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Abstract— Numerical investigations conducted into the dive-
plane dynamics of supercavitating bodies, which are described
by a non-smooth system, are discussed. For a selected set
of system-parameter values, a fundamental understanding of
the solution structure obtained in terms of equilibrium and
periodic solutions is presented. After carrying out smoothing
approximations, bifurcations of solutions of the resulting
smooth system are studied by using the cavitation number as
a control parameter. Supercritical Hopf bifurcations of fixed
points and period-doubling bifurcations are found, and the
use of feedback control to suppress or delay the onset of Hopf
bifurcation is presented. The present work provides a basis
for interpreting the tail-slap phenomenon of a supercavitating
body as a limit-cycle motion and controlling it.

I. INTRODUCTION

Cavitation is the physical phenomena of bubble formation
in a liquid subject to local pressure variations. The cavita-
tion number σ , which is used to characterize the extent of
cavitation, is defined as

σ =
p∞ − pc

0.5ρV 2 (1)

where ρ is the fluid density, V is the vehicle velocity,
p∞ and pc are respectively the ambient pressure and the
cavity pressure. Supercavitation, which is an extreme form
of cavitation in which a single bubble envelops the moving
vehicle almost completely (see Fig. 1), corresponds to very
small values of the cavitation number [1], [2]. Due to
the reduced drag forces associated with a supercavitating
body, dramatic increases can be realized in the speed of
supercavitating body [1], [2], [3]. However, supercavitation
involves complicated cavity dynamics, the body experiences
strong nonlinear forces, and the system dynamics presents
challenges to stabilization, control, and maneuvering of the
body [2].

Dive plane dynamics and control of underwater vehicles
are studied in the references [1] and [4]. In the study [1],
a stable limit cycle of supercavitating vehicle is found, a
nonlinear control law is designed to cancel the planing
force and the resulting system is a stable linear system.
The change of system dynamics as parameters vary is not
considered though. In the study [4], a supercritical pitch
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Fig. 1. A supercavitating body with an envelope surrounding it.

fork bifurcation is found in the dynamics of an underwater
submersible vehicle with respect to the forward cruising
speed and different linear feedback control laws are applied
to stabilize the system to the desired equilibria located on
different sides of the critical point. The occurrence and
the analysis of the pitch fork bifurcation is related to the
fact that the buoyancy force cancels the gravity force in
nominal conditions. For a supercavitating vehicle, however,
the buoyancy force is very small and this force is omitted in
most cases. On the other hand, the tail of the supercavitating
body slaps the cavity wall under certain conditions and this
tail-slap phenomenon complicates the system dynamics.

In previous work [3], the authors presented analysis of the
equilibrium and limit-cycle solutions of the supercavitating
system to construct a picture of the dynamics of the
supercavitating body for a set of system parameters. The
system was approximated as a piecewise linear system and
switching feedback control was used to stabilize the original
system to a desired equilibrium point. The current work is
an extension of the previous work, and here, specific atten-
tion is paid to the bifurcations in the system with respect to
the cavitation number. To carry out the bifurcation analysis,
the non-smooth system is converted to a smooth system by
using hypertangent functions, and this system is studied by
using the continuation software AUTO97 [5]. The use of
feedback control to delay the onset of Hopf bifurcations
and suppression of these bifurcations is also studied here.
The Hopf bifurcations can be helpful for understanding the
tail-slap phenomenon, which is characterized by oscillations
of the body into and out of the bubble.

The rest of the paper is organized as follows. In Section
II, the dive-plane model of a supercavitating body is pre-
sented. Results illustrative of system dynamics are presented
for a special cavitation number in Section III. Bifurcations
determined with respect to the cavitation number are pre-
sented in Section IV. In Section V, control schemes that
suppress or delay the bifurcations are discussed. Concluding
remarks are collected in Section VI.
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II. GOVERNING EQUATIONS OF SUPERCAVITATING

BODY

Following the work of Dzielski and Kurdila [1], a four-
state model is chosen to study dive-plane dynamics and
control of the system shown in Fig. 1. The forward velocity
V is assumed to be constant and the four states of this
model are z (the depth at which the body is located), w
(the vertical speed of the body), θ (the pitch angle), and
q (the pitch rate). This system has two control inputs,
namely, the cavitator deflection angle δc and the elevator
deflection angle δe. This model takes into account the non-
linear planing force, which is descriptive of the nonlinear
interaction between the body and the cavity, and a simplified
description of the cavity dynamics. The governing equations
can be determined in a body-fixed reference frame as

⎛
⎜⎜⎝

ż
ẇ
θ̇
q̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
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)
+

⎛
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0
0

⎞
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0
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0
d4

⎞
⎟⎟⎠(−V 2[1− (

Rc −R
h′R+Rc −R

)
2

]
1+h′

1+2h′
α)

The term c2 and the last two terms in Eq. (2) correspond
respectively to the gravity and the planing force. Rc is the
cavitator radius and R is the supercavitating body radius.
The coefficients ai j, bi j, and di j are functions of system
parameters. The immersion depth h′ and the angle of attack
α in the planing force calculation are given by

h′ =

{
0 Rc−R

R > L|w|
RV

L|w|
RV − Rc−R

R otherwise
(3)

α =

{
w−Ṙc

V
w
V > 0

w+Ṙc
V otherwise

(4)

In Eq. (3) and (4), L is the vehicle length and Ṙc is the cavity
radius contraction rate. The coefficients and other quantities
above in Eqs. (2-4) take the forms given in Eq. (5). Here,
n is the fin effectiveness ratio with respect to the cavitator,
m is the density ratio of the body to water, g is the gravity
acceleration, Cx0 is the cavitator lift force coefficient, and

Rn is the cavitator radius.

a22 =
CV T

m
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L
)S +
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nL
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7
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36m
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), b22 =
−CV 2T S

mL

b41 =
−11CV 2T n

36m
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17CV 2T
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(5)

c2 = g, d2 =
T
m

(
−17L

36
+

S
L

), d4 =
11T
36m
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11
60

R2 +
133L2

405
, T =

1
7S/9−289L2/1296

Cx = Cx0(1+σ), C = 0.5Cx
Rn

2

R2

Rc = Rn

√
0.82

1+σ
σ

K2, K1 =
L

Rn( 1.92
σ −3)

−1

K2 =

√
1− (1− 4.5σ

1+σ
)K1

40/17

Ṙc =
− 20

17 (0.82 1+σ
σ )0.5V (1− 4.5σ

1+σ )(K1)23/17

K2( 1.92
σ −3)

The model equations described here are different from that
presented in reference [1], since the same sign convention
is used for the cavitator and fin inputs. The planing force
is the only nonlinearity considered in this work. Additional
details regarding this model can be found in references [1]
and [3].

III. SYSTEM DYNAMICS

Results obtained for a representative set of system-
parameter values are presented and discussed here. (A
more complete discussion of the system behavior for dif-
ferent parameter values can be found in reference [3].)
The specific set of parameter values considered is as fol-
lows: g = 9.81m/s2,m = 2,Rn = 0.0191m,R = 0.0508m,L =
1.8m,V = 75m/s,σ = 0.03,n = 0.5,Cx0 = 0.82.

A. Time-Domain Simulations

The responses of the uncontrolled system were found to
be unstable [3]. Responses of the controlled system are
studied for the feedback law given by Eq. (6) and the
results are presented in Fig. 2. As shown in this figure, the
controlled system exhibits bounded motions, which happen
to be stable periodic motions.

δc = −k21z− k23θ − k24q = 15z−30θ −0.3q

δe = 0 (6)
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Fig. 2. Motions initiated from trivial initial conditions in the controlled
case.
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Fig. 3. Planing force versus the vertical speed w.

B. Equilibrium-Point Analysis

A graph of the planing force is shown in Fig. 3. This
nonlinearity depends only on the vertical speed w. Based
on the w value, the state space can be divided into two
regions; that is, the no-tail-slap region (−w0 < w < w0) and
the tail-slap region (|w| > w0), where w0 is the positive
value of w at the transition point in Fig. 3. In the no-tail-slap
region, the planing force is absent and the system is linear.
The uncontrolled system has no equilibria in either region.
The closed-loop system with the control given by Eq. (7)
has the following numerically determined equilibrium point:

(z̄, w̄, θ̄ , q̄) = (0.04545,1.6703,0.0224,0) (7)

The Jacobian matrix associated with this equilibrium
point has unstable eigenvalues, and the DC offsets of the
different states shown in Fig. 2 correspond to this unstable
equilibrium point.

C. Limit Cycle Prediction Using the Describing Function
Method

To examine the limit cycle motions shown in Fig. 2, the
describing function method (DFM) is used. This method,
which is also known as the harmonic balance method, is
a very useful tool in nonlinear system analysis [6], [7].
Through numerical calculations [3] based on this method, it

is determined that the system has a stable limit cycle with
the vertical speed

w(t) = 1.626+0.12238cos(277t) (8)

The DC offset of 1.626 m/s is in agreement with the
DC offset of 1.619 m/s determined through time-domain
simulations (see Figure 2). In addition, the AC ampli-
tude of 0.12238 m/s and the oscillation frequency of 277
rad/s are close to the respective values (0.2 m/s and 232
rad/s) obtained through the simulations. The differences
are attributed to the presence of higher order harmonics;
it is assumed that the first harmonic is dominant in using
the DFM. A projection of the system trajectory obtained
through the time-domain simulation is shown in Fig. 4.
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Fig. 4. Projection of the system trajectory obtained from time-domain
simulations in the controlled case.

IV. BIFURCATION ANALYSIS

In Section III, the solution structure of the system (2) was
discussed for a selected set of parameter values. To fully
understand the dynamics of the non-smooth system, it is
important to determine the qualitative changes (bifurcations)
experienced by the solutions of the system as a control
parameter such as the cavitation number is varied. Different
possible bifurcations include saddle-node bifurcation of a
fixed point, pitchfork bifurcation of a fixed point, transcrit-
ical bifurcation of a fixed point, Hopf bifurcation of a fixed
point, and period-doubling bifurcation of a periodic solution
[5]. In order to determine a valid range of the cavitation
number that would be physically meaningful, some analysis
is needed, as discussed next.

A. Physically Meaningful Range of the Cavitation Number

In previous studies ([1], [3], [8]), the operating cavitation
number of the supercavitating vehicle is chosen as σ =
0.03. The model given by Eqs. (2-4) is valid only for cases
with supercavitation. However, a large cavitation number
corresponds to the no-cavity case or a partial-cavity case.
On the other hand, a very small cavitation number is not
practical due to the physical constraints, such as the vehicle
speed. Furthermore, the assumptions made in deriving and
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simplifying the cavity model lead to additional constraints
on the cavitation number. An inspection of the cavity model
(see Eq. (5)) reveals the following three constraints on the
cavitation numbers:

1) K1 > 0 ⇒ σ > 0.0198
2) 1− (1− 4.5σ

1+σ )K1
40/17 ⇒ σ < 0.0398

3) Rc > R ⇒ σ < 0.0368
The expressions of the cavity radius Rc at the transom, the

planing section, and its derivative in Eq. (5) are simplified
forms that follow from Logvinovich’s cavity model [8]. The
first constraint follows directly from the assumption

L > Rn(
1.92

σ
−3) (9)

made during the simplification, which one can notice from
the definition of the constant K1. The second constraint
is enforced to ensure that the cavity radius expression of
Logvinovich’s model has a real value at the body’s transom
[8]. The third constraint allows for the cavity to have a
larger radius than the body at the transom. Hence, based
on this discussion, the simplified cavity model is applicable
only when the cavitation number falls within the interval
[0.0198, 0.0368].

B. Smooth Approximation of the Model

Due to the non-smooth nature of the system, it is not
feasible to determine the fixed points of the given dynamic
system and the bifurcations of these fixed points. Hence,
one has to resort to numerical bifurcation analysis tools.
Although bifurcation packages such as BIFPAK and Slide-
Cont [9] are available for non-smooth systems, the nature
of the non-smooth system (2) does not lend itself to the use
of these tools.

The sources of non-smoothness in the planing force are
the angle of attack α and the immersion depth h′. The
equations governing the angle of attack given in Eq. (4)
can be rewritten as

α =
w
V
− |w|Ṙc

wV
=

w
V
− sgn(w)

Ṙc

V
(10)

where sgn(.) is the sign function that takes the form

sgn(x) =

⎧⎨
⎩

1 if x > 0
0 if x = 0
−1 if x < 0

(11)

The equations governing the immersion depth are provided
in Eq. (3).

In Fig. 5 and 6, graphs of the angle of attack and the
immersion depth are provided with respect to the vertical
speed w. It is clear from Eqs. (10)-(12) as well as the
graphs that the angle of attack and the immersion depth
are piecewise linear functions of the vertical speed.

Based on prior work (e.g., [10]), hypertangent functions
are chosen to obtain smooth versions of Eqs. (10) and (12).
In the expression for the angle of attack, the sgn(w) function
is replaced by tanh(kw), where k is a constant chosen to
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Fig. 5. Angle of attack versus the vertical speed w.
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Fig. 6. Immersion depth versus the vertical speed w.

control the approximation error. The immersion depth h′ is
approximated as

h′ ≈ tanh(kw)
L

2RV
f (w)

f (w) = 2w+(w+wt0) tanh[−k(w+wt0)] (12)

+(w−wt0) tanh [k(w−wt0)]

In Eq. (12), wt0 is the positive value of w at the transition
point in Fig. 6. In Fig. 7 and 8, comparisons between
the smoothened version of the planing force and the non-
smooth planing force are shown for two different values
of k. It is clear that as the value of k is increased, the
approximation gets better. This is to be expected, since
the non-smooth expressions are approached in the limit by
the respective smooth approximations, as k goes towards
infinity. For k = 300 and beyond, the bifurcation results
presented in the next section did not change from one value
of k to a higher one.

C. Bifurcation Results

Since the uncontrolled system did not have any equi-
librium points in the considered range of the cavitation
number, bifurcations of equilibrium points of the smooth
version of the controlled system were studied by using
AUTO97. The control law given by Eq. (6) was used. The
results are shown in Fig. 9. The solid thick line corresponds
to stable limit cycles, solid thin lines correspond to stable
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Fig. 7. Comparisons between smooth form (k = 3) and non-smooth form.
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Fig. 8. Comparisons between smooth form (k = 300) and non-smooth
form.

equilibrium points, and dotted thin lines correspond to un-
stable equilibrium points. A supercritical Hopf bifurcation
occurs at σ = 0.02425. The numerical results also show
that there are period-doubling bifurcations at the cavitation
number values of 0.0318 and 0.0328.

To verify the results obtained by using AUTO97, the
stability of the fixed point of the non-smooth system was
numerically examined at the Hopf bifurcation point. It was
numerically determined that the conditions required for a
Hopf bifurcation of a fixed point including the transversality
condition was satisfied. To verify the occurrence of a
supercritical Hopf bifurcation of the fixed point of the non-
smooth system, numerical simulations were carried out and
the results obtained are presented in Fig. 10. The results
confirm the existence of a supercritical Hopf bifurcation at
a cavitation number value between 0.0242 and 0.0243 and
possibly another bifurcation between the cavitation numbers
of 0.0333 and 0.0334. It is believed to be related to the
period-doubling bifurcation of the smooth version.

V. BIFURCATION CONTROL

Typically, in bifurcation control (e.g., [11]), the uncon-
trolled system exhibits a bifurcation which one seeks to
delay or suppress by choosing an appropriate feedback
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Fig. 9. Bifurcation diagram of the smooth system when the cavitation
number is used as a control parameter.
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Fig. 10. Steady solution of the non-smooth system when the cavitation
number is used as a control parameter.

control law. Here, the bifurcation diagram shown in Fig.
9 pertains to a certain choice of coefficients in the control
law given by Eq. (6). These coefficients are varied to shift
the Hopf bifurcation of the fixed point. For the control law
given by

δe = 0,δc = 15z−300θ −3q (13)

the Hopf bifurcation point is delayed till the cavitation
number is increased to a value of σ = 0.03456. This would
mean that the motions of the supercavitating body will settle
down to the stable equilibrium point solution for the values
of σ in the range of [0.0198, 0.03456]. For the choice of
the control law

δe = 0,δc = 15z−30θ −6q (14)

there are no Hopf bifurcations in the physically meaningful
range of the cavitation number.

With the feedback control law

δe = 0,δc = 15z−3000θ −0.3q (15)

the Hopf bifurcation point occurs at σ = 0.0215, which is
earlier than that observed in Fig. 9. From a physical stand-
point, usually the tail-slap is harmful to the supercavitating
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body and these results suggest that the tail-slap behavior (as-
sociated with limit-cycle motions) can be eliminated by the
choice of appropriate feedback control laws. Alternatively,
if this behavior is preferred, the feedback control law can
be used to enable this as well.

VI. CONCLUDING REMARKS

The dive plane dynamics of the supercavitating body
is modeled by using a non-smooth continuous differential
system. The describing function method is used to predict
limit cycle solutions and the results are shown to agree with
previous work.

The change of the supercavitating body dynamics is
studied as the cavitation number, a key parameter in su-
percavitation, is varied in an appropriate range. The non-
smooth system is smoothened for bifurcation analysis. Hopf
bifurcations of fixed points are found and the occurrence of
these bifurcations are delayed or triggered earlier by using
linear feedback control. The bifurcation results obtained for
the smooth approximation of this system are also compared
with those obtained for the original non-smooth system.
Agreement is found in Hopf bifurcation values for a range
of cavitation numbers. However, at a high value of the
cavitation number, the results obtained from the two systems
do not match well, possibly due to the complicated non-
smooth dynamics of the original system.
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