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F
or a superconductor, charge and phase are dual quantum
variables. A phase-slip event in a superconducting nanowire
changes the phase difference over the wire by 2π; it is

the dual process to Cooper-pair tunnelling in a Josephson
junction. Phase slip by thermal activation at high temperatures
is well understood1. Phase slip by quantum tunnelling at low
temperatures is considered plausible2,3, but experiments on
the resistance of nanowires4,5 are inconclusive on this point.
Büchler et al.

6 conclude that successive quantum phase slip
(QPS) events can be coherent. Here, we demonstrate that, if it
exists, coherent QPS is the exact dual to Josephson tunnelling. A
narrow nanowire should act as a QPS junction that shows kinetic
capacitance, a plasma resonance and current plateaus of interest
for nanoelectronic applications. We suggest feasible experiments
to unequivocally confirm the existence for coherent QPS.

Phase slip in a thin superconducting wire occurs on the
scale of the superconducting coherence length. Phase slip by
thermal activation1 is observed as a resistive tail below the critical
temperature. In wires with diameter below 10 nm and very high
resistance, the energy barrier is small enough that phase slip by
quantum tunnelling can be expected2,3. Wires of Mo–Ge deposited
on suspended carbon nanotubes have been studied3–5, and the
results are in reasonable agreement with microscopic calculations
of phase-slip rates7,8. All experiments consisted of passing a small
d.c. current through the sample and measuring the voltage. As
each phase-slip event in the presence of a current I releases an
energy IΦ0, where Φ0 = h/2e is the flux quantum, with h the
Planck constant and e the electron charge, such measurements
are dissipative. Unambiguous experimental evidence of QPS is still
absent. It has been concluded5 that results can be described by
thermally activated phase slip for wires with larger cross-section,
and as mesoscopic diffusive normal-metal conductance for the
weaker wires. The theoretical analysis is complicated by the fact
that the behaviour of the bosonic superfluid may be overshadowed
by the fermionic effects of localization and interaction. The
superconducting energy gap in the wire may be suppressed and
quasiparticles may be generated. However, we are not aware of any
reason that would forbid QPS to be a physical reality. We thus
assume that coherent QPS may take place, that it is characterized
by a transition amplitude ES/2 and that no quasiparticles are
present (ES <∆, ∆ being the superconducting energy gap). On the
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Figure 1 Circuit and energy dependence. a, A Cooper-pair box and b, a QPS qubit.

The diamond-shaped symbol in the QPS qubit circuit represents the quantum

phase-slip process. The capacitive energy is E = EC (n− ng )2 and the inductive

energy is E = EL (f− n)2.

basis of Wentzel–Kramers–Brillouin (WKB)-type estimates3 and
microscopic calculations7, we assume that the transition amplitude
for QPS in practical superconducting nanowires of 1 µm length can
be as high as ES/h = 100 GHz.

Wires in which significant QPS occurs have large kinetic
inductance L′ and small capacitance C ′ per unit length. The
plasmon phase velocity cp = (L′C ′)1/2 is of order 105 m s−1 (refs 9,
10) and the characteristic impedance Zc = (L′/C ′)1/2 is of order
100 k�. Frequent QPSs are expected7 when Zc > Rq, with Rq ≡
h/4e2 = 6.45 k�. A next step in the understanding of QPS was
made6 by considering a wire of finite length as a circuit element.
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If the rest of the circuit is modelled by a parallel resistance Rp, it
was predicted that the wire will show a quantum phase transition
at Rp = Rq, being superconducting at Rp < Rq and insulating
otherwise. As predicted11, a Josephson junction shows qualitatively
the same behaviour. The conclusion was then drawn6 that the low-
energy physics of QPSs reduces to that of a Josephson junction in
the same circuit.

We explicitly demonstrate in this paper that the relation
between Josephson tunnelling and QPS in circuits is more
intriguing. They are dual to each other with respect to the exchange
of the canonically conjugated quantum variables, phase and charge.
This duality is exact, in contrast to the widely known12 approximate
self-duality of Josephson junction circuits. Results of ref. 6 are
reproduced by using exact duality and approximate self-duality.
We use exact duality to describe the dynamical response of QPS
in the limit of strong phase slip, where we reveal very favourable
conditions for the observation of Bloch-type oscillations and of a
resonance at the ‘plasma’ frequency.

The duality is developed in two steps. We first compare two
simple circuits (Fig. 1). One is the Cooper-pair box13 with a
Josephson junction that is voltage-biased with voltage V through
a capacitor C. In the other we introduce the QPS junction, an
element that represents the phase-slip process with strength ES, in
a closed loop with an inductor. This is the QPS flux qubit proposed
in ref. 14, but not yet realized in practice. In the Cooper-pair box
the charging energy depends parabolically on the induced charge
ng = CV/2e, for each integer value of the Cooper-pair number n.
The charging energy scale is given by EC = (2e)2/2C. Josephson
coupling EJ mixes states with n and n + 1, lifting degeneracy at
half-integer values of ng. The level splitting at this point equals EJ

provided EJ ≪ EC. This is described by the following hamiltonian:

HJJ = EC(n−ng)
2 −

(

EJ

2

∑

n

|n+1〉〈n|+h.c.

)

,

where h.c. represents the hermitian conjugate. In the QPS qubit on
the right of Fig. 1 the inductive energy depends parabolically on the
applied flux Φ with f =Φ/Φ0 at each integer n that now represents
the fluxoid number in the loop. The scale for the inductive energy
is EL =Φ2

0 /2L, where L is the inductance of the loop. QPS coupling
mixes states with adjacent fluxoid numbers and lifts degeneracy at
half-integer values of f . The level splitting at this point equals ES,
provided ES ≪ EL. This implies the following hamiltonian:

HQPS = EL(n− f )2 −

(

ES

2

∑

n

|n+1〉〈n|+h.c.

)

. (1)

The diagram as drawn for the Cooper-pair box is only valid when
EC ≫ EJ, where charge is the relevant quantum number. In analogy,
the diagram for the QPS qubit is only valid when EL ≫ ES, the limit
of weak phase slip. Here, phase is the relevant quantum number.
The above hamiltonians are obviously equivalent with respect to
the exchange

EL ⇔ EC;EJ ⇔ ES;ng ⇔ f .

At this stage we have not yet made use of the fact that charge and
phase are canonically conjugated quantum variables.

We will now derive the exact duality from this fact. We start
by considering a Josephson junction in a linear circuit with either
a voltage or a current source (Fig. 2). Any linear circuit can
be presented by an equivalent (frequency-dependent) resistor in
series with (for voltage bias) or parallel to (for current bias) the
junction. A quantum variable describing the circuit is either the
phase across the junction or the continuous number of Cooper
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Figure 2 Dual equivalence of Josephson and QPS junctions in circuits.

a, Current-biased Josephson junction; b, voltage-biased Josephson junction;

c, current-biased QPS junction; d, voltage-biased QPS junction. Circuit a is the exact

dual of circuit d; circuit b is the exact dual of circuit c.

pairs transferred. Those are canonically conjugated variables so that
the corresponding operators of charge (q̂) and phase (φ̂) satisfy
[q̂, φ̂] = −i. In the spirit of the Caldeira–Legett approach15, the
circuit can be described with the following hamiltonian:

Ĥ = EC q̂
2
−EJ cos φ̂+ Ĥ env + Ĥ coupling.

Here, Ĥ env represents boson-like environment modes, and the
coupling term Ĥ coupling is different for voltage or current bias,

Ĥ coupling =

{

Φ0

2π
(I − Î r)φ̂ for current bias

−2e(V − V̂ r) q̂ for voltage bias
.

The operators Î r and V̂ r present current and voltage fluctuations,
respectively, in the effective resistor and are linear combinations
of the environment bosons. The coefficients in these linear
combinations are fixed to reproduce the response function of
the environment:

Î r(ω) =
h̄

2e
(−iω)Y (ω)φ̂(ω)

V̂ r(ω) = 2e(−iω)Z(ω) q̂(ω).

Here Z(ω) is the frequency-dependent impedance of a serial
resistor, Y (ω) the admittance of a parallel resistor and h̄ is the
reduced Planck constant.

For the hamiltonian of a QPS junction in a circuit, we use the
inductive and QPS energies from (1) to obtain

Ĥ =
EL

(2π)2
φ̂

2

−ES cos(2π q̂)+ Ĥ env + Ĥ coupling. (2)

Let us now consider the effect of the canonical transformation
( q̂, φ̂) → (− φ̂/2π,2π q̂) on the hamiltonian (2). Obviously, that
transformation does not change the commutation relations. We
see that it transforms the QPS hamiltonian into the Josephson
hamiltonian with the following parameters:

ES → EJ;EL → EC;I ↔ R−1
q V ;Y (ω) ↔ R−2

q Z(ω). (3)

Double-sided arrows mean that the transformation exchanges
current and voltage bias and series and parallel resistors (Fig. 2).
This is the main exact result of our work. These duality relations
allow us to exactly map any known result concerning transport
characteristics of Josephson junctions in a circuit to dual transport
characteristics of QPS junctions in the dual circuit.
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The circuits of Fig. 1 were in the regimes EC ≫ EJ and EL ≫ ES.
Now let us turn to the opposite regimes for the above hamiltonians.
For a Josephson junction, this limit is achieved at EJ ≫ EC, where
the phase φ is a well-defined variable. Of particular interest is the
dynamics of the classical Josephson junction as described by the
resistively shunted junction model

I(t) = Ic sinφ+
Φ0

2π

(

C
d2φ

dt2
+

1

R

dφ

dt

)

(4)

that describes a motion in a slanted sinusoidal (‘washboard’)
potential at time t (ref. 1). Time-independent solutions correspond
to the zero-voltage state of the junction where the phase is trapped
in one of the potential minima. These minima exist provided the
drive current I does not exceed the critical current of the junction
Ic = 2πEJ/Φ0. To obtain the dual counterpart of this equation for
the voltage-biased QPS junction we make use of the transformation
(3) that relates the circuits (a) and (d) from Fig. 2. The conductor
that shunts the Josephson junction is transformed into an external
resistor R in series with the QPS junction. Equation (4) becomes an
equation for the charge variable q,

V (t) = Vc sin(2πq)+2e

(

L
d2q

dt2
+R

dq

dt

)

, (5)

where the terms on the right give the voltage drops over QPS
junction, inductance and resistor, respectively. This expression is
valid in the limit of large phase-slip amplitudes ES ≫ EL where
the charge is a well-defined quantum variable. Here we have a
washboard potential in the charge variable. The charge may be
trapped in potential minima resulting in an insulating zero-current
state provided the bias voltage V does not exceed the critical voltage

Vc =
2πES

2e
.

For the Josephson junction in the classical regime, the response to
small signals follows the kinetic inductance Lkin =Φ0/(2πIc cosφ).
Similarly for QPS junctions the response is according to a
kinetic capacitance

Ckin =
2e

2πVc cos2πq
. (6)

The geometry of Josephson tunnel junctions implies a shunt
capacitance. The combination of kinetic inductance and shunt
capacitance leads to a resonance at the so-called plasma frequency
ωp = (2EJEC)1/2. Because EJ scales with the area and EC scales
inversely with it, ωp is independent of area for a homogeneous
barrier. For a QPS junction, the natural geometry is a wire with
considerable kinetic inductance. Now, the resonance provided by
kinetic capacitance (6) and inductance has a frequency

ωp =
√

2ESEL .

As ES is proportional and EL is inversely proportional to the
wire length, the plasma frequency is constant when the length is
changed. However, in a lithographically fabricated nanowire it will
be easy to lower ωp by adding a wider section of wire that lowers EL

without increasing ES (Fig. 3). It is interesting to note that moving
from long wires to short wires, the ratio ES/EL decreases in the same
way as the decrease of EJ/EC when going from large-area to small-
area Josephson junctions. Whereas in the latter case a transition
is made from superconducting to insulating response, the wires
may be insulating for long lengths and recover superconductivity
at shorter lengths.
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Figure 3 Shapiro steps at constant current in a QPS junction. Top: The junction

must be embedded in a highly resistive environment. Parasitic capacitances are

sufficiently small for the design given. Left: QPS junction. The parameters

correspond to Q = 0.5,2πν = ωp,Va.c./Vc = 0,1,5 for the thick solid, dashed and

thin solid curves respectively. With ES/h = 120 GHz and EL/h = 30 GHz the

plasma frequency is ωp/2π= 85 GHz and the critical voltage is Vc = 1.56 mV;

R = 115 k�. Right: Voltage Shapiro steps in the dual Josephson circuit with

equivalent parameters.

The high-frequency environmental impedance of a
submicrometre junction is usually determined by the geometric
capacitance and inductance of nearby wiring and, without special
precautions, has a value around 300 � ≪ Rq. For a QPS junction
this natural impedance leads to a high quality factor of the plasma
oscillations given by

Q2
QPS = βL = 2π

Vc

2e

L

R2
= 2π2

ES

EL

(

Rq

R

)2

.

Here βL is the equivalent of the well-known McCumber parameter
βC for Josephson junctions. Using duality, we predict a strongly
nonlinear hysteretic response to relatively small resonant signals
Va.c./Vc ∼ 1/QQPS, Va.c. being the amplitude of the applied
radiofrequency (RF) signal. The dual effect was investigated for a
precision quantum measurement with Josephson junctions16.

The most far-reaching application of QPS junctions might be
in a fundamental standard of current, dual to the well-known
Josephson voltage standard. Equation (5) can be used to calculate
the transport in the series circuit of QPS junction, inductance and
resistance. When an RF voltage is applied, the equivalent of Shapiro
steps will occur in the form of plateaus at constant current levels

In = n2eν,

where ν is the RF frequency. For n = 1 and ν = 80 GHz, as used
in Josephson voltage standards, the current level would be 26 nA.
High QQPS is unfavourable for this application as it gives rise
to a hysteretic current–voltage characteristic, unrealistically high
frequencies ∼QQPS and modulation amplitudes ∼ Q2

QPS. To achieve
a practical device, the circuit should be made non-hysteretic by
the use of a sufficiently high series resistance. As ES/EL cannot
be smaller than about 4 to guarantee that charge, as the relevant
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quantum variable, is well defined, the series resistance has to be at
least 60 k�. In Fig. 3 we give current–voltage characteristics for a
circuit with quality factor Q = 0.5, driven at the plasma frequency.
Realistic parameters are given in the figure. To fabricate the QPS
wire as well as two series resistors of 60 k� each, without shunting
by parasitic capacitances, is challenging but seems possible with
state-of-the-art electron-beam lithography. Many devices could be
put in parallel on a chip. The current standard would have to be
operated at low temperatures as the presence of quasiparticles leads
to a conduction channel parallel to the QPS junction, which would
reduce the precision.

The QPS junction at ES ≫ EL and the Josephson junction at
EC ≫ EJ have in common that the charge is the relevant quantum
variable. For Josephson junctions in the charging regime, Bloch
oscillations were predicted17,18 and observed19. This system is often
considered as dual to the classical Josephson junction, because
of the crossover from phase to charge as the quantum variable.
However, there is no strict duality as shown for Josephson and QPS.
Interestingly, the weak QPS regime with EL ≫ ES and the classical
Josephson junction share the phase as the quantum variable.
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