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Consideration is given to thermodynamical properties of a three-dimensional Bose-condensate of translation-invariant bipolarons
(TI-bipolarons). �e critical temperature of transition, energy, heat capacity, and the transition heat of ideal TI-bipolaron gas are
calculated. �e results obtained are used to explain experiments on high-temperature superconductors.

1. Introduction

�e theory of superconductivity is one of the �nest and oldest
subject matters of condensed matter physics which involves
bothmacroscopic andmicroscopic theories as well as deriva-
tion ofmacroscopic equations of the theory frommicroscopic
description [1]. In this sense the theory was thought to be
basically completed and its further development was to have
been concerned with further details and consideration of
various special cases.

�e situation changed when the high-temperature super-
conductivity (HTSC) was discovered [2]. Surprisingly, it
was found that, in oxide ceramics, the correlation length is
some orders of magnitude less than that in traditional metal
superconductors while the ratio of the energy gap to the
temperature of superconducting transition is much greater
[3]. �e current status of research can be found in books and
reviews [4–18].

Today themain problem in this �eld is to develop amicro-
scopic theory capable of explaining experimental facts which
cannot be accounted for by the standard BCS theory. One
might expect that development of such a theory would not
a�ect the macroscopic theory based on phenomenological
approach.

With all the variety of modern versions of HTSC micro-
scopic descriptions: phonon, plasmon, spin, exciton, and
other mechanisms, the central point of constructing the
microscopic theory is the e�ect of electron pairing (Cooper

e�ect). In what follows such a bosonization of electrons pro-
vides the basis for the description of their superconducting
condensate.

�e phenomenon of pairing, in a broad sense, is consid-
ered as arising of bielectron states, while, in a narrow sense, if
the description is based on phonon mechanism, it is treated
as formation of bipolaron states [19]. For a long time this
view was hindered by a large correlation length or the size
of Cooper pairs in BCS theory. For the same reason, over a
long period, the superconductivity was not viewed as a boson
condensate (see footnote at p. 1177 in [20]). A signi�cant
reason of this lack of understanding was a standard idea that
bipolarons are very compact particles.

�e most dramatic illustration is the use of the small-
radius bipolaron (SRB) theory to describe HTSC [10, 21, 22].
It implies that a stable bound bipolaron state is formed at
one node of the lattice and subsequently such small-radius
bipolarons are considered as a gas of charged bosons (as a
variant individual SRP are formed and then are considered
within BCS of creation of the bosonic states). Despite the
elegance of such a picture, its actual realization for HTSC
comes up against inextricable diculties caused by impos-
sibility to meet antagonistic requirements. On the one hand,
the constant of electron-phonon interaction (EPI) should be
large for bipolaron states of small radius to form.On the other
hand, it should be small for the bipolaron mass (on which
the superconducting temperature depends [23–28]) to be
small too. Obviously, the HTSC theory based on SRP concept

Hindawi
Advances in Condensed Matter Physics
Volume 2018, Article ID 1380986, 12 pages
https://doi.org/10.1155/2018/1380986

http://orcid.org/0000-0001-9224-769X
https://doi.org/10.1155/2018/1380986


2 Advances in Condensed Matter Physics

which uses any other (nonphonon) interaction mechanism
mentioned above will run into the same problems.

Alternatively, in describingHTSCone can believe that the
role of a fundamental charged boson particle can be played by
large-radius bipolarons (LRB) [30–34]. Historically just this
assumption was made by Ogg [30] and Schafroth [35] long
before the development of the SRP theory. When viewing
Cooper pairs as a peculiar kind of large-radius bipolaron
states, one might expect that the LRP theory should be used
to solve the HTSC problem.

As pointed out above, the main obstacle to consistent
use of the LRP theory for explaining high-temperature
superconductivitywas an idea that electron pairs are localized
in a small region, the constant of electron-phonon coupling
should be large, and, as a consequence, the e�ective mass of
electron pairs should be large.

In the light of the latest advances in the theory of
LRP and LRB, namely, in view of development of an all-
new concept of delocalized polaron and bipolaron states,
translation-invariant polarons (TI-polarons) and bipolarons
(TI-bipolarons) [36–42], it seems appropriate to consider
their role in the HTSC theory in a new angle.

We recall the main results of the theory of TI-polarons
and bipolarons obtained in [36–42]. Notice that considera-
tion of just electron-phonon interaction is not essential for
the theory and can be generalized to any type of interaction.

In what follows we will deal only with the main points of
the theory important for the HTSC theory. �e main result
of papers [36–42] is construction of delocalized polaron
and bipolaron states in the limit of strong electron-phonon
interaction. �e theory of TI-bipolarons is based on the
theory of TI-polarons [36, 37] and retains the validity of
basic statements proved for TI-polarons. �e chief of them
is the theorem of analytic properties of the ground state
of a TI-polaron (accordingly TI-bipolaron) depending on
the constant of electron-phonon interaction �. �e main
implication of this statement is the absence of a critical value
of the EPI constant ��, below which the bipolaron state
becomes impossible since it decays into independent polaron
states. In other words, if there exists a value of ��, at which the
TI-state becomes energetically disadvantageous with respect
to its decay into individual polarons, then nothing occurs
at this point but for � < �� and the state becomes
metastable. Hence, over the whole range of � variationwe can
consider TI-polarons as charged bosons capable of forming a
superconducting condensate.

Another important property of TI-bipolarons is the
possibility of changing the correlation length over the whole
range of [0,∞] depending on the Hamiltonian parameters
[39]. Hence, it can be both much larger (as is the case in
metals) and much less than the characteristic size between
the electrons in an electron gas (as happens with ceramics).

A detailed description of the theory of TI-polarons and
bipolarons and description of their various properties is given
in review [42].

An outstandingly important property of TI-polarons and
bipolarons is the availability of an energy gap between their
ground and excited states (Section 3).

�e above-indicated characteristics can be used to
develop a microscopic HTSC theory on the basis of TI-
bipolarons.

�e paper is arranged as follows. In Section 2 we take
Pekar-Froehlich Hamiltonian for a bipolaron as an initial
Hamiltonian. �e results of three canonical transformations,
such as Heisenberg transformation, Lee-Low-Pines trans-
formation, and that of Bogolyubov-Tyablikov are brie�y
outlined. Equations determining the TI-bipolaron spectrum
are derived.

In Section 3 we analyze solutions of the equations for the
TI-bipolaron spectrum. It is shown that the spectrum has a
gap separating the ground state of a TI-bipolaron from its
excited states which form a quasicontinuous spectrum. �e
concept of an ideal gas of TI-bipolarons is substantiated.

With the use of the spectrum obtained, in Section 4,
we consider thermodynamic characteristics of an ideal gas
of TI-bipolarons. For various values of the parameters,
namely, phonon frequencies, we calculate the values of critical
temperatures of Bose condensation, latent heat of transition
into the condensed state, heat capacity, and heat capacity
jumps at the point of transition.

In Section 5 we discuss the nature of current states
in Bose-condensate of TI-bipolarons. It is shown that the
transition from a currentless state to a current one is sharp.

In Section 6 the results obtained are compared with the
experiment.

In Section 7 we consider the problems of expanding the
theory which would enable one to make a more detailed
comparison with experimental data on HTSC materials.

In Section 8 we sum up the results obtained.

2. Pekar-Froehlich Hamiltonian:
Canonical Transformations

Following [38–42], in describing bipolarons, we will proceed
from Pekar-Froehlich Hamiltonian:

� = − ℏ22�∗Δ �1 − ℏ22�∗Δ �2 +∑
�
ℏ	0�
+� 
�

+ � (�→� 1 − �→� 2)
+ ∑

�
(�����→��→� 1
� + �����→��→� 2
� + �.�.) ,

� (�→� 1 − �→� 2) = �2�∞ �→� 1 − �→� 2 ,

(1)

where�→� 1�→� 2 are coordinates of the �rst and second electrons,
respectively; 
+� , 
� are operators of the birth and annihilation
of the �eld quanta with energy ℏ	0� = ℏ	0;�∗ is the electron
e�ective mass; the quantity � describes Coulomb repulsion
between the electrons;�� is the function of the wave vector �:

�� = ��√ 2�ℏ	0�̃� = ℏ	0��1/2 (4��� )1/2 ,
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� = (2�∗	0ℏ )1/2 , � = 12 �2�ℏ	0�̃ , �̃−1 = �−1∞ − �−10 ,
(2)

where � is the electron charge; �∞ and �0 are high-frequency
and static dielectric permittivities; � is the constant of
electron-phonon interaction; � is the systems volume.

In the system of the center of mass Hamiltonian (1) takes
the form:

� = − ℏ22�

Δ� − ℏ22 
Δ � +∑

�
ℏ	0�
+� 
� + � (�→� )

+∑
�
2�� cos �→��→�2 (
����→��→� + �.�.) ,

�→! = (�→� 1 + �→� 2)2 , �→� = �→� 1 − �→� 2, �
 = 2�∗,  
 = �∗

2 .
(3)

In what follows in this section we will believe ℏ = 1, 	0� = 1,�
 = 1 (accordingly  
 = 1/4).
�e coordinates of the center of mass

�→! can be excluded
from Hamiltonian (3) using Heisenberg’s canonical transfor-
mation [43]:

"1 = exp{−$∑
�

�→�
+� 
�}�→!,
"−11 
�"1 = 
��−��→��→� ,
"−11 
+� "1 = 
+� ���→��→� .

(4)

Accordingly, the transformed Hamiltonian will be written as

�̃ = "−11 �"1
= −2Δ � + � (�→� ) + ∑

�

+� 
�

+∑
�
2�� cos �→��→�2 (
� + 
+� ) + 12 (∑�

�→�
+� 
�)
2 .

(5)

From (5) it follows that the exact solution of the bipolaron
function is determined by thewave function-(�), which con-
tains only relative coordinates � and, therefore, is translation-
invariant.

Averaging of �̃ over -(�) yields the Hamiltonian�:

� = 12 (∑�
�→�
+� 
�)

2 +∑
�

+� 
� +∑

�
�� (
� + 
+� ) + 6 + �,

�� = 2��⟨Ψ cos
�→��→�2

 -⟩ , � = ⟨Ψ |� (�)| Ψ⟩ , 6 = −2 ⟨Ψ Δ �
 Ψ⟩ .

(6)

Equation (6) suggests that the bipolaron Hamiltonian di�ers
from the polaron one in that in the latter the quantity �� is
replaced by �� and the constants 6, � are added.

With the use of Lee-Low-Pines canonical transformation
[44]:

"2 = exp{∑
�
@ (�) (
+� − 
�)} , (7)

where @� are variational parameters having the sense of the
distance bywhich the �eld oscillators are displaced from their
equilibrium positions:

"−12 
�"� = 
� + @�,
"−12 
+� "� = 
+� + @�, (8)

for Hamiltonian ̃̃�:

̃̃� = "−12 �"2, (9)

we get

̃̃� = �0 + �1, (10)

�0 = 2∑
�
��@� +∑

�
@2� + 12 (∑�

�→�@2�)
2 +H0 + 6 + �,

H0 = ∑
�
	�
+� 
� + 12∑�,��

�→��→��@�@�� (
�
�� + 
+� 
+�� + 
+� 
�� + 
+��
�) , 	� = 1 + �22 + �→�∑
��

�→� �@2�� .
(11)
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Hamiltonian�1 contains linear, threefold, and fourfold terms
in the birth and annihilation operators. Its explicit form is
given in [36–38].

�en, as is shown in [36, 37], the use of Bogolyubov-
Tyablikov canonical transformation [45] for passing on from
operators 
+� , 
� to new operators �+� , ��:


� = ∑
��
�1������ +∑

��
�∗
2����+��


+� = ∑
��
�∗
1����+�� +∑

��
�2������ (12)

(in which H0 is a diagonal operator), makes mathematical
expectation of�1 equal to zero.

In the new operators �+� , �� Hamiltonian (11) takes on the

form
̃̃̃�: ̃̃̃� = A� +∑

�
]��+���, (13)

A� = ΔA� + 2∑
�
��@� +∑

�
@2� + 6 + �, (14)

where ΔA� is the so-called recoil energy. �e general expres-
sion for ΔA� = ΔA�{@�} was obtained in [37]. Actually,
calculation of the ground state energy A� was performed in
[41] by minimization of (14) in @� and in -.

Notice that in the theory of a polaron with broken
symmetry a diagonalized electron-phonon Hamiltonian has
the form of (13)-(14) [46]. �is Hamiltonian can be treated
as a Hamiltonian of a polaron and a system of its associated
renormalized real phonons or as a Hamiltonian whose
quasiparticle excitations spectrum is determined by (13)-(14)
[47]. In the latter case excited states of a polaron are Fermi
quasiparticles.

In the case of a bipolaron the situation is qualitatively
di�erent since a bipolaron is a boson quasiparticle whose
spectrum is determined by (13)-(14). Obviously, a gas of such
quasiparticles can experience Bose-Einstein condensation
(BEC). Treatment of (13)-(14) as a bipolaron and its associated
renormalized phonons does not prevent their BEC since
maintenance of the number of particles required in this case
takes place automatically due to commutation of the total
number of renormalized phonons with Hamiltonian (13)-
(14).

Renormalized frequencies ]� involved in (13)-(14),
according to [36, 37], are determined by the equation for B:

1 = 23∑�
�2@2�	�B − 	2� , (15)

solutions of which yield the spectrum of B = {]2�} values.
3. Energy Spectrum of a TI-Bipolaron

Hamiltonian (13)-(14) is conveniently presented in the form:

̃̃̃� = ∑
�=0,1,2,...

A��+���, (16)

A� = {{{{{
A�, H = 0;
]� = A� + 	0 + �2�2 , H ̸= 0, (17)

where in the case of a three-dimensional ionic crystal is

��� = ±2� (H� − 1)K��
,
H� = 1, 2, . . . , K��2 + 1, $ = L, M, N,

(18)

where K�� is the number of atoms along the $th crystallo-
graphic axis.

Let us prove the validity of the expression for the spec-
trum (16), (17). Since operators �+� , �� obey Bose commuta-
tion relations: [��, �+��] = ���+�� − �+���� = Q�,�� , (19)

they can be considered to be operators of birth and annihila-
tion of TI-bipolarons.�e energy spectrum of TI-bipolarons,
according to (15), is determined by the equationR (B) = 1, (20)

where

R (B) = 23∑�
�2�@2��	2��B − 	2�� . (21)

It is convenient to solve (20) graphically (Figure 1).
Figure 1 suggests that the frequencies ]�� (index $ is

omitted) lie between the frequencies	�� and	��+1 . Hence, the
spectrum ]�� as well as the spectrum	�� are quasicontinuous:
]�� −	�� = S(K−1), which just proves the validity of (16), (17).

It follows that the spectrum of a TI-bipolaron has a
gap between the ground state A� and the quasicontinuous
spectrum, equal to 	0.

Below we will consider the case of low concentration
of TI-bipolarons in a crystal. �en they can adequately
be considered as an ideal Bose gas, whose properties are
determined by Hamiltonian (16).

4. Statistical Thermodynamics of Low-Density
TI-Bipolaron Gas

Let us consider an ideal Bose gas of TI-bipolarons which
represents a system ofK particles occurring in some volume�. Let us write K0 for the number of particles in the lower
one-particle state andK� for the number of particles in higher
states. �en

K = ∑
�=0,1,2,...

�� = ∑
�

1�(��−�)/� − 1 , (22)

K = K0 + K�,
K0 = 1�(���−�)/� − 1 ,
K� = ∑

� ̸=0

1�(��−�)/� − 1 .
(23)
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Figure 1: Graphical solution of (20).

In expression K� (23), we will perform integration over
quasicontinuous spectrum (instead of summation) (16), (17)
and assume  = A�. As a result, from (22), (23) we get
an equation for determining the critical temperature of Bose
condensation 6�:

T� = @�̃ (6̃�) , (24)

@�̃ (6̃�) = 6̃3/2� R3/2 (	̃/6̃�) ,
R3/2 (�) = 2√� ∫∞

0

L1/2WL��+� − 1 ,
T� = (H2/32�ℏ2�
	∗ )3/2 ,
	̃ = 	0	∗ ,
6̃� = 6�	∗ ,

(25)

where H = K/�. Figure 2 shows a graphical solution of (24)
for the values of parameters �
 = 2�∗ = 2�0, where �0 is
the mass of a free electron in vacuum, 	∗ = 5meV (≈58K),H = 1021 cm−3, and the values 	̃1 = 0, 2; 	̃2 = 1; 	̃3 = 2;	̃4 = 10; 	̃5 = 15; 	̃6 = 20.

It is seen fromFigure 2 that the critical temperature grows
with increasing phonon frequency	0.�e relations of critical
temperatures 6��/	0� corresponding to the chosen parameter
values are given in Table 1. Table 1 suggests that the critical
temperature of a TI-bipolaron gas is always higher than that
of ideal Bose gas (IBG). It is also evident from Figure 2 that
an increase in the concentration of TI-bipolarons H will lead
to an increase in the critical temperature, while a gain in the
electronmass�∗ to its decrease. For 	̃ = 0 the results go over
into the limit of IBG. In particular, (24), for 	̃ = 0, yields the
expression for the critical temperature of IBG:

6� = 3, 31ℏ2H2/3�

. (26)
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Figure 2: Solutions of (24) with T� = 331, 3 and 	̃� = {0, 2; 1; 2; 10;15; 20}, which correspond to 6̃�� : 6̃�1 = 27, 3; 6̃�2 = 30; 6̃�3 = 32;6̃�4 = 42; 6̃�5 = 46, 2; 6̃�6 = 50.

It should be stressed, however, that (26) involves�
 = 2�∗,
rather than the bipolaron mass. �is resolves the problem of
the low temperature of condensation which arises both in
the SRP theory and in the LRP theory in which expression
(26) involves the bipolaron mass [31–34]. Another important
result is that the critical temperature 6� for the parameter
values considerably exceeds the gap energy 	0.
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Table 1: Calculated characteristics of Bose gas of TI-bipolarons with concentration H = 1021 cm−3.

$ 0 1 2 3 4 5 6	̃� 0 0,2 1 2 10 15 206��/	�� ∞ 136,6 30 16 4,2 3 2,5`�/6�� 1,3 1,44 1,64 1,8 2,5 2,8 3−Δ(aT
V,�/a6̃) 0,11 0,12 0,12 0,13 0,14 0,15 0,15T

V,�(6� − 0) 1,9 2,16 2,46 2,7 3,74 4,2 1,6(T� − T�)/T� 0 0,16 0,36 0,52 1,23 1,53 1,8H�� ⋅ cm3 16 ⋅ 1019 9,4 ⋅ 1018 4,2 ⋅ 1018 2,0 ⋅ 1018 1,2 ⋅ 1017 5,2 ⋅ 1014 2,3 ⋅ 1013
�̃� = ��/�∗, �∗ = 5meV, �� is the energy of an optical phonon; ��� is the critical temperature of the transition, �� is the latent heat of the transition from

condensate to supracondensate state; −Δ(��
V,�/��̃) = ��

V,�/��̃|�̃=�̃��+0 − ��V,�/��̃|�̃=�̃��−0 is the jump in heat capacity during SC transition, �̃ = �/�∗;
�
V,�(�� − 0) is the heat capacity in the SC phase at the critical point; �� = �V

(�� − 0), �� = �V
(�� + 0). �e calculations are carried out for the concentration

of TI-bipolarons � = 1021cm−3 and the e�ective mass of a band electron �∗ = �0. �e table also lists the values of concentrations of TI-bipolarons ��� for
HTSC  !�2�"3#7, based on the experimental value of the transition temperature �� = 93K (Section 6).

From (22), (23), it follows that

K� (	̃)K = 6̃3/2T� R3/2 (	̃̃6) ,
K0 (	̃)K = 1 − K� (	̃)K

(27)

Figure 3 shows temperature dependencies of the number of
supracondensate particles K� and the number of particlesK0 occurring in the condensate for the above-indicated
parameter values 	̃�.

Figure 3 suggests that, as could be expected, the number
of particles in the condensate grows as the gap 	� increases.

�e energy of a TI-bipolaron gas A is determined by the
expression

A = ∑
�=0,1,2,...

��A� = A�K0 + ∑
� ̸=0

��A�. (28)

With the use of (16), (17), and (28) the speci�c energy (i.e., the

energy per one TI-bipolaron) Ã(6̃) = A/K	∗, Ã� = A�/	∗
will be

Ã (6̃)
= Ã�
+ 6̃5/2T� R3/2 (	̃ −  ̃6̃ ) [ 	̃̃6 + R5/2 ((	̃ −  ̃) /6̃)

R3/2 ((	̃ −  ̃) /6̃)] ,
(29)

R5/2 (�) = 2√� ∫∞
0

L3/2WL��+� − 1 , (30)

where  ̃ is determined from the equation

6̃3/2R3/2 (	̃ −  ̃6̃ ) = T�, (31)

 ̃ = {{{
0, 6̃ ≤ 6̃�; ̃ (6̃) , 6̃ ≥ 6̃�. (32)

N
 /
N

1
1 2 3 4 5 6

Tc1
Tc2

Tc3
Tc4

Tc5
Tc6

T

1
−
N

 /
N

1

1 2 3 4 5 6

Tc1
Tc2

Tc3
Tc4

Tc5
Tc6

T

Figure 3: Temperature dependencies of the relative number of
supracondensate particles K�/K and the particles occurring in the
condensateK0/K = 1 − K�/K for the parameter values 	̃�, given in
Figure 2.

Relation of  ̃ with the chemical potential of the system  
is given by the formula  ̃ = ( − A�)/	∗. From (29)-(31)
expressions for the free energy ΔR = −(2/3)ΔA, ΔR = R −A�K, ΔA = A − A�K and entropy " = −aR/a6 also follow.

Figure 4 illustrates temperature dependencies ΔA = Ã −Ã� for the above-indicated parameter values	�. Break points
on the curves ΔA�(6̃) correspond to the values of critical
temperatures 6�� .
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Figure 4: Temperature dependencies ΔA(6̃) = Ã(6̃) − Ã� for the
parameter values 	̃� presented in Figures 2 and 3.

�e dependencies obtained enable us to �nd the heat

capacity of a TI-bipolaron gas: T
V
(6̃) = WÃ/W6̃. With the use

of (29) for 6̃ ≤ 6̃�, we express TV
(6̃) as

T
V
(6̃) = 6̃3/22T� [	̃

2

6̃2R1/2 (	̃̃6) + 6( 	̃̃6)R3/2 (	̃̃6)
+ 5R5/2 (	̃̃6)] ,

(33)

R1/2 (�) = 2√� ∫∞
0

1√L WL��+� − 1 . (34)

Expression (33) yields a well-known exponential dependence
of the heat capacity at low temperatures T

V
∽ exp(−	0/6),

caused by the availability of the energy gap 	0.
Figure 5 shows temperature dependencies of the heat

capacity T
V
(6̃) for the above-indicated parameter values 	̃�.

Table 1 lists the values of the heat capacity jumps:

ΔaTV
(6̃)

a6̃ = aT
V
(6̃)

a6̃
�̃=�̃�+0 −

aT
V
(6̃)

a6̃
�̃=�̃�−0 (35)

at the transition points for the parameter values 	̃�.
�e dependencies obtained will enable one to �nd the

latent heat of transition ` = 6", where " is the entropy
of supracondensate particles. At the point of transition this
value is ` = 26�TV

(6� − 0)/3, where T
V
(6) is determined by

formula (33). For the above-indicated parameter values 	�, it
is given in Table 1.

5. Current States of a TI-Bipolaron Gas

In the foregoing we have considered equilibrium properties
of a TI-bipolaron gas. �e formation of Bose-condensate per
se does not mean that it has superconducting properties.
To demonstrate such a possibility let us consider the total
momentum of a TI-bipolaron:�→

P = �̂→l1 + �̂→l2 +∑�→�
+� 
�, (36)

where
�̂→l1 and �̂→l2 are the momenta of the �rst and second

electron, respectively. It is easy to check that
�→
P commutes

with Hamiltonian (1) and therefore is a constant value, that
is, c-number.

For this reason, to consider nonequilibrium properties
and, particularly current states, we can use generalization of
Heisenberg transformation (4) such that

"1 (P) = exp{$(�→P −∑
�

�→�
+� 
�)}�→!. (37)

�e general expression for the functional of the total energy

of a TI-bipolaron for
�→
P ̸= 0 is given in [36]. TI-bipolarons

occurring in condensed state have a common wave function
for the whole condensate and do not thermalize in the state

when
�→
P ̸= 0. In the supracondensate part, phonons whose

wave vectors contribute to
�→
P (36) are thermalized and their

total momentum will be equal to zero.

Hence, all the changes arising in considering the case of�→
P ̸= 0 concern only the expression for the ground state

energy which becomes dependent on
�→
P, while the spectrum

of excited states (16), (17) remains unchanged. It follows
that, in passing over the critical point, the currentless state
suddenly becomes current which is in agreement with the
experiment.

6. Comparison with the Experiment

Figure 4 shows typical dependencies of A(6̃). �ey suggest
that at the point of transition the energy is a continuous

function of 6̃. �is means that the transition per se occurs
without energy expenditure being a phase transition of the
second kind in complete agreement with the experiment. At
the same time transition of Bose particles from a condensate
state to a supracondensate one occurs with consumption
of energy which is determined by the value ` (Section 4,
Table 1), determining the latent heat of transition of a Bose
gas which makes it a phase transition of the 1st kind.

Byway of example let us considerHTSCmn
2T�3S7 with
the temperature of transition 90÷93K, volume of the unit cell0, 1734⋅10−21 cm−3, and concentration of holesH ≈ 1021 cm−3.
According to estimates [48], Fermi energy is equal to �$
= 0,37 eV. Concentration of TI-bipolarons in mn
2T�3S7 is
found from (24): H�H T� = @�̃ (6̃�) (38)

with 6̃� = 1, 6. Table 1 lists the values of H�,� for the values of
parameters 	̃� given in Section 4. It follows from Table 1 thatH�,� ≪ H. Hence, only a small part of charge carriers is in
a bipolaron state which justi�es the approximation of a low-
density TI-bipolaron gas used by us. �is fact correlates with
recent experiments [49] where it was shown that only a small
part of electrons are in SC state. �e energy levels of such TI-
bipolarons lie near Fermi surface and are described by the
wave function:

Ψ(�→� ) = ���→� ��→� p (�→� ) , (39)
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Figure 5: Temperature dependencies of the heat capacity for various values of the parameters 	�: 	0 = 0; 6̃�0 = 25, 2; T
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V
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V
(6̃�3 + 0) = 1, 78.

which leads to replacement of 6, involved in (6), by

6 = −2 ⟨p Δ �
 p⟩ + 2�2$, (40)

that is, reckoning of the energy fromFermi level (the last term
in the right-hand side of (40) in dimensional units is equal to2�$, where �$ = ℏ2�2$/2�∗).

According to our approach, superconductivity arises
when coupled states are formed. �e condition for the
formation of such states has the formA� < 0, (41)

where A� is the energy of a TI-polaron [41]. Condition (41)
determines the value of a pseudogap:

Δ 1 = A� . (42)

For Δ 1 ≫ 	0 the value of a pseudogap can greatly exceed
both 6� and the energy of the gap (i.e., 	0). �e expression
for the spectrums A� and A� (16)-(17) suggests that the
angular dependence of superconducting gap is completely
determined by the symmetry of the isoenergetic surface

of the 	0(�→� ). Earlier this conclusion was made by Bennet
[50], who proved that the main source of anisotropy of
superconducting properties is the angular dependence of the
phonon spectrum, though some contribution is also made by
the anisotropy of Fermi surface.

It follows from what has been said that formation of
a pseudogap is a phase transition preceding the phase
transition to the superconducting state. Recent experiments
[51] also testify in favor of this statement.
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Figure 6: Comparison of the theoretical (solid line) and experimen-
tal [29] (broken line) dependencies in the region of the heat capacity
jump.

In paper [39] correlation length for TI-bipolarons was
calculated. According to [39], in HTSC materials its value
can vary from several angstroms to several tens of angstroms,
which is also in agreement with the experiment.

Of special interest is to determine the characteristic
energy of phonons responsible for the formation of TI-
bipolarons and superconducting properties of oxide ceram-
ics. To do this let us compare the calculated values of the heat
capacity jumps with experimental data.

As is known, in BCS theory, a jump in the heat capacity is
equal to

T� − T�T�
�� = 1, 43, (43)

where T� is the heat capacity in the superconducting phase
and T� is the heat capacity in the normal phase and is
independent of the parameters of the model Hamiltonian. As
it follows from numerical calculations shown in Figure 5 and
in Table 1, as distinct from the BCS theory, the value of the
jumpdepends on the phonon frequency.Hence, the approach
presented predicts the existence of an isotopy e�ect for the
heat capacity jump.

As it is seen from Figure 6, the heat capacity jump
calculated theoretically (Section 4) coincides with the exper-
imental value in mn
2T�3S7 [29], for 	̃ = 1, 5, that is, for	 = 7, 5meV. �is corresponds to the concentration of TI-
bipolarons equal to H� = 2, 6 ⋅ 1018 cm−3. Hence, in contrast
to the widespread notion that in oxide ceramics supercon-
ductivity is determined by high-energy phonons (with energy70 ÷ 80meV [52]), actually, the superconductivity in HTSC
materials should be determined by so� phonon modes.

Notice that in calculations of the temperature of tran-
sition it was believed that the e�ective mass �
 in (24) is
independent of the direction of the wave vector; that is,
isotropic case was dealt with.

In the anisotropic case, choosing principal axes of
vector �, as coordinate axes, we will get the quantity(�
��
%�
&)1/3 instead of the e�ectivemass�
. In complex
HTSC materials the values of e�ective masses lying in the
plane of layers �
�, �
% are close in value. Assuming in

this case �
 = �
� = �
% = �‖, �
& = �⊥, we

will get instead of T�, determined by (24), the value T̃� =T�/s; s2 = �⊥/�‖ is the parameter of anisotropy. Hence
anisotropy of e�ective masses gives for the concentration H�
the value H̃� = sH�. �erefore taking account of anisotropy
can, in an order of magnitude, enhance the estimate of the
concentration of TI-bipolarons. If for mn
2T�3S7 we take
the estimate s2 = 30 [52], then for the concentration of TI-

bipolarons we will get H̃� = 1, 4 ⋅ 1019 cm−3, which holds
valid the general conclusion: in the case under consideration
only a small number of charge carriers are in TI-bipolaron
state. �e situation can change if the anisotropy parameter is
very large. �us, for example, in layered HTSC Bi-Sr-Ca-Cu-
O the anisotropy parameter is s > 100; accordingly, the con-
centration of TI-bipolarons in these compounds can have the
same order of magnitude as the total concentration of charge
carriers.

Another important conclusion emerging from taking
account of the anisotropy of e�ective masses is that the tem-
perature of the transition 6� depends not on H� and�‖ indi-
vidually, but on their relationwhich straightforwardly follows
from (24).

7. Essential Generalizations of the Theory

In the foregoing we considered the case of an ideal TI-
bipolaron gas. At small concentration of TI-bipolarons their
Coulomb interaction will be greatly screened which justi�es
the use of the model of an ideal gas.

If the concentration of TI-bipolarons is large (e.g., H =1021 cm−3, as was believed in Section 4), then such Bose gas
can no longer be considered to be ideal. Taking account of
Coulomb interaction between bipolarons becomes necessary.
For this purpose we can use Bogolyubov theory [53] for
weakly imperfect Bose gas, which implies that the spectrum
of elementary excitations with the momentum � will be
determined by the expression:

A (�) = √�2�2 (�) + ( �22�!
)2, (44)

where�(�) = √H!�(�)/�!,�(�) is the Fourier component of
the potential of pairwise interaction between charged bosons:�(�) = 4��2!/�0�2, �! and �! are the charge and mass of a
boson, and H! is the concentration of bosons.

Hence it follows that

A (�) = √(ℏ	�)2 + ( �22�!
)2, 	� = √4��2H!�0�!

. (45)

	� is the plasma frequency. According to (45), the spec-
trum of excitations of quasiparticles of an imperfect gas
is characterized by a �nite energy gap which in the long-
wavelength limit is equal to 	�. �e same result can be
arrived at if the Coulomb interaction between the electrons
is considered as a result of electron-plasmon interaction.
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According to [54], Hamiltonian of electron-plasmon interac-
tion coincides in structurewith FroehlichHamiltonianwhich
involves plasmon frequency instead of phonon frequency.
�is straightforwardly leads to the energy gap equal to the
plasmon frequency 	�, if in (45) we put �! = 2�, �! = 2�∗,H! = H/2, where H is the electron concentration. Hence, for	� < 	0, the energy gap will be determined by 	�, while for	� > 	0 it will still be determined by 	0.

Actually, in real HTSC, there are not only phonon and
plasmon branches, but also some other elementary excita-
tions which can take part in electron pairing. An example is
spin �uctuations. In generalization of the theory to the case
of interaction with various brunches of excitations which will
contribute to the ground state energy, the value of the gap and
the dispersion law of a TI-bipolaron are a topical problem.
Obviously, taking account of this interaction will lead to
an increase in the coupling energy of both TI-bipolarons
and TI-polarons. �erefore, a priori, without any particular
calculations one cannot say anything of how the condition
of stability of TI-bipolaron states determined by (41) will
change.

Another important problem is generalization of the the-
ory to the case of intermediate coupling of electron-phonon
interaction. Formally, the expression for the functional of
the ground state energy of a TI-bipolaron (14) is valid for
any value of the electron-phonon coupling constant. For this
reason such a calculation will not change the spectrum of a
TI-bipolaron; however it will alter the criteria of ful�llment
of the conditions of a TI-bipolaron stability (41).

8. Conclusive Remarks

In this paper we have presented conclusions emerging
from consistent translation-invariant consideration of EPI. It
implies that pairing of electrons, for any coupling constant,
leads to a concept of TI-polarons and TI-bipolarons. Being
bosons, TI-bipolarons can experience Bose condensation
leading to superconductivity. Let us list the main results
following from this approach. First and foremost the theory
resolves the problem of the great value of the bipolaron e�ec-
tive mass (Section 4). As a consequence, formal limitations
on the value of the critical temperature of the transition are
eliminated too. �e theory quantitatively explains such ther-
modynamic properties of HTSC-conductors as availability
(Section 4) and value (Section 6) of the jump in the heat
capacity lacking in the theory of Bose condensation of an
ideal gas.�e theory also gives an insight into the occurrence
of a great ratio between the width of the pseudogap and 6�
(Section 6). It accounts for the small value of the correlation
length [39] and explains the availability of a gap (Section 3)
and a pseudogap (Section 6) in HTSCmaterials. �e angular
dependence of the gap and pseudogap gets a natural explana-
tion (Section 6).

Accordingly, isotopic e�ect automatically follows from
expression (24), where the phonon frequency 	0 acts as a
gap. �e conclusion of the dependence of the temperature of
the transition6� on the relation H�/�‖ (Section 6) correlates
with Uemura law universal for all HTSC materials which

implies that the temperature of the transition is related to
the concentration of charge carriers divided by its e�ective
mass [55, 56]. �e TI-bipolaron theory of superconductivity
developed in this paper gives an answer to the question of
paper [49], namely, where most of electrons disappear in
the superconductors analyzed. It lies in the fact that only a
small part of electrons are paired.�e results obtained suggest
that in order to raise the critical temperature 6� one should
increase the concentration of bipolarons.

Application of the theory to 1D and 2D systems leads to
qualitatively new results since the occurrence of a gap in the
TI-bipolaron spectrum automatically removes divergences at
small momenta, inherent in the theory of ideal Bose gas.
�ese problems were considered by the author in [57]. �e
case of 1D-polaron was discussed in [58].
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