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The urgent search for drugs to combat SARS-CoV-2 has included the use of

supercomputers. The use of general-purpose graphical processing units (GPUs),

massive parallelism, and new software for high-performance computing (HPC) has

allowed researchers to search the vast chemical space of potential drugs faster

than ever before. We developed a new drug discovery pipeline using the Summit

supercomputer at Oak Ridge National Laboratory to help pioneer this effort, with

new platforms that incorporate GPU-accelerated simulation and allow for the

virtual screening of billions of potential drug compounds in days compared to

weeks or months for their ability to inhibit SARS-COV-2 proteins. This effort will

accelerate the process of developing drugs to combat the current COVID-19

pandemic and other diseases.

D
RUG discovery is a lengthy process that merges

efforts from computational and bench-top sci-

entists in search of small-molecule therapeu-

tics.1 At the molecular level, these small compounds

interact with proteins or nucleic acids to alter cellular

pathways associated with disease progression. For

instance, angiotensin receptor blockers act to inhibit the

action of certain proteins in the body to reduce blood

pressure, and antiretroviral drugs combat proteins cre-

ated and used by the HIV virus, interfering with viral repli-

cation and other pathogenicmechanisms.

Drug discovery must work to assure that drugs

are not only efficacious but also are safe, and do not

inadvertently affect the function of proteins that are not

targeted, in order to minimize potential drug side

effects.2 Early drugs were often nonspecific, with sub-

stantial side effects and their mechanisms of action

were not fully understood. Before computing power was

readily available, laboratory experiments were the only

way to determine which small-molecule compounds

would have the desired effect. Chemicals from natural

products played a substantial role, as did serendipity,

exemplified by Alexander Fleming’s accidental discov-

ery of penicillin from a natural fungal antibiotic.4 The

speed of the discovery process is still hampered by the

trial-and-error aspects of the experimental methods:

Compoundsmust be synthesized or isolated from a nat-

ural source, then extensively tested.
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Several technological advances would be required

before the field could start to move away from the

above paradigm. High-throughput experimental tests

(assays) of binding to specific protein targets using

libraries of synthetic molecules allowed for a more

systematic searching of the chemical space. Techni-

ques such as X-ray crystallography became able to

resolve the locations of the atoms within target pro-

teins, thus providing a detailed map of their three-

dimensional structures. When matched with advan-

ces in computing, it then became possible to try to

predict in silico how strongly a small molecule inter-

acts with a given protein target. Critically, computa-

tional approaches are much faster and cheaper

than in vitro work for filtering combinations of com-

pounds and proteins, winnowing chemical space for

specific protein targets.

That computational speed is very useful in explor-

ing chemical space. Today, chemical synthesis compa-

nies, such as Enamine, promise to be able to

synthesize any of over a billion different compounds

that might demonstrate utility as drugs, which is five

orders of magnitude beyond all themolecules currently

approved for therapeutic use. Only by applying compu-

tational tools we evaluate all these molecules. By act-

ing as a selective sieve, in silico molecular docking, an

approach that simulates the small-molecule interac-

tions with the three-dimensional structure of a target

protein,2 reduces the chemical search space to a rea-

sonable subset that can be further refined by resource-

intensive experimental techniques.

The experimental assays are still a critical step

within the drug discovery pipeline. Even the best

computational methods are nowhere near 100% accu-

racy, and still predict a high proportion of false positives.

Nevertheless a pool of compounds selected by compu-

tation is likely to be significantly enriched with “hits,”

often by a factor of 10–100.3 Advanced rescoring techni-

ques that incorporate more features of the protein or

ligand can further improve these results, with successful

machine learning methods representing significant

advances. Thus, drug discovery depends on a tight inter-

play between benchtop and laptop scientists.

The ongoing COVID-19 pandemic and the uncer-

tainty surrounding this novel coronavirus have

presented unique challenges for this synergistic,

interdisciplinary approach, including a new urgency,

sparked by the lack of existing pharmaceutical treat-

ments and relatively high mortality rates. Typical drug

discovery pipelines, even with computational efforts,

can take years to go from the identification of a prom-

ising drug target to the use of a drug at the bedside;

the drug discovery process cannot be fully automated

and involves many complex, multidisciplinary steps.

However, the pandemic has encouraged us to rethink

the computational portion of this effort, and we

focused on how best to apply supercomputing to

accelerate drug discovery by reducing the time and

cost associated with molecular docking.

THERE ARE MANY UNKNOWNS

REGARDING THE LIFE CYCLE OF THE

SARS-COV-2 VIRUS.

There are many unknowns regarding the life cycle

of the SARS-CoV-2 virus (see Figure 1), particularly as it

relates to choosing the best proteins to use as drug tar-

gets to mitigate the symptoms of COVID-19. We have

been using the computational horsepower afforded by

Summit to try targeting all SARS-CoV-2 proteins with

known structure through a consistent and scalable

drug discovery pipeline. A set of nine distinct viral pro-

teins formed the basis for our structural studies com-

bining molecular simulation, small molecule docking,

and analysis to provide a set of compounds predicted

to bind to SARS-CoV-2 targets for experimental valida-

tion.5 Emerging results from our recent efforts using

high-performance computing (HPC) on the Summit

supercomputer, housed at the Oak Ridge Leadership

Computing Facility (OLCF), to discover potential

COVID-19 therapeutics highlight the impact of GPU

acceleration and massive parallelism to substantially

FIGURE 1. SARS-CoV-2 virion visualized by Thomas Splett-

stoesser scistyle.com under commission. Used with permission.
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reduce computational time to solution as part of a

larger drug discovery pipeline.5;
6

ACCELERATINGMOLECULAR
DOCKING

At the outset of the COVID-19 pandemic, collaborating

groups from across the world, each with their own dock-

ing techniques and philosophies, began applyingmolecu-

lar simulation and protein-small molecule docking

methods to provide lists of potential compounds. Experi-

mental laboratories used these for screeningwith against

live-virus infected cells. The goal was to quickly dock

compounds with known safety profiles in an attempt to

meet an immediate need for therapeutics.5 This experi-

ence revealed some computational limitations of current

small-molecule docking techniques: With I/O bottle-

necks, high variability in time-to-solution for docking dif-

ferent molecules, a lack of optimization for the high-

throughput docking problem, and overall, performance

that did not harness the true power of the Summit super-

computer, which rests mainly in its more than 27,000

GPUs. We addressed these problems with several

HPC-focused modifications to accelerate docking.6

Simulating Molecular Recognition
Molecular docking consists ofmodeling the interactions

between two chemical entities—typically a protein and

a small chemical compound (ligand)—and predicting

both themost energetically favorable positions for inter-

action and also the binding strength, or affinity, of the

interaction (see Figure 2). High affinity drugs tend to be

more efficacious, as they are needed in smaller concen-

trations to produce a therapeutic effect. The search is

often focused on the region of the protein known as the

active site that affects the chemical function of the pro-

tein. Many applications use an interaction field, repre-

sented as a grid, to describe one or both of the binding

partners for efficient computation. Representing the

protein’s binding pocket with a grid, and the ligand as a

set of individual atoms, is an approach often used in

drug discovery, and this type of application is the pri-

mary focus for the protein–ligand interaction calcula-

tions in our recent work.

HIGH AFFINITY DRUGS TEND TO BE

MORE EFFICACIOUS, AS THEY ARE

NEEDED IN SMALLER

CONCENTRATIONS TO PRODUCE A

THERAPEUTIC EFFECT.

The Scripps AutoDock4 program and its predeces-

sors,7 together with the accompanying suite of tools,

have been used by researchers worldwide for decades.

AutoDock4 uses a genetic optimization algorithmwhere

an evolving “population” of solutions mixes features (a

“crossover”) at each generation, moving toward an opti-

mal solution for a ligand geometry within the field

described on the grid. AutoDock thus combines the

genetic algorithmwith a local optimization step to arrive

FIGURE 2. Docking example, emphasizing how binding pockets in a protein (left, with secondary structure shown as a green car-

toon below a semitransparent surface), in this case, the SARS-CoV-2 Main Protease, can be occupied by small molecules. Two

alternative bound molecule configurations are shown, black representing a crystallographic structure, and yellow representing

the pose predicted by AutoDock-GPU.
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at a final solution. Recently developed machine learning

methods can further supplement these techniques to

extrapolate from a limited training set of compounds to

produce a larger set of similar compounds. Several types

of machine learning have already been applied to

COVID-19 research,8 but may miss the best compounds

overall. Recent large docking campaigns have demon-

strated that small changes in molecular structure and

interaction that are difficult to encode into machine

learning frameworks significantly influence the score.9

GPU Acceleration and Addressing I/O
for the High-Throughput Use Case
Simulating molecular recognition (binding) events

using these structure-based tools is important in vir-

tual drug discovery. However, a majority of small-mole-

cule docking programs are designed for use as single-

instance executables to calculate an interaction for

one ligand–protein pair. These codes were largely

designed in a CPU-computing era and may not be opti-

mal for today’s accelerator-driven HPC environments.

On a pre-exascale machine like Summit with a theo-

retical performance of 200 petaFLOPs, the FLOPs are

provided primarily by the six NVIDIA V100 GPUs on

each node (97%) rather than the two 21-core POWER9

CPUs. CPU-exclusive algorithms, when deployed on

Summit, effectively provide performance at the level

equivalent to a commodity cluster. As a result, using

CPU-based codes our docking calculations into the

10,000 or so FDA approved compounds took on the

order of weeks to carry out and analyze.

AUTODOCK-GPUWAS PORTED TO

CUDA WITHIN AMONTH, ALLOWING

SUMMIT’S FULL CAPABILITIES TO BE

BROUGHT TO BEAR FOR DOCKING.

To scale up and reap the full benefits of the 200

petaFLOP Summit hardware it was imperative that we

use a GPU-accelerated docking solution. AutoDock-

GPU, a recent GPU port of AutoDock for OpenCL

released by Scripps Research,10 was particularly

appealing, as the AutoDock family is a well-known set

of docking tools. However, AutoDock-GPU’s depen-

dence on OpenCL was a barrier on Summit, as no

OpenCL drivers exist for Summit’s combination of

POWER9 CPUs and NVIDIA GPUs. Working with indus-

trial partners both big (NVIDIA) and small (Jubilee

Development), driven to help with the ongoing pan-

demic, AutoDock-GPU was ported to CUDA within a

month, allowing Summit’s full capabilities to be

brought to bear for docking.

The speed of the new implementations shifted the

bottleneck from floating-point operations to other

portions of the program that were bandwidth and I/O

bound. In the older CPU docking codes, where docking

of one compound could take minutes to calculate with

significant variability, the time spent reading small

input files is insignificant. However, on the GPU where

FLOPs are abundant, a high-throughput version of the

application became limited by I/O and set-up time, as

the docking calculations themselves only took a few

seconds at most.6 If the docking is performed on the

GPU, using idle CPUs to prefetch data for the next

calculation can yield a substantial improvement in

performance. With the help of Jubilee Development,

OpenMP threading was added that enabled multiple

threads to parse protein and ligand input files and

transfer data to the GPU while a previous calculation

was being performed. This allowed for prefetching

data and overlapping data movement with the GPU-

based docking calculation, and provided over 3�

speedup compared to the original GPU-accelerated

version of AutoDock-GPU.6

Further reductions in I/O and data transfer time

were achieved by reusing shared data. Previously, the

program required the grid representation of the pro-

tein to be both read from file and transferred to the

GPU for each ligand processed, even if the same pro-

tein input files were used for subsequent docking cal-

culations. Transfer of data from CPU host to GPU is

often one of the most time consuming portions of a

GPU-based calculation and this time increases with

data size. Thus, repeated transfers of identical large

data objects are to be avoided if reuse is possible.

Since our interest was in docking many different small

molecules to the same protein, where the small mole-

cule is represented by a much smaller data structure,

it made little sense to reload megabytes of data

needed to describe the binding region of the protein.

Therefore, the program was modified so that the pro-

tein data were loaded only once into GPU global mem-

ory, and is resident on the large global memory found

on newer GPUs such as NVIDIA’s V100 with 16 or 32

GB HBM2 for hundreds of dockings.6 The creation of a

CUDA context is also a time-consuming step, and we

observed that reusing CUDA contexts also provided

speedup. Overall, the total speedup from all of these I/

O optimizations combined was over 9� compared

with the CUDA version for typical druglike molecules

such as those found in fragment libraries.6 When com-

pared to the serial CPU version of AutoDock4, the

speedup was up to 300�.
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Together, these advances prepared us for increas-

ing the scope of our docking calculations to billions of

compounds. The Enamine REAL database contains bil-

lions of compounds that have never previously been

synthesized. Explicit docking allowed us to filter that

vast chemical space down to a tractable size for fol-

low-on experimental study.

ADDRESSING PROTEIN
FLEXIBILITY

A single 3-D structure of a protein target obtained

from a crystallography experiment is not necessarily

representative of the dynamic population of possible

configurations the protein adopts in a living cell.

Within a docking context, these fluctuations of inter-

nal protein structure are important to consider, since

the interaction between the protein and small mole-

cule will change as contacts are formed or broken.

Docking to a set of protein structures rather than a

single snapshot helps to take these fluctuations into

account, and can be used to test if top-scoring com-

pounds can bind to many protein states. Among

approaches to addressing protein conformational

change are the use of a flexible protein in the docking

calculation itself, the use of several crystal structures

to provide different protein active site poses, if avail-

able, and the use of molecular dynamics (MD) simula-

tions to simulate a set of poses, or conformations, of

the protein’s native state. We complement billion-

ligand docking calculations by docking with both mul-

tiple crystal structure and poses generated by MD.

Structural Ensemble Generation for
SARS-CoV-2 Proteins Using MDs
Collecting a structural ensemble for each of the tar-

gets using MD involves a calculation using a classi-

cal mechanics representation of protein motion. In

MD, biological systems are allowed to propagate for-

ward in time subject to Newton’s equation of motion.

The resulting “trajectory,” or molecular movie, is then

analyzed to provide a representative set of poses (an

ensemble), which can be sampled by docking. In

early applications to HPC, molecular simulations

rode on the coattails of Moore’s Law to longer simu-

lation timescales and larger system sizes. More

recently, MD applications, such as AMBER, GRO-

MACS, NAMD, HOOMD-Blue, and LAMMPS, have

been at the forefront in the transition to GPU use,11

and are highly optimized for Summit hardware. In

practice, the GPU transition means that a single

GPU simulating a small protein in water will generate

a few hundred nanoseconds of simulated trajectory

in a day of walltime.

However, obtaining a single continuous trajectory

for timescales comparable to protein structural

changes (milliseconds or more) still remains impracti-

cal without special purpose hardware, such as Anton

or Anton2 developed by DE Shaw Research. Exploiting

the parallelism inherent to modern supercomputer

design is paramount. The key methodological advan-

ces come from algorithms that can provide sampling

statistically equivalent to a single long trajectory from

many shorter trajectories.

We used parallel tempering, frequently called

temperature replica exchange in biomolecular simu-

lations, to accelerate sampling of the ensemble of

structures for each protein system. In parallel tem-

pering, multiple copies of a simulation system are

run simultaneously, each at a different simulated

temperature enforced by a numerical thermostat.

The higher temperatures allow what would other-

wise be large energetic barriers to structural change

to be easily overcome via thermal motion. The

enhanced sampling in the higher temperature space

can then be incorporated into low temperature

ensembles that reflect room temperature conditions

by periodically exchanging configurations between

different temperatures using rules based on statisti-

cal physics. By crossing barriers to conformational

change at high temperature and sampling these

states at low temperature, the generated structural

ensemble (see Figure 3) is statistically equivalent

to a longer continuous trajectory at the low temper-

ature. Recasting the problem in this way can provide

FIGURE 3. Graphical representation of the structural ensem-

ble generated from parallel-tempering MD simulations. Each

of the 26 protein snapshots taken from the ensemble has a

different color, and is drawn in a cartoon representation. The

spaghettilike strands represent loop elements where the

greatest variation in structure takes place in the simulation.
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us with an ensemble of structures in a greatly

reduced amount of time. For modestly sized pro-

teins such as found in the SARS-CoV-2 proteome,

Summit can deliver the equivalent of several micro-

seconds per day of simulation time per protein using

these parallel replica methods.

Using a Set of Different Crystal
Structures
The pandemic has spurred a massive effort in crystal-

lography. As a result, hundreds of structures of viral

proteins have been deposited in the crystallographic

databases, with some well-studied proteins having

dozens of different structures available. This provides

a unique set of data with which to explore different

conformations of proteins found among the various

crystal structures. While the range of poses and the

magnitude of changes in atomic positions is much

less than that produced by MD, a set of crystal struc-

tures provides experimental snapshots of protein

poses that are free of potential model-induced biases

introduced by simulation.

DEPLOYING AT SCALE ON THE
SUMMIT SUPERCOMPUTER

Screening one billion compounds against a protein exper-

imentally is effectively impossible with current technolo-

gies, as the fastest experimental assays only manage

hundreds of thousands of compounds a day. Using our

new methods, a computational screen of this magnitude

can now be performed in under 24 h on Summit, or for

under half a million dollars on cloud resources. The first

such screens used all of Summit to dock the full 1.4 billion

compound Enamine REAL dataset against two different

crystal structures of the Main Protease of SARS-CoV-2.

One structure was crystallized with a bound ligand, and

the other had an empty active site, which created small

differences in the active site geometries.

Screening datasets of millions to billions of inde-

pendent small molecules against the viral proteins

is a big-data problem. This large, but intuitively par-

allel, computation can be greatly aided by HPC.

However, these types of calculations were not

designed to be treated by HPC approaches, and

require novel software solutions in order to make

this type of scaling not only possible but rapidly

attainable, given the urgency in delivering hits to

experimental groups.

Our drug-discovery pipeline consisted of these

components: data preprocessing, workflow manage-

ment for billion-ligand docking calculations, and post-

processing analysis (see Figure 4). Each benefits from

HPC tools and libraries to exploit parallelism within

and across nodes.

Python Improves Productivity
Python plays a critical role as a “glue language” within

our pipeline, and the flexibility of Python increased

programmer productivity. As distributed, the input

data for a billion ligands are small text files represent-

ing individual molecules collected into compressed

archives and must be converted into a format that the

docking program requires. Therefore, before docking a

billion ligands, all of these files have to be extracted,

converted into the appropriate format for docking,

and repackaged into compressed formats. The Python

ecosystem has utilities to perform tasks important to

this preprocessing, for instance, the tarfile library can

read, manipulate, and create new tarfiles entirely in

memory, the joblib library allows for parallel tasks to

be executed within a node, and the mpi4py library was

used to distribute preprocessing steps across multiple

nodes in an HPC cluster (CADES, Figure 4). The Python

processing script provided by AutoDock that carries

out the file conversion was transformed into a load-

able module with minimal effort and greatly sped up

the input conversion process.

SLATE PROVIDES CONTAINER

ORCHESTRATION FOR USERS AND

CONSISTS OF TWOUSER-FACING

CLUSTERS

Python was also used in launching workflows on

Summit. Python-based workflow managers were used

to run the new CUDA-based docking program on the 6

V100 GPUs and 42 Power9 cores of each of the 4608

nodes of Summit. After the simulations are run, output

data must be postprocessed; sorting and analyzing

the terabytes of data produced is challenging. Python

was used to facilitate the rapid development of solu-

tions using new tools that provide GPU back-ends for

Python interfaces, which are expanded upon in subse-

quent sections.

Workflows for Docking 1 Billion
Compounds
With our optimized AutoDock-GPU code, on average a

single GPU could complete a docking calculation on

the SARS-CoV-2 Main Protease every 1.6 s, with the

fastest compounds docking in half a second or less.6

Thus, when distributing work over Summit, roughly

17,600 compounds had to be loaded every second to
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occupy all of Summit’s �27,000 GPUs. Our workflows

(see Figure 4) moved tar archives with thousands of

input ligands to the compute node’s nonvolatile mem-

ory, decompressed the archive, created an input file

for the docking code, and finally compressed the

results and moved them back to the center-wide file

system once the batch of docking runs was complete.

For efficiency, it is important to deploy the many inde-

pendent tasks using a dataflow execution model,

where any resources that are available can be

assigned a new task on the fly, leaving few resources

unused at any time. Two separate frameworks were

tested to orchestrate launching these workflows with-

out hitting resource limits or leaving idle GPUs.

FireWorks and the Slate Resource at OLCF

One framework used the FireWorks workflow man-

agement software,12 deployed via an external com-

puting cluster at the OLCF called slate. Slate

provides container orchestration for users and con-

sists of two user-facing clusters, with marble being

the cluster that interfaces with Summit. Marble is a

heterogeneous cluster of 30 nodes with 10 Gb Ether-

net connectivity. With marble, we drive workflows

that run on Summit but are controlled externally,

providing a persistent state for the workflow in case

of job failure and allowing system configurations and

services that are not possible on Summit. Specifically,

FireWorks depended on libraries and configurations

that were simplest to deploy on containerized resour-

ces such as slate. Rather than exclusively driving Oak

Ridge resources, this setup allows workflows to be

deployed simultaneously on Summit and other com-

puting facilities. This provides the capability for even

more computing power using collective resources

across institutions.

FireWorks provides a workflow framework written

in Python, and utilizes a MongoDB database manage-

ment program as its backend, for queuing tasks. It pro-

vides a set of utilities to interact with the workflow

system from the command-line and a programming

interface to control workflows, including facilities for

monitoring task status in real time. The FireWorks

backend and the dashboard were deployed on marble.

Task managers called “FireWorkers” are deployed on

Summit’s compute nodes, and contact the MongoDB

backend on marble to retrieve sets of tasks to execute

on that compute node. If a set fails to complete, due

to a node failure or a temporary input issue, it is auto-

matically requeued within the database. For docking

FIGURE 4.Overview for the workflow, starting from the small molecule database of potential drugs (1) and ending at a query-able

database of results (9). Preprocessing the small molecule database (2) creates files needed for docking, and in our case was

done on a small commodity cluster (CADES). Once on the file system, the docking workflow is prepared (3), and is stored within

the slate–marble database system. Subsequently, the input files are loaded onto the fast NVMe drives on Summit (4), and the

batches of compounds stored within the workflow database (5) are docked on Summit (6). Output is then converted to Apache

parquet format (7) for storage into a GPU-accelerated Blazing SQL database (8). Queries on this database are fast and enable

potential machine learning applications (9).
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the 1.4 billion compound dataset to one of the Main

Protease structures, 4,602 compute nodes were used

simultaneously on Summit, each running six Fire-

Workers per node, one for each GPU, bringing the total

number of FireWorkers to 27,612.

Simple Task-List on a Summit Node

At this scale, we encountered some temporary prob-

lems related to the database backend and connection

limits when using FireWorks, which were solved after

reconfiguring Marble/FireWorks system settings.

Since each FireWorker keeps a persistent database

connection, the FireWorks server can become a point

of failure. As an alternative to mitigate this risk, we

also developed an in-house solution using Python and

an in-memory Redis database to provide the compute

nodes lists of batches to run. Although a list of 1.4 bil-

lion ligands was too large to fit into the memory of a

single machine, a list of 1 million batches of ligands

worked well, and was hosted on a Summit launch

node. The combination of memory caching and run-

ning on a launch node minimized the overhead time

for querying the database and lowered the risk of con-

nection issues between the database and compute

node delaying docking calculations. This step used

27,600 concurrent docking processes, with each GPU

calculating on a distinct set of ligand–protein pairs.

Although this setup generated a huge number of data-

base requests on startup, there were only tens of

requests per second during continuous operation for

a day, a rate Redis handled easily. The database

latency for using Redis was about 0.4 s out of the

entire day of running at full scale on Summit.

Recovering From Failure

Both the FireWorks and Redis workflow management

schemes for the docking calculation, as well as the ini-

tial preprocessing steps, needed to account for fail-

ures, either at the hardware or software level. If a

node failed or otherwise a task could not be com-

pleted, the easiest symptom to detect was missing

output files. In some instances, the issue was with the

input, as not all compounds in the Enamine REAL

database satisfied the assumptions AutoDock makes

about compounds, such as by including an organic

metal within the structure. In other cases, a node

failed, and these tasks simply were rerun by restarting

that stage of the pipeline, which would attempt to fill

in missing outputs. Eventually, less than 1% of outputs

could not be generated. These were all traced to non-

standard molecules that were unsuitable inputs to

AutoDock due to geometry or constituent atoms.

PROCESSING AND ANALYSIS OF
TERABYTES OF GENERATED DATA:
NEW TOOLS USING GPU
ACCELERATION

The next challenge we faced was analyzing the billions

of docking results due to the sheer size of the dataset.

AutoDock-GPU, like other AutoDock programs before

it, produces human-readable output that includes the

geometries and scores of the small-molecule poses.

While the individual output files are small and on the

order of a few hundred kilobytes, collectively the out-

put for a billion dockings spans terabytes of data to

process, store, and query. We were able to transform

the output data into Apache parquet files so that we

FIGURE 5. Example of the Jupyter notebook interface for exploring the billion compound docking results.
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can use GPU-based data tools, such as BlazingSQL to

sort, search, and query the database interactively,

facilitated through a Jupyter notebook.

What separates BlazingSQL from other SQL imple-

mentations is that BlazingSQL is built on top of the

NVIDIA RAPIDS analysis stack, and leverages GPUs to

make data manipulation faster. When combined with

distributed task management via Dask, searching

through the collection of thousands of parquet files

for a compound of interest takes seconds rather than

hours. This level of interactivity allows researchers to

explore the data in real time with familiar tools (see

Figure 5), increasing researcher’s productivity. The

interactive analysis supported can return results

quickly for compound SQL queries, such as the top-

scoring compounds that are within a selected dis-

tance from a protein residue, or the score compared

with atomic feature vectors used for machine-learn-

ing-based rescoring functions. Combining the speed

and flexibility of the underlying SQL queries is a further

boon to understanding these large datasets. By being

able to analyze and reanalyze the results quickly, we

can use machine-learned rescoring functions to

attack our output from multiple directions, sending

compounds on for experimental validation only if they

look promising from multiple angles. These multiple

selection criteria make the docking sieve more strin-

gent and hopefully further enriching the output set

passed to experimental collaborators. The rapid analy-

sis and visualization integration enabled by Python

are powerful tools to enable close communication

between computational and wet-lab scientists.

CONCLUSION
Since the COVID-19 pandemic began, there has been a

substantial mobilization of scientific resources to

address the pressing need for COVID-19 treatments.

Together with vaccine development, finding drugs to

combat the virus is at the forefront of activity. Stream-

lining the drug discovery pipeline is part of a larger col-

lective effort to not only address the current crisis, but

also prepare for future challenges the community will

face in treating other diseases. While the unique cir-

cumstances of the pandemic brought together many

key resources for this work, the durable results of an

accelerated docking application (https://github.com/

ccsb-scripps/AutoDock-GPU) integrated into a scal-

able drug discovery pipeline are now available to the

wider research community, including integration into

leadership computing facilities to assist in these

efforts. We also see that as the scale of the data and

calculations grow, workflow tools and analysis will

become a larger part of the scientific toolkit, and we

hope that our experience is informative to future

researchers tackling problems at the boundary of

what is possible.
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