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We have observed superconductivity in the ladder material Srg.4Cai3.6Cu24041.84 under pres-
sures of 3 GPa and 4.5 GPa by means of electrical measurements. The superconducting transition
temperatures Tt (onset) are 12K and 9K at 3 and 4.5 GPa, respectively. The superconducting
volume fraction was obtained to be about 5% from magnetization measurement under 3.5 GPa
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at 4.2 K, indicating the bulk nature of the superconductivity in this system.
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All high-T, superconductors found so far are composed
of two-dimensional (2D) CuOs; planes. In this letter we
report a new superconductor containing not CuQO; planes
but quasi-one dimensional (1D) CuyO3 ladders.

The ladder, which is described as spin 1/2 chains an-
tiferromagnetically interacting along legs and rungs, was
proposed as an interesting intermediate step between 1D
and 2D systems.'"®) Daggoto et al. and Rice et al. sug-
gested that the ladder system is in a spin liquid state and
has a gap in the spin excitation spectrum (spin gap).'?)
They also concluded that when holes are lightly doped,
the spin gap would remain and superconductivity possi-
bly occurs. Experimentally the existence of the spin gap
has generally been recognized.®) Hiroi and Takano re-
ported that the ladder material LaCuQO; 5 showed clear
insulator-metal transition upon hole carrier doping by
substitution of Sr?* for La®* but no sign of supercon-
ductivity was observed.? By NMR and uSR measure-
ments, the ground state of this material has been shown
to be a three-dimensional (3D) Néel state rather than a
spin liquid state, probably due to the relatively strong
inter-ladder coupling.1%11) Therefore, there remains un-
solved whether superconductivity can be realized in a
doped-ladder system.

The ladder material (Sr, Ca)14Cu24041—5 was first
reported by McCarron et al. and Siegrist et all%13)
This phase is composed of 1D-CuQO; chains (1D-chain),
(Sr,Ca) layers and CuyOjs layers (two-leg ladder) (see
upper panel of Fig. 1) and the crystal symmetry is or-
thorhombic. The layers are stacked along the b-axis (per-
pendicular to the paper of Fig. 1) in the sequence (Sr, Ca)
layer-ladder-(Sr, Ca) layer-1D-chain-(Sr, Ca) layer, with
a spacing of ~ 1.6 A. NMR and neutron scattering exper-
iments have shown the existence of a spin gap in both the
1D-chain and ladder sites of Sri4Cus4O41—5.241") The
value of the spin gap (36 meV according to neutron scat-
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Fig. 1. Upper panel: The crystal structure of (Sr, Ca)14Cuas-

O41—s divided to each layer. (a) The layer containing 1D-
CuO; chains, (b) (Sr,Ca) layer, (c) Cu203 layer (two-leg
ladder). Lower panel: X-ray powder diffraction pattern of
Sro.4Ca13.6Cu24041.84-

tering results) of the ladder is comparable with that of
the ladder material SrCus05.715:18) The main feature
of this material is that the Cu formal valence is +2.25
i.e., hole carriers are inherently doped and the conductiv-
ity increases with increasing Ca content.!®) The electri-
cal resistivity of SrqCajgCug4Q41—s single crystal (this
composition represents the Ca-substitution limit when
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synthesized under 1 atm O3) at room temperature is
as low as ~ 1073 (Q - cm) parallel to the ladder direc-
tion.'® However, the T-dependence of the electrical re-
sistivity remains semiconducting. We report in this let-
ter that the Ca-substitution limit can be extended up
to 13.6 under an Oy partial pressure of Py, = 400 atm
using a furnace for hot isostatic pressing (HIP) and that
a Srg 4Ca;3.6Cuz4041. 34 sample shows superconductivity
under pressures of 3 GPa and 4.5 GPa.

A sample with nominal composition Srg.4Caq3.6Cuss-
0415 was synthesized from SrCQOjz, CaCOz and CuO
powders with purities higher than 99.9%. The powder
mixture was calcined at 1000°C for 50h under flowing
O2 and ground 4 times. Then, the resultant pellet was
sintered at 1200°C for 8h in 20%05+80%Ar at a total
pressure of 2000 atm (Pp, = 400 atm) using a furnace for
HIP. The oxygen content was determined by the inert
gas fusion-infrared absorption method.

A cubic-anvil apparatus®® was used for the suscepti-
bility and electrical resistivity measurements. The sam-
ple was placed in a teflon cell filled with a fluid pressure
transmitting medium, a mixture of Fluorinert FC70 and
FC77, to maintain hydrostatic pressure.

Electrical resistivity measurements were carried out
using the standard four-probe method. Magnetic suscep-
tibility data were obtained from AC susceptibility mea-
surements carried out using primary and secondary coils
wound around the sample. The data were collected as
output signals of a lock-in amplifier.

The X-ray powder diffraction pattern of Sry4Ca;se6-
Cup4041.84 is shown in the lower panel of Fig. 1. All
peaks could be indexed, showing that this sample is sin-
gle phase. The lattice parameters a, b and ¢ are 11.14,
12.44 and 27.02 A, respectively, at ambient pressure. The
c-axis length was calculated from (0 0 7n) (n=integer)
reflections which indicate the c-axis length of the ladder
because the 1D-chain and ladder are linked incommensu-
rately.1?13) Figure 2 shows the T-dependence of the elec-
trical resistivities under pressures of 0, 1.5, 2 and 3 GPa.
The values of the electrical resistivities at room temper-
ature decrease monotonically with increasing pressure.
The T-dependence of the electrical resistivities under 0
and 1.5 GPa is almost flat above 200 K and shows a broad
maximum at ~110K. A similar broad peak has also
been observed in the nearly metallic ladder compound
(SI‘()_4C&0_6)14Cu19_2004.8041_5.21) Therefore, this simi-
lar broad peak may be a characteristic feature of this
system just before the metallic state, although the ori-
gin is unclear. Finally the electrical resistivities increase
again below ~60 K and ~30 K, respectively, under 0 and
1.5GPa. The T-dependence of the electrical resistivity
under 2 GPa is metallic above 150K and shows similar
behavior to that under 1.5 GPa below 150 K. The super-
conducting transition occurs at 12K under 3 GPa with
metallic behavior above T, and the zero resistivity tem-
perature is 8 K. Fig. 3 shows the T-dependence of the
electrical resistivities under 3, 4.5 and 6 GPa below 50 K.
It can be clearly seen that the values of T. (onset) are
decrease from 12K to 9K with increase in the applied
pressure from 3 to 4.5 GPa. Finally, the superconduct-
ing transition disappears at an applied pressure of 6 GPa.
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Fig. 2. T-dependence of the electrical resistivities p of Srg.4-
Ca13.6Cu24041.84 under pressures of 0, 1.5, 2 and 3 GPa.
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Fig. 3. T-dependence of the electrical resistivities p of Srg.4-
Ca13.6Cu24041.84 under pressures of 3, 4.5 and 6 GPa below
50K.

The change in the electrical property with pressure vari-
ation is in contrast to that of high-T, copper oxide super-
conductor (HTCS). In the case of HTCS, the application
of pressure does not cause the insulator-superconductor-
metal transition unless the doping concentration is var-
ied. To discuss the transport properties in detail, it is
necessary to clarify in which sites, 1D-chain or ladder,
the mobile hole carriers mainly responsible for the super-
conductivity are located. Kato et al. assumed that hole
carriers are almost entirely situated at 1D-chain sites in
non-Ca-doped Sr14Cu2404;1 -5 and they are released into
ladder sites with increasing Ca content, accompanying
the shrinkage of the lattice and the increase in conduc-
tivity.2?) This assumption is supported by bond-valence-
sum calculations.??) If this assumption is true, a suffi-
cient number of hole carriers to yield metallic conduction
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Fig. 4. T? plot of electrical resistivity pof Srp.4Caj3.6Cu24041.84
under pressure of 3 GPa. The solid line shows the linear fitting.
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Fig. 5. Output signals of a lock-in amplifier (AC susceptibility)
under 3, 3.5 and 4 GPa.

and also superconductivity are released into ladder sites
when pressure is applied, because the lattice should be
shrunk by applying pressure as well as by Ca-doping. On
the other hand, Kitaoka et al. claim based on NMR and
NQR measurements, that the hole carriers are situated
almost entirely in the ladder sites.?) In this case, suffi-
cient hole carriers for superconductivity already exist in
the ladder sites but are localized by the random poten-
tial, and the transfer energy increases enough to screen
the random potential under application of pressure and
superconductivity appears.

Next, we note that the electrical resistivity under
3 GPa between 20 and 70K is proportional to T2 as
shown in Fig. 4. This is reminiscent of the behavior
of an “over-doped” region in HTCS. Actually T de-
creases when pressures above 3 GPa are applied as shown
in Fig. 3. Therefore, T, should be increased to a greater
degree in this system when the carrier concentration is
optimum.

Figure 5 shows the T-dependence of the output signals
of the lock-in amplifier (AC susceptibility) under 3, 3.5
and 4 GPa. A diamagnetic signal was observed at 9 K un-
der 3.5 GPa. The superconducting volume fraction was
calculated to be about 5% at 4.2 K under 3.5 GPa from
comparison measured for Pb under the same conditions,
demonstrating the bulk nature of the superconductivity
of this compound. The rather small Meissner volume
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fraction may be due to the deviation from the optimum
carrier concentration for superconductivity, which is in-
dicated by the T2-type electrical resistivity. Under 3 and
4 GPa, only weak diamagnetic signals were observed. In
the case of electrical measurements, superconductivity
can be observed when only one superconducting path
passes through the sample. Therefore, superconductiv-
ity was observed over a wider pressure range by electri-
cal measurement than by magnetic measurement. This
demonstrates that bulk superconductivity in this system
is realized in a very narrow pressure range, i.e., around
3.5 GPa.

To verify the spin gap under pressure, NMR and neu-
tron scattering measurements should be performed under
pressure. ‘

In summary, we have observed superconductivity in
the ladder material Srg4Ca13.6Cu24041.84 under pres-
sures of 3 GPa and 4.5 GPa. The results of magnetization
measurements suggest that the bulk superconductivity in
this system is realized in a very narrow pressure range,
i.e., around 3.5 GPa.
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