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SUPERCHARACTERS AND SUPERCLASSES
FOR ALGEBRA GROUPS

PERSI DIACONIS AND I. M. ISAACS

Abstract. We study certain sums of irreducible characters and compatible
unions of conjugacy classes in finite algebra groups. These groups generalize
the unimodular upper triangular groups over a finite field, and the superchar-
acter theory we develop extends results of Carlos André and Ning Yan that
were originally proved in the upper triangular case. This theory sometimes al-
lows explicit computations in situations where it would be impractical to work
with the full character table. We discuss connections with the Kirillov orbit
method and with Gelfand pairs, and we give conditions for a supercharacter
or a superclass to be an ordinary irreducible character or conjugacy class, re-
spectively. We also show that products of supercharacters are positive integer
combinations of supercharacters.

1. Introduction

Let G be a finite group and as usual, write Irr(G) to denote the set of irre-
ducible characters of G. Assume that Irr(G) is partitioned into a collection X of
nonempty subsets, and suppose that for each member X ∈ X , we have chosen
a nonzero character χX whose irreducible constituents all lie in the set X. It is
sometimes possible to find a compatible partition of the group G into a collection
K of nonempty subsets such that the characters χX are constant on each of the
sets K ∈ K, and where |X | = |K|. (We will also require a mild nondegeneracy
condition: that {1} is a member of K.) In this situation, we refer to the functions
χX as “supercharacters” of G and the sets K ∈ K as “superclasses”. Note that
the supercharacters χX are automatically orthogonal with respect to the usual in-
ner product for complex-valued functions defined on finite groups. (This is clear
because the sets X ⊆ Irr(G) are disjoint and the irreducible characters of G are
orthogonal.)

For an arbitrary finite group G, there are two “trivial” supercharacter theories:
in one, X consists just of singleton sets, and in the other X = {{1G}, Irr(G)−{1G}},
where 1G is the principal character of G. The corresponding superclasses in the
first case, of course, are just the conjugacy classes of G, and in the second case,
they are the sets {1} and G−{1}. (The supercharacters in the second example are
1G and ρG − 1G, where ρG is the regular character of G.)

Although for some groups these trivial examples are the only possibilities, there
are many groups for which nontrivial supercharacter theories exist. For example,
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suppose that A is a group that acts via automorphisms on our given group G.
Then, as is well known, A permutes both the irreducible characters of G and the
conjugacy classes of G. By a lemma of R. Brauer, the permutation characters
of A corresponding to these two actions are identical, and hence there are equal
numbers of A-orbits on Irr(G) and on the set of classes of G. (See Theorem 6.32
and Corollary 6.33 of [5].) It is easy to see that these orbit decompositions yield a
supercharacter theory for G: the members of X are the A-orbits on Irr(G), and the
members of K are the unions of the A-orbits on the classes of G. It is clear that
in this situation, the sum of the characters in an orbit X ∈ X is constant on each
member of K.

Another general way to construct a supercharacter theory for G uses the action
of a group A of automorphisms of the cyclotomic field Q|G| = Q[ε], where ε is a
primitive |G| th root of unity. Clearly, A permutes Irr(G), and there is a compatible
action on the classes of G, defined as follows. Given σ ∈ A, there is a unique positive
integer r < |G| such that σ(ε) = εr, and we let σ carry the class of g ∈ G to the
class of gr. Then Brauer’s lemma shows that the numbers of A-orbits on Irr(G)
and on the set of classes of G are equal. In this case too, we take X to be the set
of A-orbits on Irr(G), and again, K is the set of unions of the various A-orbits on
conjugacy classes. As before, it is trivial to check that the sum of the characters
in an orbit X ∈ X is constant on each member of K, and so indeed, we have a
supercharacter theory.

Sometimes, it may be possible to obtain useful information using supercharac-
ters arising from a relatively coarse partition, and in such cases, the supercharacter
table may be much easier to compute than the full character table. For some ap-
plications of Fourier analysis on finite groups, certain naturally occurring functions
are constant on superclasses, and the new theory permits analysis even when the
full character table is unavailable. For instance, a random-walk example can be
found in [4].

Now consider Un(F ), the group of n × n unimodular upper triangular matrices
over a finite field F of characteristic p. (By “unimodular”, we mean that all diag-
onal entries are 1.) An explicit computation of the irreducible characters and the
conjugacy classes of Un(F ) is known to be a “wild” problem, but Carlos André [1]
and Ning Yan [14] have developed an elegant (and applicable) supercharacter the-
ory in this situation. André’s original approach works only when p ≥ n, although
he extends this to the general case in a later paper [3]. Yan’s construction, which
is much more elementary, also works in general, and it yields the same superchar-
acter theory as André’s. (André calls his supercharacters “basic characters” and
Yan calls them “transition characters”. We review some of their main results in
Appendix A.)

In this paper, we generalize Yan’s approach in order to extend the supercharacter
theory of Un(F ) to a much larger class of p-groups: algebra groups over a finite field
F of characteristic p. Let J be a finite dimensional nilpotent associative algebra
over F (without unity, of course), and let G be the set of formal objects of the form
1+x, where x ∈ J . Then G is easily seen to be a group with respect to the natural
multiplication (1 + x)(1 + y) = 1 + x + y + xy. (In fact, G is a subgroup of the
group of units of the algebra R = F ·1+J , in which J is the Jacobson radical.) The
group G constructed in this way is the algebra group based on J . For example,
if J is the algebra of strictly upper triangular n × n matrices over F , then the
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corresponding algebra group is isomorphic to Un(F ). In the case of Un(F ), most
of our results reduce to theorems of André and Yan.

Before we discuss supercharacters of algebra groups, let us return briefly to the
general situation, and suppose that we have a supercharacter theory for some finite
group G. In other words, we assume that there exist partitions X of Irr(G) and K of
G with |X | = |K|, and also that for each set X ∈ X , we have a nonzero character χX

with constituents in X and such that χX is constant on each set K in K. In addition,
we assume that {1} is a member of K. We shall see that each of the partitions X
and K uniquely determines the other, and also determines the supercharacters χX

up to a constant multiple. We shall also see that the superclasses of G are always
unions of conjugacy classes, and that working in the complex group algebra CG,
the product of two superclass sums is a nonnegative integer linear combination of
superclass sums.

For algebra groups, we will resolve the constant-multiple ambiguity and define
specific supercharacters in a natural way that generalizes the constructions of André
and Yan. We shall see that the degrees of these supercharacters and the sizes of
the superclasses are always powers of q, the order of the underlying field F . We
will explore when it happens that a supercharacter is irreducible or a superclass is
a single conjugacy class, and we will prove that the product of two supercharacters
of an algebra group is always a nonnegative integer linear combination of super-
characters. Also, we will consider restriction and induction of supercharacters to
and from algebra subgroups.

As we will explain, our construction of the supercharacters of an algebra group
is a cruder version of the Kirillov orbit method, which attempts to construct the
irreducible characters of such groups, but which does not always work. Kirillov’s
method for upper triangular groups is presented in [11]. (As we will mention later,
however, a variation on his approach does work for Un(F ) if n ≥ p, or more generally
for algebra groups with Jp = 0, where p is the characteristic of F .) Interestingly,
it turns out that whenever one of our supercharacters happens to be irreducible,
it is correctly described by Kirillov’s original formula. We mention that André’s
construction of supercharacter theory is based on the Kirillov method, while Yan’s
(and ours) is independent of it.

We provide a brief summary of the work of André and Yan in Appendix A. In
other appendices, we discuss connections with Gelfand pairs and spherical functions,
we compute a few specific examples and we reformulate some of our results in the
language of Fourier analysis.

2. Supercharacters in general

Let G be a finite group and assume, as in Section 1, that X is a partition of
Irr(G). (Here, and throughout this paper, when we use the word “partition”, we
require that the parts are all nonempty.) For X ∈ X , write σX =

∑
ψ∈X ψ(1)ψ,

and note that
∑

X∈X σX = ρG, the regular character of G. (Recall that ρ(g) = 0
for 1 �= g ∈ G and ρ(1) = |G|.) Also as in Section 1, let K be a partition of G.

2.1. Lemma. For each set X ∈ X , let χX be a nonzero character whose irreducible
constituents lie in X. Assume that |X | = |K| and that the functions χX are constant
on the sets K ∈ K. Then the following are equivalent.

(1) The set {1} is a member of K.
(2) Each character χX is a constant multiple of σX .
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(3) Each irreducible character ψ of G is a constituent of one of the characters
χX .

Proof. Because the irreducible characters of G are linearly independent and the
sets X ∈ X are disjoint, it follows that the characters χX are linearly independent.
These characters lie in the space of complex-valued functions that are constant on
the sets K ∈ K, and since |K| = |X |, they form a basis for this space. Assuming (1)
now, we see that the regular character ρG is constant on all members of K, and
thus we can write ∑

X∈X
aXχX = ρG =

∑
X∈X

σX

for appropriate complex scalars aX . Since the sets X ∈ X are disjoint and the
irreducible characters of G are linearly independent, it follows that aXχX = σX for
all X ∈ X , and this establishes (2).

It is a triviality that (2) implies (3), so we assume (3) now, and we work to
establish (1). Let K be the member of K that contains 1, and let g ∈ K. Since
each of the characters χX is constant on K, we have χX(g) = χX(1), and thus
g is in the kernel of every irreducible constituent of χX . By (3), however, every
irreducible character of G is a constituent of one of the characters χX , and thus g
is in the kernel of all members of Irr(G). It follows that g = 1, and the proof is
complete. �

It seems reasonable to require that every irreducible character of G should appear
as a constituent of some supercharacter, or equivalently, that {1} should be a
superclass, and so we will say that the partitions X of Irr(G) and K of G, together
with the choices of characters χX as above form a supercharacter theory for G
provided that the following hold:

(a) |X | = |K|,
(b) the characters χX are constant on the members of K and
(c) the set {1} is a member of K.

As we have indicated, we refer to the characters χX as the supercharacters and
to the members of K as superclasses. In the following sections, however, we will
define a particular supercharacter theory for algebra groups, and we will reserve
the terms “supercharacter” and “superclass” for the specific objects associated with
that theory.

By Lemma 2.1, we see that if we have a supercharacter theory for a group G, it
is no loss to assume that our supercharacters are the characters σX . (We will not
make that assumption for algebra groups, however.) Given an arbitrary partition
X of Irr(G), therefore, we can attempt to construct a corresponding supercharacter
theory by considering partitions K of G such that the characters σX for X ∈ X
are constant on the members of K. (We refer to such a partition of G as being
compatible with X .) Partitions compatible with X always exist, of course, since
we could take the members of K to be the conjugacy classes of G. Indeed, given X ,
it is easy to see that there is a unique coarsest partition K of G compatible with
X . As we shall show, every partition K compatible with X satisfies |K| ≥ |X |, but
equality usually fails even for the coarsest possible partition K, which has the fewest
possible parts. In general, therefore, we cannot expect to construct a supercharacter
theory for G by starting with an arbitrary partition X of Irr(G).
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As we mentioned in the Introduction, every finite group has trivial supercharacter
theories, and it is not hard to see that for some finite groups (for example the
nonabelian group of order 6) the two trivial supercharacter theories are the only
ones. The smallest group for which there exists a nontrivial supercharacter theory
is the cyclic group of order 4. For that group, we can take |K| = 3 = |X |, where
the set consisting of the two elements of order 4 is one of the members of K and
the set consisting of the two faithful linear characters is one of the members of X .

We introduce some notation for the next theorem. If K is an arbitrary subset of
a group G, we write K̂ to denote the sum of the elements of K in the complex group
algebra CG. Also, we recall that if ψ ∈ Irr(G), then there is a central idempotent
eψ ∈ CG corresponding to ψ, and the coefficient of a group element g in eψ is
(1/|G|)χ(1)χ(g). If X is a subset of Irr(G), we write fX to denote the sum of
the idempotents eψ for ψ ∈ X. Since the idempotents eψ are orthogonal, we see
that fX is idempotent. Also, idempotents of the form fX are orthogonal if the
corresponding sets X are disjoint.

2.2. Theorem. Let X and K be partitions of Irr(G) and of G, respectively, and
assume that the characters σX for X ∈ X are constant on the sets K ∈ K. Then
|X | ≤ |K|. If |X | = |K|, then the following hold.

(a) The characters σX for X ∈ X span the space of all complex-valued functions
on G that are constant on the members of K.

(b) The linear span in CG of the elements K̂ for K ∈ K is a subalgebra of the
center Z(CG). Also, the idempotents fX for X ∈ X form a basis for this
subalgebra.

(c) The partitions X and K uniquely determine each other, and in fact, K is
the unique coarsest partition of G that is compatible with X . In particular,
the members of K are unions of conjugacy classes.

(d) Some member of K consists of just the identity of G and some member of
X consists of just the principal character of G.

(e) Each automorphism of the field C induces a permutation on the set X .
(f) If r is an integer coprime to |G|, then the map g �→ gr induces a permutation

on the set K.

Proof. The characters σX for X ∈ X form a linearly independent subset of the
vector space V of all complex valued functions on G that are constant on members
of K. Since dim(V ) = |K|, it follows that |X | ≤ |K|, as claimed. Assuming now
that equality holds; we see that the σX form a basis for V , and this proves (a).

Since the coefficient of the group element g in the idempotent eψ is
(1/|G|)ψ(1)ψ(g), we see that the coefficient of g in fX is (1/|G|)σX(g). Because
σX is constant on each of the sets K ∈ K, it follows that fX is a linear combination
of the elements K̂ of CG, and thus fX lies in the linear span A of these elements.

The fX are orthogonal idempotents, and hence they are linearly independent.
The number of fX is |X | = |K| ≥ dim(A), and it follows that the fX form a basis
for A, as claimed. Since the idempotents fX are central, we have A ⊆ Z(CG).
Again using the fact that the fX are orthogonal idempotents, it follows that their
linear span A is a subalgebra, and this completes the proof of (b).

To see that X uniquely determines K, let K0 be the unique coarsest partition
of G compatible with X . In other words, the members of K0 are the equivalence
classes under the relation on G defined by u ∼ v if and only if σX(u) = σX(v) for
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all X ∈ X . (In particular, if u and v are conjugate in G, then u ∼ v, and thus
the members of K0 are unions of conjugacy classes.) Since each member of K is
contained in some member of K0, we have |K0| ≤ |K| = |X |. But |K0| ≥ |X | by
the first assertion of the theorem, and thus |K0| = |X | = |K|, and it follows that
K = K0. Thus X determines K and the members of K are unions of classes, as
claimed. To see that K determines X , observe that K determines the subalgebra A
and that the fX are the unique primitive idempotents in A. Since X is exactly the
set of irreducible characters ψ of G such that fXeψ �= 0, it follows that K uniquely
determines the partition X of Irr(G), as required, and this completes the proof
of (c).

The fact that the set {1} lies in K follows by Lemma 2.1. Now let Y ∈ X contain
the principal character 1G. If Y > {1G}, we can construct a new partition X0 of
Irr(G) by splitting Y into the two sets {1G} and Y − {1G} and leaving all other
members of X unchanged. Since 1G is constant on G, it follows that all characters
σX for X ∈ X0 are constant on the members of X0, and thus |X | = |K| ≥ |X0| =
|X | + 1, where the inequality follows from the first assertion of the theorem. This
contradiction shows that Y = {1G}, and the proof of (d) is complete.

Now suppose that τ is an automorphism of the complex numbers. Then τ
permutes Irr(G), and so we obtain a new partition Y of Irr(G) by applying τ to
each member of X . If Y ∈ Y , then Y = Xτ for some set X ∈ X , and we see that
σY = (σX)τ is constant on the sets K ∈ K. Since |Y| = |X | = |K|, we can conclude
from (c) that Y = X , and this proves (e).

Finally, if r is an integer coprime to |G|, then the map g �→ gr defines a permuta-
tion of G, and so if we apply this map to the members of K, we get a new partition
L of G. Also, there exists a field automorphism τ such that ψ(gr) = ψ(g)τ for all
characters ψ ∈ Irr(G) and all elements g ∈ G. For K ∈ K and X ∈ X , therefore, it
follows that σX(gr) = σX(g)τ is constant as g runs over K. The characters σX are
thus constant on the sets forming the partition L of G. Since |L| = |K| = |X |, we
conclude from (c) that L = K, proving (f). �

Note that it follows from parts (e) and (f) of the previous theorem that the
complex conjugate of a supercharacter σX is again a supercharacter and that the
set of inverses of the members of a superclass is again a superclass.

2.3. Corollary. Suppose that K and L are superclasses in some supercharacter
theory for a group G. Then K̂L̂ is a nonnegative integer linear combination of
superclass sums in the group algebra CG.

Proof. By Theorem 2.2(b), we know that K̂L̂ is a C-linear combination of superclass
sums. If M is an arbitrary superclass, we see that the coefficient of M̂ in K̂L̂ is
exactly the coefficient of the group element m in this product, where m is any
fixed element of M . It is clear, however, that this coefficient is exactly equal to the
number of ordered pairs (k, l), where k ∈ K, l ∈ L and kl = m. This, of course, is
a nonnegative integer, as required. �

Finally, we present an analog of a standard integrality result of ordinary character
theory,

2.4. Theorem. Let χ be a supercharacter and K a superclass belonging to some
supercharacter theory for a group G, and let k ∈ K. Then χ(k)|K|/χ(1) is an
algebraic integer.
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Proof. Let X and K be as before, where K ∈ K and χ = χY for some member Y ∈
X . Let A be the linear span of the superclass sums and recall from Theorem 2.2(b)
that the idempotents fX for X ∈ X form a basis for A. Let ω : A → C be
the function that picks out for each element a ∈ A, the coefficient of fY when
a is expressed as a linear combination of the fX . Because the basis {fX | X ∈
X} consists of idempotents, it follows that ω is a C-algebra homomorphism. By
Corollary 2.3, therefore, the Z-submodule of C generated by the complex numbers
ω(L̂) for L ∈ K is closed under multiplication. We conclude that ω(K̂) is an
algebraic integer.

Extending the character χ by linearity to all of CG, we have χ(fX) = 0 if X �= Y ,
and thus χ(fY ) = χ(1). It follows that χ(K̂) = ω(K̂)χ(1). But χ is constant on K,
and thus χ(K̂) = χ(k)|K|. Thus χ(k)|K|/χ(1) = ω(K̂) is an algebraic integer. �

3. Algebra groups and orbits

Let F be a finite field of order q and characteristic p, and let J be a finite
dimensional nilpotent associative F -algebra. Form the algebra group G = 1+J (as
explained in the Introduction) and observe that G is a p-group with |G| = |J | = qd,
where d = dimF (J).

If we view G as a subgroup of the group of units of the algebra F ·1+J , we see that
right multiplication defines a right action of G on J and that left multiplication
defines a left action of G on J . These actions are compatible in the sense that
(hx)g = h(xg) for all g, h ∈ G and x ∈ J . They decompose J into right orbits
xG and left orbits Gx for x ∈ G. We will also consider the two-sided orbits
GxG for x ∈ J . Finally, we mention the conjugation action of G on J and its
corresponding conjugation orbits. Note that each two-sided orbit is a union of
right orbits, a union of left orbits and a union of conjugation orbits.

It should be clear that the conjugacy classes of the algebra group G = 1 + J are
exactly the subsets of the form 1+O, where O is a conjugation orbit of G on J . We
define the superclasses of G to be the subsets of the form 1 + GxG for elements
x ∈ J , and we observe that since the two-sided orbit GxG is a union of conjugation
orbits, each superclass is a union of conjugacy classes. (Eventually, we will define
the supercharacters of an algebra group, and we will see that these definitions are
compatible with the general definitions of the previous section.)

Of course, the size of the conjugacy class of an element g ∈ G is equal to
|G|/|CG(g)|. Also, CG(g) = 1 + CJ (g), and we see that CJ (g) is a subspace
(and in fact, is a subalgebra) of J . Thus |CJ (g)| is a power of q, and hence all
class sizes of G are powers of q. Note also that if g = 1 + x with x ∈ J , then
CJ(g) = CJ (x).

To prove that the superclass sizes of G are also powers of q, it is convenient to
have the following lemma, which appears in Yan’s paper [14].

3.1. Lemma. Let G be a finite group and suppose that G acts compatibly on the
left and right of some set Ω. Let α ∈ Ω with two-sided orbit GαG. Then

|GαG| =
|αG||Gα|
|αG ∩ Gα| .

Proof. The two-sided orbit GαG is a union of left orbits that are transitively per-
muted by the right action of G. Because they are transitively permuted, these left
orbits all have the same size, namely |Gα|, and thus |GαG| = n|Gα|, where n is
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the number of left orbits in GαG. The right action of G is also transitive on the
set of intersections of αG with the n right translates of Gα, and these n sets of
cardinality |αG ∩ Gα| partition |αG|. It follows that |αG| = n|αG ∩ Gα| and we
have n = |αG|/|αG ∩ Gα|. The result now follows. �
3.2. Corollary. Let G = 1 + J be an algebra group, where the underlying field F
has order q. If x ∈ J , then

|GxG| =
|xJ ||Jx|
|xJ ∩ Jx|

and in particular, the superclasses of G all have q-power size.

Proof. Let x ∈ J . Then xG = x+xJ is an additive coset of the F -subspace xJ in J ,
and hence |xG| = |xJ | is a power of q. Similarly, Gx = x + Jx, and so |Gx| = |Jx|
is a power of q. Also, xG∩Gx = (x + xJ)∩ (x + Jx) = x + (xJ ∩ Jx) is a coset of
the F -subspace xJ ∩ Jx, and so |xG ∩ Gx| = |xJ ∩ Jx| is also a power of q. The
result now follows by Lemma 3.1. �

Next, we present a condition sufficient to guarantee that a superclass of an
algebra group G = 1 + J is just an ordinary conjugacy class. To do this, we
introduce a bit of notation. Given x ∈ J , write Lx = {y ∈ J | yx = 0} and
Rx = {y ∈ J | xy = 0}. These are respectively the left annihilator and the right
annihilator of x in J .

3.3. Theorem. Let G = 1 + J be an algebra group, and let x ∈ J . Suppose that
Lx + Rx = J , where Lx and Rx are the left and right annihilators of x in J , as
above. Then the superclass of 1 + x is the conjugacy class of 1 + x.

Proof. We must show that GxG is the conjugation orbit O of x. Since O ⊆ GxG,
it suffices to show that |O| ≥ |GxG|, or equivalently, that

|J |
|C| ≥

|xJ ||Jx|
|xJ ∩ Jx| ,

where C = CJ (x). Since |xJ | = |J |/|Rx| and |Jx| = |J |/|Lx|, our goal is to show
that |C||J | ≤ |Lx||Rx||xJ ∩ Jx|.

We are assuming that J = Rx + Lx, and so |J | = |Rx||Lx|/|Rx ∩ Lx|. It thus
suffices to show that |C|/|Rx∩Lx| ≤ |xJ∩Jx|. Now observe that Rx∩Lx = C∩Lx,
and thus |C|/|Rx∩Lx| = |Cx|. But clearly, Cx ⊆ xJ∩Jx, and the result follows. �

The converse of Theorem 3.3 is false; the superclass of 1 + x can be a conjugacy
class even if Lx + Rx �= J . Consider, for example, the situation where J has basis
{x, y, z} over a field F of order q, and assume that all products of these basis vectors
in J are 0 except that xy = z and yx = αz, where α ∈ F is some fixed scalar. If
α �= 1, then x is not central in J , and thus C = CJ (x) = Fz + Fx has dimension
2. In this case, the conjugation orbit O of x has size q. If α �= 0, we see that
xJ = Fz = Jx, and thus |GxG| = q by Corollary 3.2. It follows that O = GxG if
α �∈ {0, 1}, and so the superclass of 1 + x is the conjugacy class of this element. In
this case, Rx < J and Lx < J , and it follows that Rx = Fx + Fz = Lx, and thus
Rx + Lx < J , as claimed.

The algebra J = Jα actually exists for every choice of α ∈ F . It can be realized,
for example, as a subalgebra of the algebra of strictly upper triangular 4×4 matrices
over F . To see this, write ei,j to denote the matrix units, as usual, and take
x = e1,2 + αe3,4, y = e1,3 + e2,4 and z = e1,4. Of course, these matrices are linearly
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independent, and it is routine to check that they satisfy the multiplication rules
stated in the previous paragraph. In particular, they span a subalgebra of the upper
triangular matrices.

We can use these algebras Jα to illustrate another interesting point. Suppose
that |F | = p is a prime exceeding 2. Then for all α �= 1, the groups G = 1 + J
are nonabelian and have order p3 and exponent p, and so all of these groups are
isomorphic. It is not hard to show, however, that the algebras Jα tend to be
nonisomorphic as α varies. In fact, Jα

∼= Jβ if and only if β = α or αβ = 1. In
general, therefore, the algebra J contains more information than does the algebra
group G = 1 + J . Although we omit the proof of our isomorphism assertion, we
mention that it is easy to see that J0 is not isomorphic to Jα for α �= 0. This is
because the right annihilator of the whole algebra Jα has dimension 2 if α = 0 and
has dimension 1, otherwise.

We close this section with some examples. First, we give an application of The-
orem 3.3 in the case where G = Un(F ), the group of unimodular upper triangular
n × n matrices over F . Here, and whenever we consider this group, we view it as
the algebra group 1 + J , where J is the algebra of strictly upper triangular n × n
matrices.

3.4. Corollary. Let G be the unimodular upper triangular matrix group Un(F ).
Suppose that g ∈ G has exactly one nonzero above-diagonal entry. Then the super-
class of g in G is just the ordinary conjugacy class of g.

Actually, Corollary 3.4 is valid in a more general setting, which we now describe.
We call a subgroup G of Un(F ) a pattern subgroup if it consists of all of the
matrices in Un(F ) for which the (i, j) entry is zero for positions (i, j) (with i < j)
in some specified set of “forbidden” positions. For example, it is easy to check that
we get a group of order |F |2n−3 if we require that the (i, j)-entry is zero whenever
1 < i < j < n. (If |F | = p is prime, this pattern group is an extraspecial p-group.)
Of course, the full unimodular upper triangular group is a pattern group with empty
set of forbidden positions.

An alternative way to think about a pattern group is to consider a set P of
“allowed” positions (i, j) with i < j. Suppose that the set P has the property
that if (i, j) and (j, k) are in P, then (i, k) ∈ P. In this case, the linear span J
of the matrix units corresponding to positions in P is a subalgebra of the algebra
of strictly upper triangular matrices, and the corresponding algebra group 1 + J
is exactly the pattern group with forbidden positions (i, j), where (i, j) �∈ P and
i < j. The following includes Corollary 3.4.

3.5. Corollary. Let G be a pattern group, viewed as an algebra group, as above,
and suppose that g ∈ G has exactly one nonzero above-diagonal entry. Then the
superclass of g is the class of g in G.

Proof. Write g = 1+aei,j with a ∈ F and i < j. Now consider an arbitrary matrix
unit eu,v ∈ J . Since u < v, we cannot have both u = j and v = i, and thus either
xeu,v = 0 or eu,vx = 0. In other words, either eu,v ∈ Rx or eu,v ∈ Lx. The various
matrix units eu,v in J form a basis for J , however, and so Rx +Lx = J . The result
now follows by Theorem 3.3. �

Finally, we give an example where a superclass consists of more than one class.
Let G = U4(F ) and let J be as usual. Consider x = e1,2 + e3,4 ∈ J . The matrix
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units e1,2, e1,4 and e3,4 annihilate x on both sides, and thus they centralize x. Also,
(e1,3 + e2,4)x = e1,4 = x(e1,3 + e2,4), and so the space C = CJ (x) has dimension
at least 4. As we have seen, the size of the class of 1 + x in G is |J |/|C|, and
since dim(J) = 6, it follows that the class of 1 + x has size at most q2, where
|F | = q. (Actually, the size of this class is exactly q2.) The size of the superclass
of 1 + x is |GxG| = |xJ ||Jx|/|xJ ∩ Jx| by Corollary 3.2. It is easy to see that
xJ = F ·e1,3 + F ·e1,4 and Jx = F ·e1,4 + F ·e2,4. Thus |xJ | = q2 = |Jx| and
|xJ ∩ Jx| = q. The superclass size for 1 + x, therefore, is q3, and this exceeds the
class size.

4. Linear functionals

As before, let J be a finite dimensional nilpotent associative algebra over a field
F of finite order q. In this section, we consider the dual space J∗ of J , which, we
recall, is the space of F -linear functionals λ : J → F .

For each of the actions of G = 1 + J on J that we discussed in the previous
section, there is a corresponding action of G on J∗. Given λ ∈ J∗ and g ∈ G,
we define linear functionals λg and gλ by the formulas (λg)(x) = λ(xg−1) and
(gλ)(x) = λ(g−1x) for x ∈ J . It is routine to check that these define a compatible
right action and left action of G on J∗ with right orbits λG and left orbits Gλ. Also,
we have two-sided orbits GλG for λ ∈ J∗. In addition, there is a conjugation action
of G on J∗ defined by λ �→ g−1λg. (The orbits of this conjugation action correspond
to the “coadjoint orbits” defined by Kirillov [11] in the case where G = Un(F ).)

4.1. Lemma. Let G = 1 + J be an algebra group. Then the numbers of right orbits
of G on J and J∗ are equal. The same is true about left orbits, two-sided orbits
and conjugation orbits.

Proof. More generally, let G be an arbitrary finite group that acts (on the right
and linearly) on a finite F -vector space V . If we let G act on the dual space V ∗

according to the formula (λg)(v) = λ(vg−1), we show that G has equal numbers of
orbits in its actions on V and V ∗. By the well known orbit-counting formula often
(erroneously) attributed to Burnside, the number of orbits of G in an arbitrary
action is the average number of fixed points of the elements of G. It suffices,
therefore, to show that each element g ∈ G fixes equal numbers of vectors v ∈ V
and linear functionals λ ∈ V ∗.

The element g ∈ G fixes λ ∈ V ∗ if and only if g−1 fixes λ, and this happens
precisely when λ(v) = λ(vg) for all v ∈ V . In other words, g fixes λ if and only
if vg − v ∈ ker λ for all v ∈ V . The linear functionals fixed by g, therefore, are
exactly those whose kernel contains W = {vg − v | v ∈ V }. Because the action of
G on V is linear, we see that W is a subspace of V , and thus the number of linear
functionals fixed by g is exactly |V |/|W |.

Now consider the linear transformation v �→ v − vg from V onto W . Then
|W | = |V |/|K|, where K is the kernel of this map, and thus |K| = |V |/|W | is the
number of g-fixed linear functionals. But clearly, K is the set of g-fixed vectors,
and thus g fixes equal numbers of points in V and V ∗, as desired.

In particular, in the case where G = 1 + J is an algebra group, this shows that
there are equal numbers of right orbits and equal numbers of conjugation orbits
of G on J and J∗. To see that the numbers of left orbits are equal, it suffices to
define a new (right) action of G on J by setting x·g = g−1x. Finally, to see that
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the numbers of two-sided orbits of G on J and J∗ are equal, we apply the previous
reasoning to the (right) action of G × G on J defined by x·(g, h) = g−1xh. This
completes the proof. �

Note that we have not proved (and in general, it is not true) that there is a
bijection between the right G-orbits on J and on J∗ that preserves orbit sizes.
Similarly for the other actions, there is no reason to believe that the sizes of the
orbits in J and J∗ agree.

We next recall a useful bit of elementary linear algebra. If W is an arbitrary
finite dimensional vector space with dual space W ∗, then there is a natural map
X �→ X⊥ = {λ ∈ W ∗ | X ⊆ kerλ} from the set of subspaces of W to the set of
subspaces of W ∗. This map is an order-reversing bijection, and so if X, Y ⊆ W , we
have (X ∩ Y )⊥ = X⊥ + Y ⊥. Also, for every subspace X ⊆ W , the dimension of its
“perpendicular” X⊥ is equal to the codimension of X.

Given λ ∈ J∗, define Rλ = {x ∈ J | Jx ⊆ ker λ} and note that Rλ is a subalgebra
of J , and in fact, it is a left ideal. Similarly, set Lλ = {x ∈ J | xJ ⊆ ker λ}, and
observe that Lλ is a right ideal. In particular, since Rλ and Lλ are subalgebras, we
see that 1 + Rλ and 1 + Lλ are subgroups of G = 1 + J .

4.2. Lemma. Let G = 1 + J be an algebra group over a field F of order q. Fix
λ ∈ J∗ and write

U = {µ ∈ J∗ | Rλ ⊆ kerµ} and V = {ν ∈ J∗ | Lλ ⊆ ker ν} .

The following then hold.
(a) 1+Rλ is the right stabilizer of λ in G and |λG| = |J |/|Rλ| is a power of q.
(b) 1 + Lλ is the left stabilizer of λ in G and |Gλ| = |J |/|Lλ| is a power of q.
(c) λG = λ + V .
(d) Gλ = λ + U .
(e) |λG| = |Gλ| and |Rλ| = |Lλ|.

Proof. Let g ∈ G and write g−1 = 1 + t with t ∈ J . If x ∈ J is arbitrary, then

(λg)(x) = λ(xg−1) = λ(x + xt) = λ(x) + λ(xt) ,

and thus λ and λg agree at x precisely when xt ∈ kerλ. In particular, λ = λg if
and only if Jt ⊆ kerλ, or equivalently, t ∈ Rλ. It follows that the right stabilizer of
λ in G is 1+Rλ, and thus |λG| = |G|/|1+Rλ| = |J |/|Rλ|. This number is a power
of q = |F | since Rλ is a subalgebra. This proves (a), and the proof of (b) is similar.

To prove (c), we again let g ∈ G and write g−1 = 1 + t. If x ∈ Lλ, then
xt ∈ kerλ and the previous computation shows that (λg − λ)(x) = λ(xt) = 0. In
other words, λg − λ ∈ V , and hence λG is contained in the additive coset λ + V .
If follows that |λG| ≤ |V | = |J |/|Lλ| = |Gλ|. The reverse containment follows by
similar reasoning, and thus we have equality throughout. This proves (e) and (c);
the proof of (d) is similar. �

Given λ in J∗, let Dλ = Rλ ∩Lλ, and write nλ = |Rλ|/|Dλ| = |Lλ|/|Dλ|. (Note
that these two quotients are equal by Lemma 4.2(e). Note also that nλ is a power
of q = |F | since both Rλ and Dλ are subalgebras.)

4.3. Lemma. Let G = 1 + J be an algebra group over a field F of order q, and
fix λ ∈ J∗. Then the two-sided orbit GλG of λ is the union of nλ left orbits that
are transitively permuted by the right action of G, and it is also the union of nλ
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right orbits that are transitively permuted by the left action of G. Furthermore,
|GλG| = |J |/|Dλ| is a power of q and nλ is a power of q.

Proof. By Lemma 4.2, we have λG = λ + V and Gλ = λ + U , and thus

|λG ∩ Gλ| = |(λ + V ) ∩ (λ + U)| = |λ + (V ∩ U)| = |V ∩ U | .
By Lemma 3.1, therefore,

|GλG| =
|λG||Gλ|
|λG ∩ Gλ| =

|V ||U |
|V ∩ U | = |V + U | .

We know, however, that

V + U = (Lλ)⊥ + (Rλ)⊥ = (Lλ ∩ Rλ)⊥ = (Dλ)⊥ ,

and thus V +U has dimension equal to the codimension of Dλ. This yields |GλG| =
|V + U | = |J |/|Dλ|, as claimed. This is clearly a power of q, and we have already
seen that nλ is a power of q.

Now GλG is the union of the right translates of the left orbit Gλ. Each of these
right translates is a left orbit, and so the distinct right translates of Gλ are disjoint,
and they partition GλG. Since these translates all have equal cardinality, their
number is

|GλG|
|Gλ| =

|J |/|Dλ|
|J |/|Lλ|

=
|Lλ|
|Dλ|

= nλ .

Of course, a similar argument works with “right” and “left” interchanged, and the
proof is complete. �

For completeness, we also discuss the sizes of the conjugation orbits (i.e. coad-
joint orbits) in J∗. We shall not need this, however, for our study of the su-
percharacters of algebra groups. Fix λ ∈ J∗ and write [x, y] = xy − yx for
elements x, y ∈ J . Define an alternating F -bilinear form 〈·, ·〉 on J by setting
〈x, y〉 = λ([x, y]), and let Tλ be the radical of this form. Recall that by definition,
Tλ = {x ∈ J | 〈x, J〉 = 0} = {y ∈ J | 〈J, y〉 = 0}, and in particular, Tλ is a subspace
of J . As is well known, the codimension of the radical of an alternating form is
always even, and thus |J |/|Tλ| is a power of q = |F | with even exponent.

4.4. Lemma. Let G = 1 + J be an algebra group over a field F of order q. Fix
λ ∈ J∗ and let O be its conjugation orbit. Then Tλ is a subalgebra and 1 + Tλ is
the stabilizer of λ in the conjugation action. Also, |O| = |J |/|Tλ| is a power of q
with even exponent.

Proof. Let g ∈ G and write g−1 = 1 + t with t ∈ J . Given x ∈ J , we have

(gλ − λg)(x) = λ(g−1x − xg−1) = λ(tx − xt) = 〈t, x〉 .

It follows that gλ = λg if and only if 〈t, J〉 = 0, or equivalently, t ∈ Tλ. In other
words, the conjugation stabilizer of λ in G is exactly 1 + Tλ. But this stabilizer
is a subgroup, and thus if s, t ∈ Tλ, then (1 + s)(1 + t) is in the stabilizer, and
hence s+ t+ st ∈ Tλ. We know, however, that Tλ is a subspace, and it follows that
st ∈ Tλ and Tλ is a subalgebra. Now |O| = |G|/|1 + Tλ| = |J |/|Tλ|, and we have
seen that this number is a power of q with even exponent. �

We can now obtain an analog of Theorem 3.3.

4.5. Theorem. Let G = 1 + J be an algebra group. Let λ ∈ J∗ and suppose that
Lλ + Rλ = J . Then GλG is the conjugation orbit of λ.
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Proof. We know that the conjugation orbit of λ is contained in GλG and has
size |J |/|Tλ|. Since |GλG| = |J |/|Dλ| by Lemma 4.3, it suffices to show that
|J |/|Tλ| ≥ |J |/|Dλ|, or equivalently, that |Tλ| ≤ |Dλ|. In fact, we show that
Tλ ⊆ Dλ. (We mention that the reverse containment is always true, and is easy to
see, but this is irrelevant.)

Let t ∈ Tλ and x ∈ J , and write x = l + r, where l ∈ Lλ and r ∈ Rλ. We
compute that

λ(tx) = λ(tr + tl) = λ(tl) = λ(lt) = 0 ,

where the second equality holds because r ∈ Rλ, the third holds because t ∈ Tλ and
the fourth holds because l ∈ Lλ. Also, because t ∈ Tλ, we have λ(xt) = λ(tx) = 0.
Since x ∈ J was arbitrary, it follows that tJ ⊆ kerλ and Jt ⊆ ker λ. In other words,
t ∈ Lλ ∩ Rλ = Dλ, as required. �

By Lemma 4.1, we know that the number of conjugation orbits of G on J∗ is
equal to the the number of conjugation orbits of G on J , which, of course, is the
number of conjugacy classes of G. Each conjugation orbit of G on J∗ has square
size by Lemma 4.4, and clearly, the sum of these orbit sizes equals |J∗| = |J | = |G|.

Consider the list of integers obtained by taking the square roots of the sizes of
the conjugation orbits of G on J∗. These numbers are powers of q; the sum of
their squares is |G|, and the length of the list is the number of classes of G. In
other words, this list of square roots of orbit sizes resembles the list of degrees
of the irreducible characters of G. In an unpublished set of notes [7] circulated
by Isaacs in 1997, these numbers were called the “fake character degrees” of the
algebra group G, and it was suggested that perhaps they are always the actual
irreducible character degrees.

In the case where Jp = 0, where p is the characteristic of F , one can mimic an
argument of Kazhdan for upper triangular groups to prove that the fake character
degrees are the true character degrees. Indeed, one can actually construct an irre-
ducible character (with the correct degree) associated with each conjugation orbit
of linear functionals. (This is a variation on Kirillov’s approach in [11]; we will say
more about it later.) Proofs were given by Isaacs [7] in his unpublished 1997 notes,
and also by André [2] and (with extensions and improvements) by J. Sangroniz [13].

If Jp �= 0, then in general, Kirillov’s method fails, and the functions it defines
are not necessarily characters. Nevertheless, computer experiments suggested that
perhaps the fake degrees are always the actual degrees, even in this case. But
recently, a counterexample was constructed by A. Jaikin-Zapirain [10]. It is not
always true that the fake degrees are the actual degrees.

5. Complex values and characters

Given an algebra group G = 1 + J over the finite field F , we want to use the
F -valued linear functionals on J to construct complex-valued functions on G. To
do this, we fix a nontrivial homomorphism α �→ α̃ from the additive group of F
into the multiplicative group of the complex numbers C. In other words, this map
is any one of the q − 1 nonprincipal linear characters of the additive group F+ of
F , where q = |F |.

For each linear functional λ ∈ J∗, we write λ̃ : J → C to denote the function
defined by λ̃(x) = λ̃(x), for x ∈ J . Thus λ̃ is a linear character of the additive
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group J+ of J . Also, it is clear that the map λ �→ λ̃ is a homomorphism from the
additive group of J∗ into the multiplicative group of linear characters of J+.

5.1. Lemma. Let J be a finite dimensional F -space. Then the map λ �→ λ̃ is an
isomorphism from (J∗)+ onto the group of linear characters of J+.

Proof. Since |J∗| = |J | = |Irr(J+)|, it suffices to check that the kernel of our
homomorphism is trivial. This is clear, however, since if λ ∈ J∗ is nonzero, then
λ(J) = F , and thus λ(J) cannot be contained in the kernel of the fixed nonprincipal
linear character α �→ α̃ on F+. �

Our various orbit decompositions of J∗ can be transferred via the isomorphism
λ �→ λ̃ to decompositions of the group of linear characters of J+. It is reassuring
to observe that the resulting decompositions of Irr(J+) are not at all dependent
on the choice of the nontrivial linear character α �→ α̃ of F+. To see why this is
so, observe that if γ ∈ F is arbitrary, then the map α �→ γ̃α is a linear character
of F+, and as γ runs over the elements of F , these run over all of the q different
linear characters of F+. Changing our original linear character of F+, therefore, is
equivalent to multiplication by some nonzero scalar γ ∈ F . This has no effect on
the orbit decompositions because all of our actions are F -linear.

Given the algebra group G = 1+J , the map g �→ g−1 defines a natural bijection
from G to J . We can use this map to convert functions defined on J to functions
defined on G. Specifically, if λ ∈ J∗, then λ̃ is defined on J , and this, in turn,
determines a complex-valued function λ̂ on G via the formula λ̂(g) = λ̃(g − 1). We
mention for future use that −̂λ is the complex conjugate of the function λ̂.

Recall that if H is an arbitrary finite group, there is a standard inner product

[α, β] =
1
|H|

∑
h∈H

α(h)β(h)

defined for complex-valued functions on H. Also, the irreducible characters of H
form an orthonormal set with respect to this inner product. In particular, the
functions λ̃ on J are orthonormal, and since J+ is abelian, these functions form
a basis for the space of all complex valued functions on J . It follows that the
functions λ̂ on G = 1 + J form an orthonormal basis for the space of all complex-
valued functions on G. Of course, these functions are not generally characters (or
even class functions) on G. It is clear, however, that λ̂(1) = 1 for all λ ∈ J∗.

Although our principal interest will be in the functions obtained by summing λ̂
as λ runs over a two-sided G-orbit on J∗, we digress briefly to discuss sums over
conjugation orbits.

5.2. Lemma. Let G = 1 + J be an algebra group and let λ ∈ J∗. Then

ĝ−1λg(h) = λ̂(ghg−1)

for elements g, h ∈ G. In particular, the sum of the functions λ̂ as λ runs over a
conjugation orbit in J∗ is constant on conjugacy classes of G.

Proof. Write h = 1 + t with t ∈ J and observe that ghg−1 = 1 + gtg−1. We have

ĝ−1λg(h) = g̃−1λg(t) = λ̃(gtg−1) = λ̂(ghg−1) ,

as wanted. The second assertion is clear. �
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Given a conjugation orbit O in J∗, define the function ψO on G by

ψO =
1√
|O|

∑
λ∈O

λ̂ .

Note that ψO is a class function, that [ψO, ψO] = 1 and that the “degree” ψO(1) =√
|O| is a positive integer. (This last assertion follows from Lemma 4.4.) Also, as

O runs over the various conjugation orbits, the functions ψO are orthogonal. Fur-
thermore, by Lemma 4.1, the number of these functions is the number of conjugacy
classes of G. Also, the sum of the squares of their degrees is the sum of the sizes
of the conjugation orbits on J∗, which, of course, equals |J∗| = |J | = |G|. We shall
refer to these functions ψO as the Kirillov functions of the algebra group G.

It was conjectured by Kirillov [11] that in the case where G = Un(F ), the uni-
modular upper triangular group, these Kirillov functions are exactly the irreducible
characters of G. It is now known, however, that this cannot be correct in general.
This is because the Kirillov functions always have values in the cyclotomic field of
p th roots of unity, but irreducible characters of upper triangular groups can have
values that are not in this field. (For example, if p = 2, the group U13(F ) has
a nonreal irreducible character. See [8] and [9].) Nevertheless, as we shall see in
Corollary 5.11, many of the Kirillov functions for the groups Un(F ) are actually
irreducible characters, even when n is large when compared to p.

We mentioned earlier that if Jp = 0, where p is the characteristic of F , then a
variation on Kirillov’s method does successfully construct the irreducible characters
of the algebra group G = 1+J . The trick here is to replace the bijection g �→ g−1
from G onto J by another bijection: g �→ ln(g), where the “natural logarithm” is
defined by the appropriate truncated power series. (For details, see [13].)

Since the two-sided G-orbits in J∗ are unions of conjugation orbits, it follows
that the functions obtained by summing µ̂ for µ ∈ GλG are class functions. In fact,
we will see that these sums are characters, and we will show that they always have
the form σX =

∑
χ∈X χ(1)χ for some subset X ⊆ Irr(G).

Fix an algebra group G = 1 + J , and consider the complex group algebra
CG, whose elements are the formal C-linear combinations of the elements of G.
There is a natural vector-space isomorphism between CG and the C-space M of
complex-valued functions on G: the function α : G → C corresponds to the element∑

g∈G α(g)g. Of course, G acts on CG by left and right multiplication, and it is
easy to check that the corresponding left and right actions of G on M are defined
by the formulas

(fg)(h) = f(hg−1) and (gf)(h) = f(g−1h)

for f ∈ M and g, h ∈ G. With these actions, therefore, M is isomorphic to CG as
a G-bimodule.

We have seen that M has a natural basis: the functions λ̂ for λ ∈ J∗. We
investigate the behavior of these basis functions under left and right action by
group elements.

5.3. Lemma. Let G = 1+J be an algebra group, and let M be the space of complex
valued functions on G, as above. Then for λ ∈ J∗ and g ∈ G, we have

λ̂g = λ̂(g−1)λ̂g and gλ̂ = λ̂(g−1)ĝλ .
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In particular if Y ⊆ J∗ is a left, right or two-sided G-invariant set, then the linear
span UY of the functions µ̂ for µ ∈ Y is a left, right or two-sided G-invariant
subspace of M , respectively.

Proof. Let h ∈ G. We compute

(λ̂g)(h) = λ̂(hg−1)

= λ̃(hg−1 − 1)

= λ̃((g−1 − 1) + (h − 1)g−1)

= λ̃(g−1 − 1)λ̃((h − 1)g−1)

= λ̂(g−1)λ̃g(h − 1)

= λ̂(g−1)λ̂g(h),

as wanted. The computation for the left action is similar. The last assertion should
now be clear. �

Under the natural isomorphism between M and CG, we see that if Y ⊆ J∗ is left
G-invariant, right G-invariant or two-sided G-invariant, then the subspace UY ⊆ M
corresponds to a left ideal, a right ideal or a two-sided ideal, respectively, of the
group algebra CG.

We can now give the principal definition of this paper. Let λ ∈ J∗ and let
Y = (−λ)G be the right G-orbit of −λ. By Lemma 5.3, the space UY spanned by
the functions µ̂ for µ ∈ Y is a right module for G, and hence it affords a character
of G, which we call χλ. We refer to these characters as the supercharacters of
G, but of course, we still need to reconcile this with the terminology of Section 2.
From the definition, we see that χλ(1) = dim(UY ) = |Y | = |λG|.

It may seem odd that we have chosen notation so that χλ is constructed using
the orbit of the negative of λ, rather than λ itself. The reason for this is that
by doing so, we obtain simpler formulas for the character χλ. For example, if λ

happens to be right-G-invariant, we will see that λ̂ is a linear character of G, and
in this case, χλ = λ̂.

More generally, if λ ∈ J∗ is arbitrary, we know by Lemma 4.2 that the subgroup
H = 1 + Rλ is the right stabilizer of λ in G. We have the following.

5.4. Theorem. Let G = 1 + J and let λ ∈ J∗. Then the restriction τ of λ̂ to
H = 1 + Rλ is a linear character of H, and χλ = τG, the induced character.

Proof. Let Y = −λG and let UY be the linear span of the functions µ̂ for µ ∈ Y .
These functions µ̂ form a basis for UY , which, therefore, can be written as the direct
sum of the one-dimensional subspaces Cµ̂ for µ ∈ Y . By Lemma 5.3, moreover,
these spaces are transitively permuted by the right action of G. (The transitivity
follows from the fact that Y is a right G-orbit.)

Now fix µ = −λ. Since the stabilizer of the space Cµ̂ is H, it follows that the
character χλ afforded by UY is induced from the linear character of H correspond-
ing to the action of H on the one-dimensional space Cµ̂. For h ∈ H, however,
Lemma 5.3 yields

µ̂h = µ̂(h−1)µ̂h = µ̂(h−1)µ̂ .

In particular, the function h �→ µ̂(h−1) defines a linear character of H, and so
µ̂(h−1) is the complex conjugate of µ̂(h). But since µ = −λ, we see that µ̂(h) is
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the complex conjugate of λ̂(h) = τ (h). Thus τ is a linear character of H, and it is
afforded by the right action of H on Cµ̂. In particular, χλ = τG, as wanted. �

We mention that an easy calculation can be used to show directly that the
function τ is a linear character of H.

Our next result gives several significant properties of the supercharacters of an
algebra group. Before stating it, however, we recall some relevant notation. First,
if λ ∈ J∗, then nλ is the number of right G-orbits (and also the number of left
G-orbits) in the two-sided orbit GλG. (See Lemma 4.3 and the definition of nλ

preceding it.) Also, if X ⊆ Irr(G) is an arbitrary subset, then σX =
∑

χ∈X χ(1)χ.
Recall also that each (two-sided) ideal I of a group algebra CG is the direct sum
of the minimal ideals that it contains. The minimal ideals, moreover, correspond
to the irreducible characters of G, and if X is the set of irreducible characters
corresponding to minimal ideals contained in the ideal I, then I, viewed as a right
CG-module, affords the character σX .

5.5. Theorem. Let G = 1 + J and let λ ∈ J∗. The following then hold.
(a) χλ depends only on the two-sided orbit GλG containing λ.
(b) If X ⊆ Irr(G) is the set of irreducible constituents of χλ, then nλχλ = σX .
(c) Supercharacters corresponding to distinct two-sided G-orbits in J∗ have dis-

joint sets of irreducible constituents, and these sets partition Irr(G).

Recall that in the general supercharacter theory of Section 2, we had a partition
X of Irr(G), and for each member X ∈ X , the associated supercharacter was the
function σX . We mentioned, however, that a constant multiple cXσX would work
as well, and so our choice of cX = 1 was somewhat arbitrary. Of course, since we
would like supercharacters to be actual characters, there are some restrictions on
the constants cX . Specifically, since the multiplicity of a character ψ ∈ X as a
constituent of σX is ψ(1), we want cXψ(1) to be a positive integer for all ψ ∈ X.

By Theorem 5.5(b), we see that for algebra groups, we have χλ = (1/nλ)σX ,
and so we have cX = 1/nλ, where X is the set of irreducible constituents of χλ.
By construction, χλ is a character, and hence the requirement that cXψ(1) is a
positive integer for ψ ∈ X is automatically satisfied.

Proof of Theorem 5.5. If T ⊆ J∗, then following our previous notation, we write
UT to denote the linear span in M of the functions µ̂ for µ ∈ T . (Recall that M
is the space of all complex-valued functions on G.) Write Y = −λG, as before,
and let Z = −GλG, so that Y and Z are the sets of negatives of the members of
λG and GλG, respectively. Then Z is the disjoint union of nλ left translates of Y ,
and hence UZ is the direct sum of nλ subspaces of the form U(gY ) for g ∈ G. By
Lemma 5.3, however, we see that U(gY ) = gUY , and so as right G-modules, the
summands of UZ are all isomorphic. It follows that the character afforded by UZ

(viewed as a right G-module) is exactly nλχλ.
Now UZ is both left and right G-invariant by Lemma 5.3, and so under the

natural bimodule isomorphism M ∼= CG, the subspace UZ corresponds to a (two-
sided) ideal of CG. It follows that the character nλχλ afforded by UZ has the form
σX for some subset X ⊆ Irr(G). This establishes both (a) and (b).

As J∗ is the disjoint union of the two-sided G-orbits, it follows that M is the
direct sum of subspaces like UZ for the various supercharacters χµ. Also, since
M affords the regular character ρG of G, it follows that ρG is the sum of the
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characters nµχµ as µ runs over a set of representatives for the two-sided G-orbits
in J∗. Writing Xµ to denote the set of irreducible constituents of χµ, we have∑

µ

σXµ
= ρG .

The multiplicity of each irreducible constituent of one of the characters σXµ
is equal

to its degree, which is also equal to its multiplicity in ρG, and so we see that the
sets Xµ are disjoint and that they cover Irr(G). �

We now know that the number of different supercharacters of G = 1+J is equal
to the number of two-sided G-orbits on J∗. By Lemma 4.1, this is equal to the
number of two-sided G-orbits on J , which, in turn, is the number of superclasses of
G. To establish that we have a genuine supercharacter theory, as in Section 2, only
one thing remains: we must show that supercharacters are constant on superclasses.
To prove that, we need a convenient way to compute the values of a supercharacter.

5.6. Theorem. Let G = 1 + J be an algebra group, and let λ ∈ J∗. Then

χλ =
1
nλ

∑
µ∈GλG

µ̂ .

We need a preliminary lemma for the proof of Theorem 5.6.

5.7. Lemma. Let G = 1 + J be an algebra group. Suppose that g ∈ G and λ ∈ J∗

with λg �= λ. Then g fixes no member of the left orbit Gλ and∑
τ∈Gλ

τ̂ (g) = 0 .

Proof. If (hλ)g = hλ for some element h ∈ G, then it follows via left multiplication
by h−1 that λg = λ, which is not the case. In other words, g fixes no member of
Gλ, as claimed.

By Lemma 4.2, we have Gλ = λ+U , where U ⊆ J∗ is the subspace consisting of
the linear functionals µ such that Rλ ⊆ kerµ. If τ = λ + µ, then τ̂(g) = λ̂(g)µ̂(g),
and hence ∑

τ∈Gλ

τ̂(g) = λ̂(g)
∑
µ∈U

µ̂(g) .

To complete the proof, therefore, it suffices to show that
∑

µ̂(g) = 0, where µ runs
over U . Write g = 1 + t with t ∈ J , and recall that by definition µ̂(g) = µ̃(t).

Now consider the “evaluation” linear functional µ �→ µ(t) on U . Since λg �= λ,
we know that t �∈ Rλ. But

Rλ =
⋂

µ∈U

ker µ ,

and thus evaluation at t is not the zero map on U . It follows that the evaluation
map is a homomorphism from U onto F , and hence each element of F occurs equally
often as µ(t) for µ ∈ U . If the common multiplicity is m, we can write∑

µ∈U

µ̂(g) =
∑
µ∈U

µ̃(t) = m
∑
α∈F

α̃ = 0 ,

where the final equality holds by orthogonality, because the map α �→ α̃ is a non-
principal linear character of F+. This completes the proof. �
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Proof of Theorem 5.6. We have seen that nλχλ is the character afforded by the
right G-module UZ , which is the linear span of the functions −̂µ, as µ runs over
GλG. We must show that this character is equal to

∑
µ̂, where the sum runs over

µ ∈ GλG.
Fix g ∈ G, and recall that the functions −̂µ for µ ∈ GλG form a basis for UZ .

By Lemma 5.3, each of these basis vectors is mapped by g to a scalar multiple of
the basis vector −̂µg, where the scalar is equal to −̂µ(g−1). It follows that the basis
vector −̂µ contributes to the trace of the linear transformation of UZ induced by
right multiplication by g only when µg = µ. When this happens, the contribution
to the trace equals −̂µ(g−1). It follows that

nλχλ(g) =
∑

µ∈GλG
µg=µ

−̂µ(g−1).

Since χλ is a character, the complex conjugate of χλ(g) is χλ(g−1), and also, we
have seen that the complex conjugate of the function −̂µ is µ̂. If we take complex
conjugates of both sides of the above equation, therefore, we obtain

nλχλ(g−1) =
∑

µ∈GλG
µg=µ

µ̂(g−1).

Now, since g fixes µ if and only if g−1 fixes µ, we can substitute g−1 for g and write

nλχλ(g) =
∑

µ∈GλG
µg=µ

µ̂(g)

for all elements g ∈ G.
Now consider the “missing” terms of this sum, corresponding to functionals

µ ∈ GλG that are not fixed by g. Since GλG is invariant under the left action of
G, it follows by Lemma 5.7 that the set of missing linear functionals is a union of
left G-orbits, and that the sum of µ̂(g) over each of these orbits vanishes. It follows
that we can add the missing terms to the sum without changing its value, and thus

nλχλ(g) =
∑

µ∈GλG

µ̂(g) ,

as required. �

Next, we provide a formula that relates supercharacters and superclasses. Recall
that by definition, the superclass containing an element g = 1 + t of G = 1 + J is
the set K = 1+GtG. Recall also that if χλ is a supercharacter, then χλ(1) = |λG|.

5.8. Theorem. Let G = 1 + J be an algebra group and let χλ be one of its super-
characters, where λ ∈ J∗. If g ∈ G lies in the superclass K, then

χλ(g) =
|λG|
|GtG|

∑
x∈GtG

λ̃(x) =
χλ(1)
|K|

∑
h∈K

λ̂(h) ,

where g = 1 + t. In particular, the supercharacters of G are constant on the super-
classes.

Proof. The second equality is clear since K = 1 + GtG and χλ(1) = |λG|, and we
recall that λ̂(1 + x) = λ̃(x). Also, the last assertion follows since the sum on the
right depends only on the superclass K.
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To prove the first equality, consider the map (u, v) �→ utv from G × G to GtG.
This map is clearly surjective, and it is easy to see that all elements of GtG are
hit equally often. Each element of GtG, therefore, has the form utv for exactly
|G|2/|GtG| ordered pairs (u, v), and it follows that∑

u,v∈G

λ̃(utv) =
|G|2
|GtG|

∑
x∈GtG

λ̃(x) .

Similarly, if we map G × G to GλG via (u, v) �→ uλv, we see that each element of
GλG is hit exactly |G|2/|GλG| times, and this yields∑

u,v∈G

ũλv(t) =
|G|2
|GλG|

∑
µ∈GλG

µ̃(t) .

The left sides of the previous two equations are equal, however, and we deduce that
1

|GλG|
∑

µ∈GλG

µ̃(t) =
1

|GtG|
∑

x∈GtG

λ̃(x) .

Since µ̂(g) = µ̃(t) and nλ = |GλG|/|λG|, it follows that

χλ(g) =
1
nλ

∑
µ∈GλG

µ̂(g) =
|GλG|

nλ|GtG|
∑

x∈GtG

λ̃(x) =
|λG|
|GtG|

∑
x∈GtG

λ̃(x) ,

as required. �

In particular, we now know that the supercharacters and superclasses of an
algebra group form a genuine supercharacter theory in the sense of Section 2.

When does it happen that the supercharacter χλ is irreducible?

5.9. Lemma. Let G = 1 + J be an algebra group, and let χλ be one of its super-
characters. Then [χλ, χλ] = χλ(1)/nλ.

Proof. For an arbitrary subset X ⊆ Irr(G), we have

σX(1) =
∑
ψ∈X

ψ(1)2 = [σX , σX ] .

Now nλχλ = σX for some subset X ⊆ Irr(G), and thus

n2
λ[χλ, χλ] = [σX , σX ] = σX(1) = nλχλ(1) ,

and the result follows. �

5.10. Theorem. Let G = 1 + J be an algebra group, and let λ ∈ J∗. Then the
supercharacter χλ is irreducible if and only if Lλ + Rλ = J . In this case, the two-
sided orbit GλG is exactly the conjugation orbit of λ, and the character χλ is equal
to the Kirillov function for this orbit.

Proof. By Lemma 5.9, we have [χλ, χλ] = χλ(1)/nλ, and so the character χλ is
irreducible if and only if χλ(1) = nλ. Now χλ(1) = |λG| = |J |/|Rλ| and nλ =
|Rλ|/|Dλ|, where we recall that Dλ = Rλ ∩Lλ. Thus χλ is irreducible if and only if
|J |/|Rλ| = |Rλ|/|Dλ|. Since |Rλ| = |Lλ|, this is equivalent to |J | = |Rλ||Lλ|/|Dλ|.
But the right side of this equation is equal to |Lλ + Rλ|, and thus χλ is irreducible
if and only if Lλ + Rλ = J , as claimed.

Suppose now that χλ is irreducible. Then Lλ +Rλ = J , and so Theorem 4.5 tells
us that GλG is the conjugation orbit of λ. Also, |GλG| = |J |/|Dλ|, and in this case,
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where Lλ + Rλ = J , this is equal to (|Rλ|/|Dλ|)2 = n2
λ. Thus χλ = (1/nλ)

∑
µ̂ is

exactly the Kirillov function corresponding to the conjugation orbit GλG. �

We can apply Theorem 5.10 to the situation studied by André and Yan: the
unimodular upper triangular groups. Let G = Un(F ) = 1 + J , where as usual, J
is the algebra of strictly upper triangular matrices. For each matrix position (i, j)
with i < j, let λi,j be the element of J∗ whose value at a matrix x ∈ J is the
(i, j)-entry of x.

5.11. Corollary. Let G = Un(F ) = 1 + J as above, and let λ = aλi,j, where
0 �= a ∈ F and 1 ≤ i < j ≤ n. Then the supercharacter χλ is irreducible, and it is
thus equal to the Kirillov function ψO, where O is the conjugation orbit of λ.

Versions of Corollary 5.11 appear in the work of André and Yan. In fact, in
the case where J = Un(F ), they have simple combinatorial descriptions of exactly
which supercharacters are irreducible. In his paper, Yan refers to a linear functional
of the form aλi,j as being “primary”, and he observes, in particular, that if λ is
primary, then the corresponding supercharacter is irreducible. The fact that the
corresponding Kirillov character is irreducible appears as Lemma 2 of [3], where
André calls these characters “elementary”.

Proof of Corollary 5.11. By Theorem 5.10, it suffices to show that Lλ + Rλ = J .
It is enough, therefore, to show that a matrix unit eu,v in J lies either in Rλ or in
Lλ (or both). To show that eu,v ∈ Rλ, we must show that Jeu,v ⊆ kerλ, and for
this purpose, it suffices to check that λ(es,teu,v) = 0 for all matrix units es,t in J .
Similarly, of course, to show that eu,v ∈ Lλ, we must check that λ(eu,ves,t) = 0 for
all matrix units es,t in J .

Since λ(x) is a multiple of the (i, j)-entry of a matrix x ∈ J , we see that if
λ(es,teu,v) �= 0, we must have v = j. Similarly, if λ(eu,ves,t) �= 0, then u = i. This
shows that with the possible exception of ei,j , every matrix unit eu,v ∈ J lies in
Rλ ∪ Lλ. Since s < t, we see that λ(es,tei,j) = 0, and thus ei,j lies in Rλ (and
similarly, it lies in Lλ, too). This completes the proof. �

Observe that Corollary 5.11 can be viewed as dual to Corollary 3.4, and like that
corollary, it has a natural extension to pattern groups, with essentially no change
in the proof.

We close this section with an observation about supercharacters that have linear
constituents. Of course, such supercharacters exist since every irreducible character
of G = 1 + J is a constituent of some (unique) supercharacter χλ.

5.12. Corollary. Let G = 1 + J be an algebra group, and suppose that λ ∈ J∗. If
the supercharacter χλ has a linear constituent, then Gλ = GλG = λG and Rλ = Lλ

is an ideal of J .

Proof. We know that nλχλ = σX for some subset X ⊆ Irr(G). Since the multi-
plicity of each irreducible constituent of σX is equal to its degree, it follows that
nλ divides the degree of every irreducible constituent of χλ. Since there is a linear
constituent, we must have nλ = 1. But nλ is the number of left orbits in GλG, and
it is also the number of right orbits in this set, and it follows that Gλ = GλG = λG,
as claimed.

In general, nλ = |Rλ|/|Dλ| = |Lλ|/|Dλ|, and so in our case, Rλ = Dλ = Lλ.
Since Lλ is a right ideal and Rλ is a left ideal, the result now follows. �
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Before we close this section, we give a brief summary of its principal results.
Given λ ∈ J∗, we defined the supercharacter χλ as the character afforded by the
G-module constructed as the linear span of the functions µ̂, as µ runs over −λG,
and we saw that χλ is induced from a linear character of an algebra subgroup of G.
We showed that χλ depends only on the two-sided G-orbit containing λ, and that
χλ = (1/nλ)

∑
µ̂, where µ runs over GλG. Also, χλ is constant on the superclass

1 + GxG, for x ∈ J .
We showed that as λ runs over a set of representatives for the two-sided G-

orbits on J∗, the sets Xλ of irreducible constituents of χλ partition Irr(G), and
that together with the partition of G into superclasses, they form a supercharacter
theory in the sense of Section 2. Also, χλ = (1/nλ)σXλ

. Finally, necessary and
sufficient conditions for χλ to be irreducible are given, and connections with the
Kirillov orbit method are discussed.

6. Restriction, induction and products

Let G = 1 + J be an algebra group. If A ⊆ J is a subalgebra, then H = 1 + A
is a subgroup of G that is itself an algebra group. Our first goal in this section is
to show that in this situation, the restriction to H of a supercharacter of G must
be a nonnegative integer linear combination of supercharacters of H. We need the
following fact, which appears as Lemma 3.1 in [6].

6.1. Lemma. Let J be a nilpotent algebra, and suppose that A ⊆ J is a subalgebra.
If J2 + A = J , then A = J .

Proof. First, we observe that since An ⊆ A, we have Jn = (A + J2)n ⊆ A + Jn+1

for n ≥ 1, and thus A + Jn ⊆ A + Jn+1. The reverse containment is clear, and so
we have

J = A + J2 = A + J3 = A + J4 + · · · .

The result now follows since Jn = 0 for sufficiently large n. �
6.2. Corollary. Let A be a maximal subalgebra of the nilpotent algebra J . Then A
contains J2, and A is an ideal of J with codimension 1.

Proof. Since A < J , Lemma 6.1 yields A ⊆ A + J2 < J . But J2 is an ideal, and
hence A + J2 is a subalgebra. Thus A = A + J2 by the maximality of A, and in
particular, A ⊇ J2. Every subspace of J containing J2 is an ideal, however, and
thus A is an ideal and is a maximal subspace of J . The result follows. �

Next, we investigate the restriction map J∗ → A∗, where A ⊆ J is a subalgebra
of codimension 1.

6.3. Lemma. Let G = 1 + J be an algebra group over a field F of order q, and let
X ⊆ J∗ be a two-sided G-orbit. Suppose that A ⊆ J is a subalgebra of codimension
1, and let Y ⊆ A∗ be the image of X under the restriction map from J∗ to A∗. The
following then hold.

(a) There is an integer r ∈ {1, q} such that the preimage in X of each member
of Y has cardinality r.

(b) If either Lλ ⊆ A or Rλ ⊆ A for some member λ ∈ X, then then r = q.
(c) If there exists λ ∈ X such that neither Lλ ⊆ A nor Rλ ⊆ A, then Y is a

two-sided H-orbit, and the image in Y of each right or left G-orbit in X is
respectively a right or left H-orbit.
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Proof. Let W = {τ ∈ J∗ | A ⊆ ker τ}, and note that |W | = q. Since J2 ⊆ A ⊆ ker τ
by Corollary 6.2, we have Lτ = J = Rτ for τ ∈ W , and it follows by Lemma 4.2
that each member of W is both left and right G-invariant.

If λ ∈ X, then λ + W is the full set of elements in J∗ that have the same
restriction to A as λ. The preimage in X of the restriction of λ to A is thus λ+Wλ,
where Wλ = {τ ∈ W | λ + τ ∈ X}. To prove (a), therefore, we must show that the
sets Wλ all have equal cardinality r for λ ∈ X, and that r is either 1 or q.

We claim that in fact, the sets Wλ are all equal. To see this, let λ ∈ X and
g, h ∈ G. If τ ∈ W , then gλh + τ = gλh + gτh = g(λ + τ )h, and this linear
functional lies in X if and only if λ + τ lies in X. In other words Wλ = Wgλh, as
claimed.

Recall that in Lemma 4.2, we defined U = {µ ∈ J∗ | Rλ ⊆ ker µ}. If Rλ ⊆ A for
some member λ ∈ X, then W ⊆ U . By Lemma 4.2, however, λ + U = Gλ ⊆ X,
and thus Wλ = W in this case. Thus r = |W | = q, and a similar argument shows
that r = q if Lλ ⊆ A. This proves (b) and part of (a).

Now suppose that for some member λ ∈ X, both Lλ �⊆ A and Rλ �⊆ A. Then
A ∩ Rλ and A ∩ Lλ have codimension 1 in Rλ and Aλ, respectively. It follows by
Lemma 4.2 that the right and left stabilizers of λ in H = 1 + A have index q in the
corresponding stabilizers in G. But H has index q in G, and therefore, the indices
in H of the right and left stabilizers of λ in H are equal to the indices in G of
the right and left stabilizers of λ in G. It follows that λG = λH and Gλ = Hλ,
and we conclude that GλG = HλH. In this situation, we see that Y , which is the
restriction to A of X = GλG = HλH, is a two-sided H-orbit in A∗. Also, the
restrictions of the one-sided orbits in X are one-sided orbits in Y , and this proves
(c).

Finally, we observe that r = |X|/|Y |. In this case, both X and Y are two-sided
orbits (of G and H), and so each of |X| and |Y | is a power of q, and thus r is a
power of q. (See Lemma 4.3.) We know, however, that r ≤ |W | = q, and so there
are just two possibilities: either r = 1 or r = q. This completes the proof of (a). �

We are now ready to prove the main result of this section.

6.4. Theorem. Let G = 1 + J be an algebra group over the field F of order q.
Let A ⊆ J be an arbitrary subalgebra and write H = 1 + A. Then the restriction
to H of each supercharacter of G is a nonnegative integer linear combination of
supercharacters of H.

Proof. We can assume without loss that A is a maximal subalgebra of J , and thus
by Corollary 6.2, it has codimension 1. Let λ ∈ J∗ be arbitrary and consider the
restriction of the supercharacter χλ to H = 1 + A.

Recall that by Lemma 6.3, the number r of members of X = GλG with restriction
equal to the restriction of λ is independent of the choice λ in X. Also, either r = 1
or r = q.

By Theorem 5.6, we know that nλχλ is the sum of the functions µ̂, as µ runs
over the two-sided orbit X. Since the restriction of µ̂ to H is ν̂, where ν is the
restriction of µ to A, it follows that (nλχλ)H is r times the sum of the functions ν̂
on H, where ν runs over the image Y of X under restriction to A. Thus

(χλ)H =
r

nλ

∑
ν∈Y

ν̂ .
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As X is both left and right H-invariant, Y is a union of two-sided H orbits. It
follows that (χλ)H is a nonnegative rational linear combination of supercharacters
of H, where for ν ∈ Y , the coefficient of the corresponding supercharacter of H is
nνr/nλ. Our goal, therefore, is to show that this is an integer for every choice of
ν ∈ Y .

Since r and nλ are independent of λ ∈ X, we can, if necessary, replace λ by
some member of X with restriction equal to ν, and so we assume that ν is the
restriction of λ to A. Write L = Lλ and R = Rλ and let L1 and R1 respectively
be Lν and Rν , computed in A. Let D = L ∩ R and D1 = L1 ∩ R1. By definition,
then, nλ = |L|/|D| and nν = |L1|/|D1|, and so

(∗) nν

nλ
=

|L1|/|D1|
|L|/|D| =

|L1|/|L|
|D1|/|D| .

We also consider the subspace L0 = {x ∈ J | xA ⊆ kerλ}, and we observe that
L ⊆ L0 and A ∩ L0 = L1.

Suppose now that R ⊆ A, and note that in this case, R ⊆ R1 and r = q. We argue
that L has codimension 1 in L0. To see this, consider the bilinear form 〈· , ·〉, defined
on J by the formula 〈x, y〉 = λ(xy). This form establishes a nondegenerate bilinear
pairing between J/L and J/R, and we observe that L0 is the “left perpendicular”
of A. Since R ⊆ A ⊆ J , it follows that the codimension of L in L0 is equal to the
codimension of A in J , and this is 1, as wanted.

Now L1 = L0 ∩ A has codimension at most 1 in L0, and so there are two
possibilities: either the codimension is 1 and |L| = |L1|, or the codimension is 0
and L0 = L1 ⊆ A. Also, recall that |L| = |R| and |L1| = |R1| by Lemma 4.2. If
|L| = |L1|, therefore, then |R| = |R1|, and thus R = R1. In this case, D = R ∩ L
and D1 = R ∩ L1, and since both L and L1 have codimension 1 in L0, it follows
that L ∩ L1 has codimension at most 1 in each of L and L1, and thus D ∩ D1 has
codimension at most 1 in each of D and D1. Since |L| = |L1| in this case, it follows
from equation (∗) that nν/nλ = |D|/|D1| lies in the set {1/q, 1, q}. Since r = q in
this case, rnν/nλ is in the set {1, q, q2}, and so it is an integer, as required.

Now suppose that L0 = L1. Then L ⊆ L1, and the codimensions of L and R
in L1 and R1, respectively, are 1. It follows that the codimension of D in D1 is
at most 2, and in this case, |L1|/|L| = q. Again, we see that nν/nλ lies in the set
{1/q, 1, q}, and again rnν/nλ is in the set {1, q, q2}.

We can now assume that R �⊆ A, and similarly, we can assume that L �⊆ A. Then
Lemma 6.3(c) applies, and so the image of the restriction map from GλG into A∗

is HνH and the image of λG is νH. Since the preimage of each member of HνH
in GλG has cardinality r, we see that

|GλG|
|HνH| = r =

|λG|
|νH| .

Thus

nλ =
|GλG|
|λG| =

|HνH|
|νH| = nν ,

and in this case nλ/nν = 1. Thus rnλ/nµ = r ∈ {1, q}, and the proof is complete.
�

Next, we begin working toward a proof that the product of two supercharacters
of an algebra group is always a nonnegative integer linear combination of super-
characters. We know that the supercharacters of G form a basis for the space of
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complex-valued functions on G that are constant on superclasses, and so it is clear
that a product of two supercharacters is a C-linear combination of supercharacters.
In fact, it is easy to see that the coefficients must be nonnegative rational numbers.
This is because the multiplicity of χλ in the product π is [π, ψ]/[χλ, ψ], where ψ is
any irreducible constituent of χλ. (This works because ψ is a constituent of just
one supercharacter.) To prove that the coefficients are actually integers, however,
requires a more subtle argument. Our strategy is to consider direct products.

Let K and L be finite dimensional nilpotent algebras over the same field F ,
and consider the external direct sum M = K ⊕ L, where we view K and L as
ideals of M . In particular K and L are subalgebras of M , and so X = 1 + K and
Y = 1+L are algebra subgroups of G = 1+M , and clearly, X ∩Y = 1. Also, since
KL = 0 = LK, we see that (1 + k)(1 + l) = 1 + k + l = (1 + l)(1 + k) for k ∈ K
and l ∈ L, and it follows that XY = G and that X and Y centralize each other. In
particular, G is the direct product of its subgroups X and Y .

Now if α and β are respectively characters of X and Y , then α×β is the function
on G defined by the formula (α×β)(xy) = α(x)β(y), and it is a standard fact that
α × β is a character of G. Somewhat analogously, if λ ∈ K∗ and µ ∈ L∗, we can
define a linear functional λ ⊕ µ on M by defining (λ ⊕ µ)(k + l) = λ(k) + µ(l).
Furthermore, it is not hard to see that every member of M∗ is uniquely of the form
λ ⊕ µ for λ ∈ K∗ and µ ∈ L∗.

6.5. Lemma. Assume the above notation. Suppose that α and β are supercharacters
of X = 1+K and Y = 1+L corresponding respectively to linear functionals λ ∈ K∗

and µ ∈ L∗. Then α × β is the supercharacter χν of G = 1 + M , where ν = λ ⊕ µ.

Proof. First, we observe that if x ∈ X and y ∈ Y , then νxy = λx ⊕ µy, and
similarly for left actions. It follows that we can write νG = λX ⊕ µY and GνG =
XλX ⊕ Y µY . We therefore have

nν =
|GνG|
|νG| =

|XλX||Y µY |
|λX||µY | = nλnµ

where, of course, nλ and nµ are computed in the algebra groups X = 1 + K and
Y = 1 + L, respectively.

Now write x = 1 + k and y = 1 + l, where k ∈ K and l ∈ L, and recall that
xy = 1 + k + l. We have

ν̂(xy) = ν̃(k + l) = λ̃(k)µ̃(l) = λ̂(x)µ̂(y) = (λ̂ × µ̂)(xy) ,

and thus we can write ν̂ = µ̂ × ν̂. Of course, a similar decomposition holds for all
members of GνG = XµX ⊕ Y νY . Now

nνχν =
∑

δ∈GνG

δ̂ =
( ∑

σ∈XµX

σ̂
)
×

( ∑
τ∈Y µY

τ̂
)

= (nλα) × (nµβ) ,

and the result follows. �

6.6. Theorem. Let G = 1+J be an algebra group and let α and β be supercharacters
of G. Then αβ is a nonnegative integer linear combination of supercharacters of
G.

Proof. Applying the preceding theory with K = J = L, we conclude that α × β is
a supercharacter of the algebra group G × G = 1 + (J ⊕ J). To avoid confusion,
we view the elements of J ⊕ J as ordered pairs of elements of J , and similarly, we
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view the elements of G × G as ordered pairs of elements of G. In particular, we
have 1 + (x, y) = (1 + x, 1 + y), for x, y ∈ J .

Now consider the diagonal subalgebra D = {(x, x) | x ∈ J}, and note that
D really is a subalgebra of J ⊕ J , and in fact, D ∼= J . Let H = 1 + D be the
corresponding algebra subgroup of G × G, and observe that H is the diagonal
subgroup of G × G consisting of the elements of the form (g, g), with g ∈ G. Then
H ∼= G, and if we identify H with G via the natural isomorphism, we see that the
restriction of the supercharacter α× β to H is just the ordinary product character
αβ. Since H = 1+D is an algebra subgroup, however, Theorem 6.4 applies, and we
conclude that αβ is a nonnegative integer linear combination of supercharacters. �

Finally, we discuss induction. We have shown that the restriction of a superchar-
acter of an algebra group to an algebra subgroup is always a nonnegative integer
linear combination of supercharacters, and so it is tempting to guess that the anal-
ogous property also holds for induction. This is wrong, however; the character
induced by a supercharacter of an algebra subgroup need not even be a superclass
function. (In other words, it may not be constant on superclasses.) To see why this
is so, recall that every superclass function on an algebra group is a linear combina-
tion of supercharacters, and so if induction were to map supercharacters of algebra
subgroups to superclass functions, it would also map arbitrary superclass functions
to superclass functions. It is easy, however, to construct a counterexample to this.
Let J be the F -algebra with basis {x, y, z}, where xy = z = yx and all other
products of basis vectors are zero. Then H = 1 + Fx is an algebra subgroup, and
the element 1 + x constitutes a full superclass of H. Define ϕ on H by setting
ϕ(1 + x) = 1 and ϕ(h) = 0 for all other elements h ∈ H, and observe that ϕ is
indeed a superclass function. Since G = 1 + J is abelian we see that 1 + x is the
only element of G on which the induced function ϕG is nonzero. But 1 + z and
1 + x are in the same superclass of G, and hence ϕG is not a superclass function.

It is possible to modify the definition of induction in algebra groups so that
the result of “inducing” a superclass function of an algebra subgroup is always a
superclass function. Furthermore, this can be done so that the analog of Frobenius
reciprocity is valid. But as we shall see, even with this modified induction, it is
not generally true that supercharacters of an algebra subgroup yield integer linear
combinations of supercharacters of the whole group.

Let H = 1 + A be an algebra subgroup of G = 1 + J , and let ϕ be an arbitrary
complex-valued function of H. Extend ϕ to the function ϕ0 on G by setting ϕ0(g) =
0 if g �∈ H. We now define the superinduced function ϕ(G) on G by the formula

ϕ(G)(1 + x) =
1

|G||H|
∑

u,v∈G

ϕ0(1 + uxv)

for x ∈ J . Even with no assumption on ϕ, it is immediate that the superinduced
function ϕ(G) is a superclass function on G. Observe that if x = 0, the above
formula becomes

ϕ(G)(1) =
|G|2

|G||H|ϕ(1) = |G : H|ϕ(1) .

The multiplicative constant 1/(|G||H|) in our definition of superinduction may
seem rather arbitrary, but it is exactly what is needed so that the promised analog
of Frobenius reciprocity holds.
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6.7. Lemma. Let H = 1 + A be an algebra subgroup of G = 1 + J and suppose
that ϕ is a function defined on H and that θ is a superclass function of G. Then
[ϕ(G), θ] = [ϕ, θH ].

Proof. We have

[ϕ(G), θ] =
1
|G|

∑
g∈G

ϕ(G)(g)θ(g) =
1
|G|

1
|G||H|

∑
t∈J

u,v∈G

ϕ0(1 + utv)θ(1 + t) .

Now write s = utv and observe that by the definition of ϕ0, we need to consider
only elements s ∈ A. Also, since θ is a superclass function, we have θ(1 + t) =
θ(1 + u−1sv−1) = θ(1 + s), and thus

[ϕ(G), θ] =
1

|G|2|H|
∑
s∈A

u,v∈G

ϕ0(1 + s)θ(1 + s) =
1
|H|

∑
s∈A

ϕ(1 + s)θ(1 + s) = [ϕ, θH ] ,

as wanted. �
In the situation of Lemma 6.7, suppose that ϕ is a supercharacter of H and that

θ is a supercharacter of G. Then ϕ occurs with integer multiplicity in θH , and so
[ϕH , θ] is an integer, and in fact, it is a multiple of [ϕ, ϕ]. It follows by Lemma 6.7
that [ϕ(G), θ] is a multiple of [ϕ, ϕ], but unless we know that it is a multiple of [θ, θ],
it does not follow that θ occurs with integer multiplicity in ϕ(G). This argument
does show, however, that when the superclass function ϕ(G) is written as a linear
combination of supercharacters of G, all of the coefficients are nonnegative rational
numbers.

Indeed, the coefficients may not be integers, as is shown in the example we
are about to sketch. Let J have basis {x, r, l, z} over the field F of order 2, and
suppose that x2 = r + l + z, rx = z, xl = z and all other products of basis
vectors are zero. (It is not hard to show that this really does define a nilpotent
algebra.) Let A = Fr + Fl + Fz, and note that the product of every two elements
of A is zero. Thus H = 1 + A is an algebra subgroup of G = 1 + J , and all
supercharacters of H are linear. For every such supercharacter ϕ, therefore, we
have ϕ(G)(1) = |G : H|ϕ(1) = 2. We will produce a supercharacter θ of G of degree
4, and thus if ϕ occurs with positive coefficient in the decomposition of θH , it will
follow that θ occurs with a positive nonintegral coefficient in ϕ(G).

Let λ ∈ J∗ be the linear functional with kernel K = Fx + Fr + Fl. It is easy to
check that Rλ = Fr + Fz, and so χλ(1) = |λG| = |J |/|Rλ| = 4. This provides the
counterexample we seek.

Appendix A: The work of André and Yan. As we explained in Section 1, many
of the results of this paper are generalizations to arbitrary finite algebra groups of
theorems of André and Yan about the unimodular upper triangular groups Un(F ).
André began his study of the “basic characters” of Un(F ) in his Ph.D. thesis in
1992, and he developed the theory in a series of papers in the Journal of Algebra.
(The basic characters defined by André are exactly our supercharacters in his situ-
ation.) André constructed his basic characters as certain products of “elementary”
characters, which are the irreducible characters described in our Corollary 5.11.

Originally, André’s work relied on a construction due to Kazhdan of the ir-
reducible characters of G = Un(F ) in the case where the characteristic p of F
satisfies p ≥ n. Under that assumption, there exist inverse maps exp : J → G and
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ln : G → J , where J is the algebra of strictly upper triangular n × n matrices over
F . Using these maps, Kazhdan was able to associate an irreducible character of
G to each coadjoint orbit (conjugation orbit) of G on J∗. (We mention that an
accessible, and more general version of Kazhdan’s construction can be found in [6],
where Sangroniz works with algebra groups G = 1 + J such that Jp = 0.)

Later, in [3], André was able to drop the requirement that p ≥ n. In that paper,
he proved directly that his elementary characters are, in fact, irreducible characters,
and then, using what we have called “Kirillov functions”, and appealing to his
earlier work, he was able to reproduce his results on basic characters, but without
requiring that p ≥ n.

Independently, and at approximately the same time, Yan [14] extended André’s
earlier (that is, p ≥ n) results to the general case. But Yan used an entirely
different, and more elementary method; his (unpublished) paper is self-contained,
and his arguments are independent of André’s. Yan used the left and right actions
of G on J and J∗, as we have done here, and indeed, our paper was inspired by
Yan’s work, and owes a significant debt to it.

Of course, in the context of specific groups, such as the upper triangular groups
Un(F ), there is more information than one can hope to prove in general. We devote
the rest of this appendix to a description of some of the results of André and Yan
that do not seem to have analogs for arbitrary algebra groups.

Let G = Un(F ) = 1 + J , where as before, J is the algebra of strictly upper
triangular n × n matrices over F . Yan shows that each two-sided G-orbit in J
contains exactly one matrix with the property that no row and no column contains
more than one nonzero entry. The superclasses of G are thus parameterized by the
following combinatorial data. First, choose a set D of matrix positions (i, j) such
that 1 ≤ i < j ≤ n and no two elements of D agree in either the first or the second
coordinate. Next, choose a function τ from D into the nonzero elements of F .
Now D and τ together determine a strictly upper triangular matrix x = x(D, τ),
whose nonzero entries occur exactly at positions (i, j) in D, and whose (i, j)-entry
is τ (i, j). Each superclass of G contains just one element of the form 1 + x(D, τ),
and thus the pairs (D, τ) parameterize the superclasses.

Yan observes that the same combinatorial objects, the pairs (D, τ) as above,
also parameterize the two-sided G-orbits on J∗, and thus they parameterize the
supercharacters of G. (André parametrizes his characters using the same combina-
torial data.) Let λi,j ∈ J∗ be the linear functional that picks out the (i, j) entry
of each matrix x ∈ J . Then J∗ is exactly the linear span of the linear functionals
λi,j . Given λ ∈ J∗, Yan refers to the set of pairs (i, j) such that λi,j occurs with a
nonzero coefficient in the expansion of λ as the support of λ. He shows that each
two-sided orbit in J∗ contains exactly one linear functional λ whose support set D
has the form described above, and thus one can write

λ =
∑

(i,j)∈D

τ (i, j)λi,j ,

where τ : D → F× is as before. Every supercharacter of G, therefore, is uniquely
of the form χλ, where λ is determined by the pair (D, τ) as above.

Each of the summands τ (i, j)λ(i,j) in the decomposition of λ is primary, which
means that it is supported at a single position, and hence the supercharacter corre-
sponding to each of these primary summands of λ is irreducible. (See Corollary 5.11
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and the paragraph following it.) Yan shows that χλ is the product of these irre-
ducible supercharacters, and he calls this the “primary decomposition”. In partic-
ular, every supercharacter of G = Un(F ) can be written as a product of irreducible
characters, a fact that was used in André’s definition of his basic characters.

Yan uses a combinatorial argument, together with his primary decomposition,
to prove that products of supercharacters of Un(F ) are nonnegative integer linear
combinations of supercharacters. Of course, that fact is included in our more general
Theorem 6.6, although our proof is (necessarily) quite different.

Appendix B: Connection with Gelfand pairs and spherical functions. Let
G be a finite group with subgroup H ⊆ G, and let π be the permutation character
of G acting on the right cosets of H. (Thus π = (1H)G.) Recall that the pair (G, H)
is said to be a Gelfand pair if π is multiplicity-free. (See [12] and the references
there for more on Gelfand pairs.) In this situation, let S be the set of irreducible
constituents of π. For each character χ ∈ S, define the corresponding spherical
function sχ on G by setting

sχ(g) =
1
|H|

∑
h∈H

χ(gh) ,

and note that
sχ(1) = [χH , 1H ] = [χ, (1H)G] = [χ, π] = 1 .

(To be somewhat more precise, one could say that the functions sχ are the nor-
malized spherical functions since we have chosen the multiplicative constant 1/|H|
so that these functions will have value 1 at the identity of G.)

It is clear that if f is one of the spherical functions sχ and g ∈ G is arbitrary,
then f(gh) = f(g) = f(hg) for all elements h ∈ H, and thus we can say that f is
H-bi-invariant. In fact, the |S| spherical functions sχ form an orthogonal basis for
the space of all such H-bi-invariant functions on G.

Now suppose that A is an abelian group acted on by some group H, and let G
be the semidirect product AH. It is not hard to see that (G, H) is a Gelfand pair
in this situation, and one can construct the characters in the set S fairly explicitly.
It turns out that the restrictions to A of the distinct members of S are exactly the
sums of the characters in the various H-orbits of irreducible (linear) characters of
A, and in particular, there is one member of S and one spherical function for each
H-orbit on Irr(A). Let Λ be such an orbit and let χ be the corresponding member
of S. Given an arbitrary element ah of G, where a ∈ A and h ∈ H, one computes
that χ(ah) is exactly the sum of µ(a) as µ runs over the members of the orbit Λ
that happen to be fixed by h.

We can now compute the values of the normalized spherical function s = sχ on
G, where χ corresponds to Λ, as above. First, since s is H-bi-invariant, we have
s(ah) = s(a), and so it suffices to evaluate s at elements of A. For this purpose, we
let P be the set of ordered pairs defined by

P = {(µ, h) | µ ∈ Λ, h ∈ H and µh = µ} .

We have

s(a) =
1
|H|

∑
h∈H

χ(ah) =
1
|H|

∑
(µ,h)∈P

µ(a) =
1
|H|

∑
µ∈Λ

|Hµ|µ(a) ,
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where Hµ is the stabilizer in H of µ. But |H|/|Hµ| = |Λ| for all µ ∈ Λ, and so

s(ah) = s(a) =
1
|Λ|

∑
µ∈Λ

µ(a)

is the average value of the characters in Λ at a ∈ A.
How does this relate to the supercharacters of an algebra group G = 1 + J? Let

H = G × G and A = J , and let H act on A by x(u,v) = u−1xv, where x ∈ J and
u, v ∈ G. The linear characters of A are exactly the functions ν̃, for ν ∈ J∗, and
the H-orbits on Irr(A) are the sets {ν̃ | ν ∈ X}, where X is a two-sided orbit in J∗.

Recall now that ν̂(1 + x) = ν̃(x) for ν ∈ J∗ and x ∈ J . If χλ is a supercharacter
of G, therefore, and 1 + x = g ∈ G, we have

nλχλ(g) =
∑

ν∈GλG

ν̂(g) =
∑

ν∈GλG

ν̃(x) = |GλG|sλ(x) ,

where sλ is the normalized spherical function on the semidirect product J(G × G)
corresponding to the (G × G)-orbit containing the linear character λ̃ of J . Since
nλ = |GλG|/|λG|, this yields χλ(g) = |λG|sλ(x).

Appendix C: Some examples. Let F be a finite field and fix a positive integer
n. Let R = F [X]/(Xn+1), the polynomial ring in the indeterminate X modulo
the ideal generated by Xn+1. Write x to denote the image of X in R, and observe
that xn+1 = 0 and that every element of R is represented uniquely as a polynomial
f = f(x) with degree at most n. The radical J of R, of course, is the set of
these polynomials with zero “constant” term, and J has dimension n. Because J is
commutative, the two-sided orbits of G on J and on J∗ are really one-sided orbits,
and this simplifies our calculations.

Although one could work more generally, we will take |F | = 2 for simplicity.
First, we determine the superclasses of G = 1 + J . For 1 ≤ i ≤ n, it is easy to
see that xiG is exactly the set of polynomials in f having low-order term xi. The
G-orbits of nonzero elements of J , therefore, are parameterized by the integers in
the range 1 ≤ i ≤ n, where f is in the orbit with parameter i precisely when xi

is the low order term of f . Clearly, orbit i has size 2n−i. The remaining orbit,
of course, is {0}, to which we assign the parameter 0. Thus G has exactly n + 1
superclasses, parameterized by the integers 0, 1, . . . , n. Superclass 0 is {1}, and for
i > 0, superclass i contains 1 + xi and has size 2n−i.

For 1 ≤ i ≤ n, let λi ∈ J∗ be the linear functional that picks out the coefficient
of xi in an element f ∈ J , and observe that {λ1, λ2, . . . , λn} is a basis for J∗. Now
let f ∈ J and write f = a1x+a2x

2 + · · ·+anxn, with coefficients ai ∈ F . It is easy
to compute the action of G, and we see that

(λi)(1 + f) = λi + a1λi−1 + a2λi−2 + · · · + ai−1λ1 ,

and so λiG is the set of all linear combinations of the λj with j ≤ i, and such
that the coefficient of λi is 1. It follows that the orbits of nonzero members of J∗

can be parameterized by the integers 1, 2, . . . , n, where orbit i contains all members
λ ∈ J∗ such that when λ is expanded in terms of the λk, the largest subscript
corresponding to a nonzero coefficient is i. The size of orbit i, therefore, is 2i−1.
We assign the parameter 0 to the remaining G-orbit in J∗, namely {0}.

Since the supercharacters of G correspond to the G-orbits in J∗, we can name
these characters χi with 0 ≤ i ≤ n. We know that the supercharacters are constant
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on the superclasses, and so there is an (n + 1) × (n + 1) supercharacter table that
we want to compute.

In our case, where J is commutative, two-sided orbits are one-sided orbits, and
we see that the numbers nλ are all equal to 1. It follows that χi is exactly the sum
of the functions λ̂, where λ runs over orbit i on J∗. In particular, χi(1) is the size
of orbit i, and we know that this is 1 if i = 0 and is 2i−1 otherwise. Also, if λ = 0,
then λ̂ is the constant function 1, and thus χ0 is the principal character of G.

To complete the determination of the supercharacter table, we compute
χi(1 + xj), where i and j lie in {1, 2, . . . , n}. Since λ̂(1 + xj) = λ̃(xj), we see
that this number is 1 if λ(xj) = 0 and is −1 if λ(xj) = 1. If i < j, then for all
linear functionals λ in orbit i, we have λ(xj) = 0, and thus χi(1 + xj) is equal to
the size of orbit i, namely 2i−1.

Orbit i on J∗ consists of linear functionals of the form λi +µ, where µ is a linear
combination of the functionals λk for k < i. All of the members of orbit i, therefore,
have value 1 on xi, and it follows that χi(1 + xi) = −2i−1.

Finally, we compute χi(1 + xj) when i > j. If λ = λi + µ is a member of orbit
i, then λ(xj) = µ(xj), and this is 0 for half of the possible functionals µ, and it
is equal to 1 for the remaining half. (This is because exactly half of the linear
combinations of λk with k < i involve λj .) It follows that χi(1 + xj) = 0 in this
case, and this completes the determination of the supercharacter table of G = 1+J .

To illustrate, we give the table explicitly in the case n = 4. The columns in the
following array correspond to the five superclasses. The first entry in each column
is the size of the superclass, and the second is a representative element. Of course,
the character degrees, which are the sizes of the orbits on J∗, are the entries in the
first column of the table.

Table 1

1 1 2 4 8
1 1+x4 1 + x3 1 + x2 1 + x

χ0 1 1 1 1 1
χ1 1 1 1 1 −1
χ2 2 2 2 −2 0
χ3 4 4 −4 0 0
χ4 8 −8 0 0 0

Notice that in this family of examples, the sizes of the superclasses are equal
to the degrees of the supercharacters, but this is not generally true, even when
G = 1 + J is abelian. Consider, for example, the nilpotent algebra J with basis
{x, y, z}, where products of basis vectors are zero except that xy = z = yx. Again
working in the case |F | = 2, it is easy to check that the (two-sided) G-orbits on
J are {0}, {z}, {x, x + z}, {y, y + z} and {x + y, x + y + z}, and thus G has five
superclasses, with sizes 1, 1, 2, 2 and 2.

Now let {λ, µ, ν} be the dual basis of J∗ corresponding to the given basis for
J . It is not hard to check that the G-orbits on J∗ are {0}, {λ}, {µ}, {λ + µ} and
{ν, ν + λ, ν + µ, ν + λ + µ}, and thus the degrees of the five supercharacters are
1, 1, 1, 1 and 4. The full supercharacter table is presented below, where we have
numbered the supercharacters (starting with χ0) in the order listed above for the
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corresponding orbits on J∗. As before, the first two entries in each column are the
size and a representative element of the corresponding superclass.

Table 2

1 1 2 2 2
1 1 + z 1 + x 1 + y 1 + x + y

χ0 1 1 1 1 1
χ2 1 1 −1 1 −1
χ1 1 1 1 −1 −1
χ3 1 1 −1 −1 1
χ4 4 −4 0 0 0

Appendix D: Fourier analysis. For applications, the following reformulation of
our results into the language of classical Fourier analysis is useful. Let G be an
arbitrary finite group, and let M be the space of all complex valued functions on
G. As we remarked in Section 5, there is a natural isomorphism M ∼= CG, where
α ∈ M corresponds to

∑
g∈G α(g)g in the group algebra CG. Multiplication in CG

can be transferred to M via this isomorphism, and the resulting operation on M is
convolution, defined by the formula

(α ∗ β)(g) =
∑
h∈G

α(gh−1)β(h) .

Of course, the convolution α ∗ β is linear in both variables.
Now suppose that G admits a supercharacter theory, so that in particular we

can apply all of the following to algebra groups. But note that by taking the
“trivial” supercharacter theory, where the supercharacters are just the ordinary
irreducible characters and the superclasses are the conjugacy classes, the following
computations yield the “classical” formulas.

If K and L are superclasses of G (in the sense of Section 2) let α and β be their
characteristic functions. Then α, β ∈ M correspond to K̂ and L̂ in CG, and so
α ∗ β corresponds to K̂L̂ ∈ CG, which by Corollary 2.3 is a linear combination of
superclass sums. It follows that α ∗ β is a superclass function, and so by linearity,
the subspace of M consisting of superclass functions is closed under convolution.
We know that the set S of supercharacters of G is a basis for the set of super-
class functions, so if we can compute the convolution of two supercharacters, the
convolution operation on the full set of superclass functions will be determined.

Let χ be a supercharacter of G, so that χ is a multiple of a character of the form
σX for some subset X ⊆ Irr(G). In general, therefore, we can write χ = (1/nχ)σX

for some constant nχ, depending on χ. (For algebra groups, we have nχ = nλ

if χ = χλ, and in the situation of Section 2, we have nχ = 1. Also, for the
trivial supercharacter theory, where the supercharacters are just the irreducible
characters, we have nχ = χ(1) for all χ ∈ Irr(G).) Recall that [σX , σX ] = σX(1),
and so [χ, χ] = σX(1)/n2 = χ(1)/nχ.

Let fX be the idempotent corresponding to the supercharacter χ, as in Section 2,
and recall that

fX =
1
|G|

∑
g∈G

σX(g) =
nχ

|G|
∑
g∈G

χ(g)g .
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The function (n/|G|)χ ∈ M , therefore, corresponds to the idempotent fX ∈ CG.
Since the elements fX ∈ CG are orthogonal idempotents, we deduce that(

nχ

|G|χ
)
∗

(
nψ

|G|ψ
)

=

{
0 if ψ �= χ,

(nχ/|G|)χ if ψ = χ

for supercharacters χ and ψ. Thus

(1) χ ∗ ψ =

{
0 if ψ �= χ,

(|G|/nχ)χ if ψ = χ.

Now if α is an arbitrary superclass function on G, we can write α as a linear
combination of the supercharacters χ ∈ S, and in fact, the coefficient of χ is exactly
[α, χ]/[χ, χ] = nχ[α, χ]/χ(1). Since χ ∗ ψ = 0 for distinct χ, ψ ∈ S, it follows that
if α and β are superclass functions, then

α ∗ β =
∑
χ∈S

(
nχ

χ(1)

)2

[α, χ][β, χ](χ ∗ χ) =
∑
χ∈S

|G|nχ

χ(1)2
[α, χ][β, χ]χ .

It follows from this that

[(α ∗ β), χ] =
|G|nχ

χ(1)2
[α, χ][β, χ][χ, χ] =

|G|
χ(1)

[α, χ][β, χ] .

Recall that we are writing S to denote the set of supercharacters of G. Given an
arbitrary superclass function α on G, we define the Fourier transform α̂ : S → C
by the formula

α̂(χ) =
∑
g∈G

α(g)χ(g) .

In other words, α̂(χ) = |G|[α, χ]. Also, since we can write

α =
∑
χ∈S

[α, χ]
[χ, χ]

χ =
∑
χ∈S

nχ[α, χ]
χ(1)

χ ,

we have

(2) α =
1
|G|

∑
χ∈S

nχα̂(χ)
χ(1)

χ

for all superclass functions α. Furthermore, we see from our earlier calculation of
[(α ∗ β), χ] that

(3) α̂ ∗ β(χ) = |G|[(α ∗ β), χ] =
1

χ(1)
α̂(χ)β̂(χ) ,

for superclass functions α and β.
Finally, consider a probability measure Q on G, so that

∑
Q(g) = 1, where the

sum runs over g ∈ G, and assume that Q is a superclass function. We want to
compute the “distance” from the mth convolution power Q∗m of Q to the constant
probability measure u(g) = 1/|G|.

First, recall from equation (1) that for χ ∈ S, we have χ ∗ χ = (G/nχ)χ, and
thus

χ∗m =
(
|G|
nχ

)m−1

χ .
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It follows from equation (2) that if α is an arbitrary superclass function, then

(4) α∗m =
∑
χ∈S

(
nχα̂(χ)
χ(1)|G|

)m

χ∗m =
1
|G|

∑
χ∈S

nχ

(
α̂(χ)
χ(1)

)m

χ .

We can now compute ||Q∗m − u||2 = [Q∗m − u, Q∗m − u] by applying (4) with
α = Q, and observing that Q̂(1G) = 1, where as usual, 1G is the principal character
of G. (Note that 1G ∈ S and that the associated constant n1G

= 1.) The coefficient
of 1G in the expansion of Q∗m is 1/|G|, and since u = (1/|G|)1G, we have

Q∗m − u =
1
|G|

∑
χ∈S

χ �=1G

nχ

(
α̂(χ)
χ(1)

)m

χ ,

and thus since [χ, χ] = χ(1)/nχ, we have

(5) ||Q∗m − u||2 =
1

|G|2
∑
χ∈S

χ �=1G

nχχ(1)

(
Q̂(χ)
χ(1)

)2m

.
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