u is in X. Then, q contains x or y by Lemma 12. The subpath up to this point is

a path between u and either x or y that is strictly shorter than q. Therefore, jpj < jqj. Similarly, if u is in X,

then jqj < jpj.

Lemma 22. Let (u‚ û) be a black bridge edge that separates a graph B(D) into connected components

B1 and B2 with u in B1 and û in B2. Further, let fx‚ yg be a snarl subgraph X such that (1) x is in B2 and (2)

x‚ y 6¼ û. Then, X contains û if X contains w.
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Proof. By Lemma 20, y is in B2 as well as x. Note that if x = û or y = û, then the claim is verified

trivially, so we may focus on the case where x 6¼ û and y 6¼ û. In this case, the black edges (x‚ x̂) and (y‚ ŷ)

must be in B2.

First, assume û is in X. There exists a path p1 from w to u in B1. Note that this implies that p1 contains

neither (x‚ x̂) nor (y‚ ŷ). There also exists a path p2 from û to x or y that includes neither (x‚ x̂) nor (y‚ ŷ) by

Lemma 13. Thus, p1p2 is a path from w to x or y that includes neither (x‚ x̂) nor (y‚ ŷ), which implies that w

is in X by Lemma 13.

Next, assume w is in X. There exists a path p from w to x or y that includes neither (x‚ x̂) nor (y‚ ŷ) by

Lemma 13. Since x and y are in B2, this path must include (u‚ û), which means that it includes a subpath

from û to x or y. Therefore, û is in X by Lemma 13.

Lemma 23. Let (x‚ x̂) be a black bridge edge whose removal separates a graph B(D) into connected

components B1 and B2 with x in B1 and x̂ in B2. If fx‚ yg is a snarl with subgraph X, then X � B1.

Proof. X consists of only nodes that can be reached from x without crossing (x‚ x̂) by Lemma 13.

Therefore, X � B1.

ACKNOWLEDGMENTS

This work was supported by the National Human Genome Research Institute of the National Institutes

of Health under Award Number 5U54HG007990 and grants from the W.M. Keck Foundation and the

Simons Foundation. This work benefited from numerous conversations with David Haussler and Daniel

Zerbino.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

1000 Genomes Project Consortium, Auton, A., Brooks, L.D., et al. 2015. A global reference for human genetic

variation. Nature. 526, 68–74.

Alekseyev, M.A., and Pevzner, P.A. 2009. Breakpoint graphs and ancestral genome reconstructions. Genome Res. 19,

943–957.
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