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Superconducting correlations in metallic nanoparticles: Exact solution of the BCS model

by the algebraic Bethe ansatz
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Superconducting pairing of electrons in nanoscale metallic particles with discrete energy levels and a fixed

number of electrons is described by the reduced Bardeen, Cooper, and Schrieffer model Hamiltonian. We show

that this model is integrable by the algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators,

integrals of motion, and norms of wave functions are obtained. Furthermore, the quantum inverse problem is

solved, meaning that form factors and correlation functions can be explicitly evaluated. Closed form expres-

sions are given for the form factors and correlation functions that describe superconducting pairing.

DOI: 10.1103/PhysRevB.65.060502 PACS number~s!: 74.20.2z, 75.10.Jm, 75.10.Lp

Due to recent advances in nanotechnology it has become

possible to fabricate and characterize individual metallic

grains with dimensions as small as a few nanometers.1 They

are sufficiently small that the spacing, d, of the discrete en-

ergy levels can be determined. A particularly interesting

question concerns whether superconductivity can occur in a

grain with d comparable to D , the energy gap in a bulk

system. If d!D , the superconducting correlations are well

described by a mean-field solution to the reduced pairing

Hamiltonian @Eq. ~1! below# due to Bardeen, Cooper, and

Schrieffer ~BCS! in the grand canonical ensemble with a

variable number of electrons. However, if d;D recent nu-

merical calculations have shown that when the number of

electrons is fixed ~as in the canonical ensemble! the super-

conducting fluctuations become large and approximate treat-

ments become unreliable.1,2 Thus, exact calculations of

physical quantities are highly desirable. It has only recently

been appreciated that the exact eigenstates and spectrum of

the BCS model were found in the 1960s by Richardson, in

the context of nuclear physics.1,3 The model has subse-

quently been found to have a rich mathematical structure: it

is integrable ~i.e., has a complete set of conserved

operators!,4 has a connection to conformal field theory,5 and
is related to Gaudin’s inhomogeneous spin-1/2 models.6–9

In this Communication we show how the BCS model can
be solved using the algebraic Bethe ansatz ~ABA! method.
This result can be deduced from the observation that the
conserved operators obtained in Ref. 4 were also obtained in
Ref. 9 via the ABA, but in another context. This observation
has been made in Ref. 8. However, the approach we adopt
here is slightly different from Ref. 9, which facilitates the
solution of the quantum inverse problem10–13 to explicitly
evaluate form factors ~i.e., one point functions! and correla-
tion functions. This completes the agenda recently set out by
Amico et al.8 We also readily obtain known results for eigen-
states, the spectrum, and conserved operators. Our treatment
is also applicable to superconductivity in fermionic atom
traps14,15 and can also be extended to a solvable model for
condensate fragmentation in boson systems.16,17

The Hamiltonian for the reduced BCS model consists of a
kinetic energy term and an interaction term which describes
the attraction between electrons in time reversed states,

HBCS5 (
j51

s51 ,2

V

e jc js
† c js2g (

j , j851

V

c j1
† c j2

† c j82c j81 , ~1!

where j51, . . . ,V labels a shell of doubly degenerate single
particle energy levels with energies e j and c js the annihila-
tion operators; s51 ,2 labels the degenerate time reversed
states; g denotes the BCS pairing coupling constant. Using

the pseudospin realization of electron pairs: S j
z
5(c j1

† c j1

1c j2
† c j221)/2, S j

1
5c j1

† c j2
† and S j

2
5c j2c j1 , the BCS

Hamiltonian ~1! becomes ~up to a constant term!
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j51
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V

~S j
1Sk

2
1Sk

1S j
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The R matrix. An essential ingredient of the ABA, which
follows from the quantum inverse scattering method
~QISM!, is the construction of the R matrix solving the quan-
tum Yang-Baxter equation,

R12~u12u2!R13~u12u3!R23~u22u3!

5R23~u22u3!R13~u12u3!R12~u12u2!,

where the u j are spectral parameters. Here R jk denotes the
matrix on V ^ V ^ V ~where V is the two-dimensional Hilbert
space on which the pseudospin operators act! acting on the
j th and kth spaces and as an identity on the remaining space.
The R matrix may be viewed as the structural constants for
the Yang-Baxter algebra generated by the monodromy matrix
T(u),

R12~u12u2!T1~u1!T2~u2!5T2~u2!T1~u1!R12~u12u2!.
~3!

There are two kinds of realizations of the Yang-Baxter alge-
bra which are relevant to our construction. One is operator
valued given by the R matrix R0 j(u) and the other is a
c-number representation G which does not depend on the
spectral parameter u. In the latter case, we have @R(u),G
^ G#50. The comultiplication behind the Yang-Baxter alge-
bra allows us to construct a representation of the monodromy
matrix through

T0~u !5G0R0V~u2eV!•••G0R01~u2e1!.
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Defining the transfer matrix via t(u)[tr0T0(u) it follows
that @ t(u),t(v)#50 for all values of the parameters u , v . If
the R matrix possesses the regularity property R jk(0)5P jk

with P being the permutation operator, then it is easily veri-
fied that

t~e j!5G jR j j21~e j2e j21!•••G jR j1~e j2e1!G jR jV~e j

2eV!•••G jR j j11~e j2e j11!G j .

Let us now assume that the R matrix is quasiclassical, i.e.,
it admits a series expansion R(u)5I1hr(u)1••• , for an
appropriate parameter h . If we can also choose G such that
G511hG1••• , then the expansion of t(e j) in terms of h
takes the form,

t~e j!5I1ht j1••• . ~4!

An immediate consequence from the commutativity of the
transfer matrices is @t j ,tk#50. Therefore an integrable
model is obtained by taking the set $t i% as the conserved
operators and a Hamiltonian given as a function of the t j .

We apply the procedure described above to the su(2)
invariant R matrix R(u)5b(u)I1c(u)P , with entries that
are rational functions: b(u)5u/(u1h) and c(u)5h/(u

1h). Note that the regularity property R(0)5P is present.
For this case, we can choose G as any element of the su(2)
algebra. We claim that the BCS model corresponds to the
special choice

G j5exp~22hS j
z/gV !. ~5!

This can be viewed as a generalized inhomogeneous six-
vertex model. Expanding this and the R matrix to first order
in h and substituting in Eq. ~4! we find from Eq. ~4! that

t j52

2

g
S j

z
12(

kÞ j

V
Sj•Sk

~e j2ek!

where we have discarded a constant term. These operators
are the isotropic Gaudin Hamiltonians in a nonuniform mag-
netic field.9 Their relevance to the spin realization of the
BCS model ~2! is that the latter is expressible ~up to a con-
stant! as

Hspin52g(
j51

V

~e j2g/2!t j1

g3

4 (
j ,k51

V

t jtk .

Although the above expressions for the conserved operators
only apply to the case when all e j’s are distinct, our construc-
tion can be adapted to accommodate the cases when some of
e j’s are the same.

Algebraic Bethe ansatz. In the ABA, the integrals of mo-
tion are obtained by finding the eigenfunctions of the transfer
matrix which is given by the trace of the monodromy matrix.
The monodromy matrix is written in the form

T~u !5S A~u ! B~u !

C~u ! D~u !
D ,

which is the quantum equivalent of the scattering coefficients
of the classical inverse scattering problem. Then from the
Yang-Baxter algebra ~3!, we may derive the fundamental

commutation relations ~FCR! between the entries of the

monodromy matrix. Choosing the state u0&5 ^ j51
V u↑& j as the

pseudovacuum, then we have the pseudovacuum eigenvalues
a(u) and d(u) of A(u) and D(u): a(u)5exp(2h/g),d(u)
5exp(h/g))jb(u2ej). Following the standard procedure,10,18

we choose the Bethe state

C~v1 , . . . ,vN!5 )
a51

N

B~va!u0&. ~6!

Then we may derive the off-shell Bethe ansatz equations
using the FCR,18,19 which, in the quasiclassical limit, take the
form

1

2
t jc5l jc2 (

a51

N
f aS j

2

e j2va
ca8 , ~7!

where
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1

4 (
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1

e j2e i

,
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1
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1 (

bÞa

1

va2vb
2

1
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1

va2e j

,

c[uv1 , . . . ,vN&5 )
a51

N

(
j51

V
S j

2

va2e j

u0&.

In ~7! we defined ca8 by

c5(
j51

V
S j

2

va2e j

ca8 .

Imposing f a50, one immediately sees that c becomes the
eigenvector of the conserved operator t j with l j as the ei-
genvalue. The constraint f a50 is then equivalent to Rich-
ardson’s equations,3

2

g
1 (

bÞa

N
2

va2vb
5(

j51

V
1

va2e j

. ~8!

Here V2N may be interpreted as the number of time-
reversed pairs of electrons. The energy eigenvalue of the
Hamiltonian ~2! is

Espin5(
j51

V

e j22 (
a51

N

va1g~2N2V !. ~9!

Scalar products and norms. Directly evaluating the norms of
Bethe wave functions can be tedious, if not impossible.
However, using the QISM they can be represented as
determinants.10,20 Since this representation only depends on
the R matrix, the derivation presented previously for differ-
ent models can be readily applied to our ~generalized! inho-
mogeneous six-vertex model. In the QISM construction, the
determinant representation for scalar products

^0u )
b51

N

C~wb! )
a51

N

B~va!u0&
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play a crucial role; especially, when one of the sets of pa-
rameters, for example $va%, is a solution of the Bethe
equations.10,11,21 In the quasiclassical limit, the leading term
of the scalar product for the inhomogeneous six-vertex
model gives rise to the scalar product

^w1 , . . . ,wNuv1 , . . . ,vN&5

)
b51

N

)
a51
aÞb

N

~vb2wa!

)
b,a

~wb2wa! )
a,b

~vb2va!

3detNJ~$va%,$wb%!, ~10!

where the matrix elements of J are given by

Jab5

vb2wb

va2wb
S (

j51

V
1

~va2e j!~wb2e j!

22 (
aÞa

1

~va2va!~wb2va!
D . ~11!

Here $va% are a solution to Richardson’s equations ~8!,
whereas $wb% are arbitrary parameters. Richardson’s
expression22 for the square of the norm of the Bethe state
follows from Eqs. ~10! and ~11! by taking the limit wa

→va .
Solution of the quantum inverse problem. In order to cal-

culate the form factors and correlation functions, we need to
solve this problem for the generalized inhomogeneous six-
vertex model. This then allows the reconstruction of local
quantum spin operators in terms of the quantum monodromy
matrix. A general procedure for doing this has recently been
presented11,12 for the so-called fundamental models. A model
is said to be fundamental whenever the local Lax operator in
the transfer matrix is the same as the R matrix. In our case,
where the model is not fundamental, due to the inclusion of
the operators G i , we find

S i
2

5 )
a51

i21

t~ea!K2i11B~e i!K i21 )
a51

i

t21~ea!,

S i
1

5 )
a51

i21

t~ea!K2i11C~e i!K i21 )
a51

i

t21~ea!,

S i
z
5 )

a51

i21

t~ea!K2i11
„A~e i!2D~e i!…

2
K i21 )

a51

i

t21~ea!,

with K[) j51
V G j5exp(22h(j51

V Sj
z/gV). The above con-

struction is one of our main results. The appearance of the
powers of K arises from the c-number matrix realization of
the Yang-Baxter algebra G which is peculiar to our construc-
tion. Following Ref. 11, one can obtain the representation of
the correlation functions in terms of pseudovacuum eigenval-
ues a(u) and d(u).

Form factors. For the BCS model the pair correlator

Cm
2 [^cm1

† cm1cm2

† cm2&2^cm1

† cm1&^cm2

† cm2& ~12!

is of particular interest.1,23 ~We use the notation that ^x&
[^v1 , . . . vNuxuv1 , . . . ,vN&/^v1 , . . . vNuv1 , . . . ,vN& for

any operator x). Cm
2 can be interpreted as the probability

enhancement of finding a pair of electrons in level m, instead
of two uncorrelated electrons. ~It is zero for g50). In the

pseudospin representation Cm
2

5^Sm
2Sm

1&^Sm
1Sm

2&51/4

2^Sm
z &2. In general, form factors such as

Fz~m ,$wb%,$va%![^0u )
b51

N

C~wb!Sm
z )

a51

N

B~va!u0&

can be calculated for the generalized inhomogeneous six-
vertex model. In the quasiclassical limit, they reduce to the
form factors of the BCS model,

^w1 , . . . ,wN11uSm
2uv1 , . . . ,vN&

5^v1 , . . . ,vNuSm
1uw1 , . . . ,wN11&

5

)
b51

N11

~wb2em!

)
a51

N

~va2em!

detN11T~m ,$wb%,$va%!

)
b.a

~wb2wa! )
b,a

~vb2va!

,

^w1 , . . . ,wNuSm
z uv1 , . . . ,vN&

5 )
a51

N
~wa2em!

~va2em!

detN~ 1
2 T̃~$wb%,$va%!2Q~m ,$wb%,$va%!!

)
b.a

~wb2wa! )
b,a

~vb2va!

,

with the matrix elements of T given by

Tab~m !5 )
a51
aÞa

N11

~wa2vb!S (
51

V
1

~vb2e j!~wa2e j!

22 (
aÞa

1

~vb2wa!~wa2wa!
D , b,N11,

TaN11~m !5

1

~wa2em!2
, Qab~m !5

)
aÞb

~va2vb!

~wa2em!2
.

Above, T̃ is the N3N matrix obtained from T by deleting
the last row and column and replacing N11 by N in the
matrix elements. Here we assume that both $va% and $wb%
are solutions to Richardson’s Bethe equations ~8!. However,

the results are still valid for Sm
6 if only $wb% satisfy the Bethe

equations.
Correlation functions. We find that the correlation func-

tions of the BCS model take the same form as the underlying
su(2) spin 1/2 Gaudin model, with the parameters v j satis-
fying Richardson’s Bethe ansatz equations ~8! instead of
Gaudin’s ones. Here we present explicitly the two-point cor-
relation function
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^w1 , . . . ,wNuSm
2Sn

1uv1 , . . . ,vN&

5 (
a51

N
1

va2en

^w1 , . . . ,wNuSm
2uv1 , . . . , v̂a , . . . ,vN&

2 (
aÞb

1

~va2en!~vb2en!

3^w1 , . . . ,wNuSm
2Sn

2uv1 , . . . , v̂a , . . . , v̂b , . . . ,vN&.

~13!

Here the hat denotes that the corresponding parameter is not
present in the set. Since $wa% is a solution of the Bethe

equations, ^w1 , . . . ,wNuSm
2uv1 , . . . , v̂a , . . . ,vN& is the

form factor given before, while

^w1 , . . . ,wNuSm
2Sn

2uv1 , . . . ,vN22&

5

)
b51

N

~wb2em!~wb2en!

)
a51

N22

~va2em!~va2en!

detNT~m ,n ,$wb%,$va%!

)
b.a

~wb2wa! )
b,a

~vb2va!

,

~14!

with

Tab~m ,n !5 )
a51
aÞa

N

~wa2vb!S (
51

V
1

~vb2e j!~wa2e j!

22 (
aÞa

1

~vb2wa!~wa2wa!
D , b,N21,

TaN21~m ,n !5

2wa2em2en

@~wa2em!~wa2en!#2
,

TaN~m ,n !5

1

~wa2em!2
,

In Eq. ~14! mÞn is assumed, with the convention that it is
zero when m5n . Such a determinant representation of the
correlation function will be computationally more accessible
than a previous proposal7 relying on the generating function
associated with the Gaudin algebra. The above results con-
stitute the building blocks of the Penrose-Onsager-Yang off-
diagonal long-range order ~ODLRO! parameter DOD ,24

DOD[
1

V (
mn

^Sn
1Sm

2& . ~15!

The small grain behavior of this parameter and its connection
with the pair correlator ~12! was recently discussed in Ref.
25.

Further applications. Our work is also relevant to propos-
als to observe BCS superconductivity in gases of fermionic
atoms such as spin-polarized 6Li.14 Quantum degeneracy of
6Li at temperatures of about 240 nK has recently been ob-
served in an atom trap with frequencies, v;1 kHz,15 cor-
responding to an energy level spacing of the order of
10212 eV. The estimated BCS transition temperature is of
the order of 20 nK,14 corresponding to an energy gap of the
order of 4310212 eV. Hence, these systems are in a regime
where the physics considered here will be important.

Dukelsky and Schuck16 recently introduced a solvable
model for condensate fragmentation in finite boson systems.
The model they solved follows from the construction used
above when the Yang-Baxter algebra is realized in terms of
the generators of the Lie algebra su(1,1). The model also
provides a new mechanism for the enhancement of sd domi-
nance in interacting boson models in the context of nuclear
physics.26
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