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The superconductor YB6 has the second highest critical temperature Tc among the boride family MBn. We
report measurements of the specific heat, resistivity, magnetic susceptibility, and thermal expansion from
2 to 300 K, using a single crystal with Tc=7.2 K. The superconducting gap is characteristic of medium-strong
coupling. The specific heat, resistivity, and expansivity curves are deconvolved to yield approximations of the
phonon density of states F���, the spectral electron-phonon scattering function �tr

2 F���, and the phonon
density of states weighted by the frequency-dependent Grüneisen parameter �G���F���, respectively. Lattice
vibrations extend to high frequencies �100 meV, but a dominant Einstein-like mode at �8 meV, associated
with the vibrations of yttrium ions in oversized boron cages, appears to provide most of the superconducting
coupling and gives rise to an unusual temperature behavior of several observable quantities. A surface critical
field Hc3 is also observed.
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I. INTRODUCTION

The discovery of superconductivity at �40 K in the me-
tallic compound MgB2 �Refs. 1 and 2� has stimulated a re-
newed interest in borides. The next highest superconducting
critical temperatures in the MBn family are found in YB6
with Tc�8.4 K and ZrB12 with Tc=6.0 K.3 These com-
pounds are hard materials with a low density of states at the
Fermi level. Their crystal structure—CaB6 type �bcc,

Pm3̄m−Oh
1� for YB6 and UB12 type �fcc, Fm3̄m−Oh

5� for
ZrB12—is three dimensional and characterized by boron
cages in which yttrium or zirconium atoms can develop large
vibrational amplitudes. The metal-boron distance �2.76 Å in
ZrB12 and 3.01 Å in YB6� is remarkably large, giving rise to
unusual properties. ZrB12 was recently investigated with re-
spect to its specific heat, resistivity, thermal expansion, and
magnetic properties.4,5 Characteristic features of ZrB12 were
type-II/1 superconductivity,6 an enhanced gap and critical
field at the surface, and weak electron-phonon coupling es-
sentially driven by a single anharmonic mode at 14 meV. In
this work we turn to YB6, the specific heat of which was
only briefly mentioned in an early paper,7 and find that some
of these peculiarities are also present and even more dra-
matic. Here, a corresponding anharmonic lattice mode has
softened to 8 meV, giving rise to a very unusual temperature
dependence of the specific heat, resistivity, and expansivity.
This effect is so marked that YB6 can be considered as a
textbook example of superconductivity in an Einstein lattice,
a limiting situation where strong-coupling theory is well
assessed.8 Another consequence of having low-energy modes
is that “thermal” spectroscopies—i.e., experiments sensitive
to a density of energy states convolved with a thermal
distribution—become efficient. In this work we show that
specific heat and resistivity can indeed provide information

usually taken from inelastic neutron scattering and tunneling
spectroscopy, with a limited but sufficient accuracy to char-
acterize the superconducting coupling at a quantitative level.

This article is organized as follows. In Sec. II experimen-
tal details and basic sample characterizations are given. The
electronic specific heat is analyzed in Sec. III. Sections
IV–VI are devoted to the deconvolution of the specific heat,
resistivity, and thermal expansivity curves to obtain informa-
tion on the phonon density of states F���, electron-phonon
transport coupling function �tr

2 F���, and frequency-
dependent Grüneisen parameter �G���, respectively. The
magnetic phase diagram with four critical field lines is estab-
lished in Sec. VII, based on different experiments. The com-
positional dependence is briefly addressed in Sec. VIII, be-
fore concluding in Sec. IX. A wealth of experimental
information is already available for YB6 in the literature, and
we refer to Ref. 9 for a review.

II. CRYSTAL GROWTH AND EXPERIMENTAL DETAILS

The preparation of single crystals of yttrium hexaboride
involved several steps: synthesis of YB6 powder by borother-
mal reduction of Y2O3, compacting the powder into rods,
sintering, and zone melting by inductive heating. Since the
superconducting critical temperature of YB6 is particularly
sensitive to impurities, 99.999%-pure Y2O3 powder and
�99.5% amorphous boron were used as starting materials.
The highly volatile impurities contained in the latter were
eliminated during the synthesis and zone melting procedures,
resulting in a total impurity concentration in the crystals un-
der study of at most 0.001% in weight.

Taking into account the peritectic melting of YB6 �Ref.
10� and previous results on crystal growth,11 we synthesized
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the initial powders with excess boron in order to lower the
melting temperature. High-quality single crystals were ob-
tained for a source composition B/Y�6.8. Other important
technological parameters were the pressure of argon gas,
1.3 MPa, and the growth rate, 13 mm/h. The growth was
unstable over the first few mm, yielding a two-phase mixture
of YB4 and YB6. The process subsequently stabilized and at
a definite B/Y ratio a single-phase ingot started to grow. Due
to concurrent growth, one grain grew at the expense of the
others and approximately �100�-oriented single crystals were
obtained with a length of about 30 mm.

The as-grown single crystal used for nearly all subsequent
experiments was shaped into a parallelepiped bar by spark
cutting and then polished using abrasive diamond paste. Its
dimensions are �12�3�1.5 mm3 and mass 73.5 mg, with
the long axis parallel to the �100� direction and the facets
perpendicular to �010� and �001�. Measurements in a mag-
netic field were taken with the field along the length of the
sample in order to minimize the demagnetization factor �D
�0.03�. The superconducting transition temperature Tc was
determined by four methods: resistivity �Fig. 1�a��, ac sus-
ceptibility �Fig. 1�b��, dc magnetization �Fig. 1�c��, and
specific-heat jump at Tc �see Fig. 3 below� which, in this
order, are increasingly representative of the bulk volume. On
average, Tc�7.2 K, the transition width being �2% of Tc
�Table I�.

The dc resistivity � was measured by a four-lead tech-
nique with current reversal, using a 5 mA current. The con-
tacts were made with Degussa “Leitsilber 200” conducting
silver paint. The residual resistivity ratio was
��300 K� /��2 K�=3.87. The residual resistivity ��2 K�
=9.9 �	 cm was determined in a magnetic field of 5 T to

quench superconductivity; the resistivity did not vary appre-
ciably below 9 K. No significant magnetoresistance was ob-
served in the normal state.

The magnetization M was measured in a Quantum Design
MPMS-5 magnetometer, using a scan length of 4 cm. The
zero-field-cooled �ZFC� susceptibility in the Meissner state
was measured in a field of 2.7 Oe, which is �1% of the
lower critical field at T=0 �Fig. 1�c��. The normal-state sus-
ceptibility 
�T� was obtained from the initial slope of M�H�
measured at 1-T intervals from 0 to 5 T. The core and Pauli
contributions nearly cancel each other, resulting in a small
and slightly diamagnetic susceptibility. A Curie component
develops at low temperature, possibly due to traces of mag-
netic rare earth metals in the Y starting material �Fig. 2�. The
best fit is obtained by allowing a second-order term in the
Pauli susceptibility:


�T� = 
�0� + aT2 +
CCurie

T
. �1�

The fitted parameters are �S.I.� 
�0�=−9.6�10−6, a=2.4
�10−11 K−2, and CCurie=1.8�10−4 K. The Curie term is
equivalent to 35 ppm at. Yb3+.

The specific heat was measured by a generalized relax-
ation technique at low temperature �1.2–15 K� �Ref. 12� and
in an adiabatic, continuous-heating calorimeter at high tem-
perature �16–300 K�.12 Care was taken to measure the re-

FIG. 1. Superconducting transition of the YB6 crystal observed
by �a� resistivity, �b� ac susceptibility �8 kHz, 0.01 G rms�, and �c�
Meissner susceptibility �field cooled, 2.7 G�.

TABLE I. Critical temperature and transition width of the YB6

crystal measured by different methods.

Tc midpoint �K� �Tc �K�

Resistivity in zero field
at 1 mA/mm2

7.20 �0.2 �0%–100%�

ac susceptibility at 8 kHz,
0.01 Oe

7.24 0.15 �10%–90%�

Meissner magnetization
at 2.7 Oe

7.13 0.20 �10%–90%�

Specific heat jump
in zero field

7.15 0.13 �10%–90%�

FIG. 2. Magnetic susceptibility of YB6 in the normal state as a
function of the temperature. Solid line: fit �see text�. Dashed line:
non-Curie part of the fit.
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sidual field of the 14 T magnet mounted in the cryostat, com-
pensating this when required. Specific heat runs were taken
after cooling in a field from above Tc in order to achieve the
best possible field penetration.

A high-resolution capacitance dilatometer13,14 was used to
measure the thermal expansion in the temperature range
3–250 K. Data were taken both upon heating and cooling at
a constant rate of 5 mK/s at low temperatures �3–15 K� and
at 20 mK/s up to 250 K. Flowing He exchange gas
�0–4 mbar� was used to thermally couple the sample to the
dilatometer.

III. ELECTRON-SPECIFIC HEAT, DENSITY OF STATES,
AND COUPLING STRENGTH

The specific heat at low temperature in both the supercon-
ducting �H=0� and normal state �H=1 T� is shown in Fig. 3.
The superconducting-state specific heat Cs shows a sharp
second-order jump at Tc. It vanishes at T→0 in a somewhat
unusual way, since Cs /T tends to a finite value �0
=0.03 mJ K−2 gat−1 rather than zero as would be expected in
a fully gapped state �one gram-atom �gat� is one Avogadro’s
number of atoms, here one-seventh of a mole �Table II�. This
residual contribution, which may be due to an extrinsic non-
superconducting fraction or to a gapless electron band, will
not be discussed further as it only represents �5% of the
normal-state electronic specific heat. The normal-state spe-
cific heat is analyzed in a standard way according to the
expansion

Cn�T → 0� = �nT + 	
n=1

3

2n+1T2n+1, �2�

where the first term is the electronic contribution, with �n

= 1
3�2kB

2�1+�ep�N�EF�, kB Boltzmann’s constant, �ep the
electron-phonon coupling constant and N�EF� the band-
structure density of states at the Fermi level including two

spin directions �electronic density of states �EDOS��. The
second term is the low-temperature expansion of the lattice
specific heat, where 3= 12

5 NAvkB�4�D
−3�0�, with NAv

Avogadro’s number and �D�0� the initial Debye temperature.
From a fit of the normal-state data from 1.2 to 7.5 K, we
obtain �n=0.58 mJ K−2 gat−1 and �D�0�=706 K �369 K if
according to another convention only acoustic modes are
considered�. The Sommerfeld constant �n, which is �50%
larger than that mentioned by Matthias et al.,7 corresponds to
a renormalized EDOS �1+�ep�N�EF�=1.73 eV−1 cell−1. The
band structure has been calculated by several groups.15–21

Comparing the renormalized EDOS with the recently ob-
tained values N�EF�=0.82 �Ref. 19�, 0.83 �Ref. 20�, and 0.93
�Ref. 21� eV−1 cell−1, we find room for an electron-phonon
renormalization factor 
2—i.e., �ep=1.12, 1.08, and 0.86,
respectively. The value �ep
1 is supported by independent
determinations. For example, we may start from �C /�nTc,
the normalized specific heat jump at Tc, as a well-defined
input observable. From there we evaluate Tc /�ln=0.071
using isotropic single-band strong-coupling formulas
representing interpolated solutions of Eliashberg equations
(Eq. 5.9 of Ref. 8; �ln is the logarithmic moment
exp��ln ��2F���d� /� /��2F���d� /�� of the Eliashberg

FIG. 3. Total specific heat C /T of YB6 in the superconducting
state in zero field �solid symbols� and in the normal state in 1 T
�open symbols� vs the temperature squared.

TABLE II. Characteristic parameters of YB6 compared to
ZrB12. Tc, superconducting transition temperature; RRR, residual
resistivity ratio; V and M, mean atomic volume and mass, respec-
tively; a, lattice constant; �n, coefficient of the linear term of the
normal-state specific heat at T→0; �C /Tc, specific heat jump at Tc;
�C /�nTc, normalized specific heat jump; �D�0�, initial Debye tem-
perature; S�300�, total entropy at 300 K; Ec, condensation energy at
T→0; 2��0� /kBTc, normalized superconducting gap; 
�0�, normal-
state magnetic susceptibility at T→0; Nsb�EF�, bare density of
states at the Fermi level �per 7-atom cell for YB6 �Ref. 19–21�, per
13-atom quarter-cell for ZrB12 �Refs. 21 and 55��; 1+�ep, electron-
phonon renormalization factor as determined from �n and Nsb�EF�;
�ep, electron-phonon coupling constant as determined from Tc and
�ln �Ref. 22�.

YB6 ZrB12

Tc �K� 7.15±0.05 5.96±0.05

RRR 3.87±0.03 9.33±0.03

V �cm3 gat−1� 5.929 4.68

M �g gat−1� 21.97 17.0

a �nm� 0.41002±0.00005 0.7407

�n �mJ K−2 gat−1� 0.58±0.02 0.34±0.02

�C /Tc �mJ K−2 gat−1� 1.18±0.02 0.56±0.02

�C /�nTc 2.02±0.1 1.66±0.1

�D�0� �K� 706±20 970±20

S�300� �J K−1 gat−1� 13.5±0.1 9.3±0.1

Ec �mJ/gat� 7.15±0.2 3.2±0.1

2��0� /kBTc 4.1±0.1 3.7±0.1


�0� �S.I.� −9.6�10−6 −20.8�10−6

Nsb�EF� �eV cell�−1 0.81–0.93 1.57–1.59

1+�ep �from �n� 1.86–2.14 1.18–1.19

�ep �from Tc� 1.01 0.61–0.65
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function �2F���). Assuming the conventional value �*

=0.10 for the Coulomb pseudopotential,22 we obtain �ep
=1.01 according to the Allen-Dynes equation.22 A change of
±0.05 in �* affects the value of �ep by ±0.15. In Sec. V we
give a third independent determination �ep=1.04 which re-
lies on the electrical and optical conductivity and confirms
the first two calculations. At this point we already wish to
draw attention to the low value �ln=101 K��D�0�=706 K
that results from this analysis. YB6 is characterized by selec-
tive electron-phonon coupling to low-frequency modes.

The thermodynamic critical field Hc�T� is obtained by nu-
merical integration of the specific heat data �Table III�:

−
1

2
�0VHc

2�T� = �U�T� − T�S�T� ,

�U�T� = �
T

Tc

�Cs�T�� − Cn�T���dT�,

�S�T� = �
T

Tc Cs�T�� − Cn�T��
T�

dT�, �3�

where the volume V and other specific quantities refer to
1 g at. Hc�T� is nearly parabolic and extrapolates to 55 mT at
T=0 �see Fig. 16, below�. The deviation function D�t�h
− �1− t2�, where hHc�T� /Hc�0� and tT /Tc, is a good in-
dicator of the coupling strength.8 The curve for YB6 �Fig. 4,
inset� is very similar to that of Nb77Zr23, for which
2��0� /kBTc�4.2,23 and is bounded by those of Nb and Hg,
for which 2��0� /kBTc�4.0 and 4.6, respectively.8 Other es-
timations of the gap ratio rely on the slope of the BCS semi-
logarithmic plot �Fig. 4�,24 the normalized specific heat jump
at Tc �Eq. �4.1� of Ref. 8�, or a fit of the � model.25 These
determinations consistently yield 2��0� /kBTc=4.1±0.1 and
only differ by the weighting given to different temperature
ranges. Finally we recall tunneling measurements giving
2��0� /kBTc=4.02 and �ep=0.90 �with �*=0�.26 All these de-
terminations provide evidence for medium- to strong-
coupling superconductivity in YB6. In this respect, YB6 dif-

fers from ZrB12 which is a weakly coupled superconductor
�Table II�.4,5

Finally, note that the shape of the electronic specific heat
in the superconducting state excludes d-wave superconduc-
tivity. In particular, in the latter case the dimensionless ratio
�nTc

2 /�0VHc
2�0� would be nearly twice as large �3.7� as that

observed �2.00±0.05�.27

IV. LATTICE SPECIFIC HEAT AND PHONON DENSITY
OF STATES

The low-temperature T3 regime of the lattice specific heat
does not extend beyond a few kelvin, as shown by the large
positive curvature of the normal-state curve in Fig. 3. Huge
deviations with respect to the ideal Debye model persist at
higher temperature �Fig. 5�. The shape of the lattice specific
heat in the C /T plot is very uncommon, exhibiting a large
low-temperature peak �Fig. 6�. The specific heat at room
temperature reaches only �56% of the Dulong-Petit value,
showing that the thermal energy at 300 K is still too low to
excite all the spectral modes. The effective Debye tempera-
ture �ef f�T� is defined as the value of � necessary to fit the
experimental specific heat at any T with the equation

Cph�T� = 9NAvkB�T

�
�3�

0

�/T x4ex

�ex − 1�2dx . �4�

We have assumed Cph=Ctotal−�nT, neglecting the anhar-
monic specific heat. This is justified by the estimation Cp
−Cv= �3��2BVT, where B�190 GPa is the bulk modulus
and ��6.1�10−6 K−1, the coefficient of linear thermal ex-
pansion �see Sec. VI�; �Cp−Cv� /Cp�0.8% at 250 K. The
electronic term �nT only represents �1% of Ctotal at room
temperature. Starting from its initial value �ef f�0�=�D�0�
=706 K, the effective Debye temperature passes through a

TABLE III. Hc�0�, thermodynamic critical field at T→0 ob-
tained from specific heat �C� and magnetization �M� measurements;
�dHc /dT�Tc

, slope of the thermodynamic critical field at T→Tc;
Hc1�0�, lower critical field at T→0; Hc2�0�, upper critical field at
T→0; �dHc2 /dT�Tc

, slope of the upper critical field at T→Tc;
Hc3�0�, surface upper critical field at T→0; ��1�Tc�, Maki
parameter.

Hc�0� �mT� 55 �C�, 58 �M�
�dHc /dT�Tc

�mT/K� −15.7

Hc1�0� �mT� 20–25

Hc2�0� �mT� 295

�dHc2 /dT�Tc
�mT/K� −59

Hc3�0� �mT� �640

�1�Tc� 3.0

FIG. 4. BCS plot of the electronic specific heat in the supercon-
ducting state normalized by the Sommerfeld constant �n, vs the
inverse reduced temperature, data �symbols�, and BCS weak-
coupling limit �line�. The residual contribution �0T has been sub-
tracted. Inset: deviation function of the thermodynamic critical field
�symbols� and BCS weak-coupling limit �dashed line�.
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deep minimum �ef f�16 K�=278 K, then increases monotoni-
cally, suggesting an asymptotic value between 1100 and
1200 K. Its room-temperature value is �ef f�300 K�=1088 K.
Figure 5 shows the ideal Debye specific heat for selected
values of the Debye temperature. It is clear that the data do
not match any curve with a constant �D. These plots point
towards a large phonon density of states �PDOS� at energies
of the order of 80–100 K. Analogous situations occur—
albeit to a lesser extent—in Na and Al due to the presence of
optical phonons28 and in the borides ZrB12 �Ref. 4� and LaB6
�Ref. 29�, for example. The specific-heat data at high tem-
perature are sufficiently minimally scattered to attempt a de-
convolution of Cph�T� to extract the PDOS F���. More pre-

cisely, we can only obtain a substitutional spectrum—i.e. a

smoothed phonon density of states F̄��� which precisely re-
produces the specific heat and low-order moments of F���
but may not show the true PDOS in detail. A simplified
method consists of representing F��� by a basis of Einstein
modes with constant spacing on a logarithmic frequency
axis:

F��� = 	
k

Fk��� − �k� . �5�

The corresponding lattice specific heat is given by

Cph�T� = 3NAvkB	
k

Fk

xk
2exk

�exk − 1�2 , �6�

where xk=�k /T. The weights Fk are found by a least-squares
fit of the lattice specific heat. The number of modes is chosen
to be small enough to ensure the stability of the solution; a
practical choice is �k+1 /�k=1.75. Note that we do not try to
find the energy of each mode; we aim rather at establishing a
histogram of the density in predefined frequency bins. The
robustness of the fit �rms deviation �0.2% above 16 K� is
demonstrated by the reproducibility of the results of two in-
dependent runs over slightly different temperature ranges
�Table IV�. The sum of weights exceeds the ideal value 1 by
10%; most probably part of the fitted weight in the highest-
energy modes in this harmonic model only serves to simulate
the anharmonic contribution. Table IV also gives the gener-
alized moments

�̄ln  exp�� �−1 ln �F���d�

� �−1F���d� � , �7�

��̄2�1/2 � � �F���d�

� �−1F���d��
1/2

, �8�

to be compared later with similar moments of the Eliashberg
function �2F���. Figure 6 illustrates the decomposition of
the lattice-specific heat into Einstein contributions. The
PDOS obtained in this way is shown in Fig. 9 below. It
consists of a background with a high cutoff frequency, as
expected in view of the light and rigid boron sublattice, su-
perposed onto a strong peak at �8 meV which is associated
with nearly free oscillations of the Y atoms in oversized bo-
ron cages. The relative weight of the latter peak, �10%
��15% if we include both neighboring energy bins�, is of the
order of the fraction of Y atoms per formula unit. The ques-
tion therefore arises as to what extent this low-energy region
of the PDOS contributes to the electron-phonon coupling.
Different answers have been given in the literature, with the
main coupling being attributed to either the boron
sublattice16 or translational modes involving the yttrium
ions.26 This point is addressed in the next section, using re-
sistivity as an experimental probe.

FIG. 5. Lattice-specific heat of YB6 vs the temperature up to
room temperature. The long-dashed line shows the Debye-specific
heat calculated using a constant Debye temperature equal to its
minimum �D�16 K�=278 K, the short-dashed line using the effec-
tive value at room temperature �D�300 K�=1088 K. Inset: effective
Debye temperature vs temperature.

FIG. 6. Lattice-specific heat divided by the temperature vs
the temperature showing the decomposition into Einstein terms.
The labels k correspond to Einstein temperatures �E,k=90 K
�1.75k—i.e. �from left to right�, 51, 90, 158, 276, 482, 844, and
1477 K.
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A comparison with standard determinations of the PDOS
is instructive. YB6 has been studied by inelastic incoherent
neutron scattering on polycrystals.30 According to this un-
published work, the GDOS, i.e., the generalized PDOS
weighted by the scattering cross sections of the Y and B
atoms, extends to about 200 meV and exhibits a low-
frequency peak at �10 meV.16 However, the integrated
GDOS up to 15 meV only contains 1.3% of the total weight,
one order of magnitude below the result from the specific
heat. The GDOS and the true PDOS are expected to differ in
the present case owing to the different scattering cross sec-
tions of yttrium and boron. A determination of the PDOS by
inelastic neutron scattering on single crystals is not available
for YB6, but dispersion curves up to �60 meV are known
for the isostructural compounds LaB6 and SmB6.31,32 In both
cases, it was found that the optical modes are separated from
the acoustic ones by a wide gap, which can be observed
around 24 meV in the PDOS of YB6 derived from the spe-
cific heat �Fig. 9 below�. It was also pointed out that the
acoustic modes of LaB6 �SmB6�, both longitudinal and trans-
verse, are unusually flat over the major part of the Brillouin
zone, due to the noninteracting vibration of the La �Sm� ion.
This gives rise to a low-frequency peak at �2.5–3 THz
��10–12 meV� in the PDOS. Although yttrium is lighter,
this peak lies at �8 meV in YB6 according to the specific
heat. This softening is associated with the weaker bond due
to the smaller radius of the metal ion, while the size of the
boron cage undergoes little change.

High frequency modes have been studied by Raman tech-
niques in the hexaboride series �see Ref. 33 and references
therein�. They are associated with “internal” modes of the
boron octahedra. Their energies cannot be resolved by the
deconvolution of the specific heat, but their weight is in-
cluded in the highest two frequency bins.

V. RESISTIVITY AND ELECTRON-PHONON COUPLING

The resistivity �Fig. 7� is analyzed in a similar way. We
start from the generalized Bloch-Grüneisen formula �see,
e.g., Ref. 34, in particular pp. 212 and 219�

�BG�T� = ��0� +
4�m*

ne2 �
0

�max

�tr
2 F���

xex

�ex − 1�2d� , �9�

where x� /T and �tr
2 F��� is the electron-phonon “transport

coupling function.” In the restricted Bloch-Grüneisen ap-
proach, one would have �tr

2 F�����4, and as a consequence

TABLE IV. Results of the fit of the specific heat in terms of F��� and the fit of the resistivity in terms of
�2Ftr���. �k, energy of the modes in a geometrical series �k+1=1.75�k. The origin is arbitrarily chosen. Fk,
weight associated with each mode in F���; two sets of numbers show the results of two independent runs. A
��� sign means that this mode was not included in the fit. �tr,k2��2F�tr,k /�k, partial contribution of the
mode to �tr; two sets of numbers show the results of two independent runs. �̄ln, ��̄2�1/2: generalized moments
of F���. �ln, ��2�1/2: generalized moments of �2Ftr��� �see text�.

�k �meV�

Fk /�k �eV−1�
First run, 2–300 K, H=1 T

�second run, 16–300 K, H=0�

�tr,k= ��tr
2 F�k /�k

First run, 2–300 K, H=5 T
�second run, 7.5–300 K, H=0�

127 3.37 �3.40� 0 �0�
72.7 4.60 �4.61� 0.101 �0.117�
41.6 4.07 �4.01� 0 �0�
23.8 0.80 �0.93� 0 �0�
13.6 3.37 �3.21� 0 �0.006�
7.76 13.0 �13.1� 0.724 �0.743�
4.43 0.83 �0.93� 0.180 �0.186�
2.53 0.12 �-� 0.024 �0�
1.45 0.009 �-� �-�
0.83 0.013 �-� �-�

	Fk=1.103 �1.105� �tr=	�tr,k=1.03 �1.05�
�̄ln=20.0 �20.2� meV �ln=8.5 �9.0� meV

��̄2�1/2=53.9 �54.0� meV ��2�1/2=23.8 �25.2� meV

FIG. 7. Normal-state resistivity of YB6 vs the temperature.
Dashed line: residual resistivity. Crosses: residuals of the fit in %.
Inset: expanded low-temperature data and polynomial fit. Supercon-
ductivity is quenched by a field of 1 T.
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�BG�T�−��0��T5, but deviations from the Debye model,
complications with phonon polarizations, and umklapp pro-
cesses would not justify this simplification beyond the low-
temperature continuum limit—i.e., only a few kelvin in this
case. Using a decomposition into a basis of Einstein modes
similar to Eq. �5�,

�tr
2 F��� =

1

2	
k

�tr,k�k��� − �k� , �10�

we obtain the discrete version of Eq. �9�:

�BG�T� = ��0� +
2�

�0	p
2 	

k

�tr,k�k
xke

xk

�exk − 1�2 , �11�

where the fitting parameters are the dimensionless constants
�tr,k. The constraint �tr,k�0 is enforced. The residual resis-
tivity ��0�=9.9 �	 cm is determined separately �inset of
Fig. 7�. The unscreened plasma frequency 	p
�ne2 /�0m*�1/2=5.2 eV is taken from extensive optical
spectroscopy experiments performed on the same single
crystal, to be published elsewhere.21 The negative curvature
of the resistivity at high temperature, a rather general phe-
nomenon possibly related to the Mott limit,35,36 is taken into
account by the empirical “parallel-resistor” formula37

1

��T�
=

1

�BG�T� + ��0�
+

1

�max
. �12�

The parameter �max=73 �	 cm is fitted simultaneously to
the parameters �tr,k, using data taken in either H=0 �Tc�T
�300 K� or 5 T �2.2�T�300 K�. These two data sets are
fitted independently �rms error �0.2%� in order to evaluate
the robustness of the results �Table IV�. Only a few basis
modes contribute. Two low-energy modes at �8 and
�4.5 meV clearly stand out �Fig. 9 below�, in agreement
with tunneling data featuring a peak in the Eliashberg func-
tion �2F��� at 8.5 meV and a shoulder at �5 meV.26 The
electron-phonon coupling parameter relevant for transport
�tr2��−1�tr

2 F��� is obtained from �tr=	k�tr,k=1.04.
Within experimental accuracy, it is equal to the electron-
phonon coupling parameter relevant for superconductivity
obtained in the previous section, �ep2��−1�2F���=1.01.
This is expected for phonon-mediated superconductors,22,34

but demonstrated experimentally in the present case. Finally,
the value of �ln given by

�ln  exp�� �−1 ln ��tr
2F���d�

� �−1�tr
2 F���d� � = exp� 1

�
	

k

�k ln �k�
�13�

and the alternative determination of �ln obtained from the
dimensionless specific heat jump in Sec. III both give the
same value, 8.7 meV. Numerical results are summarized in
Table IV, including the generalized second moment

��2�1/2 � � ��tr
2 F���d�

� �−1�tr
2 F���d��

1/2

= � 1

�
	

k

�k�k
2�1/2

.

�14�

When compared with thermodynamic data, the analysis of
the dc and optical conductivity therefore leads to the conclu-
sion that superconductivity is essentially driven by a single
low-energy mode �or a narrow group of modes�, since �ln is
very close to the low-frequency peak of the PDOS. This
conclusion, which is at odds with early electronic-structure
and phonon-mode calculations,16 fully supports tunneling
spectroscopy experiments.26 YB6 is an almost ideal case of a
superconductor with an Einstein PDOS. Just as in ZrB12,

4

most of the electron-phonon coupling arises from the large-
amplitude, low-frequency vibrations of the loosely bound
metal atoms in the oversized boron cages.

More generally, it is interesting to note that the resistivity
equation �11� can be reexpressed in a form that emphasizes
the similarity with the specific heat �Eq. �6��:

�BG�T� − ��0�
T

=
R0kB

�0Vp
2 	

k

�tr,kE�T/Tk� , �15�

where R0h /e2=25.8 k	 is the quantum of resistance, Vp
the plasma frequency in volts, and E�x�x2ex / �ex−1�2 the
normalized Einstein specific heat at a temperature T due to a
mode with a characteristic temperature Tk. In the case of
coupling to a single mode, this reduces to

�BG�T� − ��0�
CphT

=
R0kB

�0

�tr

Vp
2 = const. �16�

This scaling of Cph and ��BG�T�−��0�� /T is approximately
obeyed in ZrB12 and YB6 due to the predominance of one
soft mode. Grimvall34 noted that a similar relation holds in
the high-temperature limit for any number of modes. As no
large variation is expected in the plasma frequency 	p
��e2 /�0meVcell�1/2 of trivalent hexaborides which have one
free carrier per unit cell,9 Eq. �16� immediately shows that
�tr in LaB6, which has a room-temperature phonon resistivity
��300�−��0�=8.9 �	 cm,38 is much weaker than �tr in YB6,
for which ��300�−��0�=28.4 �	 cm. Indeed superconduc-
tivity has been reported to occur only below 0.1 K in LaB6.
More information on the possibilities and limitations of the
deconvolution of the resistivity to obtain the �tr

2 F��� func-
tion may be found in the paper of Igalson et al.39

VI. THERMAL EXPANSIVITY AND ANHARMONICITY

Thermal-expansion experiments were undertaken to give
three types of information: �i� confirmation of the main fea-
tures of the PDOS, �ii� evaluation of the volume dependence
of phonon modes and electronic density of states, and �iii�
determination of the variation of Tc with pressure. The linear
thermal expansivity ��T� for a cubic system is given by
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��T� 
1

L
� �L

�T
�

p
=

�T

3
� �S

�V
�

T
, �17�

where �T is the isothermal compressibility. The expansivity
is closely related to the specific heat at constant volume via
the Grüneisen parameters �see, e.g., Ref. 34�:

��T� =
�T

3V
��G,elCel + �G,phCph� , �18�

where the electronic Grüneisen parameter �G,el
=� ln �n /� ln V gives a measure of the volume dependence
of the Sommerfeld constant and the phonon Grüneisen pa-
rameter �G,ph−� ln � /� ln V represents the anharmonicity
of the lattice vibrations. In this simple form, we can make
use of the known components Cel�T� and Cph�T� of the spe-
cific heat in the normal state and adjust �G,el and �G,ph to fit
the normal-state expansivity curve ��T� at low temperature.
As in the case of the specific heat, a plot of � /T versus T2 is
most suitable for displaying the results. The fitted parameters
�G,el=15±3 and �G,ph=9±1 are stable when the upper limit
of the fit is varied between 50 and 120 K2. This determina-
tion of �G,ph is representative of the lowest frequencies of the
phonon spectrum; at higher temperatures, the quality of the
fit degrades rapidly. With �G,el we determine the electronic
component of the expansivity, �el�T� /T= �2.6±0.5�
�10−9 K−2. In these evaluations the bulk modulus �T

−1

=190 GPa has been estimated from Fig. 2 of Ref. 33; the
value given by band-structure calculations is
�T

−1=179 GPa.20

At higher temperature, the frequency dependence of the
phonon Grüneisen parameter must be taken into account.
Modes which are characterized by a large �G,ph��� are more
heavily weighted in the thermal expansion than in the lattice
specific heat. This is exemplified by the expansivity data
shown in Fig. 8 over the full temperature range, to be com-
pared with the specific heat in Fig. 5. The broad anomaly
which appears around 50 K in Fig. 8 is evidence for a large

volume dependence in some low-frequency modes. In order
to evaluate the energy of these modes, we fit the phonon
expansivity over the full temperature range in a similar man-
ner to the resistivity and the specific heat, using the same set
of Einstein frequencies. Equation �19� below, similar to Eqs.
�6� and �11�, allows the parameters �G,kFk to be extracted for
each frequency �k:

�ph�T� = ��T� − �el�T� =
NAvkB�T

V
	

k

�G,kFk

xk
2exk

�exk − 1�2 .

�19�

The PDOS weighted by the frequency-dependent Grüneisen
parameter, �G,ph���F���, is represented in Fig. 9 together
with other spectra. The 8-meV and 4.5-meV modes are
heavily weighted with �G,k�7 and 9, respectively, whereas
the other modes are much less anharmonic with �G,k values
below 2.40 Similarly to MgB2 and ZrB12, the modes which
give rise to a large electron-phonon coupling are anhar-
monic.

The pressure dependence of Tc is obtained from the
Ehrenfest relation

�� =
1

3V

�C

Tc
� �Tc

�p
�

T
, �20�

where �� and �C represent discontinuities of � and C at the
second-order transition. The experimentally determined step
��=−�3.5±0.5��10−8 K−1 �Fig. 10� corresponds to
−0.53±0.08 K/GPa for the initial pressure dependence of
Tc. Again assuming �T

−1=190 GPa, one obtains the fractional
volume dependence of the critical temperature
� ln Tc /� ln V=14±2.

FIG. 8. Linear thermal expansivity of YB6 vs temperature. In-
set: Grüneisen parameter vs temperature, assuming a bulk modulus
�T

−1=190 GPa.

FIG. 9. Phonon density of states F��� deconvoluted from the
specific heat, electron-phonon transport coupling function �tr

2 F���
deconvolved from the resistivity, and spectral anharmonicity func-
tion �G���F���−�� ln � /� ln V�F��� deconvoluted from the ther-
mal expansion. Fits are performed with � functions Fk���−�k�,
��tr

2 F�k���−�k�, and ��GF�k���−�k�, respectively, on a basis of
Einstein frequencies �k+1=1.75�k �see Fig. 6�. In order to reflect
the spectral density, the � functions of the PDOS are represented by
rectangles having a width ��k1.751/2�k−�k /1.751/2�0.57�k

and a height Fk /��k. In a similar way, the � functions of the
�tr

2 F��� function are represented by solid circles at a height
��tr

2 F�k /��k�0.88�k and those of �G���F��� by triangles at a
height ��GF�k /��k. The dashed lines are guides for the eye.
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The fractional volume dependences of the critical tem-
perature and Sommerfeld constant are unusually large, 14
and 15, respectively. The fact that they are nearly equal is
associated with the fact that the relative jumps of the expan-
sivity and specific heat are equal in magnitude but opposite
in sign. This follows from Eqs. �18� and �20�:

� � ln Tc

� ln V
�

T

= −
��/�el�Tc�
�C/Cel�Tc�

� � ln �n

� ln V
�

T

. �21�

The roles of the phonon modes and the EDOS in the volume
dependence still have to be elucidated. If the transition tem-
perature is derived from a McMillan-type relation,41 by ne-
glecting the volume dependence of the screened Coulomb
repulsion parameter �* and recalling that the Eliashberg
function is strongly peaked, �2F���
��E���−�E�, we
obtain34

d ln Tc

d ln V
= − �G,ph��E� + f��ep,�

*�
d ln �ep

d ln V
, �22�

where f��ep ,�*� is easily calculated from McMillan’s equa-
tion and takes the value �1.5 in the present case with �ep
�1, �*�0.1. A second equation describes the fractional vol-
ume dependence of �n�N�EF��1+�ep�:

d ln �n

d ln V
=

d ln N�EF�
d ln V

+
�ep

1 + �ep

d ln �ep

d ln V
. �23�

From Eqs. �22� and �23�, � ln N�EF� /� ln V=8.2±4 and
� ln �ep /� ln V=13.7±2. The variation of �n with the volume
is therefore due to the variation of both the EDOS and the
phonon-dependent renormalization in an approximately
equal ratio.42

In a final step we may write �ep=� /M�E
2 , where � is the

Hopfield electronic parameter. It follows that

d ln �ep

d ln V
=

d ln �

d ln V
+ 2�G,ph��E� . �24�

The first term of the right-hand side is found to be small,
d ln � /d ln V=−0.3±3, compared to the second one,
2�G,ph��E�=14±2. Therefore we may say that the large and
positive values of � ln �ep /� ln V and � ln Tc /� ln V are es-
sentially due to the anharmonicity of the 8-meV mode. When
the volume of the boron cages increases, the force constant
which determines the frequency of the strongly coupled soft
mode decreases and the latter moves closer to the favorable
region 
6kBTc where the functional derivative �Tc /��2F���
is largest.8

VII. MAGNETIC PHASE DIAGRAM

The superconducting phase diagram in the H-T plane was
investigated by magnetoresistance, magnetization, and spe-
cific heat measurements, allowing the critical fields Hc1�T�,
Hc�T�, Hc2�T�, and Hc3�T� to be determined �Table III�. The
resistive transitions in fields 0–0.5 T are shown in Fig. 11.
They are measured with both the field and current parallel to
the long axis of the crystal. The extrapolation of the steepest
part of the transition to R=0 is used to define the surface
critical field Hc3�T�, which is well separated from Hc2�T� as
already observed in the dodecaboride ZrB12.

5

The dc magnetization at temperatures from 2 to 6 K is
shown in Fig. 12. Our data agree with those of Kunii et al.43

The shape is typical of a type-II superconductor. The sharp
minimum at the border of the Meissner and mixed-state re-
gions defines Hc1�T�, and the break in the slope between the
mixed-state and normal-state regions defines Hc2�T�. It is
remarkable that no anomaly can be detected in the magneti-
zation at Hc3�T� where the resistance vanishes �Fig. 13�, thus
confirming the superficial nature of the third critical field. No
anomaly is detected in the specific heat either at Hc3�T�. Note
that the scale of Fig. 13 is enlarged by a factor of 5000 with
respect to that of Fig. 12. Although on this scale the transi-
tion at Hc2 appears to be rounded, Hc2 nevertheless remains
well defined using an extrapolation of the linear parts from
above and below the transition, as expected in the Ginzburg-
Landau regime �Fig. 13, inset�.

FIG. 10. Difference between the normal-state and
superconducting-state linear thermal expansivity near Tc. The ide-
alized jump is shown by a dotted line. Inset: expansivity in the
normal and superconducting states.

FIG. 11. Resistivity of YB6 near Tc as a function of the tem-
perature in different magnetic fields.
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Finally the specific heat was measured in several fields
from 0 to 1 T. These measurements give an independent
bulk determination of Hc2�T�. The criterion used here is the
midpoint of the step at the transition �Fig. 14�. No anomaly is
seen at Hc1�T�, thus establishing that YB6 is a type-II/2 su-
perconductor, unlike ZrB12 which was of type-II/1.5 Note
that in Fig. 14 only the electronic part Ce /T of the total
specific heat is shown. The rise of Ce�H� /T with respect to
the zero-field curve Ce�0� /T, shown in Fig. 15, is due to the
contribution of quasi normal vortex cores and the excitations
of the vortex lattice. The trends observed in the data suggest

that the model of Caroli et al.44,45—i.e. Ce�H� /T
=�nH /Hc2�0�—would be obeyed at temperatures below
�0.1Tc.

The above information is summarized in the phase dia-
gram, Fig. 16. The Maki parameter �1�T�
2−1/2Hc2�T� /Hc�T� shown in the inset extrapolates to
�1�Tc���3 and increases at low temperature as usual.
Note that � is too low for the approximate Ginzburg-Landau
relation Hc1�T��2−1/2Hc�T�ln �1 /�1 to hold. Instead we use
�1�T� to recalculate Hc1�T� according to the numerical work
of Harden and Arp46 �lower dashed line in Fig. 16�. These
recalculated values nevertheless underestimate Hc1�T� taken
from magnetization curves by 10%–20%.

The critical field Hc3�T�, which describes the persistence
of superconductivity over a layer of thickness comparable to
the coherence length � when the field is applied parallel to a
flat surface, should ideally be 1.695Hc2�0�.47,48 Indeed, at

FIG. 12. Magnetization of YB6 as a function of the magnetic
field for different temperatures, virgin curves with increasing field
�M in emu/cm3, 4�M in G�. Inset: sample hysteresis curve at 4 K
�similar curves are obtained from 2 to 6 K�.

FIG. 13. Detail of the previous plot at T=5 K, expanded 100
times in the inset and 5000 times in the main frame. The normal-
state magnetization Mn has been subtracted. Note the absence of
any measurable diamagnetism at Hc3=1700 G where the resistance
drops to zero. Fluctuation diamagnetism sets in smoothly near
1500 G. The upper critical field Hc2=1270 G defined by the inter-
section of the extrapolated linear sections in the inset coincides with
the position of the specific heat jump.

FIG. 14. Electronic specific heat of YB6 divided by the tempera-
ture vs the temperature for different magnetic fields.

FIG. 15. Specific heat difference �C�H ,T�−C�0,T�� /T normal-
ized by the Sommerfeld constant vs T /Tc in different magnetic
fields. The value calculated within the Caroli–Matricon–de Gennes
approximation is shown by solid lines at T→0.
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2.4 K �the lowest temperature at which Hc3�T� could be mea-
sured�, Hc3�T� /Hc2�T�=1.66. However, while Hc2�T� has a
negative curvature which fits well with the Werthamer-
Helfand-Hohenberg �WHH� theory,49 Hc3�T� has a small but
positive curvature. Using a polynomial fit, Hc3�T� extrapo-
lates to �2.2Hc2�0� at T=0 �Fig. 16�. A qualitatively similar
behavior was found in ZrB12.

5 This exceedingly large ratio
may be explained here by a decrease in the mean free path
with respect to the bulk over a thin layer at the surface. An
increase of the gap at the surface with respect to the bulk
volume �as found in ZrB12 �Refs. 4, 5, 50, and 51�� is ex-
cluded in YB6, since in this case tunneling and specific heat
determinations agree on the gap value.

VIII. COMPOSITIONAL DEPENDENCE

A broad range of superconducting critical temperatures,
1.5�Tc�8.4 K, has been reported in the literature depend-
ing on the conditions of preparation.9 In our preliminary
work, Tc onsets from 6.5 to 7.6 K were obtained. Energy-
dispersive x-ray diffraction �EDX� revealed a correlation be-
tween Tc and the Y/B ratio, the higher Tc corresponding to a
smaller boron concentration �Tc�YB6+x��6.25
−4.3x±0.25 K�. Literature data confirm this tendency.9 The
lattice constant was found to be almost insensitive to the
Y/B ratio, changing from 4.1002�5� Å for YB5.7 with Tc

=7.6 K to 4.1000�5� Å for YB5.9 with Tc=6.6 K. These val-
ues are in agreement with published data.9 The possible in-
fluence of strains on Tc cannot be excluded: the high value
Tc=8.4 K reported by Fisk et al.3 was obtained by splat-

cooling of arc-melted samples with nominal composition
YB6. We tried to “anneal out” residual strains in different
samples by a 36-h heat treatment at 1600 °C in 100 bars
argon pressure, followed by slow cooling. The Tc onset of
low-Tc samples �6.5 K� did not change; that of high-Tc

samples �7.6–7.8 K� decreased by about half a kelvin. In all
cases the main effect was a broadening of the transition by
2–3 K. While such experiments tend to support the idea that
strains increase Tc, the effect of losses during the heat treat-
ment cannot be excluded.

The highest Tc is obtained for a B/Y ratio below 6. In this
sense the reference crystal with Tc=7.2 K studied in the pre-
vious sections is not ideal because of the presence of boron
vacancies. Therefore we briefly studied two other crystals
with Tc

onset=6.5 K and 7.6 K. Their resistivity was only
found to differ from that of the reference sample by the re-
sidual term, while the temperature-dependent part remained
unchanged �Table V�. Magnetization curves were measured
with increasing field and integrated to get the thermody-
namic critical field Hc�T� �Fig. 17, Table V�. Irreversibility
may introduce some error by delaying the entry of vortices,
leading to an overestimation of Hc�T�. However, we found
that the magnetic determination of Hc�T� was only 4% above
that obtained from the specific heat for the reference sample,
showing that the branch with increasing field is close to equi-
librium. The net result is that Tc is positively correlated with
Hc�0�, �n, and therefore the EDOS, as is the case for most

FIG. 16. Phase diagram of YB6 in the H-T plane. From top to
bottom: third critical field Hc3�T� defined by zero resistance for H
parallel to the current and surface, second upper critical field Hc2�T�
given by the position of the specific heat jump �closed diamonds�
and the knee of the magnetization �open diamonds�, thermodynamic
critical field Hc�T� obtained by integration of the specific heat C /T
�open circles�, and lower critical field Hc1�T� given by the position
of the sharp minimum of the magnetization �solid circles�. All lines
are polynomial fits to the data, except for the Hc1�T� line, which is
recalculated based on Hc�T� and the Maki parameter �1�T� �see
text�. Inset: variation of �1 with the temperature.

TABLE V. Parameters of the fit Hc�T� /Hc�0�=1− �T /Tc�2 of the
magnetization data shown in Fig. 17 for three YB6+x crystals: Tc,
critical temperature; Hc�0�, thermodynamic critical field at zero
temperature. �n, Sommerfeld constant estimated assuming
�nTc

2 /Hc
2�0�=const; RRR, residual resistivity ratio. The resistance

of the sample with Tc=7.4 K �temperature at which Hc�T�→0�
vanishes at 7.6 K.

Tc �K� 6.5 7.2 7.4

Hc�0� �mT� 48 58 61

�n �mJ K−2 gat−1� 0.50 0.58 �reference� 0.62

RRR 3.05 3.87 4.58

FIG. 17. Thermodynamic critical field Hc�T� of boron-rich
�lower-Tc� and boron-deficient �higher-Tc� samples. In this plot,
Hc�T� is obtained by integration of the magnetization curves.
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BCS superconductors. The change in the EDOS is confirmed
by the dc magnetic susceptibility. The curve for the sample
with Tc=6.5 K is similar to that shown in Fig. 2 and de-
scribed by the parameters 
�0�=−16.8�10−6, a=4.0
�10−11 K−2, and CCurie=6.5�10−4 K �see Sec. II�. Com-
pared to the reference sample, the susceptibility is more dia-
magnetic, which is attributed to a smaller Pauli contribution.
The Curie term is equivalent to 120 ppm Yb3+.

IX. CONCLUSION

Specific heat, resistivity, and thermal expansion experi-
ments performed on high quality single crystals have been
used to characterize YB6. This superconductor has a low
density of states at the Fermi level. Some sample dependence
of Tc can be traced to the variation of the B/Y ratio, which in
turn influences the EDOS. The specific heat in the supercon-
ducting state is typical of a single-band, isotropic BCS su-
perconductor; however, the electron-phonon interaction is
much stronger than for the other superconducting borides, in
particular ZrB12 and MgB2. A common feature of these
borides is nonuniform coupling to selected phonon modes.
Whereas the strongly coupled modes lie at high energy
�60 meV for MgB2,52 they lie at low energy �15 meV for
ZrB12 �Ref. 4� and �8 meV for YB6, which partly explains
their relatively low Tc. Similarly to LaB6,29 these low-
frequency modes are associated with the vibration of Y or Zr
atoms loosely bound in oversized boron cages. The reason
for the lower characteristic frequency in YB6 compared to
ZrB12 is neither to be found in the mass of the metal ions nor
in the coordination number which is 24 in both cases. It is

rather to be associated with the longer metal to boron bond,
3.03 Å in YB6 �Ref. 53� instead of 2.76 Å in ZrB12 �Ref.
54�. This longer distance leads to a weaker force constant
and larger vibrational amplitude, which in turn favors super-
conductivity. The thermal expansion indeed indicates that Tc
will decrease with pressure and that these modes are strongly
anharmonic. As for magnetic properties, YB6 is a type-II
superconductor with ��3 and clearly shows a third upper
critical field at the surface, a rather rare occurrence.

Owing to the low characteristic energy of the phonons
which mediate superconducting pairing, YB6 has been found
to be an almost ideal system where, on the one hand, specific
heat can substitute for inelastic neutron scattering �which is
plagued by the absorption of 10B� to study the PDOS and, on
the other hand, resistivity can be substituted for tunnelling to
study the electron-phonon coupling function. The spectral
resolution of these procedures is limited and only makes
sense on a logarithmic energy scale; nevertheless, this tech-
nique is found to be reproducible and able to give remark-
ably consistent values of �ep, allowing significant compari-
sons to be made between borides.
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