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We present the derivation of an ab initio and parameter-free effective electron-electron interaction that goes
beyond the screened random phase approximation and accounts for superconducting pairing driven by spin
fluctuations. The construction is based on many-body perturbation theory and relies on the approximation of
the exchange-correlation part of the electronic self-energy within time-dependent density functional theory. This
effective interaction is included in an exchange-correlation kernel for superconducting density functional theory
in order to achieve a completely parameter free superconducting gap equation. First results from applying the
new functional to a simplified two-band electron gas model are consistent with experiments.

DOI: 10.1103/PhysRevB.90.214504 PACS number(s): 74.20.Mn, 71.15.Mb, 71.10.Li

I. INTRODUCTION

In the last 30 y the field of superconductivity has been
revolutionized by the discovery of high-temperature (hi-Tc)
superconductivity (SC). First the cuprates were found in the
1980s [1,2] and then iron-based compounds in the 2000s [3–5].
Numerous theoretical models have been developed in order
to grasp the essential physics of these materials [6–8] and
still the community is far from a general consensus on the
origin of the pairing mechanism. In our opinion, consensus can
only be achieved in one single way: by developing a universal
predictive theory of (hi-Tc) SC that is fully parameter free
and is able to reproduce the essential properties of the SC
(including its critical temperature, complex gap function, and
excitation spectrum), using only the knowledge of the atomic
constituents and chemical structure.

Within the class of conventional (meaning phonon-driven)
SC, density functional theory for the SC state (SCDFT)
[9], within the available functional [10,11], proved to be
predictive and reliable [12–21]. However, since the pairing in
the pnictides and cuprates is nonphononic [22,23], this SCDFT
approach is not directly applicable, due to the limitations of
the functional.

In this work we carefully reconsider this functional and
its construction, in particular the treatment of the electronic
component of the pairing. We aim to reach two goals in this
work. The first is very general and not bound to SCDFT
applications. We want to formulate a screened effective
electron-electron interaction that goes beyond the GW form
and includes additional physical effects not present in the
random phase approximation (RPA) type of screening. In
particular we aim to include the effect of low-energy spin
fluctuations in a computationally feasible way and completely
ab initio (i.e., without the use of parameters, like a Stoner
exchange splitting). We focus on the spin fluctuations because
they are one of the prime candidates responsible for SC pairing
in iron SC [24]. The second goal we aim for is to cast this
effective interaction along the standard Coulomb and phonon
contribution [10] in a functional that can be used within the ab
initio SCDFT framework.

From several empirical/semiempirical calculations [25],
where all three interactions are included, it is, in fact, known
that the interplay between the different pairing channels leads
to a strong competition and to several interesting physical
effects. The paper has the following outline. In the next section
(Sec. II) we discuss briefly the existing functionals of SCDFT.
Then we propose the set of relevant diagrams for representing
the spin fluctuations (Sec. III A) and the corresponding self-
energy contributions are constructed in the Nambu formalism
(Sec. III B). After some additional approximation (Sec. III C),
the final form of the self-energy taking the spin fluctuations
into account is presented in Sec. IV. This self-energy may be
used also in many-body theory but the focus of this work lies
on SCDFT and hence in Sec. V a functional is derived using
the Sham-Schlüter connection. In the last part of the present
work (Sec. VI) the functional is applied to a two-band model
system and the trends with respect to the Coulomb, phonon
and spin-fluctuation (SF) contributions are investigated.

II. A BRIEF REVIEW OF SCDFT

Before engaging in the task of constructing the effective
interaction and the corresponding functional, we briefly review
the SCDFT framework and the available functionals. SCDFT
is based on a theorem of Oliveira, Gross, and Kohn [9],
that extends the Hohenberg-Kohn proof [26] of the 1:1
correspondence between density and external potential to the
SC density,

χ (r,r ′) = 〈�̂↓(r)�̂↑(r ′)〉,
where �̂σ (r) are the usual electronic field operators and 〈· · · 〉
is the thermal average. The modern version of the theory
has been reformulated by Lüders, Marques, and co-workers
[10,18]. This formulation includes an explicit ionic density
and a further extension of the Hohenberg-Kohn proof in the
spirit of the multicomponent DFT introduced by Kreibich and
Gross [27].

In their work, Lüders, Marques, and co-workers [10,18]
proposed an exchange-correlation functional derived from
many-body perturbation theory and presented solutions of the
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SC Kohn-Sham (KS) system for real SC. The starting point is
an approximation for the self-energy. In their work they use

�̄k(ωn) ≈
∑
m

∑
k′

Wkk′ (ωn − ωm) ḠKS
k′ (ωm) (1)

+
∑
m

∑
k′

�Ph
kk′ (ωn − ωm) ḠKS

k′ (ωm) , (2)

where ḠKS
k (ωn) is the Green’s function of the SC KS system

in Nambu notation [28], Wkk′ (ωn) is the screened Coulomb
interaction, and �Ph

kk′ is the interaction mediated by phonons.
We indicate objects in Nambu notation with a bar (for example
Ḡ). The components of the Green’s function read

Ḡk (ωn) = τ z

(
Gk (ωn) Fk (ωn)
Fk

† (ωn) Gk
† (ωn)

)
, (3)

where the ωn are the fermionic Matsubara frequencies, k is
a combined index k = {nk} containing the band index and
the momentum of the KS electron, and τ z is the third Pauli
matrix. The normal (Gk) and anomalous (Fk) parts of the
Nambu Green’s function are given by

Gk(ωn) = −
∫ β

0
dτeiωnτ 〈T̂ [âk(τ )â†

k(0)]〉,

Fk(ωn) = −
∫ β

0
dτeiωnτ 〈T̂ [âk(τ )âk(0)]〉,

where âk (τ ) and â
†
k are the usual creation and annihilation

operators in the Heisenberg picture, T̂ is the time ordering
operator, and 〈· · · 〉 denotes the thermal average. The electronic
part of the interaction, in the work of Marques and Lüders,
is assumed to be given by the classical (test charge to test
charge) screened Coulomb interaction [29]; therefore, it can
be expressed in terms of the dielectric function ε−1,

Wk1k2 (ωn) =
∑
k′

ε−1
k1k′ (ωn) vk′k2 , (4)

where vk1k2 is the bare Coulomb interaction. The
interaction mediated by phonons �Ph

kk′ (ωn) depends on
the electron-phonon coupling matrix elements gkk′

λq and the
phonon frequencies �λq :

�Ph
kk′(ωn) = − 1

π

∫ ∞

0
dω

2ω

ω2
n + ω2

Im
[
�Ph

kk′(ω)
]
,

(5)
Im

[
�Ph

kk′(ω)
] = −π

∑
λq

∣∣gkk′
λq

∣∣2
δ(ω − �λq).

A Feynman diagram schematic form for this approximation
is shown in Eq. (6). For the two terms we use the names �̄GW

and �̄Ph, respectively:

Exact expresion:

= . . .+ +

Γ̄

Σ ≈ +

ḠKS

ΛPhW

Ḡ

(6)

Once an approximation for the self-energy is fixed, it is
possible to construct the corresponding exchange-correlation
(xc) potential using the Sham-Schlüter connection (see Sec. V
for details). A key approximation in order to reduce the
numerical complexity of SCDFT is the so-called decoupling
approximation [30], i.e.,

�xc
kk′ ≈ δkk′�xc

k ,

which can be interpreted as the exclusion of hybridization
effects between the non-SC KS orbitals by the effect of the SC
condensation. In this approximation the electronic KS system
can be diagonalized analytically, leading to a self-consistent
expression for the pairing potential �xc

k known as the SCDFT
gap equation,

�xc
k = −�xc

k ZD
k −

∑
k′

KC
kk′

tanh
(

βEk′
2

)
2Ek′

�xc
k′ , (7)

that has the BCS form [31]. The kernels ZD
k and KC

kk′
depend on the temperature, the interaction matrix ele-
ments

(
wk1k2 ,�

Ph
kk′

)
, the single-particle KS energies εk and

Ek :=
√

|�k|2 + (εk − μ)2. The critical temperatures pre-
dicted within this equation agree extremely well with the
experimentally observed ones within the class of phononic
SC [12–15,18,21,32,33]. However, Eq. (7) fails to describe
hi-Tc SC [5,34], where the SC mechanism is believed to be
related to magnetic interactions.

In the next sections we see that this fact is actually not
surprising. One assumption in using a dielectric type of
electron-electron interaction is that all vertex corrections in the
Coulomb part of the self-energy are completely neglected. As
one can see in Eq. (6), by comparing the approximation with its
exact counterpart obtained from Hedin’s equations [35]. Vertex
corrections can be safely disregarded in the phonon-related
part of the self-energy (at least within the domain of validity of
Migdal’s theorem [36]), but are crucial to account for magnetic
fluctuation effects, which are discussed in the next sections.

III. EXTENSION OF THE SELF-ENERGY

In this section we construct a form of the self-energy
containing the relevant processes involved in a SF-mediated
pairing. The effective interaction is evaluated in the parent
metallic system in which SC takes place (i.e., we ignore the
feedback effect of the SC condensation). This approximation
may not be valid at low temperature where the condensa-
tion strongly affects the screening of magnetic fluctuations
[6,37,38]. However, this assumption is exact near the critical
point since the SC phase transition is of the continuous,
second-order type. Therefore, the approximation will not affect
the estimation of a critical temperature.

Note, that the same approximation was applied to the
phononic part of the interaction, entering the gap equation
[Eq. (7)]. In this case the effect of the condensation on
the pairing strength is most likely negligible even at low
temperature [39,40].
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A. Inclusion of the relevant diagrams

To go beyond the GW approximation, we consider [41] the
T matrix [42–44], which is given by a Bethe-Salpeter equation
(BSE) [45]:

T (1,2,3,4) = w (1,3) δ13δ24

+ w (1,2) G (1,5) G (2,6) T (5,6,3,4) . (8)

The coordinate 1 is a compact notation: 1 = {r1,τ1,σ1}, where
r1 is the real space vector, τ1 the Matsubara time, and σ1

the spin index. The diagrammatic form of this BSE and the
self-energy contribution �̄T = ḠT corresponding to the T

matrix are shown in Eq. (9).

1 13

2 24

+

5

6

T

= T

T =

3

4

+ + . . .

3

4

1

2

ΣT

2

1

1

2

2

=

1

(9)

Empirically, it is well known that the response function
in the T -matrix approximation leads to reasonable results for
the magnetic response function [43,44]. �̄T has been used in
various studies to account for magnetic fluctuations in non-SC
systems [46–49].

However, for reasons that we discuss in Sec. III C, we do not
make direct use of the T matrix and the corresponding self-
energy for constructing the effective interaction. Instead we
consider a larger set of diagrams, by starting from the particle-
hole propagator �P [50–52]. This object contains all proper
particle-hole contributions. These are all diagrams which are
irreducible with respect to a bare Coulomb interaction and
have two incoming and two outgoing open coordinates. The T

matrix is fully contained in �P. We use the analogy with �̄T

[see Eq. (9)], to formulate the self-energy containing magnetic
fluctuations as

Σ̄ ≈ + +
ΛP

Σ̄GW

Σ̄Ph
Σ̄SF

(10)

In Eq. (10) we only show a simple diagrammatic form,
details are derived explicitly in the next section. Note that
this form of the self-energy contains both Hartree and xc
contributions, while only the xc parts enter the functional
derivative appearing in the vertex part of Hedin’s equations.
The Hartree contribution is implicitly removed in Sec. III C
when we define the approximation for �P. Also double-
counting problems related to this choice of the self-energy are
addressed in Sec. III C. As a general convention in this work,
we always refer to the xc (Hartree-free) part of the self-energy.

B. Properties of the particle-hole propagator

In this section we investigate the properties of the particle-
hole propagator, which is the key object of our derivation. For
simplicity we restrict ourselves to collinear magnetic systems;
i.e., we assume a spin-diagonal Green’s function G (1,2) =
δσ1σ2G (1,2). One of Hedin’s equations is a Dyson equation
for the vertex � (1,2,3),

+ Λ0=
31

2

12 23

(11)

where the kernel of the Dyson equation is given by

�0 (1,2,3,4) := δ�V (1,2)

δG (3,4)
(12)

and is called an irreducible particle-hole propagator [52]. The
�0 contains all connected diagrams which are irreducible with
respect to a bare Coulomb interaction and the particle-hole
propagator. The coordinates 1 and 4 are connected to outgoing
Green’s functions and 2 and 3 to incoming ones. [Eq. (16)]. The
self-energy used in the construction of the kernel is indicated
by �V. The kernel �0 also plays the central role in the
BSE equation for �P, which we derive now. However, before
this can be done it is necessary to classify the two possible
contributions present in �0. The distinction between the two
sets is made using the concept of a path. A path is a chain of
Green’s function lines connecting to coordinates. For example,
in Eq. (13), we have a path connecting the coordinates 1
and 4:

1

4

2

3
5

6

(13)

After this definition we can introduce the two possible
contribution present in �0.

(1) The crossed contribution �c
0, which has a path connect-

ing the coordinates 1 ↔ 3 and 2 ↔ 4. The spin contributions
in this set are

�c
0 (1,2,3,4) ≡ δσ1σ3δσ2σ4�

c
0 (1,2,3,4) . (14)

Note that the contributions to the T matrix [Eq. (9)] are all of
this type [43].

(2) The direct contribution �d
0, which has a path connecting

the coordinates 1 ↔ 2 and 3 ↔ 4. The spin contributions in
this set are

�d
0 (1,2,3,4) ≡ δσ1σ2δσ3σ4�

d
0 (1,2,3,4) . (15)

The kernels �c
0 and �d

0 are created by the functional derivative
of the self-energy with respect to G. By the functional
derivative δ

δG(3,4) one Green’s function within the self-energy
is removed and the open connections get the indices 3 and 4
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resulting in the four-point function �0 (1,2,3,4).

=G(3 ,4 )

1

2

= + . . .

direct :

2

1

4

3

Λd
0

crossed :

=
G(3 ,4 )

2

1

4

31

2

== + . . .Λc
0

σ1 = σ3

σ2 = σ4

σ
3

=
σ

4

σ
1

=
σ

2

ΣV(1 ,2 )

ΣV(1 ,2 )

(16)

If the removed function was part of a loop, the resulting
contribution is direct. It is crossed otherwise [Eq. (16)]. Since
a loop was destroyed in the derivative, an extra minus sign is
necessary to compensate for this:

�c
0 (1,2,3,4) = δ�V (1,2)

δG (3,4)
with G not in loop, (17)

�d
0 (1,2,3,4) = −δ�V (1,2)

δG (3,4)
with G in loop. (18)

It is important to keep track for these signs since, while
Feynman diagrams have an explicit sign convention, symbolic
expressions [like the ones written in terms of the particle-hole
propagator Eq. (10)] do not.

Due to Eqs. (12), (17), and (18), the total irreducible
particle-hole propagator is given by the difference between
the crossed and direct contributions:

�0 (1,2,3,4) = δ�V (1,2)

δG (3,4)
= �c

0 − �d
0 =: �c−d

0 . (19)

With these preliminary considerations we can start to derive a
BSE for �P. Note that also within the set �P all contributions
are either direct or crossed, i.e., �P = �c + �d. If, for
example, two crossed contribution are linked, the resulting
one stays crossed.

crossed + crossed → crossed

Λc
0 Λc

0

1

2 4

3

(20)

Any other combination leads to a direct contribution. A
special case is the connection of two direct contributions, in

which a loop is created:

direct + crossed → direct1

2 4

3

Λc
0 Λd

0

direct + direct → direct

Λd
0 Λd

0

1

2 4

3
(21)

Considering these cases, the BSEs for the direct and crossed
contribution of the particle-hole propagator read

�P =
∞∑

n=0

�c
(n) +

∞∑
n=0

�d
(n),

(22)
�c

(n+1) = �c
0GG�c

(n),

�d
(n+1) = �d

0GG�c
(n) + �c

0GG�d
(n) − �d

0GG�d
(n), (23)

where (n) labels the order in the irreducible particle-hole
propagator and the zero order �

c,d
(0) is given by the irreducible

part �c,d
0 . By subtracting Eqs. (22) and (23) we find a combined

BSE for �c-d containing crossed and direct terms:

�c−d = �0 + �0GG�c−d with �0 = δ�V

δG
. (24)

Not only in the BSE, but also for the expression for �̄SF given
in Eq. (10), the separation in direct and crossed contribution
is crucial. Up to now only the normal-state Green’s function
appeared in the equations, because we neglected the feedback
effects of SC to the magnetic fluctuations. However, in the
expression for the self-energy [Eq. (10)] the normal and
anomalous parts appear and double arrow lines,

GKS(1 ,2 )

2

1
F KS(1 ,2 )

2

1
F KS(1 ,2 )†

2

1

(25)

are used to distinguish the different functions. Since in the
anomalous terms no extra loops are created,

crossed:

2

1

Λc

direct :
1

2

Λd (26)

the crossed and direct contributions enter both with the same
sign in the equation for the self-energy:

�̄SF
F

:=
∫∫

τ z

(
0 F�c+d

F †�c+d 0

)
. (27)
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For the normal contribution (diagonal component in Nambu
space) the situation is a bit more complicated because the loop
rule has to be taken into account: If a crossed contribution is
inserted inside the self-energy form in Eq. (10), then a loop
is created [Eq. (28)], leading to a minus sign, while the direct
terms do not lead to any additional loop and no sign change.
This can be seen in the following graph:

crossed :

2 1

Λc

direct :

12

Λd (28)

In the shorthand notation given in Eq. (10) this was not,
strictly speaking, taken into account. The rigorous form of this
equation instead reads

�̄SF :=
∫∫

d34τ z

(−G (3,4) �c−d (1,3,2,4) 0
F † (3,4) �c+d (3,1,2,4) 0

)

+
∫∫

d34τ z

(
0 F (3,4) �c+d (1,3,4,2)
0 −G† (3,4) �c−d (3,1,4,2)

)
.

(29)

Here it is shown explicitly how the direct contribution enters
with different sign on the diagonal and off-diagonal Nambu
component due to the loop rule. The way the four-point object
is connected to the Green’s function is shown in Eqs. (26)
and (28) for the 21 and 22 elements of the self-energy. In the
solution of the gap equation (see Sec. V), this sign difference
will turn out to be crucial in order to have a nontrivial solution
of the gap equation. Note that the self-energy derived from
the Berk-Schrieffer interaction [53] satisfies the same sign
convention as derived here.

Under the assumption of singlet SC pairing and magnetic
collinearity, the normal part of the Green’s function conserves
spin, i.e., G (1,2) = δσ1σ2Gσ1 (r1,τ1,r2,τ2), while the anoma-
lous part flips spin F (1,2) = δσ1−σ2Fσ1 (r1,τ1,r2,τ2) . This
aspect has no consequences for the �̄GW and �̄Ph parts of
the self-energy Eqs. (1) and (2), since the interactions have
no spin dependence. However, for the SF part in Eq. (29) the
restriction leads to the result that

�̄11 and �̄22 depend only on �c−d
σ1σσ2σ

,

�̄12 and �̄21 depend only on �c+d
σ1σ−σσ2

.

Furthermore, by comparing with Eq. (16) it is clear that
�c has no (σ,σ, − σ, − σ ) component, while �d has no
component in the channel (σ, − σ,σ, − σ ). Therefore, the
following identities hold:

�c+d
σσ−σ−σ =�d

σσ−σ−σ = −�c−d
σσ−σ−σ , (30)

�c+d
σ−σσ−σ =�c

σ−σσ−σ = �c−d
σ−σσ−σ . (31)

These relations lead to a self-energy containing only �c-d and
not �c±d:

�̄SF
11 = −δσ1σ2Gσ1

∑
σ

�c−d
σ1σσ1σ

, (32)

�̄SF
22 = δσ1σ2G

†
σ1

∑
σ

�c−d
σσ1σσ1

, (33)

�̄SF
12 = δσ1−σ2Fσ1

∑
σ

(
1 − 2δσσ1

)
�c−d

σ1σ−σ−σ1
, (34)

�̄SF
21 = −δσ1−σ2F

†
σ1

∑
σ

(
1 − 2δσσ1

)
�c−d

σσ1−σ1−σ . (35)

This is a convenient result, because we have to solve only one
BSE for �c−d [Eq. (24)] and not the two separate equations
for the direct and crossed parts. In the previous expression
we use a concise notation in which the integrals are not
written out [compare with Eq. (29)]. We use this notation
in the next section when it does not lead to any ambiguity
in the formulas. Unless stated otherwise, the coordinates are
contracted analogous to a matrix product.

C. Local approximation

In the preceding sections we have constructed an ap-
proximate form of the electronic Nambu self-energy that we
believe contains the relevant contributions to account for a SF
mediated pairing. However, even this approximate form is too
complex to be used directly in simulations on real materials.
The dimensionality of the four-point object �c−d in Eqs. (32)
to (35) and the resulting integrals are simply too complex
to handle. What would make a significant simplification and
bring the computational cost of the method to an affordable
level would be a two-point form of the interaction; meaning
an approximate form that can be written as

�̄SF (1,2)ab

!= Ḡ (1,2)ab w̄SF (1,2)ab , (36)

where w̄SF is to be understood as an effective interaction
between electrons that accounts for the SF pairing and a,b

is the index with respect to the Nambu matrix. Of course, such
a form can be obtained by a formal inversion of the above
equation,

w̄SF (1,2)ab =
∫∫ (−G�c−d F�c+d

−F †�c+d G†�c−d

)
ab

Ḡ(1,2)ab

,

but this is of no use in practice, because one would need the
four-point object �c±d in the first place.

To obtain a two-point form we make use of an additional
approximation, already common in the context of band-
structure calculations [49,54,55], to use the KS potential as
a local approximation for �V, namely,

�V (1,2) ≈ δτ1τ2δr1r2v
xc
σ1σ2

(r1τ1) . (37)

The functional derivative [Eq. (24)] leads to the xc kernel
f xc, which is a two-point function in space-time but still a
four-point object in spin (x1 = {r1τ1}):

δvxc
σ1σ2

(x1)

δG(3,4)
=

∑
σ5σ6

∫
dx5

δvxc
σ1σ2

(x1)

δρσ5σ6 (x5)︸ ︷︷ ︸
f xc

δρσ5σ6 (x5)

δG(3,4)

=
∫∫

d5d6f xc
σ1σ2σ5σ6

(x1x5)
δG(5,6)

δG(3,4)
δx5x6

= f xc
σ1σ2σ3σ4

(x1x3) δx3x4 .
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If Eq. (24) is solved with the xc kernel and the full G is
approximated by the KS one, the well-known Dyson equation
from linear response density functional theory appears [56],

�c−d = 4f xc + 16f xc GKSGKS︸ ︷︷ ︸
=χKS

f xc

+ 64f xcGKSGKSf xcGKSGKSf xc + · · ·

= 4f xc + 16f xc χKS

1 − f xcχKS
f xc,

leading to the proper part of the response function Pσ1σ1σ2σ2 .
Since the Green’s function is diagonal with respect to spin, the
longitudinal and transverse parts of the response decouple:

�c−d
σ1σ1σ2σ2

=4f xc
σ1σ1σ2σ2

+ 16
∑
σ6σ7

f xc
σ1σ1σ6σ6

Pσ6σ6σ7σ7f
xc
σ7σ7σ2σ2

,

(38)

�c−d
σ−σσ−σ = 4f xc

σ−σ−σσ + 16f xc
σ−σ−σσ Pσ−σ−σσ f xc

σ−σ−σσ .

(39)

The proper part P is related to the full response function χ via
the Dyson equation:

χσ1σ2σ3σ4 = Pσ1σ2σ3σ4 + δσ1σ2δσ3σ4

∑
σσ ′

Pσ1σ2σσ vχσ ′σ ′σ3σ4 .

(40)

The response function χσ1σ2σ3σ4 in the spin basis determines the
change in the spin-resolved charge density induced by external
fields and is defined as

χσ1σ2σ3σ4 (r1,τ1,r2,τ2) := δρσ1σ2 (r1,τ1)

δϕext
σ3σ4

(r2,τ2)
.

The equations for �c-d will become more transparent if we
rewrite the response quantities on the right-hand side of
Eqs. (38) and (39) in components of the Pauli matrix; i.e.,

χij (r1,τ1,r2,τ2) := δρi (r1,τ1)

δϕext
j (r2,τ2)

.

In this form χ represents the change of the electronic charge ρ

or magnetic moment m (ρi = {ρ,mx,my,mz}) with respect to
physical fields (ϕext

j = {ϕext
0 ,Bext

x ,Bext
y ,Bext

z }). In this work we
label the Pauli index with i and j and it should not be confused
with the Nambu index indicated by a and b [used in Eq. (36)].
The basis transformations between the two representations are
simply

Aαβγ δ = 1

4

∑
ij

σ i
αβAijσ

j

γ δ,

Aij =
∑
αβγ δ

σ i
βαAαβγ δσ

j

δγ ,

where σ i is the four-component vector containing the Pauli
matrices:

σ i =
{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
.

Note that the response function is a sparse matrix for the
considered collinear system,

χij =

⎛
⎜⎜⎜⎝

χxx χxy 0 0

χyx χyy 0 0

0 0 χzz χz0

0 0 χ0z χ00

⎞
⎟⎟⎟⎠,

and the proper and full responses are equal χij = Pij if
i,j ∈ {x,y} [Eq. (40)]. As mentioned above, we change the
representation of the response function from spin to the Pauli
basis in order to achieve a more transparent form of the
effective interaction,

�c−d
σ1σ1σ2σ2

=
∑

ij∈{0,z}
f T

iσ1
Pij (1 − δi0δj0)fjσ2 , (41)

�c−d
σ−σσ−σ = 2f F

σ χF
σ f F

σ , (42)

where the two point functions fiσ and f F
σ are given by (z↑ =

+1,z↓ = −1)

f T
zσ := zσf xc

zz + f xc
0z fzσ := zσf xc

zz + f xc
z0 ,

f T
0σ := f xc

00 + zσf xc
z0 f0σ := f xc

00 + zσf xc
0z ,

f F
σ := f xc

xx + zσ if xc
xy χF

σ := χxx + zσ iχxy.

In Eq. (41) we have dropped f xc
σ1σ1σ2σ2

+ f T
0σ1

P00f0σ2 in order
to avoid any double counting: This term is, in fact, already
accounted for by the screened Coulomb interaction w in the
GW term, which contains an analogous contribution in the
form v + vP00v + · · · . In addition, we neglect the linear order
f xc

σ−σ−σσ , because in a system featuring magnetic fluctuations
it is supposed to be small as compared to the dominant f F

σ χF
σ f F

σ

term. This is because the SFs should appear as a large value of
the magnetic susceptibility.

The form of �c−d in Eq. (42) has now obtained an
immediate physical interpretation: The exchange-correlation
kernels f xc act as a vertex for the electronic interaction
mediated by SFs, which are expressed by the magnetic
susceptibility χ .

The transverse part allows for a flip of the electronic spin,
which can be understood in the following way.

(1) The spin flip of electron 1 corresponds to a local
fluctuation in the magnetic moment δm1.

(2) This, in turn, creates a magnetic field via the kernel:
δB1 = f xcδm1.

(3) If the system features magnetic fluctuations, the δB1

leads to fluctuations in the system: δm2 = χδB1.
(4) The fluctuation (magnons) couple via the second kernel

to another electron δB2 = f xcδm2, whose spin is flipped in the
absorption process.

This interpretation is analogous to the one given by
Kukkonen and Overhauser for the charge fluctuations [29]
and shows that the term �c−d in the local form represents an
effective interaction between electrons mediated by magnetic
fluctuations.

The final �̄SF is constructed by inserting the two-point
particle-hole propagators given in Eqs. (41) and (42) in the
equation for the self-energy Eqs. (32) to (35). We do this in the
next section. Note that by doing so, a separation in direct and
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crossed contribution is implied for the xc kernel [see Eqs. (30)
and (31)]. This is an assumption because the xc kernel is, in
general, not based on a diagrammatic expansion.

IV. FINAL FORM OF THE SELF-ENERGY

So far our formalism has been derived for collinear
magnetic systems and therefore it could be applied to general
interactions between SC and magnetism. In its nonsupercon-
ducting limit our effective interaction is very similar to that
Schweflinghaus et al. [57] used to investigate the effect of
magnetic ions on a metallic substrate. We now simplify it
for the case of a nonmagnetic system. This means that, by
construction, we do not consider the possibility of atomic scale
coexistence between magnetism and SC. We believe that this
assumption is justified for a large set of hi-Tc SC (cuprates
and pnictides), where usually (although exceptions have been
observed) the antiferromagnetic (AFM) order is completely
suppressed in the SC regime [8,58].

In a nonmagnetic system the response functions and xc
kernel are diagonal with respect to the Pauli index and the three
directions with respect to the magnetic field are degenerate. In
this case the effective interaction in Eqs. (41) and (42) reduces
to a simple form (here x is a combined variable of space and
time x = {rτ }):

�c−d
σ1σ1σ2σ2

(x1,x2) = zσ1zσ2

1

2
�SF (x1,x2) ,

�c−d
σ−σσ−σ (x1,x2) = �SF (x1,x2) ,

�SF (x1,x2) := 2
∫∫

dxdx′

× f xc
zz (x1,x) χzz(xx′)f xc

zz (x′,x2), (43)

and we insert this form in Eqs. (32) to (35):

�̄SF
ab (x1,x2) = 3

2 (−1)b+1 �SF (x1,x2) Ḡab (x1,x2) . (44)

The prefactor represents the fact that the diagonal part enters
with the opposite sign due to the effect of the loop rule
discussed in Sec. III B. By construction, the equation has the
GW form, however with an interaction originating from SF
and denoted as �SF. Note that this effective interaction, in the
limit of an homogeneous electron gas, reduces to the form
derived by Vignale and Singwi in Ref. [50]. �SF contains the
xc kernel and the magnetic response function, which can be
calculated using Time-Dependent DFT (TD-DFT) [56]. The
total self-energy is given by the sum of �̄GW,�̄SF, and �̄Ph

given in Eqs. (1), (44), and (2), respectively.

Relation to previous approaches

So far, the challenge to describe unconventional SC has
been taken up by model methods. Among the most successful
approaches for iron pnictides is to map the systems on a multi-
band Hubbard model and to seek the solution of this model.
Common methods for this are the functional renormalization
group [59], used, for example, by Platt, Thomale, and Hanke
[60], the fluctuation exchange approximation [61], as adopted
by Kuroki and co-workers [62] or Graser and co-workers
[63], or a Berk and Schrieffer [53] interaction, as discussed
in Ref. [64].

In this respect is important to notice that our effective
interaction [Eq. (43)] is formally similar to that of Berk and
Schrieffer. However, since we construct it from the exact
TD-DFT susceptibility and the exchange-correlation kernel
fxc, it neither requires the mapping on a Hubbard Hamiltonian,
nor the use of any parameter as the U .

V. THE FUNCTIONAL

So far, we have derived the contribution from the SFs to the
self-energy and, correspondingly, a SF pairing that can be used
in any theory of SC. In this section we specialize this result to
be used within the framework of SCDFT. To do this we make
use of the Sham-Schlüter connection [65] between a KS and
an interacting system, generalized to the SC case by Marques
[66]. We assume that vxc and the diagonal part of �̄GW act
in a similar way as a mass operator on the Hartree states and
cancel each other. Then the noninteracting SC-KS is mapped
to the interacting system by the following self-energy form:

�̄SS = �̄GW + �̄SF + �̄Ph −
(

GW �xc∗

�xc −G†w

)
. (45)

The Sham-Schlüter connection follows by imposing that the
total density ρ (r1) = limr1→r2

2
β

∑
ωn

G (r1,r2,ωn) and the
anomalous density χ (r1,r2) = ∑

ωn
F (r1,r2,ωn) are identi-

cal in the KS and interacting system:

0 = δab lim
r1→r2

2

β

∑
ωn

eiωn0+
[ḠKS�̄SSḠ]ab,

0 = (1 − δab)
1

β

∑
ωn

eiωn0+
[ḠKS�̄SSḠ]ab.

The connection becomes a closed equation for the supercon-
ducting gap by approximating the full Green’s function on the
right-hand side and the one in �̄ with the KS one. In addition,
we neglect all contributions that are explicitly higher than
linear in the pairing potential. Since, as discussed in Sec. III,
we are mostly concerned with computing an accurate critical
temperature, rather than the full temperature dependence of the
superconducting gap. In this approximation, the 12 element of
the Sham-Schlüter equation simplifies to

0 = 1

β

∑
n

eiωn0+
GKSGKS†�xc∗

+ 1

β

∑
n

eiωn0+
GKS�̄11F

KS

− 1

β

∑
n

eiωn0+
GKS�̄12G

KS†.

The Matsubara summation may be evaluated analytically
because the frequency dependence of the KS Green’s function
is known and for the response functions and phonons a
frequency representation with respect to the anti-Hermitian
part of the retarded quantities holds [Eq. (5)]. The evaluation
is done with the help of the residue theorem, which, for the
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Matsubara summation of an analytic function A (z), leads to

1

β

∞∑
n

A(iωn) =
Poles∈γ∑

m

res[fβ(z)A(z),zm], (46)

where the contour γ are two infinite half-circle excluding the
imaginary axis and fβ is the Fermi distribution function. At this
point an adiabatic approximation for the xc kernel is assumed.
This reduces the order of poles in �SF and the same residue are
found for the Coulomb, phonon, and SF contribution. After
the evaluation of the Matsubara sum [10], the equation is
inverted for �xc

k , leading to a gap equation very similar to
the conventional one in Eq. (7):

�xc
k = −�xc

k ZD
k −

∑
k′

KC
kk′

tanh
(

βEk′
2

)
2Ek′

�xc
k′ ,

ZD
k = 1

π

∑
k′

∫ ∞

0
dω

Im
[

3
2�SF

kk′(ω)
] − �Ph

kk′(ω)

2 tanh
(

βζk

2

) d

dζk

× J+ (ζk,ζk′ω) ,

KC
kk′ = 2

π

∫ ∞

0
dω

Im
[
wkk′ (ω) + 3

2�SF
kk′(ω)

]+ �Ph
kk′(ω)

tanh
(

βζk

2

)
tanh

(
βζk′

2

)
× J−(ζk,ζk′ω),

Iβ(ζ,ζ ′,ω) := − fβ(ζ )fβ(ζ ′)bβ(ω)

×
[

eβζ − eβ(ζ ′+ω)

ζ − ζ ′ − ω
− eβζ ′ − eβ(ζ+ω)

ζ − ζ ′ + ω

]
,

J±
β (ζ,ζ ′,ω) := Iβ(ζ,ζ ′,ω) ± Iβ(ζ, − ζ ′,ω). (47)

bβ (ω) is the Bose distribution function and ζk are the
single-particle KS energies of the non-SC system relative to
the chemical potential ζk = εk − μ. The kernels in this integral
equation represent different physical processes introduced by
the corresponding self-energy contribution.

(1) The �Ph
kk′ (ω) term describes pairing between electrons

due to phonons. The interaction is attractive: �Ph
kk′ (ω) < 0.

(2) The wkk′ (ω) term is the scattering of electrons due
to Coulomb interaction. The bare Coulomb interaction is
reduced by intermediate scattering processes (screening) w =
vε−1 [Eq. (4)]. Plasmonic effects may also enter via this
term.

(3) The last term �SF
kk′ (ω) contains the magnetic response

function χzz and hence becomes important if the system is
close to a transition to a magnetic phase. In such a case the
response function features sharp excitations, which represent
paramagnons.

The two last terms originate both from the Coulomb
interaction and are therefore intrinsically repulsive:

Im
[
�SF

kk′ (ω)
]

> 0 and Im [wkk′ (ω)] > 0. (48)

If these are the strongest terms in the gap equation (47), in
order to have a nontrivial solution, a sign change must occur
in the gap function. We show how this mechanism works
in the following section where we apply the formalism to

a model system and investigate the general structure of the
theory.

VI. APPLICATION TO A TWO-BAND MODEL SYSTEM

A. Isotropic approximation and the two-band model with a SF
pairing

The function �nk is known to have a strong dependence on
the εnk[18]. The remaining k-space structure, however, is often
of little importance, especially within topologically connected
Fermi surface portions [15]. Therefore, it is convenient to
define an isotropic (or multi-band-isotropic) approximation
by means of the averaging operation

�nk ≈ �n (E) := 1

Nn (E)

∑
k

δ (εnk − E) �nk,

Nn(E) :=
∑

k

δ (εnk − E) ,

where Nn (E) is the density of states of band n. This
simplification leads to an isotropic gap equation, where all
interactions are replaced with energy- and band-dependent
quantities. As an example of how this averaging works, we
consider the SF term:

�SF
nn′ (E,E′,ω) ≈ 1

Nn (E)

∑
kk′

�SF
nkn′k′ (ω)

× δ(εnk − E)δ(εn′k′ − E′).

We assume the system to be close to an AFM instability with
the ordering and nesting vector qc. Then the proximity to the
magnetic phase leads to strong fluctuations (paramagnons) at
low frequencies and the vector qc in the magnetic response
function χzz (ω,q) [67]. These fluctuations are expected to be
weak for other vectors. The portions (bands) of the Fermi
surface nested by qc are labeled as n = + and n = −.

The usual TD-DFT kernels like the adiabatic local density
approximation have no dependence on (ω,q) and the form of
�SF in frequency and q is determined by χzz.

In such a situation the isotropic effective interaction is
expected to be small for intraband scattering (�SF

±± ≈ 0) and
peaked for interband scattering (�SF

±∓).
This situation is modeled by a simple parabola centered

around a characteristic frequency ω̄ (see Fig. 2, top right; we
have also tested a Gaussian and a Lorentzian form and we find
that the shape has little effect on the properties of the model):

�SF
IJ (E,E′,ω) =

⎧⎪⎨
⎪⎩

c1NJ (E′)
[
1 − (ω−ω̄− c2

2
c2

)2]
,

if |ω − ω̄| � c2
2 and I �= J,

0 elsewhere.

(49)

We fix the width c2 to a value of 0.01 Ry and the density
of states times the peak height c1 is determined by requiring
a value for the effective coupling strength λSF. The effective
coupling strength is given by the integral of �SF

IJ with respect
to ω:

λSF
IJ := 3

2π

∫ ∞

0
dω

2�SF
IJ (εF,εF,ω)

ω
.
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FIG. 1. (Color online) (Left) Tc for different λSF as a function of
the average ω̄. (Right) Analogous plot, here for several ω̄ as a function
of λSF.

Within this simple multiband isotropic model the structure of
our SF theory of SC can be made more transparent.

B. Discussion of the SF contribution

Here and in the next section, we assume a two-band
isotropic approximation discussed in the previous section.
In this way we try to investigate the general solution of the
SCDFT gap equation for a SF-mediated pairing. As a first step
we neglect completely Coulomb and phonon contributions,
considering only the SF interaction given in Eq. (49).

We modify the SF by acting on the parameters ω̄ and
λSF

IJ . In Fig. 1 we show the critical temperature as a function
of ω̄ and λSF

IJ . From Eliashberg theory for phonon-driven
superconductors we have knowledge of the following rela-
tions between characteristic frequency and average coupling
strength [68,69]:

Tc ∝ ω̄ e−α/λ for small λ, (50)

Tc ∝ ω̄
√

λ for large λ. (51)

On the right-hand side of Fig. 1 we can recognize the
exponential and square-root behavior with respect to λSF. The
transition between small and large coupling takes place at
λSF ∼ 1.5 for ω̄ = 0.15 Ry. For the dependence of Tc with
respect to ω̄, we find a linear behavior.

This result is not accidental, because the sign change of
the gap leads effectively to an attractive interaction between
the two bands; therefore, within this simplified model there
is no formal difference between SF repulsive pairing and
conventional phononic attraction.

Within such a model calculation we can estimate the
coupling strength in the iron-based superconductors, simply
by the experimental knowledge that the characteristic energy
of the magnetic fluctuations are of about 20 meV [5]. This
implies a coupling λSF of about 1 (neglecting phononic and
Coulomb effects) to reach the critical temperatures of ∼10 K
found in these compounds.

FIG. 2. (Color online) (Top left) Form of the Coulomb interac-
tion for various κ determining the decay of the Coulomb interaction
[Eq. (52)]. (Top right) Form of the SF interaction Eq. (49). (Bottom)
Gap function �+ as a function of energy and κ .

C. Interplay between Coulomb, spin-fluctuation,
and phonon contribution

In the previous section we have observed that the features
of the SCDFT gap equation with a SF interaction is relatively
simple and similar to the conventional phononic case. Here
we add the effect of phonon and Coulomb interactions. This
will create a frustration on the SC potential because the three
interaction will compete against each other.

We use the same SF spectrum in Eq. (49) and fix λSF = 1.2
and ω̄ = 0.01 Ry. The Coulomb interaction is very different in
nature, compared to the SF. In particular, its frequency depen-
dence develops in the plasmonic energy scale (eV). We there-
fore ignore it and assume a flat interaction with respect to ω.

It is expected that this interaction decays like 1
q2+q2

TF
, where

qTF is the Thomas-Fermi screening vector. Therefore, the
contribution for small momentum transfer (intraband) should
be much larger than the interband contribution corresponding
to qc ≈ k − k′. Similarly for scattering from the Fermi level to
high-energy states, the scattering should become momentum
independent [70]. We model this picture in the following way:

wIJ (E1,E2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

NJ (E2)
(
U0 + U1e

−κ(E2
1+E2

2)
)

if I = J,

NJ (E2)U0

if I �= J.

(52)

The diagonal part wII (E1,E1) of this interaction is shown
in Fig. 2. For the parameters of the Coulomb interaction we
choose NJ (εF) U0 = 0.2,U1 = U0

2 . The parameter κ is used
to control the Coulomb interaction: If κ is large the Coulomb
interaction decays very quickly in energy.

Due to the choice of an electron hole symmetric DOS
[N+ (E) = N− (E)] and interaction, the gap function is also to-
tally symmetric: �I (E) = �I (−E) and �+ (E) = −�− (E)
and hence only the positive branch �+ (E) is shown in Fig. 2.
Note that within this symmetry a constant Coulomb interaction
(κ → ∞) cancels out completely from the gap equation (47).

In general, the gap function shows a typical form, being
constant close to the Fermi level, followed by an extremum and
a decay for larger energies [18,71]. By decreasing the value
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FIG. 3. (Color online) Gap �± for different asymmetric density
of states.

of κ the Coulomb contribution starts to influence the results.
The critical temperature decreases, due to repulsion within one
band, and the gap starts to show dips. The dips indicate the
regime, where the Coulomb interaction competes with the SF.
For κ < 1 the Coulomb contributions are strong enough to
flip the sign of the gap function for certain energies. The sign
change of the gap function at higher energies reduces the effect
related to the repulsive Coulomb term in the gap equation (47).

Effectively, the Coulomb contribution on the full energy
scale may be mapped to a reduced effective Coulomb term
on a smaller energy scale due to the sign change of the gap
function. Hence, the sign change of the gap function is the
way Coulomb renormalization happens in SCDFT [18,70].
Note that the sign change of the gap happens far away from
the Fermi level.

However, for κ = 4 the Coulomb contribution still decays
faster in energy than the SF term, which leads to one more
sign change in the large energy regime (dash-dotted blue line in
Fig. 2). If we decrease the κ further, the Coulomb contributions
dominate also in the large energy range and the gap changes
sign only once.

Note that the critical temperature converges quickly with
respect to κ. This indicates that the Coulomb interaction influ-
ences the critical temperature only in a small energy window
for the symmetric two-band system and the renormalization of
the gap is not affecting the critical temperature strongly.

To verify this observation, we test different densities of
states instead of the constant one used so far: The different

functions are step and square-root functions, which represent
a two- and three-dimensional system, respectively, and a Gaus-
sian peak. The different functions are shown in Fig. 3. The non-
flat functions cut away the long energy tails of the gap function.
However, the effect on the critical temperature is rather small.

What has a strong effect on Tc is a change of the ratio
N+(εF)
N−(εF) = 1 (magenta line in Fig. 2). This verifies that in the
two-band system with a sign-changing gap, only a small
energy region around the Fermi level matters for the Coulomb
repulsion. This is very different from the one-band case, where
the Coulomb renormalization at large energies is an essential
effect.

Last, we consider the inclusion of the purely attractive
phonon contribution. Its behavior is rather straightforward. If
a single phonon peak is included [Eq. (49)] providing the same
coupling between all bands, the critical temperature reduces by
increasing λPh. Until a the phononic coupling strength reaches
the value of λSF. The phonons dominate the gap equation and
the symmetry of the gap changes. The s± state favored by the
repulsive interactions is suppressed and an s++ state is found.
From this point the Tc starts to rise again with increasing λPh.

VII. SUMMARY AND OUTLOOK

In this work we have derived a fully ab initio effective
electron-electron interaction containing the effect of a pairing
mediated by SF. The derivation starts from many-body
perturbation theory and the introduction of a self-energy
function, containing the relevant diagrams originating from its
vertex part, therefore going beyond the GW approximation.
The vertex correction enter the expression in the form of the
particle-hole propagator, which is a highly nonlocal object
determined by a BSE. The solution of the BSE would be
computationally not feasible for realistic systems instead; in
Sec. III C, we propose a local approximation for the particle-
hole propagator. In this limit the equation for the self-energy
becomes very transparent: SFs enter via the magnetic response
functions, which can be calculated effectively [67,72] within
linear response TD-DFT, and the coupling to the electrons is
mediated by the exchange-correlation kernel.

This effective interaction is, in principle, applicable to
any theory of SC; however, in this work we cast it into the
framework of SCDFT by the construction of an explicit xc
kernel (Sec. V). In this way the full gap equation remains
completely parameter free.

We show a first application of the new functional (Sec. VI)
to a two-band electron gas model. Application to real materials
will follow; however, this further step needs the calculation of
the magnetic response function for the real system and will be
the subject to further investigation.
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