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Abstract

The discovery of superconductivity in MgB2, with a rather high transition temperature, has triggered a large number of theoretical
and experimental investigations on important issues such as, e.g., the role of gap anisotropy over the Fermi surface (multi-gap supercon-
ductivity). We report here the results obtained in this compound using the density functional theory for superconductors, recently pro-
posed by the authors. Without invoking any adjustable parameters, such as l*, we obtain the transition temperature, the gaps, and the
specific heat in very good agreement with experiment. Moreover, our calculations allow for a detailed study of how the phonon-mediated
attraction and Coulomb repulsion act differently on r and p states, thereby stabilizing the observed superconducting phase.
� 2007 Elsevier B.V. All rights reserved.

PACS: 74.25.Jb; 74.25.Kc; 74.20.�z; 74.70.Ad; 71.15.Mb

Keyword: Superconductivity

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2. Density functional theory for superconductors (SCDFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.1. Kohn–Sham system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2. Gap equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3. Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1. Screening and anisotropy of the interactions: influence on Tc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

0921-4534/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.physc.2007.01.026

* Corresponding author. Address: Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany. Tel.: +49 30 838

53029; fax: +49 30 838 55258.
E-mail address: afloris@physik.fu-berlin.de (A. Floris).

www.elsevier.com/locate/physc

Physica C 456 (2007) 45–53

mailto:afloris@physik.fu-berlin.de


1. Introduction

Among the rather peculiar properties of MgB2, the pres-
ence of two superconducting gaps at the Fermi level
attracted strongly the attention of the scientific community.
While in fact two-band or, more generally, multi-band
superconductivity has long been known [1] to favor a high
critical temperature, such a property was never observed in
nature to the extent and clarity shown by MgB2. On the
theoretical side, most of calculations to date are based on
the Eliashberg theory [2]. While in the latter the e–ph inter-
action is properly described in the spirit of Migdal’s theo-
rem, the effects of the e–e Coulomb repulsion are more
difficult to account for in the Eliashberg approach: In most
practical applications, the renormalized Coulomb pseudo-
potential l* is treated as an adjustable parameter, usually
chosen as to reproduce the experimental Tc. The authors
have recently extended the density functional theory, a very
successful standard in normal state electronic structure cal-
culations, to deal with the superconducting state (SCDFT).
Unlike in Eliashberg based calculations, within SCDFT
there are no adjustable parameters, and the critical temper-
ature is the result of a true ab initio calculation. The diffi-
culties hindered in an ab initio theory of the (phonon
mediated) superconductivity arise from the fact that it must
properly account for two strong and opposite effects,
namely the phonon mediated attraction (denoted ‘‘e–ph’’
in the following) and the direct Coulomb repulsion
(denoted ‘‘e–e’’) between the electrons. However, SCDFT
theory turned out to be able to treat superconductors with
a wide range of couplings, as shown by several investiga-
tions [3]. MgB2 is surely one of its most interesting applica-
tions, owing to its unusual superconducting properties and
its extraordinary high critical temperature.

In this work, we show how many approximations usu-
ally adopted in conventional low-Tc materials, for both
the e–e and e–ph interactions (e.g. single order parameter,
isotropic average of the interactions, or approximated
screening of the direct Coulomb interaction between elec-
trons) do not hold in MgB2, resulting in wrong predictions
of the superconducting properties that depart from the
experimental results.

The paper is organized as follows: In Section 2 we sum-
marize the main features of the method used; in Section 3
we describe in detail our computational approach and
finally, in Section 4, we present and discuss our results.

2. Density functional theory for superconductors (SCDFT)

Density functional theory (DFT) [4] has enjoyed
increasing popularity as a reliable and relatively inexpen-
sive tool to describe real materials. Before turning to the
problem of superconductivity, it is instructive to reconsider
how magnetic systems are usually treated in a density func-
tional approach. The Hohenberg–Kohn (HK) theorem [5]
states that all observables, in particular also the magnetiza-
tion, are functionals of the electronic density alone. How-

ever, even an approximate form of the magnetization
functional is extremely hard to find, and, in practice, one
chooses a different approach to this problem. The task
can be vastly simplified by treating the magnetization den-
sity m(r), i.e., the order parameter of the magnetic state, as
an additional density in the density functional framework.
An auxiliary field – here a magnetic field Bext(r) – is intro-
duced, which couples to m(r) and breaks the corresponding
(rotational) symmetry of the Hamiltonian. In other words,
it drives the system into a magnetically ordered state. The
ground-state magnetization density is determined by mini-
mizing the total energy functional (free energy functional
for finite temperature calculations) with respect to both
the normal density and the magnetization density. The
resulting magnetization determines the effective magnetic
field into the material. If a magnetic ground state exists,
the order parameter will be non-zero even after the auxil-
iary perturbation is switched off again. Within this
approach, much simpler approximations to the xc func-
tional (now functional of two densities) can be found with
satisfactory results when compared with the experiments.
This idea forms the basis of the local spin density approx-
imation and, likewise, of current density functional theory
[6,7].

In the same spirit Oliveira et al. [8] formulated the den-
sity functional theory for superconductors. Here the order
parameter is the so-called anomalous density,

vðr; r0Þ ¼ hŴ"ðrÞŴ#ðr0Þi; ð1Þ

and the corresponding potential is the non-local pairing
potential D(r, r 0). It can be interpreted as an external pair-
ing field, induced by an adjacent superconductor via the
proximity effect. Again, this external field only acts to
break the symmetry (here the gauge symmetry) of the sys-
tem, and is set to zero at the end of the calculation. As in
the case of magnetism, the order parameter will be sus-
tained by the self-consistent effective pairing field, if the
system wants to be superconducting.

The formalism outlined so far captures, in principle, all
electronic degrees of freedom. To describe conventional,
phonon-mediated, superconductors, also the electron–pho-
non interaction has to be taken into account. In the weak
coupling limit, this phonon-mediated interaction can be
added as an additional BCS-type interaction. However,
in order to treat also strong electron–phonon coupling,
the electronic and the nuclear degrees of freedom have to
be treated on equal footing. This can be achieved by a
multi-component DFT, based on both the electronic den-
sity and the nuclear density [9]. The starting point is the full
electron–ion Hamiltonian

bH ¼ bT e þ bU ee þ bT n þ bU nn þ bU en; ð2Þ

where bT e represents the electronic kinetic energy, bU ee the
electron–electron interaction, bT n the nuclear kinetic en-
ergy, and bU nn the Coulomb repulsion between the nuclei.
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The interaction between the electrons and the nuclei is
described by the term

bU en ¼ �
X

r

Z
d3
r

Z
d3
RŴy

r
ðrÞÛyðRÞ Z

jr� Rj ÛðRÞŴrðrÞ;

ð3Þ

where ŴrðrÞ and ÛðRÞ are respectively electron and nuclear
field operators. (For simplicity we assume the nuclei to be
identical, and we neglect the nuclear spin degrees of free-
dom. The extension of this framework to a more general
case is straightforward.) Note that there is no external po-
tential in the Hamiltonian. In addition to the normal and
anomalous electronic densities, we also include the diago-
nal of the nuclear density matrix [46]

CðRÞ ¼ ÛyðR1Þ � � � ÛyðRN ÞÛðRN Þ � � � ÛðR1Þ
� �

ð4Þ

In order to formulate a Hohenberg–Kohn theorem for this
system, we introduce a set of three potentials, which couple
to the three densities described above. Since the electron–
nuclear interaction, which in normal DFT constitutes the
external potential, is treated explicitly in this formalism,
it is not part of the external potential. The nuclear Cou-
lomb interaction bU nn already has the form of an external
many-body potential, coupling to C(R), and for the sake
of the Hohenberg–Kohn theorem, this potential will be al-
lowed to take the form of an arbitrary N-body potential.
All three external potentials are merely mathematical de-
vices, required to formulate a Hohenberg–Kohn theorem.
At the end of the derivation they will be set to zero (in case
of the external electronic and pairing potentials) and to the
nuclear Coulomb interaction (for the external nuclear
many-body potential).

As usual, the Hohenberg–Kohn theorem guarantees a
one-to-one mapping between the set of the densities
{n(r),v(r, r 0),C(R)} in thermal equilibrium and the set of
their conjugate potentials fveextðrÞ � l;Dextðr; r0Þ; vnextðRÞg.
As a consequence, all the observables are functionals of
the set of densities. Finally, it assures that the grand canon-
ical potential,

X½n; v;C� ¼ F ½n; v;C� þ
Z

d3
rnðrÞ veextðrÞ � l

� �

�
Z

d3
r

Z
d3
r0 vðr; r0ÞD�

extðr; r0Þ þ h:c:
� �

þ
Z

d3
RCðRÞvnextðRÞ ð5Þ

is minimized by the equilibrium densities. We use the nota-
tion A[f] to denote that A is a functional of f. The func-
tional F[n,v,C] is universal, in the sense that it does not
depend on the external potentials, and is defined by

F ½n; v;C� ¼ T e½n; v;C� þ T n½n; v;C� þ U en½n; v;C�

þ U ee½n; v;C� � 1

b
S½n; v;C�; ð6Þ

where S is the entropy of the system,

S½n; v;C� ¼ �Trfq̂0½n; v;C� lnðq̂0½n; v;C�Þg: ð7Þ

The proof of the theorem follows closely the proof of the
Hohenberg–Kohn theorem at finite temperatures [10].

2.1. Kohn–Sham system

In standard DFT one normally defines a Kohn–Sham
system, i.e., a non-interacting system chosen such that it
has the same ground-state density as the interacting one.
In our formalism, the Kohn–Sham system consists of
non-interacting (superconducting) electrons, and interact-

ing nuclei. It is described by the thermodynamic potential
[cf. Eq. (5)]

Xs½n; v;C� ¼ F s½n; v;C� þ
Z

d3
rnðrÞ vesðrÞ � ls

� �

�
Z

d3
r

Z
d3
r0 vðr; r0ÞD�

s ðr; r0Þ þ h:c:
� �

þ
Z

d3
RCðRÞvns ðRÞ; ð8Þ

where Fs if the counterpart of (6) for the Kohn–Sham sys-
tem, i.e.,

F s½n; v;C� ¼ T e
s ½n; v;C� þ T n

s ½n; v;C� �
1

b
Ss½n; v;C�: ð9Þ

Here T e
s ½n; v;C�, T n

s ½n; v;C�, and Ss[n,v,C] are the electronic
and nuclear kinetic energies and the entropy of the Kohn–
Sham system, respectively. From Eq. (8) it is clear that the
Kohn–Sham nuclei interact with each other through the N-
body potential vns ðRÞ, while they do not interact with the
electrons.

The Kohn–Sham potentials, which are derived in anal-
ogy to normal DFT, include the external fields, Hartree,
and exchange-correlation terms. The latter account for all
many-body effects of the electron–electron and electron–
nuclear interactions and are, as usual, given by the respec-
tive functional derivatives of the xc energy functional
defined through

F ½n; v;C� ¼ F s½n; v;C� þ F xc½n; v;C� þ Eee
H ½n; v� þ Een

H ½n;C�:
ð10Þ

There are two contributions to Eee
H , one originating from

the electronic Hartree potential, and the other from the
anomalous Hartree potential

Eee
H ½n;v� ¼

1

2

Z
d3
r

Z
d3
r0
nðrÞnðr0Þ
jr� r0j þ

Z
d3
r

Z
d3
r0
jvðr; r0Þj2
jr� r0j :

ð11Þ

Finally, Een
H denotes the electron–nuclear Hartree energy

Een
H ½n;C� ¼ �Z

X

a

Z
d3
r

Z
d3
R
nðrÞCðRÞ
jr� Raj

: ð12Þ

A. Floris et al. / Physica C 456 (2007) 45–53 47



The problem of minimizing the Kohn–Sham grand
canonical potential (8) can be transformed into a set of
three differential equations that have to be solved self-con-
sistently: One equation for the nuclei, which resembles the
familiar nuclear Born–Oppenheimer equation, and two
coupled equations which describe the electronic degrees
of freedom and have the algebraic structure of the Bogo-
liubov-de Gennes [11] equations.

The Kohn–Sham equation for the nuclei has the form

�
X

a

r2
a

2M
þ vns ðRÞ

" #

UlðRÞ ¼ ElUlðRÞ: ð13Þ

We emphasize that the Kohn–Sham Eq. (13) does not rely
on any approximation and is, in principle, exact. In prac-
tice, however, the unknown effective potential for the nuclei
is approximated by the Born–Oppenheimer surface. As al-
ready mentioned, we are interested in solids at relatively
low temperature, where the nuclei perform small amplitude
oscillations around their equilibrium positions. In this case,
we can expand vns ½n; v;C� in Taylor series around the equi-
librium positions, and transform the nuclear degrees of
freedom into collective (phonon) coordinates. In harmonic
order, the nuclear Kohn–Sham Hamiltonian then reads

Ĥph
s ¼

X

k;q

Xk;q b̂
y
k;qb̂yk;q þ

1

2

� �
; ð14Þ

where Xk,q are the phonon eigenfrequencies, and b̂
y
k;q cre-

ates a phonon in branch k and at wave-vector q. Note that
the phonon eigenfrequencies are functionals of the set of
densities {n,v,C}, and can therefore be affected by the
superconducting order parameter.

The Kohn–Sham Bogoliubov-de Gennes (KS-BdG)
equations read

�r2

2
þ vesðrÞ � l

� �
unkðrÞ þ

Z
d3
r0Dsðr; r0Þvnkðr0Þ

¼ ~EnkunkðrÞ; ð15aÞ

� �r2

2
þ vesðrÞ � l

� �
vnkðrÞ þ

Z
d3
r0D�

s ðr; r0Þunkðr0Þ

¼ ~EnkvnkðrÞ; ð15bÞ

where unk(r) and vnk(r) are the particle and hole amplitudes.
This equation is very similar to the Kohn–Sham equations
in the OGK formalism [8]. However, in the present formu-
lation the lattice potential is not considered an external po-
tential but enters via the electron–ion Hartree term.
Furthermore, our exchange-correlation potentials depend
on the nuclear density matrix, and therefore on the pho-
nons. Although Eqs. (13) and (15) have the structure of sta-
tic mean-field equations, they contain, in principle, all
correlation and retardation effects through the exchange-
correlation potentials.

These KS-BdG equations can be simplified by the so-
called decoupling approximation [12,14], which corre-

sponds to the following ansatz for the particle and hole
amplitudes:

unkðrÞ � unkunkðrÞ; vnkðrÞ � vnkunkðrÞ; ð16Þ
where the wave functions unk(r) are the solutions of the
normal Schrödinger equation. In this way the eigenvalues
in Eq. (15) become ~Enk ¼ �Enk, where

Enk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2nk þ jDnkj2

q
; ð17Þ

and nnk = �nk � l. This form of the eigenenergies allows us
to interpret the pair potential Dnk as the gap function of the
superconductor. Furthermore, the coefficients unk and vnk
are given by simple expressions within this approximation

unk ¼
1ffiffiffi
2

p sgnð~EnkÞeiUnk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ nnk
~Enk

s

; ð18aÞ

vnk ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� nnk
~Enk

s

: ð18bÞ

Finally, the matrix elements Dnk are defined as

Dnk ¼
Z

d3
r

Z
d3
r0u�

nkðrÞDsðr; r0Þunkðr0Þ; ð19Þ

and Unk is the phase eiUnk ¼ Dnk=jDnkj. The normal and the
anomalous densities can then be easily obtained from

nðrÞ ¼
X

nk

1� nnk

Enk

tanh
b

2
Enk

	 
� �
junkðrÞj2; ð20aÞ

vðr; r0Þ ¼ 1

2

X

nk

Dnk

Enk

tanh
b

2
Enk

	 

unkðrÞu�

nkðr0Þ: ð20bÞ

2.2. Gap equation

Within the decoupling approximation outlined above, a
major effort was devoted to find an expression for the effec-
tive pairing potential. The actual approximations for the xc
functionals turn out to be not explicit functionals of the
densities, but rather functionals of the potentials, still being
implicit functionals of the density. Therefore the task of
calculating the effective pair potential is to solve the non-
linear functional equation

Ds;nk ¼ Dxc;nk½l;Ds�: ð21Þ
In the vicinity of the critical temperature, where the order
parameter and hence the pairing potential vanishes, this
equation can be linearized, giving rise to a BCS-like gap
equation:

�Dnk ¼ � 1

2

X

n0k0
FHxc nk;n0k0 ½l�

tanh b

2
nn0k0

� �

nn0k0
�Dn0k0 ; ð22Þ

where the anomalous Hartree exchange-correlation kernel
of the homogeneous integral equation reads

FHxc nk;n0k0 ½l� ¼ �dDHxc nk

dvn0k0


v¼0

¼ d2ðEee
H þ F xcÞ

dv�nkdvn0k0


v¼0

: ð23Þ
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Although this linearized gap equation is strictly valid only
in the vicinity of the transition temperature, we use the
same kernel FHxc in a partially linearized equation, that
has the same structure but contains the energies Enk in
place of the nnk, also at lower temperatures. Furthermore,
we split the kernel into a purely diagonal part Z and a
truly off-diagonal part K,

Dnk ¼ �ZnkDnk �
1

2

X

n0k0
Knk;n0k0

tanh b

2
En0k0

� �

En0k0
Dn0k0 : ð24Þ

Eq. (24) is the central equation of the DFT for supercon-
ductors. The kernel K consists of two contributions
K ¼ K

e–ph þK
e–e, representing the effects of the e–ph

and of the e–e interactions, respectively. The diagonal term
Z plays a similar role as the renormalization term in the
Eliashberg equations. Explicit expressions of K

e–ph and
Z, which are the results of the approximate functionals
implemented, are given in Eqs. (9) and (11) of Ref. [13]
respectively. These two terms involve the e–ph coupling
matrix, while K

e–e contains the matrix elements of the
screened Coulomb interaction (the explicit expression is
given below). Eq. (24) has the same structure as the BCS
gap equation, with the kernel K replacing the model inter-
action of BCS theory. This similarity allows us to interpret
the kernel as an effective interaction responsible for the
binding of the Cooper pairs. As already mentioned, Eq.
(24) is not a mean-field equation (as in BCS theory), since
it contains correlation effects via the SC exchange-correla-
tion functional entering K and Z. Furthermore, it has the
form of a static equation – i.e., it does not depend explicitly

on the frequency – and therefore has a simpler structure
(and computationally more manageable) than the Eliash-
berg equations. However, this certainly does not imply that
retardation effects are absent from the theory. Once again,
retardation effects enter through the xc functional, as ex-
plained in Refs. [12,13].

3. Computational details

The solution of Eq. (24) first requires the calculation of
the normal state band structure �nk of the material, the
phonon spectrum xqm, and the e–ph and Coulomb matrix
elements (ME) with respect to the Bloch functions.

The eigenvalues �nk are calculated over a few hundreds
of k-points in the irreducible wedge of the Brillouin zone,
and successively interpolated on a regular grid of 1283

points, according to the scheme described in Refs.
[15,16]. Where not explicitly said, the e–ph coupling was
included through the four, band resolved, Eliashberg func-
tions a2F n;n0ðxÞ previously employed within a two-band
Eliashberg scheme by Golubov et al. [36], where

a2F nn0ðxÞ ¼
1

N nðEFÞ
X

k;k0 ;m

gnn
0

k;k0 ;m



2

dð�nk � EFÞ

� dð�n0k0 � EFÞdðx� xk0�k;mÞ: ð25Þ

Here (n, n 0 = r, p) and Nn(EF) is the partial density of
states at Fermi level. Our procedure keeps the fundamental
distinction between r and p gaps, analogously to most of
the Eliashberg calculations reported to date. By using the
a2F n;n0ðxÞ, the e–ph interaction is averaged over k and k 0

at the FS, which may have a small, but non-negligible
effect. We define the bands crossing the FS to be of r

character if they are contained in a cylinder of basis radius
1/4 of a reciprocal lattice vector, and of p character other-
wise. Away from the Fermi surface this distinction is
meaningless but harmless, as the phonon terms die off
quickly and the Coulomb term is independent of this
distinction.

In a new fully anisotropic implementation of the code,
an nk, n 0k 0-resolved e–ph interaction was included in the
SCDFT formalism. In this case, and contrary to the previ-
ous approach, we did not assume any specific form for the
el–ph and e–e interaction. However, the multi-band nature
of MgB2 emerges in a completely natural way: We find that
the solutions of the Eq. (24) at each temperature clusterize
into two distinct gaps with the same critical temperature
(see below). The phonon spectrum and the e–ph ME were
calculated via density functional perturbation theory [37],
within the planewave-pseudopotential method [38]. The
calculation was performed at the experimental lattice con-
stants within the GGA approximation [39] with ultrasoft
pseudopotentials [40]. An energy cut-off of 25 Ry for the
wavefunctions, 300 Ry for the charge density and a
24 · 24 · 22 Monkhorst–Pack k-point grid were sufficient
to achieve very good convergence of the phonon spectrum
and the e–ph ME jgnn0

k;k0 ;mj
2. Phonon frequencies and e–ph

ME were calculated on the irreducible set of a regular mesh
of 83 q-points, the el–ph ME on a grid of 243 k-points and
the Coulomb ME on a 93 · 93 mesh for k and k 0-points.
The xqm were interpolated on a grid of 1283 q-points follow-
ing the same scheme employed for the KS energies �nk
[15,16]. The jgnn0

k;k0 ;mj
2
were interpolated on a grid of 203 q-

points using a six-dimensional Fast Fourier Transform
technique. The corresponding total e–ph coefficient
obtained is k = 0.71. Band-resolved values are: k

rr
=

0.83; k
rp

= 0.22; k
pr

= 0.16; k
pp

= 0.28. Our calculated
k
rr

, k
pp

and k, are significantly lower than the values
k
rr

= 1.017, k
pp

= 0.45 and k = 0.87 obtained in Refs.
[36,19], but basically in agreement with calculations by
Bohnen et al. [20]: k = 0.73; Liu et al. [33]: k = 0.77; Choi
et al.: [29] = k = 0.73; Singh: [32] = k = 0.68.

The comparison of the calculated density of states with
the specific heat experiments by Putti et al. [26] leads to
k = 0.8, larger than our results, while k = 0.61 is obtained
from the measurements of Junod’s group [41]. The de
Haas–van Alphen experiments lead, for the r sheets, to
values of k

r
= k

rr
+ k

rp
in the range from 0.91 and 1.2,

somehow in between our calculated k’s and those by Kong
et al. [19] and Golubov et al. [36]. We conclude therefore
that the comparison between calculated e–ph couplings
and experiment does not provide, at the moment, an univ-
ocal answer (see also the discussion below).
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SCDFT allows to treat on the same footing the e–ph
and the screened e–e interactions. We calculated the
screened Coulomb ME with respect to the Bloch functions,
for the whole energy range of relevant valence and conduc-
tion states. The different nature of r and p bands and in
particular the highly localized character of the former,
strongly calls for the use of a non-diagonal screening,
including local field effects. In order to describe properly
these effects, that are very important to achieve a good
agreement with the experiment, we calculated the static
RPA dielectric matrix (DM) ��1(q,G,G 0), using the pseudo-
potential-based SELF code [42]. The explicit expression of
the kernel Ke–e in reciprocal space reads

K
e–e
nk;n0k0 ¼

X

G ;G 0
��1ðq;G ;G 0Þ

� 4p
n0k0jeiðqþGÞ�rjnk
� �

nkje�iðqþG 0Þ�r0 jn0k0� �

jqþ G jjqþ G 0j ; ð26Þ

The SC gap function is extremely peaked around the
Fermi surface, whereas at higher energies is rather smooth
(and negative, due to the e–e interaction). This implies that
a converged solution of Eq. (24) needs a denser k-points
sampling around EF, and coarser elsewhere. This highly
non-uniform mesh of the BZ is realized with 13 · 103 and
1000 independent k-points for bands crossing and not
crossing the Fermi level respectively. Finally, 15–20 self-
consistent iterations were sufficient to achieve a complete
convergence of the gap.

4. Results

The MgB2 Fermi surface has several sheets with different
orbital character (see e.g. Ref. [17]). In particular, the tubu-
lar structures with r character are very strongly coupled to
the E2g phonon mode, corresponding to a B–B bond-
stretching in the boron planes [17–20]. The p bands at
the Fermi level form three-dimensional sheets.

The different orbital character of the two kinds of bands
crossing the Fermi level and the separated Fermi surfaces
originating from them is a remarkable feature of this com-
pound. This results in the presence of two distinguishable
gaps on the r and p bands, as clearly demonstrated by sev-
eral different experiments [21–28]. On the theoretical side,
this system has been treated within the k-resolved Eliash-
berg theory [29,30], using a two-band scheme [31,33,36],
with four e–ph spectral functions to represent the distinct
couplings. Correspondingly, the anisotropy of the Cou-
lomb interaction was only investigated within the two
bands model, using a uniform [29,35], diagonal [34] and
non-diagonal [36] 2 · 2l* matrix.

The ab initio nature of SCDFT allows to make some
statements concerning the strength of the e–ph and the
Coulomb interaction in MgB2. Setting the Coulomb ME
equal to zero, the SCDFT method, for this material, gives
essentially the same gaps and Tc as the Eliashberg
approach with l* = 0. This fact confirms the simple metals

results shown in Table 1 of Ref. [12], and means that the
two approaches, although in principle very different, treat
the phonon contribution at the same level of approxima-
tion. Our fully anisotropic SCDFT calculation (including
a corresponding k = 0.71 and RPA Coulomb ME), gives
Tc = 22 K, in strong disagreement with T exp

c . On the other
hand, it is worth to note that in Eliashberg based theoret-
ical works, very different fitting values of l* are requested
to reproduce T exp

c in presence of the very different values
of k found in the literature. The latter are grouped essen-
tially in two sets: k = 0.87 (Golubov et al. [36], Kong
et al. [19]) and k � 0.7 (present work and Refs.
[20,29,32]). The l* values can also be grouped in two sets:
the 2 · 2l�

nn0 matrix which corresponds to an isotropic
l* = 0.268 (Ref. [36]), and the l�

nn0 values which average
to l* � 0.12 (Refs. [29,35]). Now, always assuming a two-
band model calculation with respect to both the interac-
tions, T exp

c is reproduced either (i) using k � 0.7 and
l* � 0.12 or (ii) using k = 0.87 and l* = 0.268. Our RPA
Coulomb ME, averaged on the Fermi surface, give an un-
renormalized pseudopotential l = 0.263, in perfect agree-
ment with the ab initio calculation of Moon et al. [35].
As we will see below, with these ME, the SCDFT Tc is in
good agreement with T exp

c only with k = 0.87. From this
analysis, we believe that in the quantitative description of
MgB2 there are not fully understood aspects, related either
to the values of the e–ph or of the renormalized Coulomb
interaction. We then sketch two possible scenarios:

(1) Suppose that our (strong) RPA Coulomb ME and
the fitting parameters l�

nn0 of Ref. [36] properly describe
the e–e repulsion. Then l* = 0.12 would be too low (or
too strongly renormalized, as in Ref. [35]) and the value
k � 0.7, although correctly calculated in most of the theo-
retical works, would not reproduce all the relevant features
of the e–ph coupling in MgB2 (producing a too low Tc in
both SCDFT and Eliashberg approaches). The reason of
this underestimate would be unclear at present.

(2) Conversely, suppose that the two-band e–ph interac-
tion averaging to k � 0.7 captured all the MgB2 e–ph phys-
ics. Then the value k = 0.87, our RPA Coulomb ME, the
ME calculated in Ref. [35] and the l�

nn0 of Ref. [36] would
be too strong. In the case of our Coulomb ME this could
be related, e.g., to a not enough elaborated screening (for
this material). In the Eliashberg approach, only a matrix
of l�

nn0 averaging to a l* � 0.12 would then be able to
reproduce T exp

c [47].
As none of the two scenarios is more plausible than the

other at present, we leave open the question of which are
the correct physical values of the ME and in the following
we present our two-band model calculation, which assumes
the validity of scenario (1).

In Fig. 1 we plot the superconducting gap, as a function
of (positive) energy distance from the Fermi energy,
obtained including the screened Coulomb ME K

e–e (Eq.
(26)). The corresponding results slightly differ from the
ones of Ref. [43], where the DM model of Hybertsen and
Louie (HL) [44] including local fields was employed.
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Fig. 1 shows that the r gap is defined only up to the energy
of the top of the r band and that both D

r
and D

p
are aniso-

tropic. This anisotropy results from the Coulomb potential
matrix elements, and is roughly 0.4 meV, �6% of D

r
at the

FS but much larger at high energy, where there are many
bands with different orbital characters. The averages of
D
r
and D

p
at the Fermi level (7.3 meV and 2.6 meV, respec-

tively) are in excellent agreement with experiment (7.1 meV
and 2.9 meV) [24]. Both gaps change sign leading to the
renormalization of the Coulomb interaction, which is a
crucial condition to find superconductivity in the presence
of the repulsive Coulomb interaction. In fact, our gap
equation does not converge to a superconducting solution,
unless all the electronic states in a large energy window are
included. We see a striking difference between the aniso-
tropic and completely isotropic solution (red line),1 which
will be discussed in detail later.

In Fig. 2 (panel (a)), the superconducting gaps are plot-
ted versus temperature, together with a few recent experi-
mental results. The agreement is striking: the values of Tc

(36.5 K) and of D
r
and D

p
at T = 0 K are very close to

the experimental data. Moreover, the temperature behavior
of both gaps, along with their strongly non-BCS behavior,
are very well reproduced. Obviously, unlike calculations
performed using Eliashberg theory, we do not reproduce
exactly the experimental critical temperature, as our calcu-
lations are not fitted to match any experimental quantity.
As discussed later (see Table 1), we see that the present val-
ues of D

r
, D

p
and Tc are in better agreement with the exper-

iment than to the ones of Ref. [43], meaning that the

ab initio calculation of the DM has a non-negligible effect
on the gap, relative to the HL model for DM [44].

The full anisotropic calculation of the gap allows to
evidence the intraband gap anisotropy, which is found to
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Experimental and calculated electronic specific heat, as a function of T/Tc.

Table 1

Summary of calculated Tc (K) and gaps (meV)

Coulomb e–e a2F nn0 ðxÞ a2F(x)

Tc D
r

D
p

Tc D
r

D
p

RPA 36.5 7.3 2.6 20.8 3.8 3.8

av-RPA 50.2 9.4 1.5 20.8 3.7

RPA-DIAG 30.0 5.9 2.2 –

HL 34.1 6.8 2.5 –

TF-ME 31.0 6.1 2.3 –

exp 38.2 7.1 2.9 –

Coulomb e–e: RPA = RPA dielectric matrix with local fields (LF); RPA-

DIAG = RPA diagonal dielectric matrix (no LF); HL = model dielectric

matrix from Ref. [44] (with LF); TF-ME = Thomas–Fermi screening; av-

RPA = average of RPA ME (Eq. (27)). Experimental values are taken

from Ref. [24].
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Fig. 1. Calculated superconducting gap of MgB2 as a function of energy.

In r RPA, p RPA the Coulomb matrix elements are screened by an RPA

dielectric matrix and the e–ph coupling is included via the band resolved

a2F nn0 ðxÞ. In av-RPA + a2F(x) a completely isotropic calculation is

performed, both for phononic and electronic terms.

1 For interpretation of color in Figs. 1 and 3, the reader is referred to the

web version of this article.
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be Dmax
r

ðEFÞ � Dmin
r

ðEFÞ ¼ 0:8 meV, Dmax
p

ðEFÞ � Dmin
p

ðEFÞ ¼
1 meV. Concerning the r sheets, we find higher gap values
in the smaller cylinders, whereas in the p sheets the gap is
higher in the antibonding sheet than in the bonding. As
expected, being the bonding bands more localized than
the antibonding, both the e–ph and Coulomb ME are
stronger in the former bands. In any case, the intraband
anisotropy plays surely a minor role if compared with the
interband anisotropy, confirming the validity of the two-
band model in this material.

We also calculated the Kohn–Sham entropy as a func-
tion of temperature and, from its temperature derivative,
the specific heat. In order to compare our results with
experiments [26–28], we plot in Fig. 2 (panel (b)) the
reduced specific heat versus temperature, normalized to
Tc (using the corresponding experimental and calculated
Tc values). Both the shape of the curve as well as the dis-
continuity at Tc are almost perfectly reproduced. We recall
that the low temperature shoulder comes from the presence
of the smaller p gap.

4.1. Screening and anisotropy of the interactions: influence

on Tc

While the good agreement with experiment underlines
the predictive power of our method, it is only one part of
our investigation. Another important aspect is to gain fur-
ther insight into the peculiar superconductivity of MgB2.
To this end, we performed several calculations using differ-
ent approximations for the screened Coulomb interaction
and including both a band-resolved (via a2F nn0ðxÞ) and iso-
tropic (via a2F(x)) e–ph coupling. Our results are summa-
rized in Table 1.

The anisotropy of the Coulomb interaction strongly
affects Tc. Including in Eq. (24) the a2F nn0ðxÞ and the aver-
aged Coulomb interaction (denoted av-RPA):

K
e–e
av ð�; �0Þ ¼

1

Nð�ÞNð�0Þ
X

nk;n0k0
K

e–e
nk;n0k0dð�nk � �Þdð�n0k0 � �0Þ

ð27Þ

we obtain Tc = 50.2 K, with the r and p gaps being
9.4 meV and 1.5 meV, respectively. This test shows that
the repulsion among r states, stronger than within p and
between r and p, is crucial in achieving good agreement
with experiment. It is interesting to notice that the averag-
ing of the Coulomb matrix elements reduces the p gap, pre-
sumably by assigning it a larger repulsive term. Conversely,
if we average also the e–ph spectral functions (using the
isotropic a2F(x)), we obtain a single gap D = 3.7 meV
and the much lower Tc = 20.8 K, in agreement with the
analysis of Ref. [33] and with a similar test carried out by
Choi et al. [29]. Moreover, with an averaged e–ph interac-
tion, we obtain a single gap also if the RPA anisotropic
Coulomb interaction is included. This means that the Cou-
lomb interaction alone is not able to induce a band aniso-
tropy in the SC gap.

Of course, in the search for novel superconductors with
higher transition temperatures, it would be desirable to
keep the extremely strong e–ph coupling for r states, while
reducing the corresponding Coulomb interaction to that of
more delocalized p states. Unfortunately, the two features
are linked together, as both the strong e–ph coupling and
the strong Coulomb repulsion derive from the covalent
nature of the corresponding electronic states.

To push this analysis further, we plot, in the upper panel
of Fig. 3, the energy dependence of the Coulomb contribu-
tion to Eq. (24) at T � 0 K, namely K

e–e
nk;n0k0Dn0k0=ð2En0k0Þ 	

K
e–e
nk;n0k0vn0k0 against nn0k0 ¼ en0k0 � EF, for a few k-points

arbitrarily chosen on the Fermi surface. As vn0k0 goes to
0.5 on the Fermi surface, Fig. 3 shows the larger magnitude
of the intraband r–r and p–p, relative to the interband r–
p matrix elements (see also Ref. [35]). The different behav-
ior of the r ! p and p ! r terms results from the v factor,
as the matrix elements themselves are symmetric. Obvi-
ously, the r–r repulsive matrix elements are the strongest.
The scattering of data for a given energy comes from the
different orbital character of wavefunctions at n 0k 0. The
energy dependence of the quantities plotted in Fig. 3 comes
almost entirely from vn0k0 , as the matrix elements themselves
have a marginal energy dependence. In order to show how
the reduction of Coulomb repulsion takes place, we
emphasize in the lower panel of Fig. 3 the region corre-
sponding to low matrix elements (on a linear scale). We
see how, when D becomes negative, the Coulomb interac-
tion actually gives a constructive contribution due to the
minus sign in Eq. (24). Although the negative values are
much smaller (by almost 3 orders of magnitude) than the
positive ones, the corresponding energy range is much lar-
ger, resulting in the well-known, substantial reduction of
the effective Coulomb contribution. The most important
energy region is located in between 0.50 and 3 eV below
EF, in particular due to the strong intraband r–r matrix
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elements. The interband contribution from p bands (violet
in Fig. 3), on the other hand, is considerably smaller, which
is obviously the case also for the r contribution to D

p

(green in Fig. 3). Summing up over n 0k 0, the negative con-
tribution to D

r
coming from the (positive gap) region of

the r Fermi surface overcomes by a factor of �7 the con-
tribution coming from the corresponding p region.

Finally, it is also interesting to investigate the impor-
tance of local field (LF) effects on the superconducting
properties of MgB2. It turns out that using a diagonal Tho-
mas–Fermi screening (which completely neglects LF’s) the
r–r matrix elements increase by roughly 15% (red in
Fig. 3), while the r–p and p–p terms remain basically
unchanged. As a consequence, neglecting LF effects leads
to a marginal (�4%) decrease of D

p
, but decreases signifi-

cantly D
r
(by about 14%). The different behavior of D

r

and D
p
can be understood quite naturally: LF corrections

imply a better screened interaction among electrons when
they are located in a high density region inside the unit cell.
This is precisely the case of the r bands. On the other hand,
the p bands are more delocalized – the electrons reside in
the interstitial region – and are therefore reasonably
described by diagonal screening. A result analogue to Tho-
mas–Fermi screening is obtained using diagonal RPA, i.e.
with ��1(q,G5 G 0) = 0. A similar analysis on the LF
effects also applies to the SC properties of CaC6 [45].

In this communication, a recently developed ab initio
theory of superconductivity is applied to MgB2. The calcu-
lated value of Tc, the two gaps, as well as the specific heat
as a function of temperature are in very good agreement
with experiment. We stress the predictive power of the
approach presented: being, by its very nature, a fully ab ini-
tio approach, it does not require semi-phenomenological
parameters, such as l*. Nevertheless, it is able to reproduce
with good accuracy superconducting properties, up to now
out of reach of first-principles calculations. Furthermore,
our calculations allow for a detailed analysis of the contri-
bution of the Coulomb repulsion to the superconducting
gap, opening the way to tailoring the electronic properties
of real materials in order to optimize superconducting
features.
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