Superconductivity in dense $Mg_{1-x}M_xB_2$ (M = Zr, Nb, Mo; x = 0.05) materials sintered under pressure

S KALAVATHI[†] and C DIVAKAR*

High Pressure Laboratory, Materials Science Division, National Aerospace Laboratories, Bangalore 560 017, India [†]Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India

MS received 15 April 2004

Abstract. Dense compacts of superconducting MgB₂ material have been produced by sintering under 3 GPa pressure and 900°C using a cubic anvil apparatus. The starting material was produced by the powder in tube (PIT) method at low pressure and in argon atmosphere. The effect of substitution of Mg sites with non-magnetic 4*d*-transition metals (Zr, Nb, Mo) on the superconducting transition temperature (T_c) has been studied by resistivity and susceptibility measurements. The results indicate that there is a small gradual reduction in the transition temperature as we move from Zr to Mo.

Keywords. Magnesium diboride; superconductivity; high pressure; resistivity; susceptibility.

1. Introduction

The discovery of superconductivity in MgB₂ (Nagamatsu et al 2001) with a transition temperature (T_c) of about 40 K has started a flurry of research activities. This is the first non-oxide superconductor to show such a high $T_{\rm c}$. The MgB₂ structure (space group P6/mmm) consists of a layered stacking with alternate Mg and B layers (a =3.086 Å and c = 3.524 Å). Following its discovery, measurements on commercial and also laboratory synthesized samples have brought about a wealth of information about this new material. Even though the T_c is just about the maximum that is predicted by the conventional BCS theory based on the electron-phonon interaction, the data that have come from the plethora of experiments have raised a lot of questions regarding the mechanism of superconductivity in this material. MgB₂ has shown a number of unique features. For instance, it is characterized by two bands in the Fermi surface (Amy et al 2001), anisotropy in upper critical field (Angst et al 2002), anisotropy in the superconducting order parameter (Kortus et al 2001) and so on. Another intriguing feature is that defying the initial predictions of band theoretical calculations, substitutions both at Mg and B sites have only reduced the T_c . Substituting Al for Mg has shown a larger decrease (Slusky et al 2001) compared to other substitutions at Mg site. Partial substitution of C for B (Bharathi et al 2002) has also brought down the transition temperature. Initially pure MgB₂ samples were synthesized at low pressure and in argon atmosphere to prevent the formation of MgO. These samples were porous. Nevertheless they showed very sharp transition ($\Delta T_c < 1$ K) to superconducting state

at ~ 40 K. They also showed very high RRR values ranging from 6 to 25 thereby satisfying the Testardi correlation (Buzea and Yamashita 2001) required for very good superconductors. Despite all this the surface degradation of the porous samples results in the broadening of transition though the T_c itself remains unaffected. Attempts to densify the samples by annealing at ambient pressures and high temperatures were found to be detrimental to superconductivity. This and the requirement to produce dense samples for further metallurgical processes resulted in high pressure sintering and also high pressure – high temperature synthesis (Jung *et al* 2001) of MgB₂.

In this paper we present the results of high pressure and high temperature sintering of pristine MgB₂ and M_{0.05} Mg_{0.95} B₂(M = Zr, Nb, Mo) using a cubic multi anvil press. From the literature it is known that substitution of 3% 3*d*transition metals in Mg site decrease T_c (Moritomo and Xu S; Kazakov *et al* 2000). Zn was the only exception which showed a very small increase in T_c . In this background it is interesting to substitute non magnetic 4*d*transition metals and observe their role in the superconductivity of MgB₂. We took a novel approach of synthesizing the pristine and substituted samples at low pressure (LP) and sintering them at high pressure (HP) in the cubic anvil apparatus.

2. Experimental

Stoichiometric quantities of Mg (99%), amorphous B (99%) and the 4*d*-elements (Zr, Nb, Mo (99%)) were weighed, ground, made into pellets and placed in a Ta tube. The Ta tube was kept in a thick walled SS tube fitted with a high pressure valve. After evacuation and flushing with Ar the SS tube was sealed at an Ar pressure of 35

^{*}Author for correspondence (divakar@css.nal.res.in)

bar. This assembly was put in a quartz jacket with a Wilson's seal and lowered in a vertical furnace for synthesis at 900°C for 90 min and then furnace cooled. The resulting porous pieces and powder which were black in colour were characterized to be highly phase pure by XRD. The high pressure sintering was carried out in a 200 ton cubic anvil apparatus with an anvil face of 10 mm (Bhaumik et al 1996). Direct contact of the sample with the graphite heater was avoided by enveloping the sample in a tantalum foil. The schematic of the high pressure-high temperature cell is shown in figure 1. While maintaining a pressure of 3 GPa, the temperature of the sample was increased to 900°C by passing a current through the graphite heater. The samples recovered after 2 h of sintering were about 3 mm in diameter and 4 mm in height with a mass of 100 mg. They were golden yellow in colour and had a density of 2.5 g/cc.

The X-ray diffraction studies of the pristine and 5% 4d-substituted MgB₂ samples were carried out in a STOE diffractometer with CuK_a radiation. Superconducting transitions were traced by a.c. susceptibility and resistivity techniques from room temperature down to 4 K using a dipstick arrangement in a liquid helium dewar. The susceptibility signal was obtained using a coil assembly with compensated secondary coils. A PAR model 5210 lock-in amplifier was used to record the secondary e.m.f. Four-probe resistivity at room temperature was measured on a

Figure 1. The schematic of the high temperature – high pressure cell: 1. Steel current ring, 2. tantalum disc, 3. tantalum liner, 4. sample, 5. graphite heater, 6. graphite plug, 7. tantalum disc, 8. WC anvils and the remaining portions of the cell is pyrophyllite.

thin circular disc sample in the Van der Pauw geometry. Electrical contacts to the 2.5 mm sample discs were made using silver paste. Resistive transitions were recorded by applying a current of 50 mA from a highly stable current source (Time Electronics make) and measuring the voltage developed using a Keithley 181 Nanovolt meter. A Lakeshore make calibrated diode sensor was used to measure the temperature. The error in measured temperature is less than 50 mK. The SEM observations of the porous as well as the sintered pellets were made using a JEOL model JSM 5410 SEM.

3. Results and discussion

The results of the XRD studies are shown in figure 2. All the lines characteristic of MgB2 are present. The structure of MgB₂ is hexagonal with the space group P6/mmm. It is to be noted that the LP synthesized sample has almost no trace of MgO since it was prepared in a high purity Argon environment. In the HP sintered samples, it is seen that the 100% peak corresponding to $(1 \ 0 \ 1)$ line of MgB₂ is broadened due to the merging of the (2 0 0) line of MgO at $2q = 42.916^{\circ}$. A small peak corresponding to the next higher intensity line (2 2 0) at $2q = 62.3^{\circ}$ is also present indicating presence of MgO. This could have probably come due to some Mg reacting with O2 during high pressure sintering where control of the gaseous environment was not possible. No peak corresponding to MgB₄ phase was observed. A small peak corresponding to 100% line of Ta (1 1 0) is present at $2q = 38.47^{\circ}$. It is not expected that Ta would have gone into the bulk. A very thin ring of Ta might be adhering to the periphery of the circular disc sample and hence contributing to the observed line. The 4d-substituted samples show a small shift in the

Figure 2. XRD pattern for low pressure synthesized and high pressure sintered pristine and 5% 4*d*-substituted MgB₂ samples.

(0 0 2) peak (not shown) with respect to pristine MgB₂. The *c*-lattice parameter (table 1) also shows an increase. This implies substitution of Zr, Nb and Mo at the Mg site. The SEM micrographs (figure 3) of the low pressure synthesized sample and the high pressure sintered sample clearly show the dense nature of the high pressure sintered sample with good grain connectivity. The normalized resistivity plots are presented in figure 4. The superconducting transition (T_c) onset is at 40 K for the pristine

MgB₂. It decreases to 39.5 K, 39.3 K and 38.9 K with the substitution of Zr, Nb and Mo, respectively.

The resistivity ratio between the resistivity at 300 K and that at 40 K (RRR) usually varies from 6 to 25 in most of our low pressure synthesized samples. In the high pressure sintered sample we find a value of RRR = 2. The sample that is chosen for high pressure sintering is one of the earlier samples that we had synthesized at low pressure. The synthesized material was a porous powder and hence resistivity data does not exist for comparison. The resistivity of the pristine MgB₂ sample just above the superconducting transition (40 K) was 75 $\mu\Omega$ cm. This value is higher compared to the value quoted in the literature viz. 60 $\mu\Omega$ cm. This increase can be attributed to the error in dimensional measurements of the sample and also to the presence of a very small ring of Ta adhering to the peripheral surface of the sample disc.

Figure 5 shows the normalized susceptibility data. When the sample undergoes superconducting transition a negative secondary e.m.f. due to the diamagnetism of the sample is observed. In some of the very good samples, a difference in secondary e.m.f. between the paramagnetic normal state and the diamagnetic superconducting state would be about 500 μ V for ~ 25 mg of sample. The sample that is chosen for high pressure sintering showed 355 μ V. For easy comparison of the superconducting transition of all the samples the signal strength was normalized to 100%. The T_c onset corresponding to the pristine MgB₂ is again 40 K and it decreases to 39.65 K, 39.35 K and 39.17 K for Zr, Nb and Mo samples in that order (table 1).

The electronic band structure calculations (An and Pickett 2001; Kortus *et al* 2001) carried out on MgB₂ conclude that MgB₂ being essentially metallic, has boron held together by strong in plane covalent B–B bonding and weak out of plane B–Mg bonding. This is characterized

Figure 3. SEM corresponding to (a) low pressure synthesized MgB_2 and (b) high pressure sintered MgB_2 .

1000

001

X2,000

15kV

Figure 4. The normalized resistivity, R(300)/R(T) as a function of temperature. The T_c onset decreases with the substitution of 5% Zr, Nb and Mo.

No.	Sample	' <i>a</i> ' – lattice parameter (Å)	'c' − lattice parameter (Å)	$\begin{array}{c} \text{Cell volume} \\ (\text{\AA})^3 \end{array}$	Susceptibility, T _c (K)	Resistive, T _c (K)
1.	$MgB_2 - LP$ synthesized	3.0840(12)	3.5215	29.01	39.75	_
2.	$MgB_2 - HP$ sintered	3.0826(6)	3.5213(8)	28.978	40.00	40.00
3.	$Mg_{0.95}Zr_{0.05}B_2$	3.0837(10)	3.5264(14)	29.040	39.65	39.50
4.	$Mg_{0.95}Nb_{0.05}B_2$	3.0826(6)	3.5244(17)	28.982	39.35	39.30
5.	$Mg_{0.95}Mo_{0.05}B_2$	3.0837(14)	3.5284(20)	29.057	39.17	38.90

Table 1.Summary of the results.

Figure 5. Normalized susceptibility as a function of temperature for pristine and 5% substitution of Zr, Nb and Mo. The $T_{\rm c}$ onset decreases on substitution.

by the existence of hole like cylinders at the Γ points of the Fermi surface. This is due to the in plane, p_{xy} , boron bands. Mg is fully ionized and the electrons donated to the system are not localized but are distributed over the whole crystal. Hall effect measurements done on polycrystals and *c*-axis oriented thin films (Kang *et al* 2001) and films without preferential orientation (Jin *et al* 2001) have all shown a positive Hall coefficient, confirming holes as charge carriers in the normal state. Substitution of Zr, Nb or Mo would increase the filling of p_{xy} bands (Medvedeva *et al* 2001). This consequently reduces the hole density and could explain the decrease in T_c .

4. Conclusions

In conclusion, pristine and 5% (Zr, Nb and Mo) substituted MgB₂ samples were synthesized at low pressure (50 bar) and sintered at 3 GPa and 900°C using a cubic multi anvil cell. The samples were dense with a golden yellow lustre. The superconducting properties that deteriorate under ambient pressure sintering, remained in tact after high pressure sintering. Unlike substitution of Al or 3*d*metal like Mn, 4*d*-substitution at Mg site results in a smaller decrease in T_c . This may be due to a small reduction in the density of holes which are the majority carriers in MgB_2 .

Acknowledgements

The authors thank Ms Jemima Balaselvi and Dr A Bharathi for low pressure synthesis of the samples, Mr P M Abdul Jaman for technical help during the high pressure sintering in the cubic multi anvil cell, Mr G L N Reddy for X-ray diffraction, Dr G V N Rao, International Advanced Research Centre for Powder Metallurgy & New Materials, Hyderabad, for carrying out the SEM work, Dr Y Hariharan, Superconductivity Research and Application Centre (SR & AC) IGCAR, Kalpakkam, for his active participation at all levels and Dr R V Krishnan, Materials Science Division, NAL, Bangalore, for support and encouragement.

References

- Amy Y Liu, Imazin I and Jens Kortus 2001 Phys. Rev. Lett. 87 087005
- An J M and Pickett W E 2001 Phys. Rev. Lett. 86 4366
- Angst M, Puzniak R, Wisniewski A, Jun J, Kazakov S M, Karpinski J, Roos J and Keller H 2002 *Phys. Rev. Lett.* **88** 167004
- Bharathi A, Jemima Balaselvi S, Kalavathi S, Reddy G L N, Sankara Sastry V, Hariharan Y and Radhakrishnan T S 2002 *Physica C* **370** 211
- Bhaumik S K, Divakar C, Murali Mohan and Singh A K 1996 *Rev. Sci. Instrum.* 67 3679
- Buzea C and Yamashita Y 2001 Supercond. Sci. & Technol. 14 R115
- Jin R, Paranthaman M, Zhai H Y, Christen H M, Christen D K and Mandrus D, Cond-matt./0104411
- Jung C U, Park M S, Kang W N, Kim M S, Kim K H P, Lee S Y and Lee S 2001 *Appl. Phys. Lett.* **78** 4157
- Kang W N et al 2001 Appl. Phys. Lett. 78 982
- Kazakov S M, Angst M and Karpinski J, Cond-matt./0103350
- Kortus J, Mazin I I, Belashchenko K D, Antropov V P and Boyer L L 2001 *Phys. Rev. Lett.* **86** 4656
- Medvedeva N I, Ivanovskii A L, Medvedeva J E and Freeman A J 2001 *Phys. Rev.* **B64** 020502(R)
- Moritomo Y and Sh.Xu Cond-matt./0104568
- Nagamatsu J, Nakagawa N, Muranaka T and Akimitsu J 2001 Nature **410** 63
- Slusky J S et al 2001 Nature 410 343