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242 Araújo et al.

Abstract—It is a proven fact that The Fast Fourier Transform
(FFT) extension of the conventional Fast Multipole Method (FMM)
reduces the matrix vector product (MVP) complexity and preserves
the propensity for parallel scaling of the single level FMM. In this
paper, an efficient parallel strategy of a nested variation of the FMM-
FFT algorithm that reduces the memory requirements is presented.
The solution provided by this parallel implementation for a challenging
problem with more than 0.5 billion unknowns has constituted the world
record in computational electromagnetics (CEM) at the beginning of
2009.

1. INTRODUCTION

Recent years have seen an increasing effort in the development of fast
and efficient electromagnetic solutions with a reduced computational
cost regarding the conventional Method of Moments. Among others,
the Fast Multipole Method (FMM) [1] and its multilevel version, the
MLFMA [2, 3] have constituted one of the most important advances in
that context.

This development of fast electromagnetic solvers has gone hand
in hand with the constant advances in computer technology. Due
to this simultaneous growth, overcoming the limits in the scalability
of the available codes became a priority in order to take advantage
of the large amount of computational resources and capabilities that
are available in modern High Performance Computer (HPC) systems.
For this reason, works focused on the parallelization improvement of
the Multilevel Fast Multipole Algorithm (MLFMA) [4–13] have gained
interest in last years.

Besides, the FMM-Fast Fourier Transform (FMM-FFT) deserves
be taken into account as an alternative to benefit from massively
parallel distributed computers. This variation of the single-level FMM
was first proposed in [14] as an acceleration technique applied to almost
planar surfaces. Later on, a parallelized implementation was applied to
general three-dimensional geometries [15]. The method uses the FFT
to speedup the translation stage resulting in a dramatic reduction of
the matrix-vector product (MVP) time requirement with respect to
the FMM. Although in general the FMM-FFT is not algorithmically as
efficient as the MLFMA, it has the advantage of preserving the natural
parallel scaling propensity of the single-level FMM in the spectral (k-
space) domain.

A large-scale problem involving more than 150 million unknowns
has been successfully solved by the authors using a careful parallel
implementation of the FMM-FFT in [16]. In this work, a hybrid
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MPI/OpenMP parallel implementation of a “nested” version of the
FMM-FFT is presented. In contrast with the FMM-FFT, it shows
a slightly worse parallel performance in exchange for lower memory
consumption. These features allow to deal with very large problems
of hundreds of millions of unknowns, where the memory consumption
may be a critical issue. The solution of a problem with more than a half
billion of unknowns, included in the results of this paper, demonstrates
that the nested algorithm constitutes a suitable tool for this kind of
analysis when using modern parallel high performance supercomputers.

This paper is organized as follows: Section 2 reviews the main
aspects of the FMM-FFT and its parallel implementation. Section 3
outlines the nested algorithm, some details about its parallelization
and an assessment of the computational complexity. Section 4 presents
some numerical results, among them a challenging one with more than
0.5 billion unknowns, and finally, the summary and conclusions are
given in Section 5.

2. PARALLEL FMM-FFT ALGORITHM

2.1. FMM-FFT Algorithm

As it is shown in [14, 15], the FFT extension of the conventional FMM
method allows to obtain a great reduction of the MVP CPU time
with respect to the FMM. The method consists of employing the Fast
Fourier Transform to speedup the translation stage in the framework
of the FMM. The translation is the hardest stage with a computational
cost of O(M2K), with M being the number of non-empty groups of the
oct-tree decomposition and K the number of samples in the k-space.
The FMM-FFT algorithm takes advantage of the regular group spacing
provided by the oct-tree decomposition of the geometry. Since the
radiation centers of the groups lie on a regular three-dimensional (3D)
lattice, the translation operator between groups for a given direction
in the k-space can be seen as a circular 3D convolution. Consequently,
it can be evaluated simultaneously for all groups using a 3D FFT,
hence reducing the computational complexity of the translation stage
to O(KQ log Q). Q is the total number of groups (including empty
groups), which fulfills the relationship Q ∝ M3/2 for “volumetric”
arbitrary shaped geometries.

2.2. Parallelization Issues

Regarding the parallelization, as it is reported in our previous work
of [16], we have concerned with hybrid parallel algorithms using
the Message Passing Interface (MPI) for message passing paradigm
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between distributed nodes, and OpenMP standard for threads inside
each shared-memory node. This hybrid parallel programming allows
to fit the architecture characteristics of large mixed memory computers
(distributed clusters of shared-memory nodes). Four important
issues must be considered to get a high scalability code with this
approach: Work-load balancing among processors, data locality,
memory footprint, and communication requirements. Using the
original FMM or the FMM-FFT extension, the work-load can be
equally distributed among processors while keeping good data locality
(without memory footprint), by applying a k-space parallelization
strategy. This efficient distribution is based on the fact that, both
in FMM and FMM-FFT, each sample in k-space is completely
independent of each other. Hence, the work-load for the far interactions
of the MVP can be optimally distributed by splitting the far-fields
among processors, instead of partitioning the spatial oct-tree. A
similar distribution strategy is applied in [7, 12] for the parallelization
of the shared levels of the MLFMA. For the near-field interactions and
the iterative solver parallelization, however, the usual physical domain
decomposition must be used. Then, the three stage parallelization
strategy considered for the FMM-FFT in [16] is recalled here: (i)
Distribution of far-fields among processors to account for the far-
field interactions; (ii) distribution of oct-tree groups for near-field
interactions; (iii) distribution of unknowns for the iterative solver (in
our case we have used GMRES [17]).

Mainly, the strong points of this implementation are the clean and
efficient way of addressing the translation stage and the fact that only
a single communication step at the end of the MVP is needed, which
indeed can be performed very efficiently in an almost negligible time
(details can be looked up in [16]).

To test the parallel scalability of this implementation, a relatively
small problem consisting of the scattering of a PEC sphere with about
10 million unknowns has been solved. In Fig. 1 we show the speed-up
using up to 1,024 parallel processors. A high scalability behavior can
be observed, demonstrating the ability of the FMM-FFT algorithm
to take advantage of the availability of a large amount of distributed
computational resources.

3. PARALLEL NESTED FMM-FFT ALGORITHM

For very large problems with several tens or hundreds of millions
of unknowns, the memory requirements of the FMM-FFT algorithm
can become a critical factor, especially the memory which is required
to store the near-coupling blocks of the impedance matrix and the
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Figure 1. Parallel speed-up for the FMM-FFT algorithm. The
problem is a PEC sphere with 10 million unknowns.

aggregation/disaggregation matrices containing the fields. With the
aim of reducing the memory consumption, a variation of the FMM-
FFT algorithm is proposed: the nested FMM-FFT.

3.1. Nested FMM-FFT

The nested algorithm begins by applying one or more refinement steps
to the hierarchical oct-tree decomposition. The far-field interactions
are still obtained at the coarsest level of the geometry partition. As
it is indicated in the previous section, a global distributed FMM-
FFT algorithm is employed to accomplish these far-field contributions
with a parallelization strategy based on the distribution by k-space
samples. However, the key element here is the treatment of the near-
field interactions in the MVP, which leads to a drastic reduction of
the memory consumption. Instead of employing the coarsest level,
the near contributions are obtained at the finest oct-tree level by
using one or more local shared memory FMM-FFT algorithms inside
each computing node. This procedure is depicted in Fig. 2 for a bi-
dimensional case. It can be observed that the near-field contributions
in the coarsest level are obtained at the finest level by means of a
nested FMM-FFT algorithm (with the usual stages of far, near and
self-coupling contributions). Since the near-coupling blocks of the
impedance matrix are now calculated and stored at the finest level
of the oct-tree, a strong reduction of the required memory can be
achieved with respect to the original FMM-FFT.

At this point, it must be noted that the pursued memory reduction
is obtained using the above nested scheme without any penalty on
the solver scalability. On the other hand, the nested scheme can be
also applied to calculate the aggregation and disaggregation matrices
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Figure 2. Graphic description of the nested FMM-FFT algorithm.

(as well as the radiated fields) at the finest level of the hierarchical
decomposition, and then interpolate them to the coarsest level. This
provides a further reduction of the memory consumption, but this
reduction is obtained at the expense of additional communications
during the MVP. The impact of this aspect in the scalability and the
parallelization strategy of the nested algorithm are tackled next.

3.2. Parallelization Issues

The use of the nested algorithm for the computation of the aggregation
and disaggregation matrices requires additional communications for
the interpolation and anterpolation of fields between the finest and the
coarsest level of the oct-tree. These communications have some impact
on the scalability, as it will be shown next. However, we have addressed
these all to all communications in a very efficient way by means of the
asymmetric MPI collective communication operation Alltoallw.

Looking for maintaining the aforementioned objectives of work-
load balancing among processors, data locality, memory footprint and
communication requirements, the parallelization strategy considered
for the nested FMM-FFT includes the following stages: (i) For the
far interactions, a mixed approach is applied by (i.1) distributing
by groups at the finest level; and (i.2) distributing by field samples
at the coarsest level. (ii) For the near interactions, a partition of
work by groups at the finest level is applied. A well-balanced load
distribution scheme has been considered [16]. (iii) The iterative solver
is distributed by equal number of unknowns per processor. The
use of a two-level scheme to obtain the far interactions requires the
interpolation/anterpolation of outcoming/incoming fields across the
two levels. On the other hand, the different partition of work, by
groups and by fields, implies inter-node communications during the
MVP.

Figure 3 shows the computation procedure adopted for the far-
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Figure 3. Far-field computation stages inside a shared memory node.

field interactions during a MVP inside each shared memory node. In
light gray it is shown the total work of the MVP, while in dark gray it
is represented the partition of work which is assigned to the first node
(rank 0, other nodes are similar). Looking at Fig. 3(a), the work is
distributed as follows:

(i) From the aggregation matrices at the finest level, we obtain the
Kf samples of the outgoing radiated fields. These fields are
calculated for the Mf/n groups assigned to this node (distribution
by groups), where n is the number of nodes and the subscript f
refers to the finest level.

(ii) The Kc samples of the outgoing radiated fields are obtained for
the respective Mc/n groups, with the subscript c referring to the
coarsest level. This is done throughout interpolation and shift
(exponential translation) of the children groups to the center of
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their parent groups. At this point, each node has the complete set
of directions, Kc, for its assigned Mc/n groups.

(iii) An all to all communication is performed in order to obtain the
partial Kc/n samples assigned to this node for all the Mc groups
at the coarsest level (distribution by fields). This partial all
to all communication is efficiently carried out in a single step
by using the asymmetric MPI Alltoallw operation. Therein
the management of the point to point communications is left
to the MPI library, instead of using a rather complicated (and
maybe inefficient) low-level communication scheme between all the
distributed processes.

(iv) After the communication, each node performs the translation of
its assigned field samples simultaneously for all groups using the
3D FFT convolution. As a result, each node has the partial Kc/n
samples of the incoming fields into all the Mc groups.

The complementary procedure consisting of steps (iv) to (i)
is applied to obtain the contributions to the MVP from the
incoming fields. In this case, as it is represented in Fig. 3(b),
the additional communications are required first, followed by the
exponential translation to the corresponding “child” group centers,
the anterpolation and the disaggregation stages. The Alltoallw
high-level command makes possible to accomplish all the required
communications between nodes without latency periods or explicit
synchronization because of the efficient management provided by the
MPI library.

Figure 4 helps to assess the scalability performance of the nested
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Figure 4. Parallel speed-up for the Nested FMM-FFT algorithm. The
problem is a PEC sphere with 10 million unknowns.
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method regarding the original FMM-FFT. It shows the speed-up
obtained for the previous example of 10 million unknowns using the
nested FMM-FFT algorithm. It can be observed that the scalability
is not as good as in the FMM-FFT, but it still shows a good parallel
performance. Partly, this is due to the fact that only two levels are
needed for the application of the Nested FMM-FFT algorithm, in
contrast with MLFMA which suffers from poor parallel scaling and
requires sophisticated parallelization strategies.

3.3. Computational Complexity

To analyze the complexity of the nested FMM-FFT algorithm, the
total number of fine and coarse cells, Qf and Qc, respectively, will be
required additionally to the parameters Kf , Kc, Mf and Mc defined in
the previous section. The objective is to estimate the computational
cost and the memory requirements expressing them as a function of
Mf and Mc, in order to later discuss the properly selection of both
parameters.

Let us consider first the FFT-based translations cost at the
coarsest level. If the relation Kc ∝ N/Mc [18] is taken into account,
this cost can be written as O (KcQc log Qc) ≈ O (N/Mc Qc log Qc).
Given that for volumetric geometries Qc ≈ M

3/2
c , an O(N

√
M c log Mc)

cost is obtained. Regarding the aggregations/disaggregations and the
near couplings, they are obtained in the method under analysis by
means of O(Mc) FMM-FFT nested algorithms involving each one
O(Mf/Mc) fine level cells. Then, the cost for the finest level O(Mc)
algorithms can be divided up as it is indicated in Table 1, where also
the rest of the significant terms have been included. The parameter nl

represents the number of levels between the finest and coarsest level
and the relationships Kf ∝ N/Mf and Qf/Mc ≈ (Mf/Mc)3/2 have
been considered.

Looking for minimizing the near couplings cost of Table 1, small
fine cells must be selected to achieve Mf ∝ N and then an O(N)
cost. Observing the rest of the involved terms it can be seen that
the selection of Mc ≈ √

N leads to a dominant cost of Cnested =
O(N5/4 log N).

As regards the memory requirements, those associated to the
coarsest level translations are O(QcKc) ≈ O(N

√
M c). This

requirement and the memory cost estimated for the main finest level
stages are gathered in Table 2. Taking into account the previous
choices for both Mf and Mc, the dominant memory requirement is
Mnested = O(N5/4).

Due to the use of two different refinement levels in the nested
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Table 1. Summary of the nested FMM-FFT numerical complexity.

Aggregations/disaggregations
(finest level)

O(KfN) ≈ O(N2/Mf )

Near couplings (finest level) O(N2/Mf )

FFT Translations (finest level) O
(

Kf
Qf

Mc
log

(
Qf

Mc

)
Mc

)

≈ O
(

N

√
Mf

Mc
log

(
Mf

Mc

))

FFT Translations (coarsest level) O(N
√

M c log Mc)
Interpolations O(Nnl) ≈ O(N log(Mf/Mc))

Table 2. Summary of the nested FMM-FFT memory requirements.

Aggregations/disaggregations
(finest level)

O(N2/Mf )

Near couplings (finest level) O(N2/Mf )

FFT Translations (finest level) O
(

Mf

Mc
Kf

)
≈ O(N/Mc)

FFT Translations (coarsest level) O(N
√

M c)
MVP O(KfMf ) +O(KcQc)

≈ O(N) +O(N
√

M c)

algorithm, it is possible to do a properly selection of the two groups
size to obtain an optimum balance of the computational cost and the
memory requirements.

At this point, it is worth mentioning that if Mc <
√

N is selected,
the large size of the coarsest level cells implies a drastic reduction of the
empty cells number, wich results in the relationship Qc → Mc. Under
these conditions, an O(N) memory requirement can be achieved at the
expense of the CPU time increase.

In order to illustrate the cost estimations detailed above, several
executions of a sphere with different number of unknowns have
been carried out using the nested FMM-FFT algorithm. Fig. 5
shows the computational cost result that fits the curve O(N5/4 log N)
according to the previous estimation for Cnested. Regarding the memory
consumption shown in Fig. 6, it can be observed that the nested
method behavior is described by the O (

N5/4
)

curve, which was the
estimation for Mnested.
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4. NUMERICAL EXAMPLES

The nested FMM-FFT algorithm has been used to solve two large-
scale problems included in this section. Regarding the electromagnetic
formulation, both examples have been addressed with an Electric Field
Integral Equation (EFIE) based Method of Moments formulation, in
which the well-known Rao-Wilton-Glisson (RWG) basis functions [19]
have been applied both in the discretization of the geometry and the
Galerkin’s testing procedure. No preconditioning has been considered
for the numerical examples of this work.

The first result of more than 150 millions of unknowns was carried
out using the Lusitania supercomputer of the Centro Extremeño de
Investigación, Innovación Tecnológica y Supercomputación (CENITS).
Lusitania is made up of 2 HP Integrity SuperDome SX2000 nodes with
64 dual core Itanium2 Montvale processors at 1.6GHz (18 MB cache).
Altogether a RAM memory of 2, 000 GB is available. The operating
system is Linux SLES 10 and for all the results in this paper, we
have used the Intel C++ Compiler version 11.0.069, and Intel MPI
version 3.2.0.011 for communications. For matrix/vector linear algebra
operations we have used the Intel Cluster MKL version 10.0.2.018.
The first analysis consists of a car of 154, 927, 736 unknowns. A front
incident plane wave horizontally polarized has been considered. The
problem has been solved using 5 GMRES outer iterations and a restart
parameter of 50, obtaining a residue lower than 3 · 10−2. A total
memory of 630GB was required and the solution time was of 29 hours.
The configuration parameters of the method and the technical data
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Table 3. Technical data for the solution of a 150 million of unknowns
problem.

Frequency 48GHz
Number of unknowns 154, 927, 736
Groups dimensions
(fine/coarse level) 0.25λ/4λ
Multipole terms

(fine/coarse level) 5/45
Number of total/non-empty groups

(fine level) 1, 935, 136, 755/7, 382, 859
Number of total/non-empty groups

(coarse level) 487, 060/29, 794
Num. of nodes/processors per node 2/128
Min./max. peak memory in node 309GB/321 GB

Total memory 630GB
Num. of iterations/GMRES restart 5/50

Setup/solution time 1.8 h/29 h

corresponding to this result are gathered in Table 3. The numerical
prediction obtained for the bistatic RCS is shown in Fig. 7.

The results for the second example were performed using the HPC
supercomputer Finis Terrae, recently installed in the Supercomputing

Figure 7. Bistatic RCS of more
than 150 million of unknowns car.
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Center of Galicia (CESGA). Finis Terrae consists of 142 cc-NUMA HP
Integrity rx7640 with 8 dual core Intel Itanium2 Montvale processors
at 1.6 GHz with 18MB L3 cache and 128GB of memory. Totally, they
sum more than 2, 500 cores and 19, 000 GB of memory, being one of
the computers with the best ratio memory/processor in the world. The
nodes are interconnected through a high efficiency Infiniband network
(4xDDR), and the operating system is Linux SLES 10. The example
that has been run in this supercomputer consists of the challenging
analysis of a PEC sphere with 728.36λ diameter and 500,159,232
unknowns. The solution required the use of 64 nodes (involving a
total of 1, 024 processors) and 6 TB of memory. A total of 10 GMRES
iterations with restart 10 have been required to obtain a residual
error below 5 · 10−2. The setup time was about 5 hours, while the
iterative solution took less than 26 h. An excellent agreement between
the numerical result obtained for the bistatic RCS of the sphere and
the analytical solution provided by the Mie series can be observed in
Fig. 8. Technical data of the problem and the solution are summarized
in Table 4.

Table 4. Technical data for the solution of a challenging
electromagnetic problem with 0.5 billion unknowns.

Sphere diameter 728.36λ
Frequency 300MHz

Number of unknowns 500, 159, 232
Groups dimensions
(fine/coarse level) 0.5λ/4λ

Multipole terms
(fine/coarse level) 6/44

Number of total/non-empty groups
(fine level) 3, 092, 990, 993/9, 558, 160

Number of total/non-empty groups
(coarse level) 6, 128, 487/155, 391

Num. of nodes/processors per node 64/16
Min./max. peak memory in node 89.2GB/99.9GB

Total memory 6TB
Num. of iterations/GMRES restart 10/10

Setup/solution time 5 h/26 h
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5. CONCLUSIONS

An efficient parallelization of the FMM-FFT algorithm has been
implemented, exploiting its natural high scaling properties to benefit
from the availability of massively distributed supercomputers. In order
to accomplish the analysis of very large-scale scattering problems,
a nested configuration of the method that improves the memory
requirements has been proposed. The computational cost and
the memory requirements associated to the nested algorithm are
O(N5/4 log N) and O(N5/4), respectively. Optimal load balance
and data locality have been obtained, while minimizing the memory
footprint and inter-processor communication requirements. This
guarantees the efficient use of large amounts of parallel processors. The
aforementioned advances, combined with the computational resources
provided by the supercomputer Finis Terrae, have allowed us to address
the electromagnetic scattering of a 728.36λ diameter PEC sphere
involving more than 500 million of unknowns at the beginning of 2009.
This world record challenge has resulted in various international awards
in supercomputing in 2009 (International PRACE Award and Itanium
Innovation Award).
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13. Gürel, L., Ö. Ergül, A. Ünal, and T. Malas, “Fast and accurate
analysis of large metamaterial structures using the multilevel
fast multipole algorithm,” Progress In Electromagnetics Research,
PIER 95, 179–198, 2009.

14. Wagner, R., J. M. Song, and W. C. Chew, “Montecarlo simulation
of electromagnetic scattering from two-dimensional random rough
surfaces,” IEEE Trans. Antennas Propagt., Vol. 45, No. 2, 235–
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