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ABSTRACT 

It is argued that many synthetic metals, including high temperature superconductors are “bad 
matals”, with such a poor conductivity that the usual mean-field theory of superconductivity breaks 
down because of anomalously large classical and quantum fluctuations of the phase of the supercon- 
ducting order parameter. Some consequences for high temperature superconductors are described. 
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BAD METALS 

Synthetic metals, such as organic conductors, alkali-doped Cso, and high temperature supercon- 

ductors, exhibit many of the phenomena of central interest in modern condensed matter physics- 

superconductivity, metal-insulator transitions, and various charge or spin-ordered states. Typically 

these materials are strongly-correlated electron systems with a poor conductivity and a rather low 

effective carrier density, and it is natural to ask if we should view their properties, and in particular 

the mechanism of charge transport, in the way in elemental metals, such as copper or gold. 

In the theory of simple metals it is often assumed that the quasiparticle decay rate and the transport 

scattering rate in a metal must be small compared to the quasiparticle energy k B T ,  as required by 

Fermi liquid theory. However, quite ordinary metals, such as lead, fail to  satisfy this condition at 

room temperature and yet their transport phenomena are well understood in terms of Boltzmann 

theory [l]. In fact, the concept of a propagating quasiparticle apparently does not break down entirely 

until its mean free path is shorter than its de Broglie wavelength: I < XF = 2 ‘ l r / k ~  [ 2 ] .  In normal 

metals with strong electron-phonon coupling, a symptom of this breakdown is resistivity saturation; 

for the A15’s, for example, the saturation value of the resistivity ( p  = 150pR - cm) corresponds to  

1 M XF [ I ] .  

Typical synthetic metals are, in fact, “bad metals’’ in the sense that their resistance has a metallic 

(increasing) temperature dependence but, according to  Boltzmann transport theory, the mean free 

path 1 of a quasiparticle would be less than its de Broglie wavelength XF at sufficiently high temper- 

atures. This behavior is associated with the failure of bad metals to exhibit resistivity saturation. 

For example, in La1.85Sr.15CuO4-6, the resistivity in the a-b plane is a linearly increasing function of 

temperature from T, up to 900K, where its magnitude is about 0.7 mocm. According to Boltzmann 

transport theory this behavior implies l/XF = 0.4 at 9OOK with no sign of saturation. The failure of 

bad metals to  exhibit resistivity saturation strongly suggests that  any theory based on conventional 

quasiparticles with reasonably well-defined crystal momenta suffering occasional scattering events 

does not apply. Since the temperature dependence of the resistivity is unchanged as the temperature 

is lowered, this conclusion applies by continuity at lower temperatures, even though the estimated 

value of a mean free path would not, of itself, exclude quasiparticle transport. 

This behavior has many important consequences. In particular, the anomalous behavior of the normal 

state of a bad metal requires that the physics of the superconducting transition be reconsidered. Here 
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we give a summary of the main ideas and argue that the usual mean field theory breaks down because 
quantum and classical phase fluctuations may not be neglected. More detailed accounts are given 

elsewhere [3,4]. 

In the BCS-Eliashberg mean-field theory [5 ] ,  which is an extremely good approximation for conven- 

tional superconductors, electron pairing and long-range phase coherence occur at  the same temper- 

ature T Y F .  There are essentially three types of fluctuations about the BCS ground state which can 

ultimately destroy the superconducting order: classical phase fluctuations, quantum phase fluctua- 

tions, and the effects of all other degrees of freedom which affect the local magnitude of the order 

parameter . 
The stiffness of the system to  classical phase fluctuations is determined by the superfluid density, 

p,(T); the smaller the superfluid density, the more significant classical phase fluctuations. In bad 

metals, especially t he  high temperature superconductors, the value of the bare superfluid density n,0 

is quite low at zero temperature, so the classical phase ordering temperature, which is proportional 

to ns,-,/m*, can be substantially lower than TPF.  

Quantum phasr fluct uations are associated with the number-phase uncertainty relation [6] according 

to which phase coherence between neighboring regions implies large relative number fluctuations and 

correspondingly large ('oulomb energies unless there is adequate screening. Thus, the smaller the 

dielectric funrt ion ,  or  rquivalently the frequency dependent conductivity, the more significant the 

effects of quant urii p11m= fluctuations. 

Together, thew c&=cts determine the superconducting transition temperature T, in a bad metal. 

But they have a riuniber of other consequences for the physical properties of the materials. Local 

superconduct trig flurr uat ions are important for a much larger range of temperatures above T, than 

in good metals, aiid phase fluctuations control the temperature-dependence of the penetration depth 

and other par;iriic.rrro of the superconducting state. In particular, the unusual linear temperature- 

dependence o f  t tip perirt ration depth of high temperature superconductors [7], may be explained in 

this way [3]. 

CLASSICAL I'HASE FL[ICTUATIONS 

The import anrr  of  p h i w  fluctuations may be assessed by using experimentally-determined quantities 

to evaluate the tcwiperature Tax at which phase order would disappear if the disordering effects of all 

other degrees of frrcdorri were ignored. If T, << Tr"", phase fluctuations are relatively unimportant, 

and T, will be close to t he  mean-field transition temperature, T M F  , predicted by BCS-Eliashberg 

theory [5]. On the other hand, if Tax - T,, then the value of T, is determined primarily by phase 

ordering, and TMF is simply the characteristic temperature below which local pairing becomes 

significant. 

In order t o  evaluate Tax, the  system must be divided into regions of linear dimension a which are 

large enough for the  order parameter to be well-defined locally. A region j is characterised by a 

phase angle 0, and its dynamically conjugate variable the number of electrons N j .  The Hamiltonian 

governing the thermodynamic effects of long wavelength phase fluctuations at low temperature is 

the kinetic energy of the  superfluid: 

I 
H = -p*(O) J d r ' q ! ,  

2 

. 

where v', = fiV0/2m* is the superfluid velocity, and m* is the effective mass of an electron. The 

system described by 7 i  undergoes a phase-ordering transition, since 6 is an angle variable (defined 

modulo 27r), and there is a short-distance spatial cutoff, ie. the variables are defined in regions of 
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size a, and the integral and derivative in Eq. (1) should be regarded as a sum and a finite difference 

respectively. 

The characteristic energy scale for phase fluctuations is the zero-temperature “phase stiffness” Vo = 
(h/2m*)2 p,(O)a, which may be expressed in terms of the length scale a and a measurable quantity, 

the penetration depth X(T), via the relation 4?rp,(O) = (m*c/eA(0))2 to obtain: 

(tic)2a 

167re2X2 (0) . 
vo = 

Since V, gives the energy scale of the model, it follows that the transition temperature Traz  = AVO 

where A is a dimensionless number of order 1 which depends on the details of the short-distance 

physics. For three dimensions, our prescription for the short-distance cutoff is equivalent to  defining 

the model on a simple cubic lattice, for which A = 2.2 [SI. In order to  complete the specification of 

VO, we identify a2 with the area x t 2  defined by the superconducting coherence length <; the precise 

numerical relation between a and < will not be important for the subsequent discussion. 

Quasi two-dimensional systems, such as oxide superconductors consist of weakly coupled planes in 

which the phase variables may be defined on a square lattice. The value of A lies between 0.9 (for a 

two-dimensional system [9]). and 2.2 (for the isotropic three-dimensional system). For definiteness, 

we shall use A = 0.9 for all quasi-two dimensional materials, but the true phase ordering temperature 

may typically be 50% larger. The in-plane cutoff does not enter the expression for Vo, so that  a in 

Eq. (2) is the larger of the average spacing between layers d or @[l, where <I is the coherence 

length perpendicular t o  the layers. Since d is known very accurately, there is much less uncertainty 

in the calculated value of Vo for materials, such as organic and high temperature superconductors, 

for which d > <J-. 

Other ways of introducing the short-distance cutoff into the Hamiltonian will give somewhat different 

values of A but the one we have chosen is physically natural and, as we shall see, it  leads t o  a very 

suggestive interpretation of the phase diagram of high-temperature superconductors. 

Tax is an upper bound on the true superconducting transition temperature T, because of the neglect 

of quantum phase fluctuations, as well as the temperature dependent effects of the other degrees of 

freedom. Similarly, TMF is also an upper bound on T,, since phase fluctuations will always depress 

T, somewhat. Thus, the ratio Tra*/Tc provides a very useful criterion for the importance of phase 

fluctuations; if it is large, it is clear that phase fluctuations have a minor effect on T,, whereas if it 

is close to  1, then phase fluctuations depress T, substantially below T M F  or, as we shall see, they 

may even be the major factor in determining T, itself. In fact Vo is important in its own right since, 

as a measure of the rigidity of the superconducting state to variations of the phase, it  characterises 

the energetics of vortex lattices. 

The values of Tax/Tc for a wide variety of materials are tabulated in reference [4]. For elemental 

metals such as lead, Tax/, N lo5 is extraordinarily high; phase fluctuations have a negligible effect 

on T, and the superconducting state has a substantial phase rigidity at all temperatures below T,. 
In other words, pairing and long-range phase coherence occur essentially simultaneously. With the 

exceptions to be described below, other superconducting materials behave in the same way, although 

the values of Trax/Tc are somewhat smaller. 

On the other hand, the organic superconductor (BEDT-TTF)~CU(NCS)~ and the hole-doped ox- 

ide superconductors are in an entirely different range of parameters inasmuch as T a x / T ,  is of 

order unity. In particular, the analysis suggests a new interpretation of the usual phenomenolog- 

ical classification of high temperature superconductors into three, more or less distinct categories: 

“underdoped” , “optimally doped”, and “overdoped .” The value of T, is predominantly deter- 

mined by phase fluctuations in underdoped high temperature superconductors such as YBaZCu408, 

(TPax/Tc R l), and by the mean-field transition temperature T M F  in overdoped materials such as 
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T1 2201 (T””/T, >_ 2). Optimally doped materials, such as YBa2Cu307-6 and La2-rSrzC~04,  

with 6 and 2 in the neighbourhood of 0.05 and 0.15 respectively, are in the crossover region between 

the two. Of course there is no precise dividing line between the two kinds of superconductor but 

rather a more or less gradual crossover in behavior as the value of T “ ” / T ,  changes. Furthermore, 

the values of this ratio are subject t o  the uncertainties in the experimental values of A(0) and the 

precise form of the short-distance cutoff. But the systematic variation of the properties of high 

temperature superconductors from one material to  another clearly supports the importance of phase 

fluctuations. 

When T, is much smaller than T M F ,  the effects of pairing manifest themselves as a pseudogap in 

the the temperature range T, < T < T M F .  This observation provides a natural explanation of a 

variety of measurements, including NMR [lo] and optical conductivity [11,12], on underdoped high 

temperature superconductors, such as the stoichiometric material YBa2Cu408 (TC=80K), which 

show a pseudogap opening below a temperature of order 160-180K. Similar behavior is seen [lo] in 

underdoped YBa2Cu307-6, extending to  the large 6 end of the the 90K plateau, beyond which there 

is a rather rapid change in behavior as the  oxygen content is increased. 

These considerations are macroscopic and independent of the underlying “mechanism” of high tem- 

perature superconductivity. However, some additional constraints on the appropriate microscopic 

theory emerge: 1 )  The theory must account for the very high values of T M F  > T, and be able to  

survive any loss of low-energy spectral weight due to  the opening of a pseudogap. 2) The funda- 

mental reason why phase fluctuations are so important in the oxide superconductors is that  they 

are doped insulators with a very low Drude weight which, in turn, implies a low superfluid density. 

This requires a significant departure from the BCS-Eliashberg theory. 3)  When phase fluctuations 

are important, the  characteristic consequences of the BCS mean-field theory, such as the existence 

of NMR coherence peaks, the jump in the specific heat at T,, the value of the gap ratio, 2Alk~T,, 

the isotope effect, and the  temperature dependence of physical properties must be modified. 

These ideas give a new perspective on the relation between T, and A-2(0) suggested by muon spin 

relaxation experiments. From our point of view, the “universal relation” between T, and the muon 

depolarization rate in high temperature superconductors proposed by Uemura and coworkers [13] 

should in fact be reinterpreted as an u p p e r  bound on T, given by the ordering temperature for 

phase fluctuations, as shown below Eq. ( 2 ) .  Indeed the picture that underdoped materials are close 

to  the bound (but depressed below it by an amount that depends on the conductivity) and that  

overdoped materials are further from the bound because the mean field transition temperature takes 

control, gives a very good description of the systematics of the relation between T, and the muon 

depolarisation rate. 

QUANTUM PHASE FLUCTUATIONS 

In elemental superconductors, a(T,) >> UQ,  so quantum phase fluctuations are entirely insignifi- 

cant. However, as indicated above, poor conductivity implies poor screening, which supresses the  

charge fluctuations implied by phase order. A method of calculating these effects has been presented 

elsewhere [3]. Two consequences will be mentioned here. 

In the case of pristine stoichiometric high temperature superconductors, a(T,)/aQ - 10, and the  

suppression of T, below Tax is significant. According to  our estimates, quantum fluctuations 

produce a 5% - 7% suppression of T, in optimally-doped YBa2Cu30.i.-6. Damaged or relatively 

more disordered samples tend to  have a substantially smaller conductivity, and quantum effects are 

correspondingly more important. Indeed it is possible to  increase the resistance so as to destroy 

superconductivity altogether. The idea that  the superconducting transition is influenced by the 

value of the conductivity at T, correctly predicts many trends in the transition temperature of high 

, 
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temperature superconductors. It has  been considered as an explanation of the variation of T, upon 
purposely reducing the conductivity of YBazCusO7-6 by radiation damage [14]. 

A second important implication for high temperature superconductors is the existence of a sub- 

stantial range of temperatures in the neighborhood of T, in which critical phase fluctuations dom- 

inate the low frequency electromagnetic response, and a low temperature regime in which n,(T) 
will have an anomalous temperature dependence as a result of phase fluctuations: n,(T)/n,(O) = 
1 - aF'kgT/[2Ve(a - l)], to first order in T. Here, it is assumed that  the Coulomb interaction 
is screened by the finite residual far IR conductivity observed in YBa2Cu307-8 [15]. If we use 
u ( w )  = 500(C2crn)-', (which is roughly consistent with experiment) together with Rg $;: 40kR 

(F 1/6), as deduced from the data of Fig. 1, the linear temperature dependence of the superfluid 
density agrees quantitatively with the observations [7]. 
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