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Figure 1. An illustration of key performance metrics, test methods, major affecting factors for 

the evaluation of SCs. 

 

 

Figure 2. An illustration of a typical CV test result. 
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Figure 3. An illustration of CCCD test result with linear potential change over time. 

 

 

Figure 4. An illustration of CCCD test result with nonlinear potential change over time. 
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Figure 5. Schematic illustrations and equivalent circuits for different experimental setups. 

 

 

Figure 6. a) Effect of mass loading and b) electrode thickness on the resulting CS: yellow 

squares, green circles and purple triangles represent crumpled graphene balls, wrinkled 

graphene sheets, and flat graphene sheets as electrodes; and red solid squares indicate 

carbide-derived carbons (CDCs) as electrodes [85, 150]. 
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Figure 7. Cyclic voltammograms of liquid-mediated graphene materials with increasing 

electrode density from 0.13 to 1.33 g/cm
3
 following the dashed red arrow [60]. 

 

 

Figure 8. The series RC circuit for supercapacitors. 
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Figure 9. The Nyquist plot of 2.7V/1F Maxwell SC with RES determination methods marked 

in red. 
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Figure 10. CCCD result of 2.7V/1F Maxwell SC tested at different dwelling time from 0 – 30 

min: (a) overall CCCD plots of one cycle; (b) averaged RES values from first six cycles; 

enlarged upper region of the CCCD plots at dwelling time of (c) 0 min and (d) 1 min. 

 

 

Figure 11. (a) A typical CCCD plot for large SCs with IR drop and steady-state voltage drop 

marked as ∆V1 and ∆V2, and (b) a real case illustration of the discharge part via Skeleton Tech 

1600F SC.  

 

 

Figure 12. An illustration of Vo determination methods using (a) CV and (b) CCCD tests. 
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Figure 13. Dependence of real and imaginary capacitances over frequency for 2.7V/1F 

Maxwell SC with the relaxation time constant τo pointed. 

 

 

Figure 14. An illustration of the power and energy densities for several EES devices via 

Ragone plot. The plot is based on data from Ref. [114, 119-122]. 
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Figure 15. Representative working diagram from CCCD test for EDLCs (a), and PCs (b). 

 

 

Figure 16. An illustration of Peukert’s curve for batteries with the use of ½C marked by 

dashed lines. 
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Figure 17. An illustration of Peukert’s curves for a 1450F EDLC (a) and for a 2000F 

hybrid SC (b) with the use of 60C marked by dashed lines. 
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Abstract 

The performance of a supercapacitor can be characterized by a series of key parameters, 

including for instance the cell capacitance, operating voltage, equivalent series resistance, 

power density, energy density, and time constant. To accurately measure these parameters, a 

variety of methods have been proposed and used among academia and industry. As a result, 

some confusion has been caused due to the inconsistencies between different evaluation 

methods and practices. Such confusion hinders effective communication of new research 

findings, and creates a hurdle in transferring novel supercapacitor technologies from research 

lab to commercial applications. 

 

Based on public sources, this review article is an attempt to inventory, critique and hopefully 

streamline the commonly used instruments, key performance metrics, calculation methods, 

and major affecting factors for supercapacitor performance evaluation. Thereafter the primary 

sources of inconsistencies are identified and the possible solutions are suggested 

correspondingly, with emphasis on device performance vs. material property and the rate 

dependency of supercapacitors. We hope, by using reliable, intrinsic and comparable 
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parameters produced, the existing inconsistencies and confusion can be largely eliminated so 

as to facilitate further progress in the field. 
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1.   Introduction 

1.1.   General power storage cells 

 The detrimental long-term effects of greenhouse gas emission into atmosphere and the 

finite supply of fossil fuels underscore the urgency of exploring renewable energy resources 

and the related energy generation, storage, and conservation technologies. A major hurdle, in 

general, lies in the dependence on the power line for electricity supply. The proposed wireless 

power supply [1, 2] is still largely at exploration stage and unlikely to play significant role in 

foreseeable future. The pending obstacle for use of renewable energy from wind and solar is 

the stability and quality of the produced electricity [3]. Driven by such need for power 

storage, rectification, transport and supply at various scales, sustained and extensive research 

and exploration have been conducted, and a number of electrical energy storage (EES) 

technologies have been developed so far; some have been serving very close to our daily life 

such as batteries and fuel cells, and others are more for industrial applications including 

pumped hydro, flywheel, compressed air, superconducting magnetic, and supercapacitors [4].  

Of these EES technologies, batteries have been widely used at various scales, and have 

been continuously studied due to their outstanding performance. Based on the specific battery 

chemistry, they can be rechargeable or non-rechargeable. Both of them produce electricity 

from chemical energy via redox reactions at anode and cathode. For rechargeable batteries, 

they can reverse this process for certain times [5-7]. Starting in 20
th

 century, batteries have 

been successfully penetrating into our daily life. However, there are certain areas where 

batteries revealed their shortcomings or failed to meet the needs, including: 

•   Low power density: This issue has severely hindered its applications where high power 

discharge and/or recharge rate is demanded;   
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•   Safety issue: Many electrolytes used in batteries are corrosive, flammable, or both, and 

many electrodes are environmentally unfriendly or poisonous;  

•   Heat generation: The redox reactions in batteries may lead to Joule heating and 

thermochemical heating during their operation [8]. Such heat if not dissipated effectively will 

result in overheating, thermal runaway and even fire; 

•   Limited cycle life: The cycle lives of batteries are normally limited due to the nature of 

the redox reactions. 

Because of the issues listed above, batteries alone are unable to provide the full solution 

for electricity storage. A durable and safe electricity storage device, with high power and/or 

energy performance, will undoubtedly transform the landscape of electric energy generation, 

distribution and utility. Besides, as consumer, industry and military require more compact and 

reliable electrical power systems, development of such devices continues to be one of the 

major thrusts in the area [9-11].  

 

1.2.   Supercapacitors and the charge storage mechanisms 

Supercapacitors (SCs), often referred to as ultracapacitors or electrochemical capacitors, 

demonstrate outstanding power performance, excellent reversibility, very long cycle life 

(>1,000,000 cycles), simple mode of operation and ease of integration into electronics 

[12-20]. In addition, they generate less thermochemical heat because of the simpler charge 

storage mechanisms associated [21]. Therefore, they have been widely used in consumer 

electronics, memory back-up systems, and industrial power and energy management [5, 12] 

and will be found in more niche markets in the near future [22].  
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1.2.1.  Charge storage mechanisms 

It is generally accepted that there are three major charge storage mechanisms involved in 

the operation of SCs: (a) electric double layer in electric double layer capacitors (EDLCs); (b) 

highly reversible surface redox system, and (c) fast electrolyte ions intercalation, both 

occurring in pseudocapacitors (PCs).  

 

a.  Electrical double layer (EDL) 

Electrical double layer (EDL) refers to the two charged layers formed at 

electrode/electrolyte interfaces [23]. The earliest model of EDL is usually attributed to 

Helmholtz [24, 25] and thus EDL is also termed as Helmholtz double-layers. Later on, 

Gouy-Chapman model and Gouy-Chapman-Stern model were developed to more accurately 

describe the detailed structure of EDLs [23, 26].  

Electricity storage and delivery via EDL was first proposed by Becker in 1957 (U.S. 

Patent 2,800,616), and the resulting SCs is then named electric double layer capacitors 

(EDLCs). High-surface-area activated carbon (AC) is normally used in the system as the 

working medium. Owing to the huge surface area, EDLCs can store much more electricity, 

and are usually evaluated in Farads (F), whereas conventional dielectric and electrolytic 

capacitors are in picofarads (pF) and microfarads (µF).  

 

b.  Surface redox system 

The second charge storage mechanism in SC was introduced by Trasatti [27], attributed 

to the highly reversible surface redox reaction, during which partial charge transfer between 

electrode and electrolyte occurs [28]. Normally during charging, the redox-active electrode 
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materials, i.e. RuO2 or MnO2, reduced to lower oxidation state coupled with adsorption of 

cations from the electrolyte. Upon discharge, the process can be almost fully reversed [29, 

30]. Unlike EDLCs where the electrical charge storage is statically in the Helmholtz 

double-layers without any faradic charge transfer, such pseudocapacitors (PCs) do have 

partial faradic charge transfer at the interface between the electrode and electrolyte. 

 

c.  Ion intercalation 

Another pseudocapacitive (PC) charge storage mechanism is a diffusion controlled 

intercalation process in which electrolyte ions migrate in and out of the atomic layers of 

electrode materials during charging and discharging [31]. This nevertheless differs from that 

of lithium-ion batteries by: 1) its excellent reversibility upon recharging [30]; 2) its 

state-of-charge dependent potential [32]. Various materials, e.g. molybdenum nitrides, 

niobium pentoxides and titanium carbides [33-35], have been examined for this purpose.  

 

1.2.2.  Overall charge storage ability and hybrid supercapacitors 

In practice, the overall charge ability of a SC is enabled by two or three such charge 

storage mechanisms. They coexist in SCs and contribute in different proportions. For 

example, the charge storage of AC-based EDLCs is dominated by the formation of EDLs, but 

the oxygen-containing groups on AC surface might induce some surface-redox reactions.  

Furthermore, hybrid or asymmetric capacitors by combining different electrodes of 

EDLCs and PCs, or even of batteries have been reported so as to improve the energy 

performance while maintaining their intrinsic high power performance [36]. The most widely 

acknowledged hybrid system is the Li-ion capacitor (LIC), normally produced by using 



	   18	  

Li4Ti5O12 nanocrystals [37-39] or advanced graphite materials [40] as positive electrode, and 

AC as negative electrode. Another one is called “ultrabattery” based on the combination of 

lead-acid battery and EDLC [41-44]. Indeed combination of high energy density of batteries 

with long cycle life and short charging times of supercapacitors is considered the likely future 

direction [45].  

 

1.3.   Performance evaluation for supercapacitors  

To evaluate SCs performance, three essential parameters, cell (total) capacitance CT, 

operating voltage Vo and equivalent series resistance RES, are often used to assess their energy 

and power performance, and usually are sufficient for commercial products where the 

materials, fabrication and cell design are all fixed. However in the research arena of constant 

probing for novel materials, more advanced manufacturing processes and new cell design, 

some other factors become indispensible. In fact, there is a rather large group of important 

factors necessary to paint the whole picture for supercapacitors, and a glance of the complex 

inter-relationship between the different performance metrics, the major affecting factors and 

the corresponding test methods is presented in Fig. 1. Several color schemes are employed in 

the figure: the three core parameters are highlighted in yellow; the power and energy 

densities in dark blue; time constant and cycling stability in light orange; all the important 

affecting factors in light purple; and the corresponding test methods in white. Note that the 

chart is more for illustration purpose and is by no means exclusive in presenting all the 

factors or detailing the complex multifaceted connections between them. For example, the 

evaluation method for Vo and the influence of electrolyte materials on specific capacitance 

are not explicitly presented. 
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Giving such multiple performance metrics, test methods, affecting factors shown in the 

figure, and the multifaceted relationships among them, inconsistencies become inevitable in 

the test results for the same cell measured in different labs, using different methods, and 

between academia and industry. To understand the causes for such inconsistencies, some 

important issues have to be addressed, including material property vs. device performance, 

and the rate dependency of supercapacitor performance.   

Many attempts have been carried out to standardize the evaluation methods for SC 

devices. Some national and international bodies including DOD (US Department of Defense), 

DOE (US Department of Energy), IEC (International Electrochemical Commission), and 

SAE (Society of Automotive Engineers) have worked intensively on this matter. The 

resulting documents are summarized in Table 1 chronologically.  

 

Table 1. A chronological review of SC evaluation standards.  

Year Organization Title Document ID  

1986 DOD Capacitors, fixed, electrolytic, double 

layer, carbon (metric), general 

specifications 

DOD-C-29501 

1994 DOE Electric vehicle capacitor test 

procedures manual 

DOE/ID-10491 

 

2004 DOE FreedomCAR ultracapacitor test manual DOE/NE-ID-11173 

2006 IEC   Fixed electric double layer capacitor for 

use in electronic equipment 

IEC 62391 
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2009 IEC Electric double layer capacitors for use 

in hybrid electric vehicles – Test 

methods for electrical characteristics 

IEC 62576 

2012 IEC Railway applications – Rolling stock 

equipment – Capacitors for power 

electronics – Part 3: Electric 

double-layer capacitors 

IEC 61881-3 

2013 SAE Capacitive energy storage device 

requirements for automotive propulsion 

applications 

J3051 

 

Apparently, such efforts are mainly for specific applications oriented for industry, and 

there is still lacking a general understanding and knowledge collected/derived from the most 

recent cutting edge research so as to guide a more accurate and effective practice for 

performance evaluation of SCs. This prompts our intension to write this article.  

In view of the urgent need for more reliable test methods called for by the drastic pace in 

searching for new energy storage solutions, and the complexities involved, this paper 

represents an attempt in clarifying and streamlining the existing evaluation methods, in the 

hope to eliminate/alleviate such inconsistencies and facilitate more effective communication 

in the field. 

 

2.   Instruments and measurements of key metrics 

2.1. Instruments 
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Various instruments or test modes have been developed and applied to characterize the 

electrochemical performance of SCs. Cyclic voltammetric (CV), constant current 

charge/discharge (CCCD) and electrochemical impedance spectroscopic (EIS) tests are the 

commonly used ones. In essence, all such instruments can be used to measure the three 

fundamental parameters: voltage, current and time, and then other metrics, including the 

capacitance, equivalent series resistance, operating voltage and subsequently time constant, 

energy and power performance of SCs, can be derived from them. However, each of the 

instruments has its own focus and the targeted parameters by design, and their applications 

and limits are hence discussed below.  

In addition, the three test modes can all be used to examine not only SC materials, i.e. the 

electricity storage media including electrode materials and electrolyte materials, but also SC 

devices, i.e. the whole package of SCs. Clear differentiation between a property measured for 

the cell or just for its active material has to be made when reporting a test result - a clearly 

logical practice yet often ignored. Also some technical differences exist when testing SC 

devices versus SC materials, and we will therefore stress this in our discussion. 

 

2.1.1 CV  

CV test applies a linearly changed electric potential between positive and negative 

electrodes for two-electrode systems, or between reference and working electrodes for 

three-electrode configurations. The speed of potential change in mV/s is termed as the sweep 

rate or scan rate, and the range of potential change is called potential window or operating 

potential. The instantaneous current during the cathodic and anodic sweeps is recorded to 

characterize the electrochemical reactions involved. The data are plotted as current (A) vs. 
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potential (V), or sometimes, current (A) or potential (V) vs. time (s) [26].  

To examine the charge storage mechanisms of SC materials where EDLC and PC types 

are separate, CV test with the three-electrode setup is regarded as the most suitable approach 

[33, 34].  The test results can first be analyzed by examining the shape of the CV curves, as 

for EDLC materials, the resulting CV curve shape is rather rectangular, whereas for most PC 

materials, a sudden current surge appears to skew the curve. However, a complication in this 

is that there a few PC materials [35] whose CV curves also appeared rectangular. To add a 

further twist, the shape of the CV curves can be affected by the experimental setup [46] so 

that some PC materials, which ordinarily would generate skewed CV curves, can produce 

rectangular curves as well. Caution is hence required in the process.   

Another more quantitative and reliable method in interpreting the data from a SC cell 

tested is to extract the contributions from EDL and PC mechanisms separately by utilizing the 

knowledge that the instantaneous current induced by EDL mechanism is proportional to the 

scan rate, while the diffusion controlled ion-intercalation by PC mechanism is to the square 

root of scan rate [33, 34, 47-51]. However, this approach is limited to detect the contribution 

from the surface-redox mechanism. Therefore, more experimental and theoretical studies are 

demanded to address this issue.   

CV test is also particularly suitable in practice to determining the potential window 

(operating voltage) for SC materials by successive adjustment of the reversal potential in a 

three-electrode system, and the reversibility of the charge and discharge processes can also be 

studied at the same time [32, 33]. In addition, the specific capacitance and energy 

performance of the SC materials can be obtained via integration of the CV curves as 

discussed in detail later. Similar process can also be conducted for SC devices to obtain their 
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total cell capacitance and hence the amount of electricity stored.  

 

2.1.2  CCCD  

CCCD test is the most widely used method for characterization of SCs under direct 

current [52, 53]. It is conducted by repetitive charging and discharging the SC device or the 

working electrode at a constant current level with or without a dwelling period (a time period 

between charging and discharging while the peak voltage Vo remains constant), and normally 

a plot of potential (E) vs. time (s) is the output. Choosing a proper level of the constant 

current is critical to produce consistent and comparable data from a CCCD test.    

CCCD test is regarded as the most versatile and accurate approach in characterizing SC 

devices. All three core parameters of SC devices, CT, RES and Vo, can be tested from it and 

subsequently used to derive most of the other properties, such as the time constant, power and 

energy densities, and leakage and peak current. It can also be conveniently used to study the 

cycling stability of SC devices. Moreover, by using a three-electrode setup, the specific 

capacitance, reversibility and potential window for SC materials can also be obtained via 

CCCD test.  

 

2.1.3  EIS 

EIS test, also known as the dielectric spectroscopic test, measures the impedance of a 

power cell as a function of frequency by applying a low-amplitude alternative voltage 

(normally 5 mV) superimposed on a steady-state potential. The resulting data is normally 

expressed graphically in Bode plot to demonstrate the cell response between phase angle and 

frequency, and in Nyquist plot to show the imaginary and real parts of the cell impedances on 
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a complex plane [54, 55].  

Besides the frequency response and impedance, EIS has also been employed to 

characterize the charge transfer, mass transport and charge storage mechanism, as well as to 

estimate the capacitance, energy and power properties [56, 57]. Different equivalent circuits 

and models have been developed to distinguish the contribution of individual structure 

component in a cell system to the total impedance [40, 58, 59]. When SC devices are tested, 

the real parts of the complex impedance at selected frequencies are used in literature to 

represent RES. However, one needs to keep in mind that this RES from EIS test is often much 

smaller than that derived from the CCCD test [60], and therefore is limited in describing the 

power performance of SC devices.  

For SC materials, EIS test can be deployed to study the impedance, specific capacitance, 

charge transfer, mass transport and charge storage mechanisms involved by executing similar 

analysis in a three-electrode system. 

 

2.2. Capacitance 

The total capacitance CT of a SC is a reflection of the electrical charge ∆Q stored under a 

given voltage change ∆V: 

𝐶" =
∆𝑄

∆𝑉
	  	  	  	  	  	  	  	  	  (1) 

This is preferred when specifying the total charge storage ability of SC devices. A more 

intrinsic specific capacitance CS is defined to measure, preferably, the charge storage ability 

of SC materials: 

𝐶+ =
∆𝑄

∆𝑉×𝛱
	  	  	  	  	  	  	  	  (2) 

where Π can be the mass, volume, surface area of the electrode or the active material, or even 
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the size of the electrode, and the resulting specific capacitance CS is often named 

correspondingly as the gravimetric capacitance (F/g), volumetric capacitance (F/ml), 

normalized capacitance (µF/cm
2
) and areal capacitance (F/cm

2
) or linear capacitance (F/cm). 

Sometimes, CS is also used to describe device performance, when normalized by the whole 

cell weight or volume [61]. Note that although CS is considered the most important parameter 

in comparing the charge storage ability of SC materials, it is rarely mentioned by industry, 

as most of the commercial SCs are activated carbon (AC) based, and its CS is generally 

considered a constant between 100 F/g and 70 F/cm
3
 in organic electrolyte [62]. However, 

for scientists in searching for new materials, CS is the more informative way to depict 

the charge storage ability of a given material.   

 

2.2.1  Evaluation of CT 

a.   CV  

The total capacitance CT of a cell in Eq. 1 can be further expressed as: 

𝐶" =
Δ𝑄

Δ𝑉
=

𝑖 𝑑𝑡
345/7

8

2𝑉9
	  	  	  	  	  	  	  	  	  (3) 

Through the integration of the resulting CV voltammograms, the accumulated charge as 

a function of potential can be obtained. Normally, the whole curve is recommended to use 

[63-67] as shown in Eq. 3.  However in practice, different segments of the curve, as depicted 

in Fig. 2 in distinctive colors, have been used in integration [46, 68-70], thus leading to 

inconsistencies in test results [46, 65, 66, 71-73]. It is worthy reminding that the potential 

change in Eq. 3 ΔV = 2Vo (0 to Vo and back to 0), for there are mistakes made in ΔV values 

[74-77]. 
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b.   CCCD  

Since constant current is used in a CCCD test, Eq. 1 can be converted to: 

𝐶" =
𝐼 ∗ Δ𝑡

Δ𝑉
	  	  	  	  	  	  	  	  	  (4) 

where I is the constant current, ∆t is the charging or discharging time corresponding to the 

specified potential change ∆V. So the key issue now is that the correct time ∆t and ∆V are 

used in calculation. Often the entire discharging curve is used: 

𝐶" =
𝐼>?@ ∗ Δ𝑡4AB34A

𝑉9
	  	  	  	  	  	  	  	  	  (5) 

Since IR drop is inevitable in CCCD test, one can adjust ∆V so as to exclude the IR drop for 

more accurate result, i.e., 

𝐶" =
𝐼>?@ ∗ Δ𝑡4AB34A
𝑉9 − 𝑉EF	  GHIJ

	  	  	  	  	  	  	  	  	  (6) 

Similar to CV test, different segments of the CCCD plots, as illustrated in Fig. 3, have been 

used in computing the cell capacitance [66, 70, 78]. Only this time as the current remains 

constant, identical CT value is obtained regardless of the segment used, so long as the voltage 

changes linearly with time as in Fig. 3.   

 

Whereas for PCs or hybrid SCs with nonlinear curves as seen in Fig. 4, the selection of 

different regions from the curve can make a great difference in determining ∆V, and hence CT 

[79-82]. In such cases, the use of a proper or fixed region or selection of suitable potential 

window becomes critical and needs to be standardized. Based on Burke [53], Region 3 or a 

potential window from Vo to the shoulder voltage is recommended. Likewise, one can also 
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adjust ∆V to eliminate the IR drop to improve accuracy.  

 

c.   EIS  

The conventional method of deriving capacitance from EIS test is based on the imaginary 

part of the complex impedance Im(Z) as shown in Eq. 7 [7, 54, 83]: 

𝐶"L = −
1

2𝜋𝑓×𝐼𝑚(𝑍)
	  	  	  	  	  	  	  	  	  (7) 

where f is the frequency. Normally this frequency is identified at which the phase angle reaches 

- 45 degree [83], or simply as the lowest frequency applied [7].  

Another method introduced by Simon [56] is as below: 

𝑅𝑒(𝐶) =
−𝐼𝑚(𝑍)

𝜔 𝑍 3
	  	  	  	  	  	  	  	  	  (8) 

𝐼𝑚(𝐶) =
𝑅𝑒 𝑍

𝜔 𝑍 3
	  	  	  	  	  	  	  	  	  (9) 

where Z = 𝑅𝑒(𝑍)3 + 𝐼𝑚(𝑍)3 is the overall complex impedance, ω = 2πf is angular velocity, 

Re(Z) is the real part of the complex impedance, and Re(C) and Im(C) are the real and 

imaginary capacitances, respectively. Im(C) is a term related to the energy dissipation of 

the cell, and Re(C), calculated at the lowest-frequency applied, indicates the energy 

stored, thus can be used to represent CT [56].  

 

2.2.2  Evaluation of CS 

Once CT is obtained, the corresponding CS can be calculated using Eq. 4. This seemingly 

straightforward step is made complicated by the fact that there is no established standard 

procedure in determining the base value for Π, be the mass, volume, or other quantity. A 

mediocre CT value can lead to an excellent CS if a sufficiently small Π is used.  For this 
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reason, along with other possible considerations, technical or cost related, although attractive 

CS results are frequently reported [74-77, 79-82], few have been successfully transferred to 

commercial products.  One solution to this problem is that both CT and the 

corresponding CS values, as well as the Π value, be explicitly reported side by side.  

Besides Π, other factors as discussed in next section, including experimental setup, mass 

loading and electrode thickness, and electrode density, can also alter CS value dramatically 

[65, 84, 85] and therefore recommended to be reported as necessary information.  

 

2.2.3  Major affecting factors 

a.  Experimental setup  

Study has demonstrated that quite different CS values can be obtained for the same SC 

electrode when different experimental setups are adopted [46]. The three major experimental 

setups: symmetric two-electrode, asymmetric two-electrode and three-electrode 

configurations, are illustrated in Fig. 5. The three-electrode one is particularly useful in 

accurately determining the CS for SC materials, and the two-electrode ones are normally used 

in SC device prototypes or final products. It is worth noting that it is also possible [86] to 

insert a reference electrode in the two-electrode system to study the detailed potential change 

in other two electrodes, but this scenario is not included here and the three-electrode 

configuration mentioned in this article solely means the setup presented in Fig. 5a. 

 The following analysis demonstrates how different setups can lead to different results. 

For brevity the gravimetric CS is used. The weight of each individual electrode in Figs. 5a 

and b is assumed to be m, while m1 and m2 are for the two different Electrodes 1 and 2 in Fig. 
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5c. Assigning the single electrode capacitance as CE, the gravimetric CSa in the 

three-electrode system can be calculated as [59]: 

𝐶+X =
𝐶Y

𝑚
	  	  	  	  	  	  	  	  (10) 

For the symmetric two-electrode system shown in Fig. 5b, the cell total capacitance CTb 

can be obtained through: 

  

1

𝐶"[
=
1

𝐶Y
+	  

1

𝐶Y
	  	  	  	  	  	  	  	  	  (11) 

 

By counting the mass for both electrodes, hence: 

 

𝐶+[ =
𝐶"[

2𝑚
=
1

4
(
𝐶Y

𝑚
)	  	  	  	  	  	  	  	  	  (12) 

 

That is, even with identical SC material, the specific capacitance obtained from the 

three-electrode system actually quadruples that from the symmetric two-electrode 

system, i.e., 

 

𝐶+X = 4×𝐶+[	  	  	  	  	  	  	  	  	  (13) 

 

This relationship has been validated experimentally by Béguin et al [46].  

 

For the asymmetric two-electrode system in Fig. 5c, the cell capacitance CTc: 

1

𝐶"\
=

1

𝐶Y]
+	  

1

𝐶Y3
	  	  	  	  	  	  	  	  	  (14) 
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Again by counting the mass for both electrodes, there is: 

 

𝐶+\ =
𝐶"\

𝑚] +𝑚3

=
1

𝑚] +𝑚3

×
𝐶Y]×𝐶Y3

𝐶"] + 𝐶"3
	  	  	  	  	  	  	  	  	  (15) 

 

In this configuration, normally the electrode capacitances of the two electrodes are balanced 

to fully unitize the charge storage ability of the SC material, i.e., CE1= CE2= CE. So by 

employing other active material like pseudocapacitive one, it is normally accepted that the 

specific capacitance of Electrode 1 is larger. Conversely if the two electrodes achieve the 

same capacitance CE, then less mass is needed in Electrode 1, say at a fraction α (0< α <1) of 

Electrode 2, so that m1=αm, m2 =m. Substituting them into Eq. 15 yields,  

𝐶+\ =
1

2(1 + α)

𝐶Y

𝑚
	  	  	  	  	  	  	  	  	  (16) 

Combined with Eqs. 10 and 12, there are: 

𝐶+X = 2(1 + α)𝐶+\ 	  	  	  	  	  	  	  	  	  (17) 

and 

𝐶+[ =
(1 + α)

2
𝐶+\ 	  	  	  	  	  	  	  	  	  	  	  (18) 

Thus the three equations show distinctive results when using setup a, b or c. For example, if 

the specific capacitance in Electrode 1 doubles that in Electrode 2, α = 0.5 at the same 

potential window.  Then there is CSa = 3CSc and CSb = 0.75CSc !   

It is worth noting that for SC devices, the total capacitances for symmetric and 

asymmetric are identical under the same assumptions:  

𝐶"[ = 𝐶"\ =
1

2
	  𝐶Y 	  	  	  	  	  	  	  	  (19) 

The advantages of using asymmetric systems include first, as discussed below in 2.4.2, by 

using hybrid electrodes hence an asymmetric system, additional electrochemical potential 
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difference can be introduced so that the operating voltage of the cell can be boosted [72]. The 

second benefit is that for the same total capacitance, in an asymmetric system, the electrode 

of better PC material can cut the material use by a fraction (1-α) as demonstrated above. This 

can be significant if this PC material is so superior that α is small.  However so far, the 

symmetric SC devices still demonstrate better power performance, and consequently play a 

dominant role in the market, despite the intensive study on asymmetric systems [72, 80, 

87-92].  

 

b.  Mass loading and electrode thickness 

Mass loading is defined as the mass of active material per unit area of the electrode, and 

electrode thickness is the net thickness of the active material on the current collector. These 

two parameters reflecting the fabrication process significantly impact the resulting CS, but are 

often not specified. Many studies used a very small mass loading or electrode thickness in 

calculating the specific capacitance CS, and the resulted CS appears outstanding in 

number but is often not meaningful in practice [93, 94].  In general, it is suggested [65] 

that the mass loading to be at least 5 mg/cm
2
 and the electrode thickness between 50 – 200 

µm. Exceptions may be found for micro-supercapacitors [85, 94, 95] in special applications. 

Fig. 6a and b are two verifications showing the significant impact of them on CS.   

 

c.  Electrode density  

The electrode density describes how densely the electrode materials are packed on 

current collector, and is expressed in mass/volume. Although it is related to both mass 

loading and electrode thickness, there is the material density involved. It is reported that the 
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same electrode material with different packing densities can significantly influence the 

resulting electrochemical performance, including CS, energy and power densities. Based on 

the targeted applications, there is an optimal level for the electrode density, so that the 

electrode is not over densely packed as to reduce the accessibility of SC materials, nor is it 

excessively loose to affect the volumetric performance. An example of its impact is provided 

in Fig. 7 by using certain graphene materials with increasing densities from 0.13 to 1.33 

g/cm
3
 [61]. 

 

2.3. Equivalent series resistance 

A SC is not an ideal electrical component in the sense that it has its own internal 

resistance, thus dissipating the energy stored.  A SC cell can be simply treated as a system of 

a capacitor in series arrangement with a resistor RES in Fig. 8. The resistance of this resistor is 

usually termed as the equivalent series resistance, RES, and is essential in reflecting the power 

performance and energy efficiency of SCs. In general, a small RES is preferred for better 

electrochemical performance.  Note that in actual measurement, only a packed cell can give 

an accurate RES value. It is because of this, whenever RES is referred to in this paper, it deals 

with a device not the material.   

 

2.3.1  Evaluation of RES  

 

a.  CCCD  

The most widely accepted method to evaluate RES is through the analysis of the IR drop 

or voltage variation at the initial stage of the discharging curve from CCCD tests. By 
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applying Ohm’s law to the IR drop, RES can be acquired readily: 

𝑅Y+ =
∆𝑉

∆𝐼
	  	  	  	  	  	  	  	  	  (20) 

where ΔV and ΔI are the voltage and current of the IR drop, respectively.  

Another less common approach is based on the voltage recovery behavior after a current 

interruption during a discharge process [96, 97]. This method is fundamentally the same as 

the IR drop method and yields matching results, and is hence not described in detail here. 

 

b.  EIS  

Typically, the RES from EIS test is evaluated using the real part of the complex 

impedance at 1 kHz and is normally noted in Nyquist plot.  Another method, via linear 

interpolation of the low-frequency part of Nyquist plot to Im(Z) = 0, is also used sometimes 

in literature. An example is provided in Fig. 9 to illustrate these two methods in EIS test, 

testing a typical commercial SC, 2.7V/1F Maxwell cell. Compared to the RES derived from 

CCCD test, the value from EIS test is normally smaller. 

 

2.3.2  Major affecting factors 

There are two major factors that affect the accuracy of RES from CCCD test: the dwelling 

time and the size of SC. Normally, CCCD test is carried out without dwelling at peak 

potential, that is, the discharging starts once the peak potential is reached. However, the 

practice of non-zero dwelling time is widely adopted in tests, which can greatly influence the 

final value of RES. A couple of different dwelling time have been reported: 1 min in the 

procedure developed by Burke [98], 5 min in Illinois Capacitors [99], 10 min by Ioxus, [100] 
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etc. Another often overlooked affecting factor on RES is the size of SCs in terms of cell 

capacitance as defined in Table 2. The two factors are discussed in detail below.  

 

 

Table 2. Defined SC size based on total cell capacitance. 

 Micro cell Small cell Medium cell Large cell Ultra-large cell 

CT < 1 mF 1 mF – 10 F 10 F – 100 F 100 F – 1000 F >1000 F 

 

 

a.  Dwelling time 

To the best of our knowledge, there is no study carried out to examine the influence of 

dwelling time on RES. Therefore, by using the same 2.7V/1F SC from Maxwell Technologies, 

we acquired and presented its CCCD plots with different dwelling time varying from 0 – 30 

minutes in Fig. 10a. Fig. 10b demonstrated the impact of dwelling time on the resulting RES. 

To clearly display the variation of CCCD plots, we selected and enlarged the upper region of 

the plots with dwelling time of 0 min and 1 min, and showed them separately in Fig. 10c and 

d, with the potential and current changes marked in black and blue, respectively. If I is the 

constant current applied, then in the case of 0 min dwelling time, the current change is: 

∆𝐼 ≅ 2𝐼	  	  	  	  	  (21) 

Whereas in the cases of > 0 min dwelling time, 

∆𝐼 ≅ 𝐼	  	  	  	  	  	  	  (22) 

Combined with the potential change, as charted in Fig. 10b: we have at 0 min dwelling time, 
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a much smaller RES ~0.93 ohms, compared to 1.47 ohms from dwelling time >0 min cases.  

 

b.  Cell size  

It is still not clearly understood how the cell size affects the CCCD results. But it is 

generally accepted that the IR drop method works fine only for small SCs, and a steady-state 

voltage drop method should be used for large SCs. As shown in Fig. 11a, the steady-state 

voltage drop ΔV2, rather than the IR drop ΔV1, is obtained through the back extrapolation of 

the potential trace; it is larger than ΔV1 by almost 50%, thus leading to a nearly 50% increase 

in RES. An actual example is provide in Fig. 11b reported in Ref. [53].  Studies [53, 101] 

have been conducted and the results demonstrated that more accurate power performance can 

be estimated using ΔV2 for large cells, and it is therefore recommended.  

  

2.4. Operating voltage Vo 

Strictly speaking, the operating voltage Vo refers to the potential applied to the system or 

the suitable potential window within which a cell normally operates. In this paper, the term is 

sometimes interchangeable to cell voltage or rated potential, which represents the maximum 

voltage a cell can endure. 

 

2.4.1  Evaluation of Vo 

Both CV and CCCD tests can be used to determine Vo of either the SC materials or the 

devices. However actual test of this maximum potential can be risky of destroying the cell. 

An expedient method is normally applied, with an example given in Fig. 12 using an 

asymmetric MnO2/AC capacitor [72], where Vo can be achieved by starting with a lower 
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voltage applied to the cell, and then slowly increasing the voltage until a spike appears as 

seen in the figure.  

 

2.4.2 Major affecting factors 

Two major factors affecting Vo for SC devices include the solvent in electrolytes and the 

cell configuration. Normally, in aqueous systems, a cell can be charged to 1.0 V, limited by 

the thermodynamic decomposition potential of water at room temperature. Vo in organic 

solvent electrolyte varies between 2.3 – 2.7 V [21, 102-106].  As both energy and power 

densities are proportional to Vo
2
, much effort has been dedicated to develop novel electrolyte 

that can endure high voltage (>3 V). Room temperature ionic liquid (RTIL) is considered to 

be the most promising candidate by which high Vo values between 3.0 – 6.0 V have been 

achieved in research labs [107, 108]. In addition, various mixtures of different RTILs, or 

RTIL and organic solvents, also appear to be attractive [109, 110]. 

The other factor influencing Vo is the cell configuration. In an asymmetric system, Vo can 

be increased by using different SC materials so as to introduce additional electrochemical 

potential difference [72]. This way, even in aqueous systems, Vo can reach 2.0 – 2.3 V [29, 72, 

111, 112], giving rise to much improved energy storage [29, 113]. 

In conclusion, for SC materials, all three techniques, i.e. CV, EIS and CCCD tests, can be 

employed with different emphases. However, for SC devices, the most effective and accurate 

approach is CCCD test for measuring the cell capacitance, equivalent series resistance and 

operating voltage [53]. Subsequently, the time constant, energy and power densities, and 

leakage and maximum current of SC devices can be derived based on these three core 

parameters.  
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2.5. Time constant 

Time constant τ is only for SC devices and defined as the product of RES and CT as shown 

in Eq. 23 using the equivalent RC circuit for a SC in Fig. 8. A smaller τ reflects a better 

responsiveness of the device, and for most of commercial SCs, τ normally ranges from 0.5 – 

3.6 s [114].  

 

𝜏 = 𝑅Y+×𝐶" 	  	  	  	  	  	  	  	  	  (23) 

 

Based on the RC circuit model, the voltage of SC device changes by 36.8% at time t = τ, and 

by 98% at time t = 4τ, during the charge/discharge processes.  

Normally τ is fixed around a certain value for SCs produced using the same technology, 

for example 0.55 s from Maxwell Technologies, 1.1 s from NessCap and 3.8 s from JSR 

Micro, as reported in [114]. Consequently, CT and RES for the same type of SCs are inversely 

proportional to each other when τ is fixed. An example is shown in Table 3 for BCAP SCs 

from Maxwell Technologies, and we calculated the corresponding τ values. 

 

Table 3. CT and RES for BCAP SCs from Maxwell Technologies. 

CT (F) 1 3.3 5 10 25 50 100 310 350 650 1200 1500 2000 3000 

RES (mΩ) 700 290 170 75 42 20 15 2.2 3.2 0.8 0.58 0.47 0.35 0.29 

τ (s) 0.7 0.96 0.85 0.75 1.05 1.0 1.5 0.68 1.12 0.52 0.7 0.71 0.7 0.87 

 

Attention has to be paid here not to confuse this τ with another “relaxation time constant”, 
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τ0, as occurred in [77, 115, 116]. τ0 was proposed by Simon in [56] based on EIS test.  Using 

the same 2.7V/1F Maxwell SC and plotting both Re(C) and Im(C) vs. frequency as in Fig. 13, 

τ0 is marked at where the imaginary part of the capacitance reaches its maximum at frequency 

f0, and can be calculated by Eq. 24: 

 

𝜏8 = 1 𝑓8 	  = 3.86	  	  	  	  	   24  

 

It is much larger than τ = 1.34 F*1.44 Ω = 1.94 s. In fact, such difference was revealed in the 

same paper by Simon et al [56]: where they reported τ = 0.7 s, but τ0 = 10 s for their 

symmetric AC-based SC with mass loading of 15 mg/cm
2
. 

 

2.6. Power and energy densities 

Of the performance metrics for all kinds of energy storage and conversion systems, 

power density and energy density are the most directly relevant to the end application and 

hence most often used parameters for performance evaluation. 

They normally are evaluated gravimetrically or volumetrically in W/kg or W/L for power 

density to describe the efficacy in energy uptake/delivery; and in Wh/kg or Wh/L for energy 

density to demonstrate the amount of electrical energy stored or deliverable. For effective 

comparison with other EES devices, a Ragone plot [117] is shown in Fig. 14. The diagonal 

time line is a representative line for the so-called “characteristic time” [118], a reflection of 

running time of the devices at the rated power. The actual running time of EES devices varies 

a lot, depending on the load or discharging rate – the so-called rate dependence as discussed 

in 3.3 below.  
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Figure 14. An illustration of the power and energy densities for several EES devices via 

Ragone plot. The plot is based on data from Ref. [114, 119-122]. 

 

2.6.1 Power density 

The outstanding power performance of SC devices is one of their major merits. The most 

widely used calculation method for the maximum power density is shown as:  

𝑃c =
𝑉9
3

4𝛱𝑅Y+
	  	  	  	  	  	  	  	  	  (25) 

This maximum power delivery can only be realized when the load has the identical resistance 

as RES, often referred to as the matched load condition.  

Of course in practice, the load resistor is often not matching RES. As necessary 

supplements, there are several other methods proposed to compute the actual power capacity. 

Three most widely adopted methods are DOE-FreedomCar [123], IEC 62576 [124] and the 

pulse energy efficiency (PEE) [114] methods, and one can refer to [70, 123, 125] for detailed 

discussions. Table 4 provides the resulting actual power densities with respect to the 

maximum PD based on the different test procedures and the data published by Burke [70, 126]. 

Therefore, although the maximum value PD is widely used for comparison, one has to keep in 

mind that it does NOT usually represent the actual deliverable power density, and one has to 

choose the proper percentage below based on the corresponding applications. 

 

Table 4. Power densities obtained from different methods. 

 Matched load USABC IEC PPE 



	   40	  

Power density PD =Vo
2
/(4ΠRES) 50% PD 48% PD 11.25% PD 

 

In principle, a further boosted PD value is always beneficial; but little effort has been made in 

this [127] given the fact that SCs already have relatively high PD. 

 

2.6.2 Energy density 

The electricity stored in or released from SCs can be evaluated through the integration of 

the working diagrams as illustrated in Fig. 15 corresponding to ECLCs and PCs, where the 

difference in shape is caused again by their distinct charge storage mechanisms. In either case, 

the stored electric energy can be obtained from the charging curve, and the deliverable energy 

from the discharging curve. The ratio of the two is termed the energy efficiency of the cell, an 

indicator of the difference between the two parts of the curve. Calculations for the stored 

electricity are illustrated below.  

 

a.  For EDLCs or any other SCs with linear charge/discharge curves, the integration of the 

working diagram turns into the calculation of triangle area as shown in Fig. 15a, therefore:  

𝐸c = 𝑉9𝑑𝑞
f

8

=
1

2
𝑉9𝑄	  	  	  	  	  	  	  	  	  (26) 

Substituting Eq. 2 into Eq. 26 yields,  

 

𝐸c =	  
1

2𝛱
𝐶"𝑉9

3	  	  	  	  	  	  (27) 

 

Dividing by 3600 converts ED in Joule/Π to watt hour/Π:  
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𝐸c =

]
3
𝐶"𝑉9

3

3600×𝛱
	  	  	  	  	  	  	  	  	  (28) 

 

It is worth mentioning that by combining Eqs. 23, 25 and 27, the relationship between PD and 

ED for EDLCs is given below:  

𝐸c

𝑃c
= 2𝑅Y+×𝐶" = 2𝜏	  	  	  	  	  	  	  	  	  (29) 

This equation indicates that the energy and maximum power densities are closely coupled by 

the cell time constant τ = 𝑅Y+×𝐶". Although ED can be increased in Eq. 27 by improving 

either the capacitance or operating voltage, raising the capacitance alone will simultaneously 

increase the time constant τ, leading to a less responsive cell, assuming RES unchanged. 

Whereas boosting the voltage can considerably enlarge both PD and ED, while still 

maintaining the same τ value. Also even though increasing ED is the major stride for SC 

community, extra attention is required at the same time for the associated possible changes in 

τ or PD. 

 

b.  However, for PCs or hybrid SCs with nonlinear charge/discharge curves as shown in Fig. 

15b, the integration of the diagram has no simple solution, depending on the specific shape of 

the curve, so that: 

 

𝐸c = 𝑉𝑑𝑞
f

8

= 𝑉×𝐼𝑑𝑡
gh

8

	  	  	  	  	  	  	  	  	  (30) 

Dividing by 3600 and Π, one can still obtain the energy density in watt hour/Π: 

𝐸c = 𝑉𝑑𝑞
f

8

=
𝑉×𝐼𝑑𝑡

gh

8
	  

3600×𝛱
	  	  	  	  	  	  	  	  (31) 
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That is, Eq. 28 is NOT valid for PCs with nonlinear charge/discharge curves, and for them 

Eq. 31 has to be used.   

 

2.7. Leakage and maximum peak currents 

For SC devices, an additional yet useful parameter is the leakage current, widely used in 

industry to evaluate the capability of SCs to maintain the rated potential when not in use. 

Normally, it is recorded as the compensating current that applied to hold a fully charged SC 

after 72 hours. 

Another similar device parameter is the maximum peak current, normally appearing in 

the specifications for commercial SCs. It is evaluated by discharging a fully charged SC 

device from Vo to ½ Vo in 1 s, and calculated as: 

𝐼iXj@]l =

]
3
𝐶"𝑉9

𝐶"𝑅Y+ + 1
	  	  	  	  	  	  	  	  	  (32) 

2.8. Cycle life and capacitance retention rate 

Long cycle life of SC devices is one of their major merits and leads to the so-called 

“fit-and-forget” benefits, highly desirable for certain applications. But this extremely long 

cycle life (>1,000,000 cycles) also makes it difficult to directly measure it. Another term, the 

capacitance retention rate is therefore used to indirectly estimate the cycle life of SCs.  It is 

easily obtained in CCCD test by comparing the capacitance after given thousands of cycles 

with that of the first cycle. One attempt [128] was made recently by continuously test SCs for 

3.8 years, and the results showed that the capacitance retention rate is decreasing almost 

linearly with the square root of the number of cycles. Further validations are needed to 
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establish this relationship, but it does give us a glimpse on the time demanding nature of the 

direct measurement of cycle life.  

 

3.  Inconsistencies in evaluation of SCs 

3.1. Causes for the inconsistencies 

For any comparison to be meaningful, the same or consistent metrics and test methods 

have to be used. As demonstrated and discussed in this article so far, it is easy to see why 

performance evaluation of SCs has become so prevalently plagued by inconsistencies, and 

where such inconsistencies are originated. Herein, the common causes are listed below: 

a.   Different instruments or calculation method used, i.e. CV, CCCD or EIS; 

b.   Different experiment setups: 

Three-electrode, and symmetric and asymmetric two-electrode configurations; 

c.   Differences in electrode fabrication: 

Mass loading, electrode thickness and density; 

d.   Different base Π used: 

Volume or mass; active material only, or combined with additives, binders; single or 

two electrodes; with or without electrolyte, or the whole cell; 

e.   Different test conditions applied (rate dependency): 

Scan rate in CV, charge/discharge current in A/g, mA/cm
2
, or mA/F for CCCD tests;  

 

The inconsistencies caused by the first three items on the list have been discussed in 

preceding sections. The effects of improper use of the base Π and with the rate dependency 

are examined below.  
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3.2. Device performance vs. material property 

Although this issue has been dealt with above, the difference between device performance 

and material property can be huge, often overlooked, and may play a critical role in 

performance evaluation for any EES system. A recent paper by Gallagher et al [129] 

emphasizes such difference in the case of lithium-air batteries. To substantiate the discussion, 

some useful information from several SC manufacturers, including Maxwell Technologies, 

WIMA, Nesscap, and Ioxus [102-105], is collected and analyzed here. Owing to the fact that 

the mainstream SC material in industry is still activated carbon (AC), only AC-based SCs are 

considered. 

 

For SC devices, their energy and power densities are summarized below:  

 

o   ED ranges from 1 – 6 Wh/kg or 2 – 8 Wh/L; 

o   PD ranges from 2 – 20 kW/kg or 4 – 30 kW/L;  

 

The same devices but for SC materials (AC), CS between 100 F/g and 70 F/cm
3
 [62]: 

  

o   ED ranges from 15 – 25 Wh/kg or 12 – 18 Wh/L; 

o   PD ranges from 20 – 120 kW/kg or 13 – 80 kW/L;  

 

The substantial difference between device performance and material property is clearly 

demonstrated above. This is due to the fact that only a small portion of the weight and 
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volume of SC devices are composed of active electrode materials, around 5 – 20 %, even 

smaller for micro-SCs [85, 94, 95].  What is worrisome is that in almost all published 

scientific literature [55, 60, 69, 80, 86, 130-138], no distinction has been made explicitly 

between the device performance and material property, leaving a room for potential 

misinformation and confusion.  

 

3.3. Rate dependency 

The rate dependence of all EES devices is a universal, yet thorny issue [139]. For 

example, batteries are usually affixed with a rated energy Co in Ampere hour at a rated 

potential. However, in actual use, how much energy this battery can actually deliver to a load 

depends on the discharge/recharge rate [139]. In other words, if a load drains this battery in a 

shorter time period, the actual energy supplied will be CA < Co. Peukert’s law [139, 140] is 

usually applied to describe this phenomena as: 

𝐶m = 𝑖 · 𝑡 =
𝐶9

𝑡9 𝑡 oB] o
	  	  	  	  	  	  	  	  	  	  	  (33) 

And therefore the current, 

𝑖 =
𝐶9 ∙ 𝑡9 𝑡 oB]

𝑡9
	  	  	  	  	  	  	  	  	  	  	  (34) 

Where to is the discharge rate or time (hrs) used to measure Co, k is the Peukert’s factor, 

usually 1.1 < k < 1.6 for batteries. This k value indicates the degree of dependency of CA on 

discharge rate, and a smaller value is more desirable, implying less rate independency [139]. 

To address this issue, the C-rate scheme has been proposed and widely used to scale the 

charge and discharge current for batteries. Different batteries are rated differently, i.e., with 

different k values, based on the kinetics of the battery chemistry involved. if a battery is rated 
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at nC, the discharging time will be fixed at around 1/n hours [141], i.e., if rated at 2C, for 

example, batteries will be completely discharged in 0.5 h.  By fixing the discharge or 

recharge time, this C-rate system tackles successfully the issue of rate dependency for 

batteries with little confusion. Fig. 16 is constructed using both Eqs. 33 and 34 to illustrate 

the actual energy deliverable CA and the electric current i,  as functions of both discharge 

time and the C-rate level, where one can easily locate the CA and i for a given pair of 

discharge time and C-rate level.  

For SCs, similar rate dependency has been long and widely recognized [48, 50, 51, 65, 

69, 114, 142-145], yet poorly analyzed and understood. Also similar to the C-rate system for 

batteries, a 60 second discharge/recharge time is recommended for SCs[146]. This 60C 

discharge rate or 60 s discharge/recharge time can settle the inconsistencies caused by the 

different test conditions in CCCD tests, i.e. A/g, mA/cm
2
, mA/cm

3 
or mA/F [130, 132, 147, 

148], and can be used as a guidance to determine the proper scan rate used in CV test: ν = 

1/60 V/s (~16.7 mV/s) for 1 V systems; ν = 2.3/60 V/s (~38.3 mV/s) for 2.3 V ones; and ν = 

2.7/60 V/s (45 mV/s) for 2.7 V ones. 

To demonstrate the rate dependency and the use of 60 s discharge/recharge time for SCs, 

we collected the test data of a 1450F EDLC [11] and a 2000F hybrid SC [53] and fitted them 

nicely using again both Eqs. 33 and 34 as shown in Fig 17. Consequently, Peukert’s 

factor 	  𝑘 ≈ 1.02	  is estimated for the EDLC and 𝑘 ≈ 1.06	  for hybrid SC, reflecting the 

different kinetics of charge storage/release mechanism in each system.  
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5.   Summary and recommendations 

We identified and examined the inconsistencies existed in the current practice for evaluation 

of supercapacitors. Such inconsistencies are caused by some common sources including 

different test instruments, evaluation methods and other related factors. In summary, a fair 

comparison is only possible if we:  

a)   employ the same instruments under consistent test conditions and experimental 

setups;  

b)   derive the performance metrics using consistent calculation methods; 

c)   compare the comparables.  

 

Moreover, a few more specific recommendations are proposed as followings: 

1.   Apply 60 seconds discharge or recharge time to address the rate dependency of 

supercapacitors so as to produce comparable parameters.  

2.   Use constant current charge/discharge (CCCD) test to determine all the three core 

parameters, i.e. the capacitance, equivalent series resistance and operating voltage, 

and subsequently the time constant, energy and power densities and 

leakage/maximum peak current for supercapacitor devices.  

3.   Use cyclic voltammetry (CV) or constant current charge/discharge (CCCD) test 

on a three-electrode setup to examine the operating voltage and specific 

capacitance of supercapacitor materials. 

4.   Use electrochemical impedance spectroscopic (EIS) test to study the transient 

impedance behavior and frequency response of supercapacitors. 

5.   Differentiate between the device performance and material properties, and clearly 
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state the mass loading, thickness, density of the electrode. 

6.   Pay extra attention to nonlinear charge/discharge curves when evaluating 

capacitance and energy performance for pseudocapacitive SCs. 

7.   Keep in mind the interconnections between the energy density, maximum power 

density and the cell time constant: they cannot be altered individually. Also note 

that increasing the operating voltage by using advanced electrolyte or novel cell 

design is the most effective way to raise both energy and power densities, while 

still upholding the τ value. 

 

It is fitting to end this article by quoting from the paper by Simon et al “The prospect of 

developing materials with the energy density of batteries and the power density and cycle life 

of supercapacitors is an exciting direction that has yet to be realized. Whether to approach 

these goals by increasing the power density of battery materials or increasing the energy 

density of supercapacitors is one of the enticing features of the field. However, there needs to 

be clarity in the terminology used in combination with appropriate measurements and 

analyses. Proper evaluation of new materials and their charge storage mechanisms will 

facilitate progress in this important field of electrical energy storage.” [146] 
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Captions for Figures 

 

Figure 1. An illustration of key performance metrics, test methods, major affecting factors for 

the evaluation of SCs. 

 

Figure 2. An illustration of a typical CV test result. 

 

Figure 3. An illustration of CCCD test result with linear potential change over time. 

 

Figure 4. An illustration of CCCD test result with nonlinear potential change over time. 

 

Figure 5. Schematic illustrations and equivalent circuits for different experimental setups. 

 

Figure 6. a) Effect of mass loading and b) electrode thickness on the resulting CS: yellow 

squares, green circles and purple triangles represent crumpled graphene balls, wrinkled 

graphene sheets, and flat graphene sheets as electrodes; and red solid squares indicate 

carbide-derived carbons (CDCs) as electrodes [85, 149]. 

 

Figure 7. Cyclic voltammograms of liquid-mediated graphene materials with increasing 

electrode density following the dashed red arrow from 0.13 – 1.33 g/cm
3
 [61]. 

 

Figure 8. The series RC circuit for supercapacitors. 
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Figure 9. The Nyquist plot of 2.7V/1F Maxwell SC with RES determination methods marked 

in red. 

 

Figure 10. CCCD result of 2.7V/1F Maxwell SC tested at different dwelling time from 0 – 30 

min: (a) overall CCCD plots of one cycle; (b) averaged RES values from first six cycles; 

enlarged upper region of the CCCD plots at dwelling time of (c) 0 min and (d) 1 min.  

 

Figure 11. (a) A typical CCCD plot for large SCs with IR drop and steady-state voltage drop 

marked as ∆V1 and ∆V2, and (b) a real case illustration of the discharge part via Skeleton Tech 

1600F SC. 

 

Figure 12. An illustration of Vo determination methods using (a) CV and (b) CCCD tests. 

 

Figure 13. Dependence of real and imaginary capacitances over frequency for 2.7V/1F 

Maxwell SC with the relaxation time constant τo pointed. 

 

Figure 14. An illustration of the power and energy densities for several EES devices via 

Ragone plot. The plot is based on data from Ref. [114, 119-122]. 

 

Figure 15. Representative working diagram from CCCD test for EDLCs (a), and PCs (b). 

 

Figure 16. An illustration of Peukert’s curve for batteries with the use of ½C marked by 

dashed lines. 
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Figure 17. An illustration of Peukert’s curves for a 1450F EDLC (a) and for a 2000F hybrid 

SC (b) with the use of 60C marked by dashed lines. 

 

 

 

 

 

 

 

Captions for Tables 

 

Table 1. A chronological review of SC evaluation standards. 

Table 2. Defined cell size based on cell capacitance. 

Table 3. CT and RES for BCAP SCs from Maxwell Technologies. 

Table 4. Power densities obtained from different methods. 


