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Superconductivity in doped inversion-symmetric Weyl semimetals
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We study theoretically the superconductivity in doped Weyl semimetals with an inversion symmetry based
on the Bogoliubov-de Gennes equations. In principle, the two superconducting states, i.e., the zero momentum
BCS-like pairing and the finite momentum Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing, are competing
in this kind of systems. From the self-consistent calculation and the free-energy analysis, we propose that the
BCS-type state may be the ground state. The competition between these two pairing states is studied in detail
through normal state Fermi surface and the finite-energy spectral functions. We also study the physical properties
and address the Majorana Fermions excitation in these two superconducting states, respectively.
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I. INTRODUCTION

In the past decade, there has been significant interest in
topological phases of condensed matter [1]. In fully gapped
systems, the nontrivial topological phase is defined by a
quantized topological invariant, which implies the appearance
of the edge states on the boundary of the system. Recently,
research has also been extended to the topological gapless
systems [2,3]. In particular, the Weyl semimetal is such a
representative topological fermionic gapless one [2], which
has pairs of gapless points (Weyl nodes) in the bulk spectrum
and Fermi arcs on the boundaries, even for disordered ones [4].
An idea of Weyl semimetal in condensed matter system was
first proposed theoretically that it may be realized in a class
of pyrochlore iridates [2]. Recently, it was predicted that
it may be realized in noncentrosymmetric transition metal
monophosphides (including TaAs, TaP, NbAs, and NbP) based
on the first principle calculation [5,6]. Soon after the theoretical
prediction, the indications of Weyl fermions in TaAs [7,8],
NbAs [9], TaP [10,11], and NbP [12], have been reported
experimentally. Another kind of Weyl semimetal is the WX2-
family material (WTe2 and WoTe2) [13,14]. Very interestingly,
it was revealed that WoTe2 material is a superconductor
with the maximum transition temperature at 8.2 K under
pressure [15], providing us with a potential platform to study
the interplay between the topology and superconductivity in
Weyl semimetal systems.

Generally, the superconducting state should be the ground
state of a metal via the pairing interaction mediated by
the phonon or other bosons. Thus, it is understandable to
observe the superconductivity in Weyl semimetals. Actually,
the superconductivity in Weyl semimetal systems has been
studied before [16–26]. Theoretically, the ground state of the
Weyl-type superconductors is still to be confirmed yet. It
was proposed that a finite momentum pairing state [Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state] is favored over the
uniform zero momentum pairing (BCS-type pairing) [17],
while an odd-parity superconductivity is proposed by later
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studies [20,24]. It was proposed that the FFLO state is favored
for local interaction while the BCS state wins out for nonlocal
interaction [20]. Very recently, it was indicated that the BCS
state is the ground state for an inversion symmetric doped
Weyl semimetals [24]. Note that all of the above studies are
merely based on a free energy analysis. The gap magnitude
is self-consistently determined while the form of the gap
functions is preset. To our knowledge, full self-consistent
studies about the superconducting pairing in this kind of
system are still awaited. Also, for both BCS and FFLO states,
there exist some exotic features, such as the crossed flat bands
in the uniform BCS-type pairing state [25] and the spacetime
supersymmetry in the FFLO-type pairing state [26]. Thus, it
is timely and of fundamental interest to study the competition
of these two superconducting states in more detail and clarify
what kind of state is the genuine ground state.

Another important issue in topological superconducting
systems is the excitations of the Majorana Fermions (MFs),
which can in principle help us to realize nonabelian statis-
tics and have potential applications in topological quantum
computation [27]. Generally, in a bulk gapped topological
superconductor, the MFs naturally appear at the system
boundaries. While for the Weyl superconductors, the BCS-type
pairing state is bulk gapless, different from usual topological
superconductors. And so far, the numerical identification for
MFs in topological FFLO states is also lacking. Thus, it
is insightful to identify the MFs numerically in possible
superconducting states in Weyl semimetals.

In this paper, motivated by the above considerations,
we study numerically the ground state and the MFs in
the Weyl superconductors from the lattice-type model with
the inversion symmetry. Following Refs. [17,24], we here
consider the superconductivity in doped Weyl semimetals.
While different from their studies, which are based on the
free-energy analysis, we here perform a self-consistent study
based on the the Bogoliubov-de Gennes (BdG) equations. Our
numerical results reveal that the BCS pairing state is favorable.
The competition between the BCS state and the FFLO state is
studied in detail through the normal state Fermi surface and
the spectral functions. The physical properties in these two
superconducting states are also investigated. The MFs in both
the BCS state and the FFLO state are studied numerically.
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The rest of the paper is organized as follows. In Sec. II, we
introduce the model and work out the formalism. In Sec. III,
we perform numerical calculations and discuss the obtained
results. Finally, we give a brief summary in Sec. IV.

II. MODEL AND FORMALISM

We start from a model Hamiltonian including the normal
state term and the interaction term,

H = Ht + He. (1)

The normal state term Ht is a general two-band lattice-type
Weyl model, given by

Ht = −
∑
iασ

σ tα(c†iσ ci+α̂σ + H.c.) +
∑

iσ

(σh − μ)c†iσ ciσ

+
∑

i

(iλc
†
i↑ci+x̂↓ + iλc

†
i↓ci+x̂↑ + H.c.

+ λc
†
i↑ci+ŷ↓ − λc

†
i↓ci+ŷ↑ + H.c.), (2)

with i = (x,y,z) representing a site on the three-dimensional
cubic lattice. α̂ = x̂, ŷ, or ẑ represents the base vector along
x, y, or z direction.

The possible superconducting pairings have been summa-
rized in Ref. [17] based on the symmetry classification, among
which the s-wave symmetry is suggested when only the on-site
interactions are considered. The s-wave pairing appears to be
the most common superconducting symmetry in nature. Usu-
ally the phonon-mediated superconductors possess the s-wave
pairing symmetry. Also in the cold-atom systems, the s-wave
pairing has also been realized [28]. Therefore, in the present
work, it is reasonable to assume the superconducting pairing
to be an s-wave one. The interaction term He is considered as
the on-site attractive interaction term, expressed by

He = −V
∑

i

ni↑ni↓. (3)

The above attractive interaction can be decoupled to the
s-wave superconducting Hamiltonian by defining the on-site
mean-field pairing order parameter �ii = V 〈ci↑ci↓〉. Thus,
the interaction term may be written as the superconducting
pairing term, with

He = HSC =
∑

i

(�iic
†
i↑c

†
i↓ + H.c.) +

∑
i �

2
ii

V
. (4)

The above Hamiltonian can be diagonalized by solving the
Bogoliubov-de Gennes (BdG) equations,

∑
j

⎛
⎜⎜⎜⎝

Hij↑↑ Hij↑↓ �jj 0

Hij↓↑ Hij↓↓ 0 −�jj

�∗
jj 0 −Hij↓↓ −H ∗

ij↓↑
0 −�∗

jj −H ∗
ij↑↓ −Hij↑↑

⎞
⎟⎟⎟⎠�

η

j = Eη�
η

j , (5)

where �
η

j = (uη

j↑,u
η

j↓,v
η

j↓,v
η

j↑)T. Hijσσ and Hijσ σ̄ (σ �= σ̄ ) are
obtained from Eq. (2).

The superconducting free energy, defined as F =
−kBT ln Z, can be expressed as

F = kBT
∑

η

ln[1 − f (Eη)] − μN +
∑

i �
2
ii

V
, (6)

with f (Eη) being the Fermi distribution function. Then the
site-averaged superconducting condensation energy G can be
obtained, with

G = F − F0

N
, (7)

where F0 is normal state free energy, which is obtained by
setting �ii ≡ 0 in Eqs. (5) and (6). N is the number of the
lattice sites.

The superconducting order parameter �jj is calculated self-
consistently,

�jj = V

2

∑
η

u
η

j↑v
η∗
j↓ tanh

(
Eη

2kBT

)
. (8)

The edge states of the system may be studied with a
cylindrical geometry, i.e., considering the periodic boundary
condition along the x direction. Thus, the Hamiltonian can be
reduced to a quasi-two-dimensional one by a partial Fourier
transformation,

ciσ (kx) = 1√
Lx

∑
x

ciσ eikxx, (9)

where Lx is the period of the lattice along the x direction, and
i = (y,z) represents a site in the reduced yz plane. As a result,
the normal state Hamiltonian Ht may be rewritten as

Ht = −
∑
kx iασ

σ tα[c†iσ (kx)ci+α̂σ (kx) + H.c.]

+
∑
kx iσ

(σh − 2σ tx cos kx − μ)c†iσ (kx)ciσ (kx)

+
∑
kx i

[λc
†
i↑(kx)ci+ŷ↓(kx) − λc

†
i↓(kx)ci+ŷ↑(kx)

+ 2λ sin kxc
†
i↑(kx)ci↓(kx) + H.c.]. (10)

In the superconducting state, in the mean-field level,
both uniform BCS-type and FFLO-type solutions are in
principle possible when the spin-polarized term exists. Usu-
ally, the FFLO modulation is suppressed and the BCS state is
the ground state with a strong spin-orbital interaction [29]. In
the present model, a strong spin-flip hopping term is considered
in the x direction, which could suppress the FFLO modulation
along this direction. Thus, it is reasonable to consider the
superconducting order parameter being uniform along the x

direction. This is qualitatively consistent with the normal state
Fermi surface analysis in doped Weyl semimetals. Generally,
the Fermi surface should consist of two disconnected Fermi
pockets around the pair of Weyl points [17]. In principle, two
competing pairing states are possible, i.e., the interpocket BCS
pairing and the intrapocket FFLO pairing. Note that for both
pairing states the net momentum of the Cooper pair along the
kx direction keeps zero (see Fig. 1 in Ref. [17]). That is, the
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superconducting pairing term can be written as

HSC =
∑

i

[�iic
†
i↑(kx)c†i↓(−kx) + H.c.] + Nx

∑
i �

2
ii

V
. (11)

Here Nx represents the number of lattice sites along x

direction. The kx dependent BdG equation can be obtained
from Eqs. (10) and (11), with the formalism similar to Eq. (5).
The order parameter �jj is calculated as

�jj = V

2Nx

∑
kxη

u
η

j↑(kx)vη∗
j↓ (−kx) tanh

[
Eη(kx)

2kBT

]
. (12)

In the reduced low-dimensional system, we may define a
spectral function depending on the site and partial momentum
Aiσ (k,σ ) as

Ai(k,ω) =
∑
η,σ

u
η
iσ (k)2

ω − Eη(k) + i	
. (13)

The normal state Hamiltonian [Eq. (2)] can be expressed in
the momentum space by a full Fourier transformation, which
is written as the 2 × 2 matrix,

Ht =
(
h − 2

∑
α

tα cos kα

)
σz+2λ(sin kxσx +sin kyσy) − μσ0.

(14)

Here σ0 is the identity matrix and σx,y,z are the Pauli matrices.
The two normal state energy bands are given by

E(k)

= μ ±
√√√√4λ2(sin2 kx + sin2 ky) +

(
h − 2

∑
α

tα cos kα

)2

.

(15)

With μ = 0, the system may enter a Weyl semimetal phase.
A pair of Weyl points W± may be obtained from the above
energy bands through choosing appropriate parameters, with
W± = [0,0, ± arccos( h−2tx−2ty

2tz
)].

In the present work, the parameters are chosen as tx = ty =
0.5, tz = 1, λ = 0.5, and h = 2 + 2 cos(π/4). In this case,
there exist two Weyl points at (0,0, ± π/4). If not specially
mentioned, hereafter, the chemical potential is set as μ = 0.5,
then the system is metallic with a Fermi pocket surrounding
each Weyl point. We have checked numerically that our main
results are not sensitive to the parameters.

III. RESULTS AND DISCUSSIONS

We first study the normal state electronic structure by setting
�ii ≡ 0. The Hamiltonian in kx − y − kz space is considered
with open boundary condition along y direction (1 � y �
200). The zero-energy spectral functions [Ay(kx,kz,ω = 0)]
in the bulk and the system edge are presented in Figs. 1(a)
and 1(b), respectively. As is known, Ay(kx,kz,0) should be
maximum at the Fermi momentum. Thus, the normal state
Fermi surface is obtained from Fig. 1. In the bulk, as is seen in
Fig. 1(a), there exists one Fermi pocket surrounding each Weyl
point (0,0, ± Qz), with the size of the pockets controlled by

FIG. 1. Intensity plots of normal-state zero-energy spectral func-
tions with open-boundary condition along y direction (1 � y � 200).
(a) The spectral function in the bulk with y = 100. The arrow
indicates the Fermi surface nesting vector. (b) The spectral function
at the system edge with y = 1. (c) The spectral function of spin
up particles with y = 100. (d) The spectral function of spin down
particles with y = 100.

the chemical potential μ. At the system edge, as is shown in
Fig. 1(b), open Fermi arc forms, which is connecting the tips
of the bulk Fermi pockets and is perpendicular to the kx axis.
The spin-dependent zero-energy spectral functions A(k, ↑)
and A(k, ↓) are plotted in Figs. 1(c) and 1(d), respectively.
As is shown, significant spin imbalance exists: the spin-up
quasiparticles have large spectral weight as |kz| > π/4, while
the spin-down ones have large spectral weight as |kz| < π/4.
And it seems that the Fermi surface nesting exists with
the nesting vector 2Qz = π/2, as indicated in Fig. 1(a).
From the above-presented fermiology, it is understandable
that there may exist two competing superconducting states,
i.e., the BCS-type pairing and the FFLO-type pairing with the
net cooper pair momentum Qf = (0,0, ± 2Qz).

Now let us study the superconducting state Hamiltonian.
With the periodic boundary condition along x direction the
Hamiltonian can be expressed in the kx-y-z plane [Eqs. (10)
and (11)]. The system size is set as 128 × 32 × 32. The BdG
equations are solved self-consistently, and the superconducting
order parameters are obtained based on Eq. (12). As the
solution is converged, only uniform superconducting order
parameters are obtained; i.e., the BCS-type pairing is sup-
ported by a self-consistent calculation. Note that this result
does not depend on the boundary condition along the y and
z direction. Especially, with a periodic boundary condition,
one may further transform the Hamiltonian to the momentum
space for the y direction. Thus, the numerical calculation
for a much larger system size is possible. The size effect
is checked numerically and the BCS solution is robust. We
also consider different initial input order parameters: uniform
ones (BCS-type), periodic ones (FFLO-type), and random
ones. The converged solution is always uniform when the
self-consistency is achieved.
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FIG. 2. The gap magnitude and the superconducting condensa-
tion energy in the BCS state and FFLO state, respectively.

By setting �ii = �0 (BCS-type) or �ii = �0 cos(Ri · Qf)
(FFLO-type), the gap magnitude �0 and the superconducting
condensation energy with different pairing strength V and
chemical potential μ are plotted in Fig. 2. As is seen in
Figs. 2(a)–2(c), for the BCS-type pairing, the gap magnitude is
larger and the superconductivity occurs for relatively smaller
pairing interaction, which indicates that the BCS pairing
wins over the FFLO pairing. This conclusion is further
confirmed through the condensation energy [Figs. 2(d)–2(f)].
As presented, the free energy of the BCS state is always lower
than that of the FFLO state. This gives another strong evidence
that the BCS state should be the ground state.

In the above-presented numerical results, the superconduc-
tivity appears for a strong bare attractive interaction (V � 6).
The system is in the metallic state for weaker interactions. This
is significantly different from that seen in Ref. [17], where
superconductivity can occur for a very weak interaction with
0 < V0 < 0.12t , while in Ref. [17], the electron is restricted
within a thin shell around the Fermi surface. Thus, the required
pairing attraction can be rather weak as long as the shell
is sufficiently thin. However, the bare interaction should be
rather stronger to achieve superconductivity based on the
BdG approach employed here as all of the valence electrons
are taken into account. A threshold pairing strength, above
which the superconductivity occurs, is required. Usually, the
threshold value depends on the size of the Fermi surface and
the normal state bandwidth. It is insightful to compare the
present results with those in other families of superconductors
based on the BdG technique. For high-Tc superconductors,
where the Fermi surface is rather large, the required pairing
strength is relatively small. The gap magnitude is close to the
experimental value with the pairing interaction V being about
1t ∼ 2t [30–33]. While for an effective model describing the
topological superconductors, a larger pairing strength (about
4t ∼ 5t) is required, because the normal state Fermi surface
is usually much smaller than that of high-Tc superconducting
materials [34,35]. For the Weyl superconductors, since the
bandwidth is larger (about 15t) and the Fermi pockets are
rather tiny, it is understandable that a rather strong bare
interaction is required to achieve superconductivity. Notably,
as seen from Fig. 2, the obtained gap magnitude is rather
small; namely, the effective paring strength, which is a key and
relevant coupling parameter for superconductivity, is weak,
such that the real-space BdG employed here can still work.

It is also meaningful to discuss whether such a strong bare
interaction is relevant to a real system. Note that here “tα” in
Eq. (1) is not the usual hopping constant. For real materials, it
is a renormalized one, and thus its scale is unclear, which may
need to be determined experimentally. On the other hand, such
a strong bare interaction may be realized in cold atom systems,
where the s-wave pairing has already been realized [28].
Moreover, as was proposed in Ref. [26], the strong attractive
interaction can be realized in ultracold atom systems by tuning
the system close to the Fechbach resonance.

We now discuss the competition between the BCS-type
pairing and the FFLO one in more detail. In fact, in the
mean-field level, the FFLO pairing is naturally realized by
adding a Zeeman field term to the superconducting Hamilto-
nian [29,31], while in topological superconductors, the FFLO
pairing will be destroyed by the spin-orbital coupling [29]. In
Weyl superconductors, the normal state electronic structure is
much more complicated, and thus it is not so easy to draw a
conclusion intuitively. In Ref. [17], it was indicated that an
FFLO-type superconducting should be a most favorable state.
In their calculations, the superconducting pairing is considered
merely at a thin shell around the Fermi surface. It seems that
the appearance of the FFLO state could indeed be understood
based on the Fermi surface topology.

In fact, the approximation by only taking into account the
electrons near the Fermi surface is reasonable based on the
BCS theory. As is known, usually for a metal, the mixture of
the electrons and holes is negligibly weak when away from
the Fermi surface. As a result, the superconducting pairing is
determined entirely by the Fermi surface topology.

However, it is needed to emphasize that here the Fermi
surface analysis is not enough to confirm the superconducting
pairing. First, due to the lattice distortion, actually one cannot
restrict strictly the electrons within a sphere shell for the
FFLO pairing. Thus, to study the competition between the
two superconducting pairings based on the lattice-type model,
a method beyond the Fermi surface analysis is demanded.
Second, we can estimate the volume of the two Fermi pockets
from Fig. 1 or Eq. (15). It is only about 0.35% of that of the
Brillouin zone. Thus, for the present case, the Fermi pockets
are very tiny and the finite-energy quasiparticles may be also
important to determine the ground states. At last, the normal
state Hamiltonian is a two-band model with one hole band and
one electron band. Thus, the mixture of the electrons and holes
may be still considerably strong for the finite energy. Thus,
it is important to investigate the finite-energy band structure
to draw a more definite conclusion for the superconducting
pairing.

Let us study the finite-band structure of the BCS and
FFLO superconducting pairing states. These two states are
illustrated in Fig. 3(a). For BCS pairing state, the quasiparticles
momenta from one pair are k and −k, respectively. And for
the FFLO state, the momenta are k and −k + Qf , respectively.
So more conclusive results may be obtained by comparing
the spin-dependent energy bands at the momenta k, −k, and
−k + Qf . For the present model, the energy bands from the
BdG equations are usually the superpositions of the spin-up
and spin-down electrons due to the spin-flip term. It is
more insightful to study the spectral functions to obtain the
spin-dependent quasiparticle energies.
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FIG. 3. (a) Schematic illustration of the BCS pairing and FFLO
pairing, respectively. (b)–(d) The spin-dependent spectral functions
as functions of the energy and momentum with kz = π/4 − kx [along
the (red) solid line cut shown in Fig. 1(a)].

The spectral function for the spin-down quasiparticles as
functions of the energy and momentum [A↓(k,ω)] is plotted
in Fig. 3(b). The corresponding spectral functions for spin-up
quasiparticles at the momenta −k and −k + Qf are presented
in Figs. 3(c) and 3(d), respectively. The two energy bands are
seen clearly. Especially, the spectral weight of the two bands
are considerably strong for a large energy range [as indicated
by (red) circles in Figs. 3(b) and 3(c)]. This also proposes that
the Fermi surface topology analysis is not enough to determine
the ground state. We compare Figs. 3(b) with 3(c) to roughly
evaluate whether the BCS pairing is favorable. At low energies,
as displayed, the energy bands at k and −k are obviously
similar. The quasiparticle velocities are small near the Fermi
energy from both spectra. The increase of the density of states
for low-energy quasiparticles may increase the possibility of
the BCS pairing. We then compare Figs. 3(b) with 3(d) to
study the possibility of the FFLO pairing. As is seen, the
Fermi momenta KF are nearly the same. This feature favors
the FFLO pairing. While, on the other hand, their quasiparticle
band dispersions are significantly different, that is, the states
at −k + Qf and k have different energies when away from the
Fermi surface. This feature is unfavorable to the FFLO pairing.
As a result, when considering the quasiparticle pairing in the
whole Brillouin zone, the BCS pairing wins over the FFLO
pairing.

We may get a further insight from the Fermi surface
analysis for the unfavorable FFLO pairing. With the net cooper
pair momentum Qf , the upper Fermi pocket is fully gapped.
However, for this kind of pairing, the lower Fermi surface
is not entirely gapped; i.e., when k is near the lower Fermi
pocket, the electron with the momentum −k + Qf is rather
far away from the Fermi surface. The two electrons from one
pair have significantly different energies. This kind of pairing
may increase the free energy. There exists another pairing
channel with the net momentum −Qf , for which the lower

Fermi pocket is gapped. While for this pairing channel, the
upper Fermi surface is completely not gapped. When these two
pairing channels coexist, the system is fully gapped. While a
lot of Cooper pairs are formed by the electrons with different
energies. This kind of pairing is actually neglected in Ref. [17]
because the electrons are restricted around the Fermi surface
there. While it indeed strains the FFLO pairing. On the other
hand, in Ref. [17], the lattice distortion is neglected due to the
low-energy effective continuous approximation. Actually, in
the lattice system, the FFLO pairing state is strained further.
Based on the lattice-type model the Fermi pockets are surely
not symmetric exactly with respect to the Weyl nodes. Such
asymmetric feature may also suppress the FFLO-type pairing.

Very recently, it was also proposed that BCS-type pairing
should win out for an inversion-symmetric doped Weyl
semimetal system [24]. This is consistent with our above
analysis. While in Ref. [24], the odd-parity pairing state is
revealed, consistent with a previous study [20]. Note that
the lattice-type model is considered in the present work,
qualitatively different from those in Refs. [20,24]. For a lattice
model, the odd parity pairing would obviously not occur for
the on-site pairing potential. The superconductivity in the
odd-parity channel may be studied by taking into account a
nearest-neighbor pairing potential. This is an interesting issue
and may require further investigation.

We now study the physical properties in the BCS-type
superconducting state with the uniform pairing order param-
eter �ii ≡ �0. As discussed in Refs. [16,17], the system has
gapless nodes along the kz axis. In detail, if the condition

|h − 2tx − 2ty ±
√

μ2 + �2
0| < 2tz is satisfied, there are four

nodes at points (0,0, ± Q±), with

Q± = arccos
h − 2tx − 2ty ±

√
μ2 + �2

0

2tz
. (16)

Here the nodes are inherited from the initial Fermi pockets.
Therefore, the nodes at (0,0,Q±) have the same chirality,
while the chirality of the nodes at (0,0,−Q±) are opposite.
As the chemical potential μ or the pairing order �0 increases,
the topologically protected nodes with opposite chirality may
annihilate in pairs [36,37]. Thus, a pair of nodes at (0,0,±Q+)
may disappear and only the nodes (0,0,±Q−) are left. As a
result, there may exist two different BCS states, named as BCS-
I state with four bulk nodes and BCS-II state with two bulk
nodes. Further increasing the pairing strength, the nodes ±Q−
may also disappear while this may require unreasonably large
superconducting order parameter. This case is not considered
in the present work.

The electronic structure in BCS-I state has been discussed
previously [24,25]. We would like to discuss this state in more
detail. Here the BCS-I state is achieved through considering
the relatively small chemical potential and the pairing order
parameter with μ = 0.5 and �0 = 0.2. This gives Q+ and Q−
to be 0.07π and 0.36π , respectively. By considering the open
boundary condition along the y direction and transforming the
Hamiltonian to the momentum space along x and z directions,
the quasiparticle energy spectra along kx = 0 is presented in
Fig. 4(a). This band structure is similar to that obtained by
previous calculations [24,25]. There exists two segments of
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FIG. 4. Numerical results of the BCS-I state. (a) The eigenvalues
of the Hamiltonian along kx = 0. (b)–(d) Intensity plots of zero energy
spectral functions.

Fermi arcs connecting nodal points Q+ and Q−, indicating the
presence of the edge states. The zero-energy spectral functions
in the bulk and system edges are plotted in Figs. 4(b)–4(d).
As is seen, in the bulk four Fermi points at the momentum
kz = ±Q± exist, consistent with our above analysis and the
band structure shown in Fig. 4(a). At the system edges, there
exist several segments of Fermi arcs. Especially, the Fermi arcs
connecting the Fermi points (0,Q−) and (0,Q+) [or (0,−Q−)
and (0,−Q+)] have the same spectral weight at the two-system
boundary, as presented in Figs. 4(c) and 4(d). Such shared
edge states is similar to that of the Majorana bound states
and one zero-energy quasiparticle may be decoupled by two
spatially separated ones. At the momentum −Q+ < kz < Q+,
there exist nonshared edge states, with kx < 0 and kx > 0 parts
belong to different boundaries.

It is important to pinpoint that there is no separate MFs in the
BCS-I state, even when the shared edge states exist. Usually,
two MFs γ1,2 can be obtained from one zero mode C =
ukψ

†(k) + v−kψ(−k) with γ1 = C + C† and γ2 = i(C − C†).
For usual topological superconductors, generally the edge
states occur at the high-symmetric points, i.e., k = 0 or k = π .
As a result, k and −k are equivalent points. Then γ1 and γ2

are naturally decoupled and locating at different boundaries.
While in the present BCS-I case, it is obvious that one cannot
obtain the separate γ1,2 through the above procedure.

We now turn to look into the properties of the BCS-II state.
Generally, this state can be achieved by increasing the chemical
potential μ. For a large chemical potential, the two Fermi
pockets may merge into a single one. As a result, only two bulk
nodes exist in the superconducting state. We here consider the
chemical potential μ = 0.7, which corresponds to the case of
two bulk nodes (0,0, ± Q−) with Q− = 0.39π . The numerical
results for this state are presented in Fig. 5. The energy
spectrum along kx = 0 is plotted in Fig. 5(a). The zero-energy
spectral functions in the bulk and at system edge are presented
in Figs. 5(b) and 5(c), respectively. From Fig. 5(a), there
are two nodal points in the bulk spectrum and one segment

FIG. 5. Numerical results of the BCS-II state. (a) The eigenvalues
of the Hamiltonian along kx = 0. Panels (b) and (c) are intensity
plots of zero-energy spectral functions at the system bulk and edge,
respectively. (d) The spatial distributions of the two MFs at the
momentum (kx,kz) = (0,0).

of Fermi arc connecting Q− and −Q− at the system edge.
Here the Fermi arc is shared by the two system boundaries. A
significant different result from the BCS-I state is that there is
a zero-energy edge state at the momentum (0,0) point, giving
the possibility of the MFs excitation. The existence of the
MFs excitation is further confirmed numerically. The spatial
distribution of the two MFs from the zero-energy fermion at
(0,0) point is displayed in Fig. 5(d). As is seen, two MFs are
completely separated and locate at the two system edges.

At last we would like to look into the FFLO-type pairing
state. Although the FFLO-type pairing is not supported by our
self-consistent calculation. While it is still a potential pairing
state and may appear upon some additional interaction. The
FFLO-type pairing is denoted as

HFFLO =
∑

i

(
�1e

iQf ·Ric
†
i↑c

†
i↓ + �2e

−iQf ·Ric
†
i↑c

†
i↓ + H.c.

)
.

(17)

The above Hamiltonian can be rewritten in the momentum
space,

HFFLO =
∑

k

(
�1c

†
k↑c

†
−k+Qf↓ + �2c

†
k↑c

†
−k−Qf↓ + H.c.

)
.

(18)
Taking into account the inversion symmetry, we here consider
the LO state with �1 = �2 = 0.2.

The numerical results for the FFLO state are presented in
Fig. 6. The quasiparticle energies along kx = 0 is plotted in
Fig. 6(a). There exist two zero-energy states at the momentum
kz = ±π/4. The bulk-energy spectrum is fully gapped and no
Fermi surface exists. The zero-energy spectral functions at the
system edges are displayed in Figs. 6(b) and 6(c), respectively.
The open Fermi arcs exist at the system edges. The Fermi arcs
are not shared by the two boundaries, except for the points
±k0 with k0 = (0,π/4), which are the crossing points of the
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FIG. 6. Numerical results of the FFLO-type pairing. (a) The
eigenvalues of the Hamiltonian along kx = 0. (b) and (c) Intensity
plots of zero energy spectral functions at two boundaries, respectively.
(d) The spatial distributions of the two MFs at the momentum k0.

two Fermi arcs. At the points ±k0, the quasiparticles have the
same spectral weight at the two boundaries. Thus, the MFs
excitation may occur at these two points. Here k0 and the
net Cooper pair momentum Qf satisfies k0 ≡ Qf/2. This is
an important relation. It is robust and does not change upon
parameters.

The shared edge state at the momentum k0 is essential to
produce MFs. In the FFLO state, the quasiparticles can be ex-
pressed as C = ukψ

†(k) + v−k+Qf ψ(−k + Qf). At the point

k = k0, the quasiparticle is expressed as C = uk0ψ
†(k0) +

vk0ψ(k0). Obviously, the quasiparticle is a MF if the condition
uk0 = v∗

k0
satisfies. Actually, one can obtain two MFs γ1,2

according to the standard method. Our numerical results verify
that two separate MFs indeed exist. The numerical result for
the spatial distribution of γ1,2 is plotted in Fig. 6(d). As is seen,
two MFs locate at two boundaries of the system.

IV. SUMMARY

In summary, we have studied theoretically the superconduc-
tivity in inversion-symmetric doped Weyl semimetals based
on the BdG equations. Our self-consistent calculations have
indicated that the BCS-like pairing may be more favorable
than the FFLO pairing. The competition between the BCS-like
pairing and FFLO pairing is discussed based on the Fermi
surface topology and finite-energy band structure. The physical
properties of the BCS-like pairing and FFLO pairing states
have also been addressed. Two different BCS states, named
BCS-I state and BCS-II state, are revealed. There are four bulk
nodes in BCS-I state and no MFs exists in this state. For the
BCS-II state, the number of bulk nodes reduces to two and the
MFs excitation occur in this state. For the FFLO state, the en-
ergy spectrum is full gapped. The open Fermi arc appears at the
system edge. The separate MFs exist at the system boundaries.
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