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We present the design of a superconducting qubit that has circulating currents of opposite sign as its two

states. The circuit consists of three nanoscale aluminum Josephson junctions connected in a superconducting

loop and controlled by magnetic fields. The advantages of this qubit are that it can be made insensitive to

background charges in the substrate, the flux in the two states can be detected with a superconducting quantum

interference device, and the states can be manipulated with magnetic fields. Coupled systems of qubits are also

discussed as well as sources of decoherence. @S0163-1829~99!00746-8#

I. INTRODUCTION

Quantum computers are devices that store information on

quantum variables such as spins, photons, and atoms, and

that process that information by making those variables in-
teract in a way that preserves quantum coherence.1–5 Typi-
cally, these variables consist of two-state quantum systems
called quantum bits or ‘‘qubits.’’6 To perform a quantum
computation, one must be able to prepare qubits in a desired
initial state, coherently manipulate superpositions of a qu-
bit’s two states, couple qubits together, measure their state,
and keep them relatively free from interactions that induce
noise and decoherence.1–4,7,8 Qubits have been physically
implemented in a variety of systems, including cavity quan-
tum electrodynamics,9 ion traps,10 and nuclear spins.11,12 Es-
sentially any two-state quantum system that can be ad-
dressed, controled, measured, coupled to its neighbors, and
decoupled from the environment, is potentially useful for
quantum computation and quantum communications.13,14

Electrical systems that can be produced by modern lithogra-
phy, such as nanoscaled quantum dots and tunnel junctions,
are attractive candidates for constructing qubits: a wide va-
riety of potential designs for qubits and their couplings are
available, and the qubits are easily scaled to large arrays that
can be integrated in electronic circuits.3,15 For this reason,
mesoscopic superconducting circuits of ultrasmall Josephson

junctions have been proposed as qubits16–20 and we detail

one such circuit in this paper.

Compared with the photonic, atomic, and nuclear qubits

already constructed, solid-state proposals based on lithogra-

phy such as the one described here have two considerable
disadvantages and one considerable advantage. The first dis-
advantage is noise and decoherence:3,7,8 the solid-state envi-
ronment has a higher density of states and is typically more
strongly coupled to the degrees of freedom that make up the
qubit than is the environment for photons in cavities, ions in
ion traps, and nuclear spins in a molecule or crystal. Extra
care must be taken in solid state to decouple the qubit from
all sources of noise and decoherence in its environment. The
second disadvantage is manufacturing variability:8 each ion
in an ion trap is identical by nature, while each lithographed
Josephson junction in an integrated circuit will have slightly
different properties. Solid-state designs must either be insen-
sitive to variations induced by the manufacturing process, or
must include a calibration step in which the parameters of
different subcircuits are measured and compensated for.15

The advantage of solid state lithographed circuits is their
flexibility: the layout of the circuit of Josephson junctions or
quantum dots is determined by the designer, and its param-
eters can be adjusted continuously over a wide range. As the
results presented in this paper demonstrate, this flexibility
allows the design of circuits in which the variables that reg-

PHYSICAL REVIEW B 1 DECEMBER 1999-IIVOLUME 60, NUMBER 22

PRB 600163-1829/99/60~22!/15398~16!/$15.00 15 398 ©1999 The American Physical Society



ister the qubits are only weakly coupled to their environ-
ment. In addition, the flexibility in circuit layout allows
many possible options for coupling qubits together, and for
calibrating and adjusting the qubits’ parameters. That is, the
advantage of flexibility in design can compensate for the
disadvantages of decoherence and manufacturing variability.

The flexibility in design afforded by lithography conveys
a further advantage to constructing quantum computers. As
noted above, a qubit has to accomplish at least five functions:
it has to be addressed, controled, measured, coupled to its
neighbors, and decoupled from the environment. One of the
axioms of design is that the number of parameters that char-
acterize a system’s design should be at least as great as the
number of parameters that characterize the system’s
function.21 The problem of having too few design parameters
available is particularly acute in the design of quantum com-
puters and qubits: a quantum computer is a device in which
a number of physical degrees of freedom are used to register
information and to perform the computation. Degrees of
freedom that are not used to compute are sources of noise
and must be isolated from the computing degrees of free-
dom. Designs for quantum computers are accordingly more
constrained by fundamental physics than are designs for con-
ventional computers: if one is storing information on a ce-
sium atom, then the ‘‘design parameters’’ of the cesium
atom—its energy levels, decoherence times, interaction
strengths, etc.—are fixed by nature once and for all. In the
lithographed Josephson junction circuits proposed here, by
contrast, it is possible to make qubits that have a variety of
different design parameters, each of which can be adjusted to
optimize different functions.

II. JOSEPHSON-JUNCTION QUBITS

The superconducting Josephson tunnel junction is de-
scribed by a critical current I0 and a capacitance C. ~We will
assume that the resistive channel of the junction is negligibly
small.! For superconducting circuits the geometrical loop in-
ductance Ls is also important if L5LJ /Ls,1, where LJ

5F0/2pI0 is the inductance associated with a Josephson
junction in the loop. Here F05h/2e is the superconducting
flux quantum. Josephson circuits can be divided into two
general categories. Circuits of the first type have L@1 so
that the induced flux in the loop is not important. These
circuits are typically made of aluminum, and the mesoscopic
nature of their electronic transport has been studied in nanos-
caled circuits. Circuits of the second type have L!1, and
induced flux caused by circulating currents is important.
These circuits are typically made of niobium, and the mac-
roscopic nature of the tunneling of flux has been studied in
small-scaled circuits.

The prospects of using superconducting circuits of the
first type as qubits is encouraging because extensive experi-
mental and theoretical work has already been done on meso-
scopic superconducting circuits. ~For a review of this work
see Chap. 7 in Ref. 22 and in Ref. 23.! In circuits of the first
type (L@1), two energy scales determine the quantum-
mechanical behavior: The Josephson coupling energy, EJ

5I0F0/2p , and the coulomb energy for single charges, Ec

5e2/2C . The energies can be determined by the phases of
the Cooper pair wave function of the nodes ~islands! and the

number of excess Cooper pairs on each node. The phase and
the number can be expressed as quantum-mechanical conju-
gate variables.24

In the ‘‘superconducting’’ limit EJ.Ec , the phase is well
defined and the charge fluctuates. In the ‘‘charging’’ limit,
the charges on the nodes are well defined and the phase
fluctuates strongly. When EJ and Ec are within a few orders
of magnitude of each other, the eigenstates must be consid-
ered as quantum-mechanical superpositions of either charge
states or phase states. Such superposition states are important
in designing qubits. Experimental studies have been per-
formed by several groups with aluminum tunnel junctions
with dimensions below 100 nm.22,23 Superposition of charge
states in circuits in the charging regime have been
demonstrated25–27 and are in quantitative agreement with
theory.28,29 The Heisenberg uncertainty principle has been
demonstrated when EJ'Ec .30,26 When EJ.Ec topological
excitations known as vortices exists and quantum mechanical
interference of these quantities has been observed.31 Unfor-
tunately circuits of the first type in the charging regime are
sensitive to fluctuating off-set charges that are present in the
substrate.32,33 These random offset charges make difficult the
design of a controllable array of quantum circuits and intro-
duce a strong source of decoherence.

In circuits of the second type (L!1), the quantum vari-
ables can be related to the flux in the loops and their time
derivatives. For a superconducting loop with a single Joseph-
son junction, known as an rf superconducting quantum inter-
ference device ~SQUID!, thermal activation of macroscopic
quantum states34 has been observed as well as macroscopic
quantum tunneling between states and the discrete nature of
the quantum states.35 One of the advantages of these rf
SQUID systems is that the two states have circulating cur-
rents of opposite sign and, hence, produce a readily measur-
able flux of opposite signs. To date no superposition of states
have been demonstrated in the niobium circuits, although the
improving quality of the niobium tunnel junctions may allow
such a demonstration.36,37

The goal of this paper is to design a qubit using circuits of
the first type with aluminum, yet to have states ~like in cir-
cuits of the second type! that are circulating currents of op-
posite sign. These circulating current states create a magnetic
flux of about 1023F0 and we refer to these as ‘‘persistent
current ~PC! states.’’ These states obey all five functional
requirements for a quantum bit: ~1! The superconducting cir-
cuit is at a sufficiently low temperature that the PC states can
easily be prepared in their ground state. ~2! The PC states can
be manipulated precisely with magnetic fields. ~3! Two qu-
bits can be readily coupled inductively, and the inductive
coupling can be turned on and off. ~4! The flux of the PC
states can be detected and measured using a SQUID-type
detector. ~5! In contrast with charge quantum states in Jo-
sephson circuits, the PC can be made insensitive to back-
ground charges and effectively decoupled from their electro-
static environment. The magnetic coupling to the PC states
and the environment can also be made sufficiently weak.

III. THE CIRCUIT

The circuit of the qubit is shown in Fig. 1. Each junction
is marked by an 3 and is modeled22,38 by a parallel combi-
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nation of an ideal Josephson junction and a capacitor C i .
The parallel resistive channel is assumed negligible. The
ideal Josephson junction has a current-phase relation, I i

5I0 sin wi where w i, is the gauge-invariant phase of junction
i.

For the calculation of the energy the inductance of the
loop is considered negligible, L@1, so that the total flux is
the external flux. In this case, fluxoid quantization around the
loop containing the junctions gives w12w21w3522p f .
Here f is the magnetic frustration and is the amount of exter-
nal magnetic flux in the loop in units of the flux quantum F0.

The Josephson energy due to each junction is EJn(1
2cos wn). The total Josephson energy U is then U

5( iEJi(12cos wi). Combined with the flux quantization
condition the Josephson energy is39

U

EJ

521a2cos w12cos w22a cos~2p f 1w12w2!. ~1!

The important feature of this Josephson energy is that it is
a function of two phases.40 For a range of magnetic frustra-
tion f, these two phases, w1 and w2, permit two stable con-
figurations, which correspond to dc currents flowing in op-
posite directions. We illustrate this in Fig. 2, where we plot
the energy of the minimum of the system as a function of f

for a50.8.
The energy is periodic with period f 51 and is symmetric

about f 51/2. Near f 51/2, there is a region @1/22 f c,1/2
1 f c# where there are two stable solutions. The inset plots f c

as a function of a . These two solutions have circulating cur-
rents of opposite direction and are degenerate at f 51/2. The
calculation of the energy for the stable solutions and f c is
given in Appendix A.

The main feature of the qubit that is proposed in this
paper is to use these two states of opposite current as the two
states of the qubit. By adding the charging energy ~the ca-
pacitive energy! of the junctions and considering the circuit
quantum mechanically, we can adjust the parameters of the
circuit so that the two lowest states of the system near f

51/2 will correspond to these two classical states of opposite
circulating currents. Moreover, we will show that these two

states can be made insensitive to the gate voltages and the
random offset charges. The quantum mechanics of the circuit
will be considered in detail in the next section.

The stable classical solutions correspond to energy
minima in U(w1 ,w2). Let us consider the case of f 51/2. For
a<1/2, U has only one minimum at w15w250 mod 2p .
Above the critical value of a51/2, this minimum bifurcates
into two degenerate minima at w152w256w* mod 2p
where cos w*51/2a . The minima form a two-dimensional
pattern with the two minima at (w*,2w*) and (2w*,w*)
repeated in a two-dimensional square lattice. This pattern can
be seen in Fig. 3, which is a contour plot of the Josephson
energy as a function of the phase variables for a50.8. The
nested nearly circular contours mark the maxima in the po-
tential. The figure-eight-shaped contour encloses two
minima.

FIG. 1. The three-junction qubit. Josephson junctions 1 and 2

both have Josephson energies EJ and capacitance C and Josephson

junction 3 has a Josephson energy and capacitance a times larger.

The nodes 1 and 2 represent the superconducting islands ~nodes!

that are coupled by gate capacitors Cg5gC to gate voltages VA and

VB . The arrows define the direction of the currents. The flux is

taken out of the page.

FIG. 2. U/EJ vs f for a50.8 and for minimum energy phase

configuration. The energy is periodic with period f 51 and is sym-

metric about f 51/2. Near f 51/2, there is a region @1/22 f c,1/2

1 f c# where there are two stable solutions. The inset plots f c as a

function of a .

FIG. 3. ~a! A contour plot of the Josephson energy ~potential

energy! U(w1 ,w2) for f 51/2 for a50.8. The nested nearly circular

shapes mark the maxima in the potential, and the figure-eight-

shaped contours enclose two minima. ~b! a plot of the potential vs

wm , the phase along the direction between these two minimum in

the same unit cell, ~c! a plot of the potential vs wn , the phase along

direction from one minima to its next-nearest neighbor. Note that

the barrier is a saddle point. The upper curve in each figure is for

a51.0 and the lower for a50.8.
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Figure 3~b! shows the potential along wm , between the
two minima in a unit cell; that is, along the line w252w1.
The upper curve is for a51.0 and the lower for a50.8.
Figure 3~c! shows the potential vs wn , which connects one
minimum @say at (2w*,w*)# to its next-nearest neighbor @at
(w*,2p2w*)#. For a50.8 the energy barrier between the
two minima is much lower than the energy barrier from the
minimum in one unit cell to the neighboring unit cell. For
a51.0 the energy barrier from unit cell to unit cell is nearly
the same as the barrier within the unit cell. The ability to
manipulate the potential landscape by changing a will be
important in designing the qubit.

We now consider the electric energy T stored in the five
capacitors in the circuit. Each capacitor C j has a voltage
across it of V j so that

T5

1

2 (
j

C jV j
2
2QgAVA2QgBVB . ~2!

Here j51,2,3, and gA and gB . The last two terms subtract
the work done by the voltage source to give the available
electric ~free! energy.41 The voltage across each Josephson
junction is given by the Josephson voltage-phase relation

Vn5(F0/2p)ẇn , where the over-dot indicates a partial time
derivative. The ground in the circuit labels the zero of poten-
tial and is a virtual ground.

The voltage across the gate capacitor gA is VgA5VA

2V1 and similarly for VgB5VB2V2. The electric energy
can then be written in terms of the time derivatives of the
phases as

T5

1

2
S F0

2p
D 2

ẇW T
•C•ẇW . ~3!

The constant term 2
1
2 VW g

T
•Cg•VW g has been neglected and

ẇW 5S ẇ1

ẇ2

D , C5CS 11a1g 2a

2a 11a1g
D , ~4!

and

VW g5S VA

VB
D , Cg5gCS 1 0

0 1
D . ~5!

The classical equations of motion can be found from the
Lagrangian L5T2U . We take the electrical energy as the
kinetic energy and the Josephson energy as the potential

energy.42 The canonical momenta is P i5]L/]ẇ i . To attach
a more physical meaning to the canonical momentum, we
shift the Lagrangian by a Galilean-like transformation to

L5T2U2S F0

2p
D ẇW T

•Cg•VW g . ~6!

The canonical momentum is then

PW 5S F0

2p
D 2

C•ẇW 2S F0

2p
DCg•VW g ~7!

and is directly proportional to the charges at the islands at
nodes 1 and 2 in Fig. 1 as

QW 5

2p

F0

PW . ~8!

@For any Josephson circuit it can be shown that there exist
linear combinations of the phases across the junctions such
that these linear combination can be associated with each
node and the corresponding conjugate variable is propor-
tional to the charge at that node.43,44 If self and mutual in-
ductances need to be included in the circuit ~as we argue
does not need to be done in our case!, then additional con-
jugate pairs would needed.#44

The classical Hamiltonian, H5( iP iẇ i2L, is

H5

1

2
S PW 1

F0

2p
QW gD T

•M21
•S PW 1

F0

2p
QW gD1U~wW !, ~9!

where the effective mass M5(F0/2p)2C is anisotropic and

the induced charge on the island is QW g5Cg•VW g . When
driven by an additional external current source, the classical
dynamics of this system have been studied in recent years
both theoretically45,46 and experimentally.47,48

Note that the kinetic energy part of this Hamiltonian is

T5

1

2
~QW 1QW g!T

•C21
•~QW 1QW g!, ~10!

which is just the electrostatic energy written is terms of the
charges and induced charges on the islands. Often this is the
method used in discussing the charging part of the Hamil-
tonian. See, for example, Ref. 43 and the references therein.
A characteristic charge is e and characteristic capacitance is
C so that the characteristic electric energy is the so-called
charging energy, Ec5e2/2C .

IV. QUANTUM CIRCUIT

The transition to treating the circuit quantum mechani-
cally is to consider the classically conjugate variables in the
classical Hamiltonian as quantum-mechanical operators.49,50

For example, the momenta can be written as P15

2i\]/]w1 and P252i\]/]w2 and the wave function can
then be considered as uC&5C(w1 ,w2).

In this representation the plane-wave solutions, such as
c5exp$2i(l1w11l2w2)% correspond to a state that has l1 Coo-
per pairs on island ~node! 1 and l2 Cooper pairs on island 2.
These plane-wave states are the so-called charging states of
the system.51,28 Since a single measurement of the number of
Cooper pairs on each island must be an integer, then so
should the l’s here. ~Note the expectation value of the num-
ber of Cooper pairs is not restricted to an integer.! Further-
more, an eigenfunction C(w1 ,w2) can be written as a
weighted linear combination of these charge states. This
means that C(w1 ,w2) is periodic when each of the phases
are changed by 2p , as in the physical pendulum.52

By considering C(w1 ,w2)5exp$i(k18w11k28w2)%x(w1 ,w2)

with @k18 ,k28#52(gC/2e)@VA ,VB# , the Hamiltonian for

x(w1 ,w2) is almost the same but the induced charges are
now transformed out of the problem, and we refer to this
new Hamiltonian as the transformed Hamiltonian H t ,
where53
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H t5

1

2
PW T

•M21
•PW 1EJ$21a2cos w12cos w2

2a cos~2p f 1w12w2!%. ~11!

The resulting equation H tx(w1 ,w2)5Ex(w1 ,w2) is the
same as for an anisotropic, two-dimensional particle in the
periodic potential U. The solutions are Bloch waves with the
‘‘crystal momentum’’ k values corresponding to 2k8, which
is proportional to the applied voltages. This choice of crystal
momentum ensures that C(w1 ,w2) is periodic in the phases.

We will first present the numerical results of the energy
levels and wave functions for the circuit. Then we will use
the tight-binding-like approximation to understand the re-
sults semiquantitatively.

The eigenvalues and eigen-wave-functions for the trans-
formed Hamiltonian H t are solved numerically by expanding
the wave functions in terms of states of constant charge or
states of constant phase. The states of constant charge result
in the central equation for Bloch functions ~see Ref. 74! and
are computationally efficient when Ec.EJ . The states of
constant phase are solved by putting the phases on a discrete
lattice and the numerics are more efficient when EJ.Ec .
Since the Josephson energy dominates, we will show results
computed using the constant phase states. ~However, when
we used the constant charge states, we obtained the same
results.!

The numerical calculations are done in a rotated coordi-
nate system, which diagonalizes the capacitance matrix C by
choosing as coordinates the sum and difference of the
phases, wp5(w11w2)/2 and wm5(w12w2)/2. The resulting
reduced Hamiltonian is

H t5

1

2

Pp
2

M p

1

1

2

Pm
2

M m

1EJ$21a22 cos wp cos wm

2a cos~2p f 12wm!%, ~12!

where the momenta can be written as Pp52i\]/]wp and
Pm52i\]/]wm . The mass terms are M p5(F0/2p)22C(1
1g) and M m5(F0/2p)22C(112a1g). In this coordinate

system the full wave function C(wp ,wm)5exp$i(kp8wp

1km8wm)%x(wp ,wm) with @kp8 ,km8 #52(gC/2e)@VA1VB ,VA

2VB# and H tx(wp ,wm)5Ex(wp ,wm). Also the two
minima of the potential U(wp ,wm) within a unit cell form a
periodic two-dimensional centered cubic lattice with lattice
constants a152pix and a25pix1piy .

Figure 4 shows the energy levels as a function of f and as
a function of the gate voltage, which is given in terms of k.
We have taken EJ /Ec580, a50.8, and g50.02 in this ex-
ample. The energy levels are symmetric about f 51/2. In Fig.
4~a!, we see that the two lowest energy levels near f 51/2
have opposite slopes, indicating that the circulating currents
are of opposite sign. We also see that there is only a small
range of 0.485, f ,0.5, where the qubit can be operated be-
tween these states of opposite circulating current. This range

is consistent with the range @ 1
2 6 f c# from the classical stabil-

ity as shown in Fig. 2. At f 50.49 direct calculation of the
average circulating current, ^CuI0 sin w1uC& gives that the
circulating current for the lower level is I1 /I0520.70 and
for the upper level is I2 /I0510.70. ~A calculation of

the circulating current from the thermodynamic relation

2F0
21]En /] f gives the same result.! For a loop of diameter

of d510 mm, the loop inductance is of the order m0d

'10 pH.54 For I0'400 nA (EJ5200 GHz), the flux due
to the circulating current is LI1'1023F0, which is detect-
able by an external SQUID. Nevertheless, the induced flux is
small enough that we are justified in neglecting its effect
when calculating the energy levels.

The difference in energy between the lower and upper
level at the operating point of f 50.485 is about 0.1EJ

'20 GHz. Moreover, Fig. 4~b! shows that the energies of
these levels is very insensitive to the gate voltages, or
equivalently, to the random offset charges. The numerical
results show that the bands are flat to better than one part in
a thousand, especially at f 50.48. To understand the under-
lying physics, a tight-binding model is developed.

Tight-binding model

Consider the case near the degeneracy point f 51/2. The

minima in energy occur when wp
*50 and wm56wm

*, where

cos wm
*51/2a . Near the minimum at @wm ,wp#5@wm

* ,0# , the

potential looks like a double potential well repeated at lattice
points a152pix and a25pix1piy . Figure 5 shows the two
eigenfunctions in a unit cell.

The wave function for the lower level (C1) is symmetric
and the wave function for the upper level (C2) is antisym-
metric. Both of the wave functions are localized near the two
minima in U in the unit cell.

To find an approximate tight-binding solution, let
u(wm ,wp) be the wave function for the ground state on one

FIG. 4. The energy levels E vs frustration and gate voltage for

EJ /Ec580, a50.8, and g50.02. The gate voltage is related to the

k values by @kp ,km#5(gC/2e)@VA1VB ,VA2VB# , ~a! E/EJ vs f b

near f b51/2 for @kp ,km#5@0,0# , and ~b! E/EJ vs km for kp50.

FIG. 5. The eigen-wave-functions for the lower (C1) and upper

(C2) energy levels at f 51/2 as a function of the phases.
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side of the double potential wells, and v(wm ,wp) be the
wave function on the other side. The tight-binding solution
for H t in Eq. ~12! is F5cuu1c

v
v and satisfies

S Huu Huv

H
vu H

vv

D S cu

c
v

D 5ES cu

c
v

D . ~13!

Because the double well is symmetric at f 51/2, each wave
function has the same energy e0 and so Huu5H

vv
5e0 . Let

t1 be the tunneling matrix element between these two
minima in the same unit cell and t2 between nearest-

neighbor minima in the adjacent unit cells. Then Huv
5H

vu
*

52t12t2e ik•a22t2e ik•(a12a2). The eigen-energy-levels are
E5e07uHuv

u. The effect of t1 is to split the degeneracy of
the two states so that at k50, the energy is e07(2t21t1) for
the symmetric and antisymmetric states respectively. The ef-
fect of t2 is to give dispersion in k, that is, in gate voltage and
offset charges, to the energy levels. Because we want to
minimize the gate-voltage ~and offset charge! dependence,
we seek to minimize the tunneling t2 from one unit cell to
another. Likewise, we want the two localized states in the
two wells to interact, so that we want t1 to be nonzero. This
is why the potential landscape in Fig. 3 was chosen to have
a'0.8: The potential has a much lower barrier between
states in the double well, but a large barrier between states
from one double well to the next.

An estimate of t i can be obtained by the WKB method,
from calculating the action S i between the two minima and
using t i'(\v i/2p)e2S i /\ where v i is the attempt frequency

of escape in the potential well. The action from point wW a to

wW b is

S5E
wa
W

wW b
@2M nn~E2U !#1/2udwnu. ~14!

Here n is a unit vector along the path of integration, dwn the
differential path length, and M nn5nT

•M•n is the compo-
nent of the mass tensor along the path direction. In Eq. ~14!
we will approximate the energy difference E2U which mea-
sures the deviation in the potential energy DU from the
minima along the path.

First, consider the calculation of t1, the tunneling matrix
element within the unit cell. The path of integration is taken

from (2wm
*,0) to (wm

*,0) along the direction n5ix , so that

M nn5M m for this path. The potential energy at the minima
is Umin5221/2a . The difference in the potential energy

from the minima at (2wm
*,0) along this path can be written

as DU15EJ$2a(cos wm21/2a)2%. The action along this
path is then

S15E
2w

m
*

w
m
*

~4M maEJ!1/2S cos wm2

1

2a D dwm , ~15!

which yields

S15\@4a~112a1g !EJ /Ec#
1/2S sin wm

*2

1

2a
wm

*D .

~16!

Now consider t2, the tunneling from unit cell to unit cell.

For example, take the integration to be from (wm
*,0) to one of

its nearest-neighbor minima at (p2wm
* ,p). We will take the

path of integration to be a straight line joining these two
points in the wm-wp plane. This path is not the optimal tra-
jectory, but the difference in the action for this straight line
path from the optimal trajectory is quadratic in the small
deviations of these two paths. The straight line path is de-

scribed by wm5wm
*1lwp, where l5(p22wm

*)/p; it has a

direction of n5lix1iy and a path length of ds

5A11l2dwp . The mass on this direction is M 25(M p

1l2M m)/(11l2). The difference of the potential energy
along this path from the minima energy is DU2 /EJ5

22 cos wp cos(wm
*1lwp)12a cos2(wm

*1lwp)11/2a . The ac-

tion is then

S25@2M 2EJ~11l2!#1/2E
0

pS DU2

EJ
D 1/2

dwp . ~17!

The integrand is not analytically integrable, but being zero at
the end points of the integration, it is well approximated by
ADU2 /EJ'(1/A2a)cos(wp2p/2). With this approximation,
S25(4M 2EJ(11l2)/a)1/2, which is

S25\AEJ

Ec
S ~11g !~11l2!

a
12l2D . ~18!

To compare the tunneling rates we would first need the
attempt frequencies in the two directions. However, we can
consider the attempt frequencies to be of the same order of
magnitude and thus t2 /t1;e2(S22S1)/\. For a50.8, we find

that S1 /(\AEJ /Ec)'0.6 and S2 /(\AEJ /Ec)'1.4. For
EJ /Ec;100, then t2 /t1;1024

!1. We are therefore able to
ignore t2, the tunneling from the unit cell to unit cell. This
means that there is little dispersion in the energy levels with
k and, consequently, with the voltage or offset charges. In
fact, using the action one can show that for a smaller than
about 0.85, t1.t2 for EJ /Ec'80. Throughout the rest of the
paper we will choose parameters so that the effects of t2 can
be ignored.

We now obtain an approximate solution for the energy
levels and tunneling matrix elements by modeling each side
of the double potential. Near the minimum at @wm ,wp#

5@wm
* ,0# , the potential looks like an anisotropic two-

dimensional harmonic oscillator. The Hamiltonian in the vi-

cinity of the minimum is approximately ~with QW g50)

H'
1

2

Pp
2

M p

1

1

2
M pvp

2wp
2
1

1

2

Pm
2

M m

1

1

2
M mvm

2 ~wm2wm
*!2

1U0 , ~19!

where

\vp

EJ

5A 4

a~11g !~EJ /Ec!
~20!

and

\vm

EJ

5A 4~4a2
21 !

a~112a1g !~EJ /Ec!
~21!

and U05221/2a . The ground state f0 of the single har-
monic well has energy e05\(vp1vm)/21U0. Let us now
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use this approximation to understand the energy levels, first
at f 51/2 and then near this point.

At f 51/2 we expect the four lowest energy levels of the
two-dimensional harmonic oscillator to be with vm,vp ,
E15e02t1 , E25e01t1 , E35e02t11\vm , and E45e0

1t11\vm . Table I compares the results and we also list the
small anharmonic corrections to the simple harmonic energy
levels. We have chosen to compare (E11E2)/2 and (E3

1E4)/2 so that the tunneling term is absent and a direct
comparison with the simple harmonic oscillators can be
made.

The agreement between this tight-binding approximation
and the numerical calculations is good. We have also in-
cluded the barrier height from one minimum to the other one
in the same unit cell.

If we estimate the attempt frequency for t1 as vm , then
we find that for the parameters in Table I the action calcula-
tion gives t151024EJ . From the full wave functions, we
estimate t15(E22E1)/2'1023EJ . This discrepancy can be
made smaller by noting that in the calculation of the action,
we could more accurately integrate from the classical turning
points in the potential rather than from the minima.55 How-
ever, for our purposes, the action expression will be suffi-
cient for qualitative discussions, and we will use the full
numerical calculations when estimating actual numbers.

So far we have estimated the energy levels and tunneling
matrix elements when f 51/2. As f is decreased from f

51/2 the potential U changes such that one well becomes
higher than the other, and the barrier height also changes.
For the qubit we are mainly interested in the lowest two
energy states of the system, so we now estimate the terms in
tight-binding expression of Eq. ~13!. By defining the zero of
energy as the average of the two lowest energy states at f

51/2, we find that the Hamiltonian for these two states is

H5S F 2t

2t 2F
D . ~22!

Here F is the energy change of each of the wells measured
with respect to the energy of the wells at the degeneracy
point; that is, F5(]U/] f )d f , where U is the potential en-
ergy. Note that since we will be operating the qubit just
below the degeneracy point f 51/2, then F,0. Also, t5t1

1Dt , where t1 is the intracell tunneling matrix element cal-
culated at the degeneracy point and Dt is the change. The

eigenvalues are l1,257AF2
1t2, where we have explicitly

assumed that F is negative and t is positive.
The eigenvectors are given as the columns in the rotation

matrix

D~u !5S cos u/2 2sin u/2

sin u/2 cos u/2
D , ~23!

where u52arctant/F. For example, at the degeneracy point,

F50, so that E57t and the eigenvectors are (1/A2,1/A2)T

and (21/A2,1/A2)T. These are just symmetric and antisym-
metric combinations of the single well wave functions, as
expected. For f slightly below 1/2, we have uFu@t , so u'0,

and the energies are E57AF2
1t2'6F . The eigenvectors

are approximately (1,0)T and (0,1)T, so that the eigenstates
are nearly localized in each well.

It is more convenient to discuss the Hamiltonian and
eigenstates in the rotated coordinate system such that HD

5DT(u)HD(u). In the rotated coordinate system, the
Hamiltonian is diagonal with

HD52AF2
1t2sz , ~24!

and the eigenenergies are E56AF2
1t2 and the eigenstates

are then simply spin-down u0&5(1,0)T and spin-up u1&
5(0,1)T vectors. In other words, no matter what the operat-
ing field is, we can always go to a diagonal representation;
but the rotation matrix must be used to relate the simple
spin-up and spin-down vectors to the linear combinations of
the wave functions in the well.

V. MANIPULATION OF THE QUBIT

As noted above, the flexibility of the design of Josephson
junction circuits affords a variety of methods for manipulat-
ing and controling the state of qubits. In this section we show
how the basic qubit circuit can be modified to allow precise
control of its quantum states. To manipulate the states of the
qubit, we need control over the properties of the qubit. For
example, control over f, the magnetic field, allows one to
change the operating point and F, the value of the energy
difference between the two states. Control over the potential
barrier height allows changing of the tunneling through t. For
example, if the operating points of F0 and t0 are changed by
DF and Dt , then the Hamiltonian in the rotated coordinate
system is

HD52AF0
2
1t0

2sz1DHD , ~25!

where with u052arctan t0 /F0,

DHD5DF~cos usz2sin usx!2Dt~sin usz1cos usx!.

~26!

The control over F can be done by changing f. The control
over t can be done by changing the barrier heights. To con-

TABLE I. A comparison of the energy levels with the approximate harmonic oscillator levels ~with

harmonic and anharmonic terms! with the numerical calculations. Here f 51/2, a50.8, g50.02, and

EJ /Ec580. Also, U051.38 and Ubar50.225 for the harmonic and anharmonic estimations. All the energies

are in units of EJ .

\vm \vp E0 (E11E2)/2 (E31E4)/2

Harmonic 0.193 0.247 1.60 1.79 1.84

Anharmonic 0.183 0.238 1.59 1.77 1.83

Numerical 0.154 0.226 1.58 1.74 1.81
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trol the barrier heights by external parameters, we replace the
third junction by a SQUID, which acts like a variable
strength junction. The modified circuit of the qubit is shown
in Fig. 6.

We now analyze this circuit since it will be used in all
subsequent discussion of the qubit. Flux quantization around
each of the two loops gives w12w21w3522p f 1 and w4

2w3522p f 2. The Josephson energy due to each junction
is EJn(12cos wn). The total Josephson energy U is then

U

EJ

5212b22 cos wp cos wm22b cos~p f a!

3cos~2p f b12wm!, ~27!

where wp5(w11w2)/2 and wm5(w12w2)/2, and also f a

5 f 2 and f b5 f 11 f 2/2. Hence we see that 2b cos(pfa) plays
the role of a in the three-junction qubit, but now this term
can be changed by changing f a5 f 2, the flux in the top
SQUID loop. Likewise, f b5 f 11 f 2/2 plays the role of f in
the three-junction qubit. The reduced Hamiltonian is then

H t5

1

2

Pp
2

M p

1

1

2

Pm
2

M m

1EJ$212b22 cos wp cos wm

22b cos~p f a!cos~2p f b12wm!%, ~28!

where M p5(F0/2p)22C(11g) and M m5(F0/2p)22C(1
14b1g).

To manipulate the parameters in the Hamiltonian let the
magnetic fields change very slightly away from the some

degeneracy point of f 1
* and f 2

* to a new operating point f 1
0

5 f 1
*1e1 and f 2

0
5 f 2

*1e2. Then F changes from zero to

F05r1e11r2e2 and t changes to t05t11s1e11s2e2, where
r i and s i are constants and t1 is the tunneling matrix element
at the degeneracy point as found in the previous section. We
take the operating point to be effectively in the regime where
f ,1/2 in Fig. 4, so that e1,2,0. Hence, F0,0. Also, t0 is

assumed to remain positive. In the new rotated frame with
u052arctan t0 /F0, the Hamiltonian given by Eq. ~24! is

HD52AF0
2
1t0

2sz .

Away from this new operating point, let f 15 f 1
0
1d1 and

f 25 f 2
0
1d2. In the operation of the qubit, ud iu!ue iu and d i

usually will have a sinusoidal time dependence. Then F

5F01r1d11r2d2 and t5t01s1d11s2d2, so that DF

5r1d11r2d2 and Dt5s1d11s2d2. Then the Hamiltonian in
the rotated system with u052arctan t0 /F0 is

HD52AF0
2
1t0

2sz1DHD , ~29!

where

DHD5~r1d11r2d2!~cos u0sz2sin u0sx!2~s1d11s2d2!

3~sin u0sz1cos u0sx!. ~30!

Hence we see that changes in the magnetic field from the

operating point of f 1
0 and f 2

0 cause both sz and sx types of

interactions.
To find the magnitude of these changes, we calculate the

coefficients of change (r1 , r2 , s1 and s2) most simply at the
degeneracy point where e i50; that is, at the degeneracy

point f i
0
5 f i

* . We choose the degeneracy point for the four-

junction qubit at f 1
*51/3 and f 2

*51/3. This results in clas-

sically doubly degenerate levels. In fact, any choice that sat-

isfies 2 f 1
*1 f 2

*51 when the classical energy U has two

minima will also result in doubly degenerate levels. For ex-

ample f 1
*51/2 and f 2

*50 is also a possible and convenient

choice. However, we prefer f 1
*5 f 2

*51/3 for the following

reason. The change in potential energy with f a gives

]U

] f a

522pb sin p f a cos 2wm
0 ,

]2U

] f a
2

522p2b cos p f a cos 2wm
0 . ~31!

The first order terms vanishes if f 2
0
50, resulting in the po-

tential barrier always decreasing with changes in f 2. On the

other hand, if f 2
0
51/3, then the barrier height can be made to

increase and decrease with changes in f 2, thus allowing more
control of the qubit.

Now the coefficients of change (r1 , r2 , s1, and s2) can be
estimated both from the numerical calculations and from the
tight-binding model as shown in Appendix B. We find that at
the degeneracy point of f 15 f 251/3,

r1

EJ

52pA121/~4b2!. ~32!

For our example with b50.8, we have r1 /EJ54.90. Esti-
mates obtained from the numerical calculations done by
changing f 1 and f 2 give r1 /EJ54.8 and r2 /EJ52.4 in good
agreement with Eq. ~B6! in Appendix B.

Likewise, from Appendix B we have that s150 and s2

5htAEJ /Ec, where h is of the order of unity. For the op-
erating point we find h;3.5. Therefore, changes in H due to
changes in t1 go like sx . These tight-binding estimates for
b50.8 give s150 and s2 /EJ50.03. Full numerical calcula-
tions for our example give s150 and s2 /EJ50.20. The

FIG. 6. The four-junction qubit. Two junctions form a SQUID

loop and have Josephson energies and capacitance b times larger

than the other junctions 1 and 2, which both have Josephson ener-

gies EJ and capacitance C. The nodes A and B represent the super-

conducting islands that are coupled by gate capacitors Cg5gC to

gate voltages VA and VB . The arrows define the direction of the

currents. The flux is out of the page.
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agreement with the tight-binding results are good, although
the tight-binding underestimates s2 for these parameters.

In summary, from the degeneracy point of f 1
*5 f 2

*51/3,

let the operating point be f 1
0
5 f 1

*1e1 and f 2
0
5 f 2

*1e2, so

that F05r1(e1e2/2) and t05t11s2e2. Now consider the

changes in field about the operating point such that f 15 f 1
*

1d1 and f 25 f 2
*1d2. In the rotated frame where u05

2arctant0 /F0, the Hamiltonian is

HD52AF0
2
1t0

2sz1DHD , ~33!

where

DHD5r1S d11

d2

2
D ~cos u0sz2sin u0sx!

2s2d2~sin u0sz1cos u0sx!, ~34!

and r1 /EJ52pA121/(4b2) and s25ht0AEJ /Ec.
A typical design for a qubit will have EJ /Ec580, b

50.8, g50.02. We find from numerical calculations that
t0'0.005EJ and h'3.5, which agree well with our tight-
binding estimates. We operate at f 15 f 250.33 so that e1

5e2521/300. ~This is equivalent to operating the three-
junction qubit at f 5 f 11 f 2/250.495 in Fig. 4.! Writing the
energies as E i5hn i , we have taken typical values of EJ

5200 GHz and Ec52.5 GHz, and we find that t0

51 GHz and F055 GHz ~which gives a splitting between
the two states of about 10 GHz). The Hamiltonian is found
to be

HD

EJ

520.025sz1~4.0d112.1d2!sz2~0.46d110.41d2!sx .

~35!

The numerical values used are from numerical calculations.
These values agree well with the estimates used in Eqs. ~33!
and ~34! for the level splitting and the terms proportional to
r1; the terms proportional to s2 match to about 50%, due to
the more sensitive nature of estimating the tunneling terms.

The terms containing sx can be used to produce Rabi
oscillations between the two states by modulating d1 and d2

with microwave pulses of the frequency of the level splitting
of 2F0510 GHz. One could arrange the values of d1 and d2

to make the time-varying sz term vanish. Then the operation
of the qubit would be isomorphic to the NMR qubit. How-
ever, our simulations show that such an arrangement couples
higher-energy levels and invalidates the simple two-state ap-
proximation. This is due to the large matrix element between
the ground state and the second excited state given by the
change in potential due to varying d2. ~It is interesting to
note that similar coupling to higher levels occurs in qubits
based on the rf SQUID and on simple charge states.! We
propose to manipulate the qubit by varying d1, which causes
a Rabi oscillation through the sx term as well as a strong
modulation of the Larmor precession through the time vary-
ing sz term. Because the Rabi frequency is much smaller
than the Larmor frequency, the precession causes no problem
for manipulating the qubit. For d150.001 and d250, the
Rabi frequency is about 90 MHz. We note that this mode of
operation is also possible with the three-junction qubit. Of
course, it will not be possible to completely eliminate the

deleterious effects of the d2 coupling, but the effect of this
coupling can be greatly reduced if d2 is restricted below
0.0001.

The varying magnetic fields d1 and d2 can be applied
locally to the qubit by using a control line to inductively
couple to the qubit. Moreover, if the the control line is driven
by a Josephson oscillator, then the coupling circuit could be
fabricated on the same chip.

VI. INTERACTION BETWEEN QUBITS

A variety of methods is available for coupling qubits to-
gether. As noted in Refs. 13 and 14, essentially any interac-
tion between qubits, combined with the ability to manipulate
qubits individually, suffices to construct a universal quantum
logic gate. Here we present two methods for coupling qubits
inductively as shown in Fig. 7. The inductive coupling could
either be permanent, or could be turned on and off at will by
inserting Josephson junctions in the coupling loops.

Figure 7~a! shows one way of coupling two identical qu-
bits. The lower portions of each qubit ~the loops that contain
the circulating currents! are inductively coupled.

To a first approximation we model the coupling as chang-
ing the flux in each of the two lower rings only through the
mutual inductive coupling. ~We ignore the self-inductance,
which can easily be included.! The effective frustration in the

lower loop of A, f̃ 1
A , is changed over the applied frustration

f 1
A to f̃ 1

A
5 f 1

A
1MI1

B/F0. Here the current in the lower loop

of B is I1
B . Similarly, f̃ 1

B
5 f 1

B
1MI1

A/F0. The coupled Hamil-

tonian is

HAB5HA~ f̃ 1
A!1HB~ f̃ 1

B!1MI1
AI1

B , ~36!

which is the sum of the Hamiltonians for each system plus a
term due to the mutual inductive coupling.

The inductively coupled contribution to the frustration is
estimated to be of the order of 1023F0 which is much
smaller than the applied frustration. Since each persistent
current will inductively couple into the other qubit, this will
produce changes in the Hamiltonian of the sz and sx type
and these changes will be proportional to the sign of the
circulating currents in the qubit. Hence, we expect the cou-
pling to be described by an interaction Hamiltonian of the
form,

HAB
int

5k1sz
Asz

B
1k2sz

Asx
B
11k3sx

Asz
B . ~37!

Hence we see that this interaction has both sz
Asz

B and sz
Asx

B

types of coupling. We have estimated magnitude of k i

'0.01EJ .
As Eq. ~35! shows, the inductive coupling between the

qubits can be made to be a substantial fraction of the qubit
Larmor frequency. This is an attractive feature, as the cou-
pling between two qubits sets the speed limit for how rapidly
two qubit quantum logic operations can be performed in
principle. In practice, it may be desirable to sacrifice speed of
operation for enhanced accuracy: in this case, the inductive
coupling could be designed to be smaller by decreasing the
overlap of the inductive loops with the circuits.

Coupling between qubits is similar to the coupling we
envision between the qubit and the measurement circuits
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containing SQUID-like detectors. In its usual configuration,
the SQUID is biased in the voltage state that produces a
voltage related to the flux through its detector loop. How-
ever, such a strong, continuous measurement on a qubit
would destroy the superposition of states in the qubit and
project out only one of the states. This problem can be cir-
cumvented by designing a SQUID such that it is current
biased in the superconducting state and hence is not measur-
ing the flux in its detector loop. When one needs to measure
the qubit, the SQUID can be switched to its voltage state, for
example, by applying a pulse of bias. The coupling from
mutual inductance between the SQUID and the qubit will
also have to be controlled. Other measurement schemes us-
ing SQUID’s that are weakly coupled to the macroscopically
coherent system have been proposed.56

VII. COMPUTING WITH THE PC QUBIT

All the ingredients for quantum computation are now
available. We have qubits that can be addressed, manipu-
lated, coupled to each other, and read out. As will be indi-
cated below, the particular qubits that we have chosen are
well insulated from their environment as well. The flexibility
of design for collections of qubits now allows a wide variety
of overall designs for quantum computers constructed from
such qubits.

Before discussing various superconducting quantum com-
puter architectures, let us review some basic ideas about
quantum logic and see how to implement quantum logic us-
ing our superconducting qubits. A quantum logic gate is a
unitary operation on one or more qubits. Quantum computa-
tions are typically accomplished by building up quantum
logic circuits out of many quantum logic gates. Just as in the
case of classical computers, certain sets of quantum logic
gates are universal in the sense that any quantum computa-

tion can be performed by wiring together members of the set.
In fact, almost any interaction between two or more qubits is
universal;13,14 but a convenient universal set of quantum
logic gates widely used in the design of quantum algorithms
consists of single qubit rotations and the quantum controlled-
NOT gate, or CNOT.57

A. One-qubit rotation

An arbitrary one qubit rotation can be written as e2ist

5cos t2i sin ts for some Pauli matrix s5asx1bsy1csz ,
where a2

1b2
1c2

51. There are many ways of accomplish-
ing a one qubit rotation: the ability to rotate the qubit by a
precise amount around any two orthogonal axes suffices.
Pursuing the analog with NMR, we choose a method that
involves applying an oscillatory field applied at the qubit’s
resonant frequency to rotate the qubit.

The Hamiltonian for a single qubit ~A! can be gotten from
Eq. ~35!. Here we assume EJ5200 GHz, d150.001 cos vt

and d250, and the level splitting is v510 GHz. Then, the
Hamiltonian is

HD~GHz!55sz10.80~cos vt !sz20.09~cos vt !sx .
~38!

The Rabi frequency is 90 MHz so that a p pulse would be
about 20 nsec.

B. Two-qubit controlled NOT

A controlled NOT is a two qubit quantum logic gate that
flips the value of the second qubit if the value of the first
qubit is 1. That is, it takes u00&→u00&, u01&→u01&, u10&
→u11& , and u11&→u10&. A controlled NOT can be combined
with single qubit rotations to give arbitrary quantum logic
operations. A controlled NOT can be straightforwardly imple-

FIG. 7. Coupling of qubits A and B through

the mutual inductance between ~a! the lower re-

gions of both, and ~b! the lower region of A and

the upper region of B.
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mented in the superconducting qubit system by exploiting
the analogy with NMR. Suppose that two qubits A and B

have been constructed with an inductive coupling between
their lower loops as in the first part of the previous section.
Then the level splitting of qubit B depends on the state of
qubit A, with values DEA ,0 for A in the u0& state and DEA ,1

for A in the u1& state. When a resonant pulse corresponding
of DEA ,1 /\ is applied to qubit B, it will only change if qubit
A is in its u1& state. Since the coupling between the qubits is
considerably larger than the Rabi frequency, the amount of
time that it takes to perform the controlled NOT operation is
equal to the amount of time it takes to perform a p rotation
of a single qubit.

So the basic quantum logic operations can be performed
on our superconducting qubits in a straightforward fashion.
Accordingly, it is possible in principle to wire groups of
qubits together to construct a quantum computer. A variety
of architectures for quantum computers exist, usually con-
sisting of regular arrays of quantum systems that can be
made to interact either with their neighbors or with a quan-
tum ‘‘bus’’ such as a cavity photon field or a phonon field in
an ion trap that communicates equally with all the systems in
the array. Because of the flexibility inherent in laying out the
integrated Josephson junction circuit, a wide variety of archi-
tectures is possible. A particularly simple architecture for a
quantum computer can be based on the proposal of Lloyd1,5

for arrays of quantum systems such as spins or quantum dots.

C. Linear chain of qubits

Consider a linear array of qubits ABABABAB••• . Let
the bottom of each qubit be inductively coupled to the top of
the neighbor to the left. Also let each type of qubit, A and B,
have a slightly different Josephson energy. Each qubit also
has the area of the top loop which, is half that of the bottom
loop. In the absence of the driving electromagnetic fluxes

~the d i
j), the Hamiltonian for the system can be generalized

to be written as

H52\(
k

~vksk
z
12Jk ,k11sk

zsk11
z !, ~39!

where \vk5AFk
2
1tk

2 and Jk ,k115kk ,k11(r1,k1r1,k11)/2.

This problem then maps on the linear chain of nuclear spins

that was shown by Lloyd5 to be a universal quantum com-

puter. The coupling needed to perform p/2 pulses is pro-

vided by the terms containing the d i
j’s. The nice feature of

this linear chain is that separate control lines for ac fields are
not needed. The whole linear array can sit in a microwave
cavity and be pulsed at the desired frequency. ~The dc bias
fields to ensure f 15 f 251/3 will require at least two dc con-
trol lines.! The frequencies needed are around 10–25 GHz
with intervals of 1 GHz ~and with resolution of about 0.1
GHz!. We could make these numbers larger or smaller if
needed.

Details of computing with this are given in various refer-
ences, see, for examples, Ref. 5 and Chap. 20 of Ref. 58.

D. Superconducting quantum integrated circuits

There is no reason why the inductive loops cannot couple
qubits that are far apart. In addition, a single qubit can be
coupled to several other qubits as shown in Fig. 8.

This arrangement requires separate ac control lines for
each of the qubits, which then demands localized on-chip
oscillators. One can build up essentially arbitrary integrated
circuits of superconducting qubits by this method. This flex-
ibility in the construction of quantum computer architectures
is one of the benefits of using superconducting Josephson
junction circuits to perform quantum computation. The quan-
tum integrated circuit could be set up to provide a number of
useful features. For example,59 one might be able to design
the circuit and interactions in such a way that it automati-
cally implements an intrinsically fault-tolerant quantum
computer architecture such as those proposed by Kitaev60

and Preskill.61 In addition, since the circuits are paralleliz-
able in that different quantum logic operations can be per-
formed in different places simultaneously, the circuit could
be designed to provide the maximum possible parallelization
of a particular problem such as factoring,62 database
search,63 or computing a discrete quantum Fourier
transform.62,64

FIG. 8. A method for coupling a single qubit

to other qubits.
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VIII. DECOHERENCE

We have shown how superconducting circuits can be used

to construct qubits and quantum logic circuits. These super-

conducting qubits have been idealized in the sense that we

have ignored the effects of manufacturing variability, noise,

and decoherence. Manufacturing variability can be compen-

sated for as discussed above: before performing any quantum

computations, the properties of individual qubits can be mea-

sured, recorded in a look-up table in a conventional com-

puter, and used either to supply compensating calibration

fields or to alter the frequencies with which control pulses

are supplied to the qubits.

From the point of view of the ultimate performance of a

superconducting computer, a more pressing issue is that of

environmentally induced noise and decoherence. In real sys-

tems the performance of a qubit will be limited by dissipa-

tive mechanisms that cause the quantum state to decohere in
time td . The ‘‘quality factor’’ for a qubit is the decoherence
time divided by the amount of time it takes to perform fun-
damental quantum logic operations.3 The quality factor gives
the number of quantum logic operations that can be per-
formed before the computation decoheres, and should be 104

or greater for the quantum computer to be able to perform
arbitrarily long quantum computations by the use of error-
correction techniques.65–69

Decoherence can be due to ‘‘internal’’ dissipation ~quasi-
particle resistance!, or coupling to an environmental degree
of freedom. It is also possible to couple to an environmental
degree of freedom, without a dissipative mechanism, that
will still lead to decoherence.70

We will now discuss some of the major sources of deco-
herence.

Normal state quasiparticles can cause dissipation and en-
ergy relaxation at finite temperatures in Josephson junctions.
However, mesoscopic aluminum junctions have been shown
to have the BCS temperature dependence for the density of
quasiparticles. At low temperatures this density is exponen-
tially small,71 so quasiparticle tunneling will be strongly sup-
pressed at low temperatures and at low voltages, as was seen
in a system with multiple superconducting islands in Ref. 72.
We estimate a lower bound of 104 for the quality factor,
given a subgap resistance of 1010V .71

The qubit can also decohere by spontaneous emission of
photons. We estimate this effect for the case of emission into
free space. From the example considered below we conclude
that it is advantageous to have the typical size of the system
~the dipole moment dimensions! much smaller than the radi-
ated wavelength, so that the qubit is a maximally inefficient
antenna.

We start with a classical expression for the magnetic di-
pole radiation from an oscillating current in the qubit loop,
and use it for estimating the emission rate of photons. ~For
the treatment of a more general problem of damping by a
dissipative electromagnetic environment, see Ref. 73.! For a
loop of radius R with an oscillating current of the amplitude

of Im , the radiated power is Pm5
4
3 p5Im

2 Z0(R/l)4. Here Z0

is the vacuum impedance and l5c/n is the wavelength of
radiation at the oscillation frequency n. The radiation is
small when the qubit size R is much smaller than l. A typical

rate for photon emission is tm
21

5Pm/hn , which gives an es-

timate of the decoherence time of tm

53hc4/(4p5Im
2 Z0R4n3). Here the frequency is taken to be

the Larmor frequency ~other characteristic frequencies such

as the Rabi frequency are even smaller!. For our qubit R

'1 mm, n'10 GHz, and l53 cm. The amplitude Im is the
oscillating part of ^C(t)uIC sinw1uC(t)&.^C1uIC sinw1uC2&
51 nA, where C(t) is an arbitrary superposition of the two
eigenstates C1,2. Note that Im!IC since we operate the qu-
bit away from the degeneracy point, so that the eigenstates
strongly overlap with the pure Josephson current states.

Using these numbers we find that tm;107 sec, so that the
radiation is not a serious source of decoherence. We checked
that dipole radiation from electric dipole moments is even
weaker for our system. However, it should be noted that
some proposals for using rf SQUID’s for qubits involve os-
cillating currents of the order of 1 mA and loops of the order
of 10 mm. These rf SQUID’s have tm'1023 sec, which is
substantially lower than for our qubit which can be made
much smaller and operate at much less current.

Inhomogeneity in the magnetic flux distribution can also
be a source of decoherence. This is similar to T2 in NMR
systems. We estimate this for our system by calculating the
amount of flux a 1 mm31 mm wire carrying 100 nA of
current induces in a loop of the same size which has its
center 3 mm away. We find that the induced frustration is
about d f 51027. If this is taken as an estimate of the typical
variance of the frustration that difference qubits experience,
then there will be a spread of operating frequencies among
the loops. An estimate of td is the time for the extremes of
this frequency differ by p . This results in td'p/(2r1d f ),
where we have taken the larger value from Eq. ~35!. With
r1 /\'600 GHz, we find td'1.5 msec. The dipole-dipole
interaction between qubits gives a time of the same order.

We have also estimated the magnetic coupling between
the dipole moment of the current loops and the magnetic
moments of the aluminum nuclei in the wire. At low tem-
peratures where the quasiparticles are frozen out, the deco-
herence time for a single qubit is of the order of T1, which is
exponentially large in the low-temperature superconducting
state. For an ensemble of qubits, the decoherence time may
be of the order of milliseconds due to the different configu-
rations of nuclear spins in the different qubits. However, this
effect may be reduced by aligning the spins or by applying
compensating pulse sequences.

Coupling to Ohmic dissipation in the environment has
been modeled for superconducting qubits operating in the
charging regime.19 In this case, the source of decoherence
can be made sufficiently small such that the quality factor is
large enough. Similar calculations for qubits in the supercon-
ducting regime of circulating currents have not yet been
done. Experiments to measure this decoherence time in our
circuits are underway. In practice electromagnetic coupling
to the normal state ground plane can limit coherence;35 how-
ever, a superconducting ground plane can greatly reduce this
coupling.

Other possible sources of decoherence are the effects of
the measuring circuit, the arrangement and stability of the
control lines for the magnetic fields, and the ac dielectric
losses in the substrate at microwave frequencies. These and
other source of decoherence will have to be estimated in a
real circuit environment and measured.
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Taking 0.1 msec as a lower bound on the decoherence
time and 10 nsec as a switching time, we find that the qual-
ity factor is of the order of 104. Furthermore, if the proper set
of topological excitations is used to store information, the
decoherence time for quantum computation can be made
substantially longer than the minimum decoherence time for
an individual junction circuit.60

IX. SUMMARY

In this paper we have discussed a superconducting qubit
that has circulating currents of opposite sign as its two logic
states. The circuit consist of three nanoscale Josephson junc-
tions connected in a superconducting loop and controlled by
magnetic fields. One of the three junctions is a variable junc-
tion made as a SQUID loop. This qubit has quantum states
which are equivalent to the states of a particle with an aniso-
tropic mass moving in an two-dimensional periodic poten-
tial. Numerical calculations of the quantum states of the qu-
bit have been made as well as physical estimates from a
tight-binding approximation. The advantages of this qubit is
that it can be made insensitive to background charges in the
substrate, the flux in the two states can be detected, and the
states can be manipulated with magnetic fields. Coupled sys-
tems of qubits are also discussed as well as sources of deco-
herence.
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APPENDIX A: CLASSICAL STABILITY

In this appendix we find the eigenvalues of the stability
matrix for the three-junction potential and the range of frus-
tration around f 51/2, where there are two stable classical
solutions with opposite circulating currents.

The potential energy of the Josephson energy of the three-
junction qubit is given by Eq. ~1!,

Ũ5

U

EJ

521a2cos w12cos w22a cos~2p f 1w12w2!.

~A1!

We are interested in minimum energy phase configurations;
that is, stable solutions of the following system of equations:

]Ũ

]w1

5sin w11a sin~2p f 1w12w2!50,

]Ũ

]w2

5sin w22a sin~2p f 1w12w2!50. ~A2!

The solutions (w1
* ,w2

*) comply with sin w1
*52sin w2

*

5sin w*. Then

sin w*52a sin~2p f 12w*!. ~A3!

In order to check the character of the solution we compute

the eigenvalues of the stability matrix, ]2Ũ/]w i]w j , where

]2Ũ

]w1
2

5cos w11a cos~2p f 1w12w2!,

]2Ũ

]w2
2

5cos w21a cos~2p f 1w12w2!, ~A4!

]2Ũ

]w1]w2

52a cos~2p f 1w12w2!.

For the states with cos w1
*5cos w2

*5cos w* ~these are the

ones we are interested here!, the eigenvalues are

l15cos w*,

l25cos w*12a cos~2p f 12w*!. ~A5!

When f Þ0,1/2 we have used relaxation methods for com-
puting w*. Both eigenvalues are greater than zero, which
assures the minimum energy condition. Figure 2 shows the
energy of the minimum energy configurations for a50.8.
We find that there exists a region of values of the field for
which two different minimum energy phase configurations
coexist.

Next we calculate the critical values of the external field
for this coexistence. We can restrict our analysis to the re-
gion around f 50.5; that is, @0.52 f c,0.51 f c# ~where f c

>0). These extrema values of the field correspond to solu-
tions for which one of the eigenvalues is positive and the
other equals zero. The inset of Fig. 2 shows f c(a).

We first calculate f c when a>1.0. The first eigenvalue
that equals zero is l1. Then at f 50.56 f c , l150 which
implies w*57p/2 mod 2p ~here and below we associate
the sign in f c with the sign of the phase in order to have f c

>0). Then, going to Eq. ~A3! we get

sin~7p/2!52a sin~p62p f c7p !,

6156a sin~2p f c! ~A6!

and

f c5

1

2p
arcsin

1

a
. ~A7!

We now calculate f c when 0.5<a<1.0. Now the first
eigenvalue to equal zero is l2, and we have to solve

sin w*52a sin~2p f 12w*!5a sin~62p f c12w*!,

cos w*522a cos~2p f 12w*!52a cos~62p f c12w*!.

~A8!

We will use D562p f 12w*, so that
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15sin2 w*1cos2 w*

5a2 sin2 D14a2 cos2 D

5a2
13a2 cos2 D . ~A9!

Then

cos D5A12a2

3a2
, D57arccosSA12a2

3a2 D
cos w*52A12a2

3
w*57arccosS 2A12a2

3
D .

~A10!

Here we have followed the solution corresponding to
cos(w*)>0. Finally we have the solution for f c (D5

62p f c12w*),

f c5

1

2p F 2arccosS 2A12a2

3
D 2arccosSA12a2

3a2 D G .

~A11!

APPENDIX B: TIGHT-BINDING ESTIMATE

OF COEFFICIENTS OF CHANGE

Recall that f a5 f 2 and f b5 f 11 f 2/2. Assume that we
change f a and f b independently. The minima in U occur at

wp
*50 and wm

*56wm
0 . Therefore, the energy due to the po-

tential energy is for each of the minimum

U

EJ

5212b22 cos wm
*22bcos~p f a!cos~2p f b12wm

*!.

~B1!

The change in the magnetic flux f a by d f a causes a change
in U of

]U

] f a

d f a522pb sin p f a cos 2wm
0 d f a , ~B2!

which is the same for the minimum at 6wm
0 . Whereas, the

flux f b causes a change

]U

] f b

d f b574pb cos p f a sin 2wm
0 d f b , ~B3!

which has opposite signs for the two minimum. Therefore,

DU

EJ

522pb sin p f a cos 2wm
0 d f a1

24pb cos p f a sin 2wm
0 d f bsz . ~B4!

Recall that DF in the change is the energy between the
two states when there is no tunneling. This is the second
term in Eq. ~B4!, since the first term is only a constant for
both levels, so that

DF

EJ

524pb cos p f a sin 2wm
0 d f bsz . ~B5!

For this change DF5r1d11r2d2; and since d f b5d11d2/2,
we have r152r2 and

r1

EJ

54pb cos p f a sin 2wm
0 . ~B6!

We have found previously that cos wm
0

51/2a where a
52b cos pfa so that with f a51/3,

r1

EJ

52pA121/~4b2!. ~B7!

To find the changes in Dt , we see that the changes in t1

5(\vm/2p)e2S1 /\ are dominated by changes in S1, so that

Dt52

t

\ (
i5a ,b

]S1

] f i

d f i . ~B8!

The changes in f b do not change S1 to first order. Hence,
changes in t come from changes in f a5 f 2 only, so that s1

50. But changes in f a are equivalent to changes in a in the
three-junction problem, so we can use Eqs. ~B8! and ~16!
and the fact that 2b cos(pfa) plays the role of a to find

Dt5
pt

\

]S1

]a
~2b sin p f a!d f a . ~B9!

This allows us to write s25htAEJ /Ec, where h is of the
order of unity. For the operating point we find h;3.5.
Therefore, changes in H due to changes in t1 go like sx .
These tight-binding estimates for b50.8 and f a51/3 give
s150 and s250.03.
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