
Abstract. The current understanding of the superconductor ±

insulator transition is discussed level by level in a cyclic spiral-

like manner. At the first level, physical phenomena and pro-

cesses are discussed which, while of no formal relevance to the

topic of transitions, are important for their implementation and

observation; these include superconductivity in low electron

density materials, transport and magnetoresistance in super-

conducting island films and in highly resistive granular materi-

als with superconducting grains, and the Berezinskii±

Kosterlitz±Thouless transition. The second level discusses and

summarizes results from various microscopic approaches to the

problem, whether based on the Bardeen±Cooper±Schrieffer

theory (the disorder-induced reduction in the superconducting

transition temperature; the key role of Coulomb blockade in

high-resistance granular superconductors; superconducting

fluctuations in a strong magnetic field) or on the theory of the

Bose±Einstein condensation. A special discussion is given to

phenomenological scaling theories. Experimental investiga-

tions, primarily transport measurements, make the contents of

the third level and are for convenience classified by the type of

material used (ultrathin films, variable composition materials,

high-temperature superconductors, superconductor±poor metal

transitions). As a separate topic, data on nonlinear phenomena

near the superconductor±insulator transition are presented. At

the final, summarizing, level the basic aspects of the problem are

enumerated again to identify where further research is needed

and how this research can be carried out. Some relatively new

results, potentially of key importance in resolving the remaining

problems, are also discussed.

1. Introduction

As temperature decreases, many metals pass from the

normal to the superconducting state which is phenomen-

ologically characterized by the possibility of a dissipationless

electric current and by the Meissner effect. As a result of a

change in some external parameter (for example, magnetic

field strength), the superconductivity can be destroyed. In

the overwhelming majority of cases, this leads to the return

of the superconducting material to the metallic state.

However, it has been revealed in the last three decades that

there are electron systems in which the breakdown of
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superconductivity leads to the transition to an insulator

rather than to a normal metal. At first, such a transition

seemed surprising, and numerous efforts were undertaken in

order to experimentally check its reality and to theoretically

explain its mechanism. It was revealed that the insulator can

prove to be quite extraordinary; moreover, upon breakdown

of superconductivity with the formation of a normal metal,

the metal can also be unusual. This review is devoted to a

discussion of the state of the art in experiment and theory in

this field.

1.1 Superconducting state, electron pairing

By the term `superconducting state', we understand the state

of metal which, at a sufficiently low temperature, has an

electrical resistance exactly equal to zero at the zero

frequency, thus indicating the existence of a macroscopic

coherence of electron wave functions. This state is brought

about as a result of superconducting interactions between

charge carriers. Such an interaction is something more

general than superconductivity itself, since it can either lead

to or not lead to superconductivity.

According to the Bardeen±Cooper±Schrieffer (BCS)

theory, the transition to the superconducting state is accom-

panied by and is caused by a rearrangement of the electronic

spectrum with the appearance of a gap with a width of 2D at

the Fermi level. The superconducting state is characterized by

a complex order parameter

F�r� � D exp
ÿ

ij�r�
�

; �1�

in which the value of the gap D in the spectrum is used as the

modulus. If the phase j�r� of the order parameter has a

gradient, j�r� 6� const, then a particle flow exists in the

system. Since the particles are charged, the occurrence of a

gradient indicates the presence of a current in the ground

state.

The rearrangement of the spectrum can be represented as

a result of a binding of electrons from the vicinity of the Fermi

level (with momenta p and ÿp and oppositely directed spins)

into Cooper pairs with a binding energy 2D. The binding

occurs as a result of the effective mutual attraction of

electrons located in the crystal lattice, which competes with

the Coulomb repulsion.

A Cooper pair is a concept that is rather conditional, not

only since the pair consists of two electrons moving in

opposite directions with a velocity vF, but also since the size

of a pair in the conventional superconductor, z � �hvF=D �
10ÿ4 cm, is substantially greater than the average distance

between pairs, s � �g0D�ÿ1=3 � 10ÿ6 cm (g0 is the density of

states in a normal metal at the Fermi level):

z4 s : �2�

In fact, the totality of Cooper pairs represents a collective

state of all electrons.

It has long been known that superconductivity also arises

in systems with an electron concentration that is substantially

less than that characteristic of conventional metals, for

example, in SrTiO3 single crystals with an electron concentra-

tion of about n � 1019 cmÿ3 [1]. Furthermore, the parameter z

in type-II superconductors can be less than 100 A
�
. Therefore,

inequality (2), which is necessary for the applicability of the

BCS model, can prove to be violated. The materials in which

z9 s are referred to as `exotic' superconductors; these also

include high-temperature superconductors in which the

superconductivity is caused by charge carriers moving in

CuO2 crystallographic planes. As in any two-dimensional

(2D) system, the density of states g0 in the CuO2 planes in the

normal state is independent of the charge carrier concentra-

tion and, according to measurements, is g0 � 2:5� 10ÿ4 Kÿ1

per structural element in each CuO2 crystal plane [to

approximately one and the same magnitude in all families of

the cuprate superconductors (see, e.g., Ref. [2])]. Assuming,

for the sake of estimation, that D is on the order of the

superconducting transition temperature Tc, we obtain the

average distance between the pairs in CuO2 planes:

s � �g0Tc�ÿ1=2 � 25 A
�
at Tc � 100 K. This value is compar-

able with the typical coherence length z � 20 A
�

in high-

temperature superconductors.

The existence of exotic superconductors, for which

inequality (2) is violated, forced researchers to turn to

another model of superconductivityÐ the Bose±Einstein

condensation (BEC) of the gas of electron pairs considered

as bosons with a charge 2e [3]Ðand to investigate the

crossover from the BCS to the BEC model (see, e.g., the

review [4]).One of the essential differences between these

models consists in the assumption of the state of the electron

gas at temperatures exceeding the transition temperature. The

BEC model implies the presence of bosons on both sides of

the transition. An argument in favor of the existence of

superconductors with the transition occurring in the BEC

scenario is the presence of a pseudogap in some exotic

superconductors. It is assumed that the pseudogap is the

binding energy of electron pairs above the transition

temperature (for more detail, see the end of Section 4.3

devoted to high-temperature superconductors).

In the BCS model, the Cooper pairs for T > Tc appear

only as a result of superconducting fluctuations; the equili-

brium concentration of pairs exists only for T < Tc. The

crossover from the BCS to the BEC model consists in

decreasing gradually the relative size of Cooper pairs and

appearing the pairs on both sides of the transition, which are

correlated in phase in the superconducting state and uncorre-

lated in the normal state. The conception that in super-

conducting materials with a comparatively low electron

density the equilibrium electron pairs can exist for T > Tc

began to be discussed immediately after the discovery of these

materials [5].

For the problem of the superconductor±insulator transi-

tion, the question of the interrelation between the BCS and

BEC models is of large importance, since near the boundary

of the region of existence of the superconducting state it is

natural to expect a decrease in the density of states g0 and an

increase in s, so that inequality (2) must strongly weaken or be

completely violated. In any case, the problem of a phase

transition that is accompanied by localization makes sense

within the framework of both approaches.

By having agreed that the superconductivity of exotic

superconductors can be described using the BEC model, we

adopt that for a temperature T > Tc there can exist both

fluctuation-driven and equilibrium electron pairs. Then, a

natural question arises: since the electron pairs can exist not

only in the superconducting but also in the normal state, can it

happen that pair correlations between the localized electrons

can be retained as well on the insulator side in super-

conductor±insulator transition? Below, we shall repeatedly

return to this question.
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1.2 Superconductor±insulator transition

as a quantum phase transition

It is well known that in the ground state the electron wave

functions at the Fermi level can be localized or delocalized.

In the first case, the substance is called an insulator, and in

the second case a metal. As was already said above, it has

long been considered that superconductivity can arise only

on the basis of a metal, i.e., the coherence of the delocalized

wave functions can arise only as an alternative to their

incoherence. We now know that with the breakdown of

superconductivity all electron wave functions that became

incoherent can immediately prove to be localized. In this

case, it is assumed that the temperature is equal to zero, so

that on both sides of the transition the electrons are in the

ground state.

The phase transition between the ground states is called

the quantum transition. This means that it is accompanied by

quantum rather than thermal fluctuations. The transition can

be initiated by a change in a certain control parameter x, for

instance, the electron concentration, disorder, or magnetic

field strength. Superconductivity can also be destroyed by a

change in the control parameter x at a finite temperature,

when thermodynamic thermal fluctuations are dominant. It

can be said that in the plane �x;T � there is a line of

thermodynamic phase transitions x�T �, which is terminated

on the abscissa �T � 0� at the point x � x0 of the quantum

transition.

Let us shift the state of the superconducting metal toward

the region of insulating states by changing a certain parameter

x. Under the effect of this shift, it can happen that, first,

superconductivity will disappear, and then the normal metal±

insulator transition will occur. It is precisely according to this

scenario that the events develop with a decreasing concentra-

tion of Nb in the amorphous NbxSi1ÿx alloy [6]: at an Nb

concentration of approximately 18%, the temperature of the

superconducting transition drops to zero and the alloy

becomes a normal metal, and the metal±insulator transition

occurs only at an Nb concentration of 12% (Fig. 1). The

superconductor±insulator transition is split into two sequen-

tial transitions. This example is instructive in the sense that

though in the set of temperature dependences r�T � (Fig. 1a)
the boundary between the superconducting and nonsuper-

conducting states is clearly visible, to prove the existence of an

intermediate metallic region and to reveal themetal±insulator

transition, it is necessary to perform extrapolation of the

s�T � � 1=r�T � dependences as T ! 0 in a certain interval of

concentrations. The quantity s0 presented in Fig. 1b as a

function of the Nb concentration is the result of this

extrapolation.

Of greater interest is the case of unsplit transition, where

the superconductor directly transforms into the insulator,

possibly passing through a bordering isolated normal state.

This survey is mainly devoted to precisely such transitions,

which are, as we will see, sufficiently diverse.

Let us schematically depict the phase diagrams of these

phase transitions in the plane �x;T � (Fig. 2), assuming for the

sake of certainty the three-dimensional nature of the electro-

nic system. As is known, the metal±insulator transition is

depicted on this plane in the form of an isolated point on the

x-axis, because the very concept of an `insulator' is strictly

defined only at T � 0 (see, e.g., the review [7]). Therefore, the

vertical dashed straight lines in Fig. 2 do not mark real phase

boundaries.

In the diagram presented in Fig. 2a, which corresponds

to a split transition, the dashed straight line issuing from the

point IÿM shows that in the region I the extrapolation of

the conductivity to T � 0 will give zero, and in the region M

it will give a finite value. According to Fig. 1, the alloy

NbxSi1ÿx has precisely such a phase diagram. In Section 4.4,

we shall return to NbxSi1ÿx type substances and shall see

that the diagram presented in Fig. 2a has, in turn, several

variants.

In the diagram shown in Fig. 2b, for any state to the right

of the dashed line a temperature decrease will lead to

emergence of superconductivity; therefore, to determine

whether the state is metallic or insulating, it is necessary to

measure the temperature dependence of resistivity in the

region that lies above the superconducting transition, with the

extrapolation of this dependence to T � 0. Such a transition

appears to be realized, for example, in ultrathin films of

amorphous Bi (see Fig. 18 in Section 4.1).

Finally, one more variant of the phase diagram, which

was for the first time proposed inRef. [8], is given in Fig. 2c. In

this diagram, the metal±insulator transition is completely

absent, since it should have to be located in the super-

conducting region. From this transition, only part of the

critical region is retained, which lies higher than the region of

superconductivity. This phase diagram is observed for TiN

(see Fig. 31 in Section 4.2).
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Figure 1. (a) Temperature dependences of resistivity r�T � of films of the

amorphous NbxSi1ÿx alloy at various concentrations of Nb [6].

(b) Dependences of the superconducting transition temperature Tc and

of the extrapolated value of the low-temperature conductivity s0 �
lim s�T ! 0� on the Nb concentration in films of the amorphous

NbxSi1ÿx alloy [6].
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Figure 2. Variants of the phase diagram with transitions between three

different states of the electron system: insulator (I), normal metal (M), and

superconductor (S). The quantum transitions are shown by dots lying on

the abscissa; the thermodynamic transitions, by solid curves; the cross-

overs and the boundaries of the critical region, by dashed lines, and the

virtual boundaries in figure (c), by dotted lines.
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1.3 Role of disorder. Granular superconductors

From the before-studied theory of the normal metal±

insulator quantum transition, it is known that this transition

can be initiated by two fundamentally different reasons:

growing disorder in the system of noninteracting electrons

(Anderson transition) or decreasing electron concentration in

the presence of a Coulomb electron±electron interaction in an

ideal system without a chaotic potential (Mott transition). In

this review (in any case, in its experimental part), we shall

assume that the superconductor±insulator transition occurs

in a strongly disordered Anderson type electron system. Even

when the control parameter x is the electron concentration, it

is assumed that the latter changes against the background of a

sufficiently strong random potential.

In order to answer the question concerning in which case

andwhich of the diagrams shown in Fig. 2 can be realized, it is

necessary to study the influence of disorder on the super-

conductivity. The first result in this area was obtained by

P W Anderson as early as 1959. In Ref. [9] he showed that if

the electron±electron Coulomb interaction is ignored, then

the introduction of nonmagnetic impurities does not lead to a

substantial change in the superconducting transition tem-

perature. The allowance for Coulomb interactions changes

the situation. As was shown by Finkel'shtein [10, 11] for the

example of two-dimensional systems, the Coulomb interac-

tion does suppress superconductivity in so-called dirty

systems, the mechanism of suppression being caused by the

combination of electron±electron interaction with impurity

scattering (see Section 2.1).

From the variety of random potentials that describe

disorder, let us single out two limiting cases: systems with a

potential inhomogeneity on an atomic scale, which are

subsequently considered as uniform, and systems with

inhomogeneities that substantially exceed atomic dimen-

sions. We shall call the latter systems granular, assuming for

the sake of certainty that they consist of granules of a

superconductive material with a characteristic dimension b,

which are separated by interlayers of a normal metal or an

insulator. A control parameter in such a granular material

can be, for example, the resistance of the interlayers.

There exist both theoretical and experimental criteria

which make it possible to relate a real electronic system to

one of these limiting cases. The theoretical criterion is

determined by the possibility of the generation of a super-

conducting state in one granule taken separately, irrespective

of its environment. For this event to occur, it is necessary that

the average spacing between the energy levels of electrons

inside the granules be less than the superconducting gap D:

de � �g0b3�ÿ1 < D ; �3�

where g0 is the density of states at the Fermi level in the bulk

of the massive metal, and b3 is the average volume of one

granule. The relationship de � D specifies the minimum size

of an isolated granule:

bSC � �g0D�ÿ1=3 ; �4�

for which the concept of the superconducting state makes

sense. When the inequality b < bSC is fulfilled, no granules

that could be superconducting by themselves exist. Such a

material, from the viewpoint of the superconducting transi-

tion, is uniformly disordered; in it, the transition tempera-

ture Tc is determined by the average characteristics of the

material and can smoothly change together with these

characteristics.

The experimental criterion which makes it possible to

distinguish between the superconductor±insulator transitions

in granular and quasihomogeneously disordered systems is

illustrated in Fig. 3. Here, the control parameter is the

thickness b of a lead film deposited on the surface of an SiO

substrate. The dependences shown in Fig. 3a were obtained

for lead films deposited on an intermediate sublayer of

amorphous Ge. The temperature of the superconducting

transition decreases with decreasing b in this series of films;

at a zero temperature, an increase in the thickness b leads to a

direct transition from the insulating to the superconducting

state. No macrostructure was revealed in these films by the

structural analysis performed simultaneously. The intermedi-

ate thin layer of amorphous Ge appears to prevent the

coalescence of atoms into granules in the deposited material

(see also Section 4.1). In any case, if the granules exist, their

size should be lower than the critical size (4).

The dependences shown in Fig. 3b were obtained for lead

films deposited directly onto a mirror surface of SiO cooled

to liquid-helium temperature. With this method of deposi-

tion, the lead atoms are collected into droplet-like granules,

which reach a diameter of 200 A
�
and a height of 50 ± 80 A

�

before they start coalescing. A film in which no coalescence

has yet occurred is called an island film: it represents a

system of metallic islands between which the conductivity is

achieved via tunneling. In all the films, the superconducting

transition begins, if it occurs at all, at one and the same

temperature Tc � 7 K. This means that the granule sizes are

sufficiently large, so that in them de < D, the superconduct-

ing transition in the granules occurs at the same temperature

as that in the massive metal, and the behavior of the entire

material on the whole depends on the interaction between

the granules.

As can be seen from Fig. 3, the transition in the granular

system possesses one more specific feature. Near the transi-
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Figure 3. Variations of the temperature dependences of resistance of Pb

films upon increasing their thickness (from top to bottom) [12].

(a) Superconductor±insulator transition in finely dispersed quasihomoge-

neous films deposited on an SiO surface over an intermediate thin layer of

amorphous Ge. In the superconducting region, the R�T � curves demon-

strate a correlation between the normal resistance and the superconduct-

ing transition temperature. (b) Superconductor±insulator transition in

granular films deposited directly onto the SiO surface. In such amethod of

deposition, the lead atoms coalesce into granules. The temperature of the

superconducting transition in the film becomes constant at a film thickness

exceeding the critical one.
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tion, on the superconductor side, the temperature dependence

of the resistance R�T � for T < Tc follows a very strange

formula [13]

R � R0 exp
T

T0

;

which can be called the `inverse-Arrhenius law'. In quasi-

homogeneous systems, to which this survey is devoted, such

dependences have not been observed.

In an isolated particle with the size of b < bSC, no

superconducting state exists, in the sense that the coherent

state of all electrons with a common wave function is absent.

However, a superconducting interaction through phonons is

retained, which causes effective attraction between the

electrons. The superconducting interaction gives rise to the

parity effect: the addition of an odd electron to the electron

system leads to a greater increase in the total electron energy

than the addition of a subsequent even electron. The

difference is equal to 2Dp, where Dp is the binding energy per

electron:

Dp � E2l�1 ÿ
1

2
�E2l � E2l�2� : �5�

The parity effect was examined experimentally when studying

the Coulomb blockade in superconducting grains [14, 15]. A

theoretical treatment [16] showed that, because of strong

quantum fluctuations of the order parameter, the binding

energy in small grains,

b5 bSC ; i:e:; de4D ; �6�

not only is retained, but, in general, becomes greater:

Dp � de

2 ln �de=D� > D : �7�

The magnitude of Dp is much less than the level spacing de

caused by dimensional quantization, but it is by nomeans less

than the superconducting gap D.

1.4 Fermionic and bosonic scenarios for the transition

There are two scenarios for a superconductor±insulator

transition. The foundation of the theory of the fermionic

scenario of the superconductor±insulator transition was laid

by the work of Finkel'shtein [10, 11]. Its essence lies in the

fact that, due to various reasons, the efficiency of the

superconducting interaction in a dirty system at a zero

temperature gradually drops to zero, and Anderson locali-

zation occurs in the arising normal fermionic system.

However, this scenario is by no means unique. As a result

of the rapid development of theoretical and experimental

studies in this field, it was revealed that there is one more

scenario, the bosonic scenario, for this transition. The

difference between the scenarios can conveniently be

formulated using the complex order parameter (1). The

phase j of the order parameter inside the massive super-

conductor is constant in the absence of current; this reflects

the existence of quantum correlations between the electron

pairs. In the presence of fluctuations, the superconducting

state of a three-dimensional system is retained until the

correlator G�r�,

G�r� �



F�r�F�0�
�

! G0 6� 0 as jrj ! 1 ; �8�

tends to a finite valuewith increasing jrj. The angular brackets
in formula (8) indicate averaging over the quantum state of

the system, and F�r� is the complex order parameter.

The consideration given in Refs [10, 11] is based on the

BCS theory. In the BCS and related theories, the energy gap

D, i.e., the modulus of the order parameter jFj, becomes zero

at the phase-transition point and the phase automatically

becomes meaningless. However, the superconducting state

can be destroyed by another method as well: the correlator (8)

can be made vanishing at a nonzero modulus of the order

parameter by the action of phase fluctuations of the order

parameter. This is exactly the bosonic scenario for the

transition. The meaning of this name lies in the fact that the

finite modulus of the order parameter at the transition

indicates the presence of coupled electron pairs, i.e., the

concentration of bosons during transition does not become

zero. The realization of the bosonic scenario is favored by the

fact that the superconductors with a low electron density are

characterized by a weaker shielding and a comparatively

small `rigidity' relative to phase changes, thus raising the

role of the phase fluctuations [17, 18].

The bosonic scenario was mainly developed for the case

of uniform disordered superconductors [8]. However, it

should be noted that in granular superconductors this

scenario is realized quite naturally in the framework of the

BCS theory. Indeed, if we move from one curve to another in

Fig. 3b from bottom to top, assuming for simplicity that the

difference between the states arises as a result of a gradual

increase in the resistance of the interlayers between the

unaltered granules, we shall see that even when the super-

conductivity of the macroscopic sample disappears (upper

curves in Fig. 3b), the granules remain superconducting.

However, the Cooper pairs in them prove to be `localized,'

each in its own granule.

The word localized is put in quotation marks, since if the

size b of the granules is macroscopic, then the appearing

limitation on the displacement of Cooper pairs will not agree

with the conventional understanding of the term `localiza-

tion'. Let, however, b9 bSC. Relationship (4) determines the

applicability boundary of the concept of granular super-

conductors: below this boundary they transform into so-

called dirty superconductors with characteristic atomic

lengths describing disorder. The boundary of a granule with

parameters (6) can already be considered simply as a defect,

and the electrons located inside it, as being localized on a

length b < bSC, irrespective of the structure of the wave

function inside this region. According to the parity effect

[14±16], pair correlations with a finite binding energy are

retained between the electrons localized on such a defect.

Thus, granular superconductors prove to be a natural

model object for studying the bosonic scenario for super-

conductor±insulator transitions. It is interesting that some

manifestations of this scenario were discovered experimen-

tally in granular two-dimensional systems at a time when the

problem of superconductor±insulator transitions had not yet

appeared [19, 20].

The tunneling current between two superconducting

granules, in fact, consists of two components: the super-

conducting Josephson current of Cooper pairs, and a single-

particle dissipative current. The Josephson current in the

junction can for various reasons be suppressed; in particu-

lar, it is suppressed by fluctuations in the case of too high a

normal resistance Rn of the junction [21]. Then, even through

contact with the superconducting banks of the junction, only

January 2010 Superconductorëinsulator quantum phase transition 5



a normal single-particle current jn � V=Rn can flow, and then

only if a potential difference V is applied across the junction.

This gives rise to a paradoxical behavior of the granular

superconductor with decreasing temperature. The concentra-

tion of single-particle excitations in superconducting granules

diminishes exponentially with a decrease in the temperature:

n / exp �ÿD=T � and, correspondingly, the resistance of all

junctions grows exponentially: R / exp �D=T �. As a result,

the resistivity r of the entire material increases rather than

decreases with temperature for T < Tc. This exponential

increase in the resistivity,

ln
r

r0
/ Tÿ1 ;

starting at a temperature equal to the temperature of the

superconducting transition Tc, was experimentally examined

in island films [19, 20] (Fig. 4a) and, later, in granular films

with superconducting granules (Fig. 4b [22]) and in a three-

dimensional (3D) material [23].

If we destroy (by an external magnetic field) the super-

conducting gap in the granules, making them normal, then

the number of quasiparticles at the Fermi level on the

superconducting sides of the junction will grow and the

junction resistance will return to the normal resistance Rn.

In other words, a system of metallic granules in an insulating

matrix over a certain interval of parameters can have a finite

resistivity r at T � 0 if the granules are normal, but becomes

an insulator, with r � 1, if the granules are superconducting.

A specific feature and, at the same time, an attribute of such a

system is negative magnetoresistance, which becomes stron-

ger as the temperature lowers:

r�B;T �
r�0;T � � exp

�

ÿD

T

�

; B > Bc ; �9�

where D � Tc (it is everywhere assumed that the temperature

T is measured in energy units), Tc is the critical temperature,

and Bc is the magnetic field induction that destroys the

superconductivity of separate granules. In the experiment

whose results are presented in Fig. 5, a magnetic field of 10 T

decreases the resistance by more than two orders of

magnitude at a temperature of 0.5 K.

An increase in resistance in a zero field and negative

magnetoresistance are possible, even at temperatures that

exceed the temperature of the superconducting transition,

due to superconducting fluctuations [25, 26]. As a result of the

absence of a Josephson coupling between the granules, the

virtual Cooper pairs that arise due to fluctuations make no

contribution to electron transport. However, the fluctuation-

induced decrease in the density of single-particle states in the

granules strongly increases intergranular resistance; this

resistance decreases if the fluctuations are suppressed by a

strong magnetic field. This is illustrated in the inset to Fig. 5

[curveR�B�] obtained in a sample of amorphous Ge, in which

the Josephson couplings between the Al granules ensure a

superconducting state at a low temperature T � 2 K which

only slightly exceeds Tc; the negative magnetoresistance

caused by the suppression of superconducting fluctuations is

observed in magnetic fields of up to 16 T.

Thus, experiments on granular superconductors revealed

a new experimental area of searching for the realization of the

bosonic scenario for the superconductor±insulator transition.

If in an insulator that is formed after the breakdown of

superconductivity there exist electron pairs localized on

defects, then in a strong magnetic field we can expect the

appearance of a negative magnetoresistance caused by the

destruction of these pairs.

1.5 Berezinskii±Kosterlitz±Thouless transition

Adistinguishing feature of two-dimensional superconducting

systems is the possible existence of a gas of fluctuations in the

form of spontaneously generated magnetic vortices at

temperatures smaller than the temperature Tc0 of the bulk

superconducting transition. A magnetic flux quantum

F0 �
2p�hc

2e
�10�

passes through each vortex. The factor 2 in the denominator

of expression (10) is preserved in order to emphasize that

the quantization is determined by charge carriers with a

charge 2e.

The vortices are generated by pairs with the oppositely

directed fields on the axis (the vortex±antivortex pairs) and in

a finite time they annihilate as a result of collisions. In a zero

magnetic field, the concentrations of vortices with opposite
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Figure 4. (a) Temperature dependence of the resistance of an In island film

exhibiting a significant increase in the resistance at temperatures less than

the temperature of the superconducting transition in indium granules.

(b) The same for a granular film consisting of In granules separated by

insulating oxide interlayers [22].
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Figure 5. (a) Restoration of the `normal' conductance of a sample with

granular Al in the matrix of amorphous Ge [24]. The sample represents a

film about 2000 A
�
thick with granules about 120 A

�
in size. In a zero

magnetic field, the granules become superconducting at a temperature of

about 2 K. The inset displays the R�B� curve for a sample with the same

geometrical characteristics but exhibiting tenfold less normal resistance

and a superconducting transition. The curve was recorded at a tempera-

ture slightly exceeding Tc [24].
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signs are equal, N� � Nÿ; they are determined by the

dynamic equilibrium between the processes of spontaneous

generation and annihilation. A decrease in temperature to

Tc � TBKT < Tc0 leads to a Berezinskii±Kosterlitz±Thouless

(BKT) transition [27, 28]. The generation of vortex pairs

ceases, and the concentration of vortices decreases sharply

and becomes exponentially small.

Thus, in a certain temperature range

Tc < T < Tc0 �11�

in two-dimensional superconductors, the vortices coexist with

Cooper pairs. The modulus of the order parameter, which is

the binding energyD of aCooper pair in the space between the

vortices, decreases to zero on the axis of the vortex; there is no

superconductivity near the axis of the vortex, and the

electrons are normal. The phase of the order parameter in

the space between the vortices fluctuates as a result of their

motion. Correspondingly, correlator (8) on the interval (11)

falls off exponentially, and at temperatures below the

temperature of the BKT transition �T < TBKT� it diminishes

according to a power law:

G�r� / rÿZ ; 0 < Z < 1 ; �12�

i.e., at large distances it tends to zero rather than to a finite

value. At large distances, a coherent state with the finite

correlator (8) is established at T � 0.

The vortices being considered as quasiparticles are

bosons. Therefore, it can be said that the presence of free

vortices-bosons leads to energy dissipation when current

flows, in spite of the presence of 2e-bosons (Cooper pairs).

There is a purely experimental problem in determining the

temperatures Tc0 and Tc from the curve of the resistive

transition. The resistance of the system in the temperature

range Tc < T < Tc0 was calculated in Ref. [29], and a

thorough experimental examination was carried out in

Ref. [30] using a superconducting transition in InÿO

amorphous films. It is seen from Fig. 6, in which the result

of such an analysis is given for one of the films, that the

temperatures Tc0 and Tc differ strongly: Tc0 lies in the high-

temperature part of the R�T � curve, so that R�Tc0� � 0:5RN,

while R�Tc� is less than the resistance RN of the film in the

normal state by several orders of magnitude. The relationship

between the resistances R�Tc0�, R�Tc�, and RN changes from

film to film, but even more they differ because of the fact that

in various laboratories the Tc0 and Tc temperatures are

usually determined differently. Therefore, when comparing

the results of experiments, it is sometimes more convenient to

use the ratio R�T �=RN for determining the characteristic

points in the resistance curve.

2. Microscopic approaches to the problem
of the superconductor±insulator transition

Among different theoretical models used for the description

of superconductor±insulator transitions, there is no one

unconditionally leading model, such as the BCS model

employed for the superconductivity itself. Approaching the

problem from different sides, the existing models emphasize

its different aspects and together create an integral picture,

demonstrating at the same time the existence of different

variants of the transition.

2.1 Fermionic mechanism

for the superconductivity suppression

As already mentioned in Section 1.4, the fermionic scenario

requires the vanishing of the modulus of the order parameter

with increasing the number of impurities in the system. For

the realization of the fermionic scenario, it is necessary to go

beyond the limits of the validity of the Anderson theorem [9],

namely, it is necessary to take into account the Coulomb

interaction between the electrons, together with the disorder.

The first idea in this area, which was formulated in Ref. [31],

was based on the use of formula (3). First, we shall assume

that the system is granular. With increasing impurity

concentration in a granule, the density of states at the Fermi

level is suppressed by the Coulomb interelectron interaction

due to the Aronov±Altshuler effect [32, 33] and, correspond-

ingly, the spacing (3) between the energy levels grows. In this

case, the critical size (4) of a granule increases, while at a fixed

size bSC the gap D and, therefore, the temperature Tc of the

superconducting transition decrease. It can be expected that

the temperature Tc will become zero at a certain critical

concentration of impurities. The same reasoning is also

applicable to a uniform system if the granular size is replaced

by the length of electron localization in the normal state [34±

36].

However, it turned out that the Coulomb interaction

suppresses the modulus of the order parameter in a com-

pletely different way, which is not related to the granular or

quasigranular character of the system. In the dirty limit, the

Coulomb interelectron interaction itself is renormalized [10],

and the processes of repulsion of electrons with opposite

momenta and spins, which lead to a low transfer of the

momentum, become stronger. The result of Ref. [10] resem-

bles the suppression of the density of states g0 at the Fermi

level in a normal dirty metal by the Coulomb interaction [32,

33], with the difference that in the superconductor it is the

temperatureTc that decreases with increasing disorder, rather

than the density of states g0 at the Fermi level.

The effect of Tc reduction as a result of a renormalization

of the Coulomb interaction was known earlier [37±39] in the

form of a weak correction to the superconducting transition

temperature. For example, in the two-dimensional case we

have

Tc � Tc0

�

1ÿ 1

12p2y
ln3

�

�h

Tct

��

; �13�

10ÿ7
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10ÿ3
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101
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Tc0 = 2.62 K

Tc � 1.78 K

2 3 4 T, K
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Figure 6. Temperature Tc0 at which an equilibrium concentration of

Cooper pairs appears, and the temperature Tc of the BKT transition in

an InÿO film 100 A
�
thick [30]. R& is the resistance per square (resistivity

of a two-dimensional system).
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where y is the dimensionless conductance:

y � �h

e 2R&

; �14�

R& is the resistance per square (resistivity of a two-

dimensional system, or resistivity per square), and t is the

relaxation time of the momentum in the normal state.

Formally, expression (13) already reveals the possibility of

vanishing Tc with increasing disorder. However, the extra-

polation over such a large distance cannot serve as a serious

argument.

The expression for the critical temperature Tc of a two-

dimensional system that is valid at low temperatures,

Tc5Tc0, has been obtained [40] using the renormalization-

group analysis (see also papers [8, 11]):

Tc

Tc0

� exp

�

ÿ 1

g

��

gÿ r=4� �r=2�1=2

gÿ r=4ÿ �r=2�1=2
�1=

����

2r
p

;

�15�

g �
�

ln
Tc0t

�h

�ÿ1

< 0 ; r � e 2

2p2�h
R& � 1

2p2y
:

Figure 7 displays experimental data for quasiuniform

films of an amorphous Mo79Ge21 alloy with various thick-

nesses and, consequently, with different resistances R& [41,

42]. The solid curve was constructed inRef. [40] using formula

(15) on the assumption that ln ��h=Tc0t� � 8:2.
Thus, the theory correctly describes in the two-dimen-

sional case the decrease in the temperature of the super-

conducting transition under the disorder effect. For the three-

dimensional case, there are no exact answers, but we can

expect the same qualitative picture. Depending on which of

the situations, i.e., Anderson localization in the normal state

or vanishing of the superconducting transition temperature,

occurs earlier, one of the three phase diagrams presented in

Fig. 2 is realized.

The theory developed in Ref. [40] corresponds to the use

of a mean field concept, i.e., an order parameter that is

independent of the coordinates. In recent years, it has been

revealed, however, that the possible inhomogeneity of the

order parameter both with and without allowance for the

Coulomb interaction effect can by itself lead to the loss of

macroscopic coherence. In the vicinity of the point of the

quantum phase transition, where the conductance (14) is on

the order of unity, mesoscopic effects caused by a nonlocal

interference of electron waves scattered by impurities can

become essential [43]. As a result, the originally uniform

system can become nonuniform upon transition. Super-

conducting droplets can appear in it.

This possibility is realized in the two-dimensional case if

the Coulomb interelectron interaction is taken into account,

i.e., when using the model [40] beyond the framework of the

mean-field approximation [44]. The mesoscopic effects in a

wide temperature range of T > Tc generate a nonuniform

state of the system with superconducting-phase droplets

embedded into the normal regions. According to Ref. [44],

the temperature interval dTc in which the superconducting

droplets can appear is specified by the relationship

dTc

Tc

' 0:4p2r 2

1ÿ r=rc
; �16�

where rc is the critical value of the dimensionless resistivity at

which Tc calculated according to formula (15) becomes zero.

As can be seen from formula (16), the width of the region of

the nonuniform state can be on the order of Tc.

2.2 Model of a granular superconductor

The first analytically solvable model with a phase transition

to the insulating state was constructed by Efetov [45] for a

granular superconductor with a superconducting gap D, a

granule size b, and the frequency tb of electron hopping

between adjacent granules. It was assumed that tb falls in

the range assigned by the following inequalities:

de5
�h

tb
5D �17�

where the energy �h=tb is less than the superconducting

gap, but more than the spacing between the energy levels

of the dimensional quantization in the granules. The left-

hand inequality means that in the absence of super-

conducting interaction the localization effects can be

neglected and the granular material can be considered as

a normal metal.

The granule size b is assumed to be smaller than the

coherence length x. The left-hand inequality (17) chosen as

the bound from below for the size b is more strict than the

above-considered condition (4). As a result, the following

interval was assumed for b:

�

�hg0

tb

�ÿ1=3

< b < x : �18�

The effective Hamiltonian describing the system is written

out as follows:

Heff �
X

i j

1

2
Bi j r̂i r̂j �

X

i j

Ji j
�

1ÿ cos �ji ÿ jj�
�

;
�19�

r̂i � ÿi
q

qji

:

Here, r̂i are the operators of the number of Cooper pairs in

the ith granule (with the integers as the eigenvalues), and the

quantities Bi j at low temperatures are proportional to the

elements of the matrix that is inverse to the capacitance

matrix. On the order of magnitude, for example, for granules

0.50

2

4

6

1.0 1.5 2.0

R&, kO

Mo79Ge21

Tc, K

Figure 7. Suppression of superconductivity by a disorder in amorphous

Mo79Ge21 films [40]. Circles correspond to experimental data taken from

Refs [41, 42], and the solid curve was constructed from formula (15).
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with thin interlayers of thickness ~b, we have

Bi j �
e 2

b

~b

k0b
; �20�

where k0 is the dielectric constant of the insulating interlayer.

The first term under the summation sign in Hamiltonian (19)

describes the electrostatic energy arising upon the generation

of pairs on the granules. The second term contains the

Josephson energy Ji j, which is nonzero only for the nearest

neighbors and is expressed through the normal contact

resistance R n
i j as

Ji j �
p

4

�

�h=e 2

R n
i j

�

D�T � : �21�

It is assumed for simplicity that all the granules and the

insulating interlayers are identical and arranged regularly, so

that Bi j and Ji j depend only on the difference jiÿ j j.
The solution was obtained by the self-consistent field

method. To this end, the interaction in the Hamiltonian was

replaced by a mean effective field:

cos �ji ÿ jj� ! hcosjii cosjj : �22�

The phase-transition point is found from the condition of

phase coherence in different granules, i.e., from the condition

that hcosjii is nonzero in the equation of self-consistency of

the solution to the problem with Hamiltonian (19). In this

way, a critical value is obtained of the ratio between the

Josephson and Coulomb energies, at which a phase transition

at a zero temperature occurs. In the simplest case, one has

Jic �
�

X

j

Ji j

�

c

� 1

2
Bii�0� : �23�

For Ji > Jic, a macroscopic superconducting state is

realized in the granular superconductor. In order to under-

stand the properties of the incoherent phase in which

hcosjii � 0, it is necessary to solve the kinetic problem of

the response of a granular superconductor in the incoherent

state to a static electric field for

Ji5 Jic : �24�

The current between separate granules is equal to the sum of

normal and Josephson currents. Owing to the first of these

terms, the conductivity at the zero frequency proves to be

finite at a nonzero temperature and, to an accuracy of a

numerical coefficient, is expressed in the form

s�0� � Rÿ1 exp

�

ÿD

T

�

: �25�

The exponential activation dependence on the temperature

indicates that the system resides in the insulating state.

The case of a finite temperature is rather interesting. In

this case, for ~b5 b it is necessary to take into account the

contribution from the off-diagonal elements Bi j, but this

means the possibility of the appearance of charges in two

adjacent granules rather than in only one granule. The critical

value of the Josephson energy is additionally increased under

these conditions. However, with increasing temperature the

spaced charges will be screened by the normal excitations of

adjacent granules and the critical value of the Josephson

energy will decrease. Irrespective of this, an increase in

temperature leads to an increase in the spread of the phases

of separate granules. The resulting dependence of the super-

conducting transition temperature on the Josephson energy is

illustrated qualitatively in Fig. 8. This dependence indicates

that under specific conditions the granular superconductor

can pass into an insulating state upon a decrease in

temperature. This transition is called reentrant.

The theory of reentrant transitions was developed in

many studies (see, e.g., Refs [46±48]), mainly within the

framework of the ideas presented above. Experimentally,

the reentrant transitions are manifested in the fact that the

rapid decrease in resistance with decreasing temperature in

the process of the superconducting transition is changed by its

rapid growth. The reentrant transition is usually considered

to be a specific property of granular superconductors.

Frequently, the presence of such a transition was assumed to

indicate that the sample had a granular structure and served

as a criterion for the selection and classification of samples.

However, as we shall see in Section 2.5, a reentrant transition

in the presence of a magnetic field can occur even in the

absence of a granular structure.

The upper branch of the phase diagram in Fig. 8 is also

very informative. It shows that the temperature of the

superconducting transition can decrease when approaching

the critical value of the control parameter not only in a

uniformly disordered superconductor but also in a granular

superconductor with granules of a small size (18), if some

additional conditions are fulfilled [in particular, if inequalities

(17) are valid and the interlayers between the granules are

relatively narrow, ~b5 b].

Thus, Efetov [45] has constructed a strict microscopic

theory of the superconductor±insulator transition for a single

specific case of a granular superconductor for which inequal-

ities (17) and (18) are fulfilled. Some results of this theorywere

later obtained based on phenomenological considerations in

Ref. [49].

The model of the transition constructed in Ref. [45]

occupies an intermediate place between the fermionic and

bosonic scenarios. On the one hand, thismodel proceeds from

the BCS theory and deals exclusively with Cooper pairing. On

the other hand, because of the coordinate dependence of the

order-parameter modulus, which is due to the very formula-

tion of the problem (difference in the magnitude of D inside

and outside the granules), this model allows the existence of

regions with D 6� 0 for temperatures T > Tc.

Tc0

T

Tc�J�

JcJmin J�0�

I S

Figure 8. Phase diagram on the �J;T � plane, corresponding to the

possibility of the occurrence of a reentrant superconductor±insulator

transition with decreasing temperature [45].
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Note in conclusion that Efetov's model does not require

the presence of disorder in the granular system (if the very

existence of the granules is not considered as disorder) for the

implementation of the transition. There is no doubt that the

existence of disorder does not prevent the transition of a

superconductor to an insulating state, but neither is it a

driving force for such a transition: the latter could occur

even on a regular lattice of granules. In this respect, the

transition considered is more likely analogous to a Mott±

Hubbard metal±insulator transition than to an Anderson

transition.

2.3 Bose±Einstein condensation of a bosonic gas

As was already noted above, in some cases it is more

convenient to employ the model of Bose±Einstein condensa-

tion in a gas of bosons for describing the behavior of a

superconductor. Recall that according to the statistics of Bose

particles at a temperature lower than a certain critical value, a

macroscopic number of particles find themselves at the lower

quantum level and form the so-called Bose condensate. In the

general case, the lower quantum level is not separated by a

spectral gap from the excited states of the system. At a zero

temperature, all Bose particles prove to be in the ground state.

The assertion about the existence of a Bose condensate is

correct both for a gas of charged Bose particles [50], i.e.,

particles with interaction, and for a gas of noninteracting

Bose particles which are scattered by the short-range field of

impurities [51]. The presence of a Bose condensate by itself by

no means implies that the particles will demonstrate super-

fluidity (or ideal conductivity in the case of a gas of charged

particles). The problem of the dynamic low-frequency

response of the interacting gas of Bose particles in the field

of impurities was posed and solved by Gold [52, 53] for two

concrete cases: a Bose gas with a weak repulsion in the field of

neutral impurities, and a charged Bose gas in the field of

charged impurities.

The problem was set up as follows. The dependence of the

kinetic energy of bosons on the momentum is assumed to be

parabolic, e�k� � k 2=2m, and the Hamiltonian comprises

three terms:

H � H0 �HI �HD : �26�

The first term describes the kinetic energy of free bosons:

H0 �
X

k

e�k�a�
k ak ; �27�

where the operators a�
k and ak correspond, as usual, to the

creation and annihilation of a boson with a momentum k.

The second term describes the interaction between the

bosons:

HI �
1

2

X

q

r�q�Vqr
��q� ; �28�

where Vq is the Fourier component of the interaction

potential, and r�q� and r��q� are the operators of the

density fluctuations: r�q� � P

k a
�
kÿq=2ak�q=2 and r��q� �

P

k a
�
k�q=2 akÿq=2. The last term in sum (26) corresponds to

the interaction of bosons with impurities:

HD �
X

q

Uqr
��q� ; �29�

whereUq is the Fourier component of the scattering potential.

It is necessary to calculate the dynamic response of a

systemwith such aHamiltonian. Let us first examine aweakly

interacting gas of repulsive Bose particles having the radius of

interaction qÿ1
0 with the impurities:

Vq � V ;



jUqj2
�

� 6p2qÿ2
0 U 2y�q0 ÿ q� ;

�30�
y�x� � 1 ; x5 0 ;

y�x� � 0 ; x < 0 ;

where V and U are the constants. According to Ref. [54], the

gas of interacting particles in question possesses a gapless

spectrum of excitations, and the introduction of scatterers

with a small interaction radius does not lead to the critical

behavior of spectral characteristics. Nevertheless, the kinetic

characteristics of system (26)±(30) radically change, depend-

ing on the relationship between the scale of the interparticle

interaction and the scattering potential. For the formal

description of this relationship, a dimensionless parameter A

was introduced in Ref. [52]:

A � 3n 2
X

q




jUqj2
�ÿ

ĝ�q�
�2

; �31�

where n is the density of bosons, and ĝ�q� is the compressi-

bility of the interacting boson gas, which can be expressed

through Vq. An increase in disorder brings about an increase

in A.

It turned out that the transport properties of the system

radically change at A � 1. The last condition always

corresponds to an increase in the critical value of the effective

scattering potential with strengthening interaction between

the bosons, and/or with increasing the density of bosons; this

fact corresponds to the concept of the collective wave

function of the Bose condensate.

For the active response of the system at low frequencies,

the following result was obtained:

s 0�o� � �1ÿ A� d�o� ; A < 1 ;
0 ; A > 1 ;

�

�32�

where d�o� is the d function. For A < 1, the system possesses

an infinite active component of conductivity at o � 0 and is

superfluid. At A � 1, a quantum phase transition from the

superfluid state to the state of localized bosons (Bose glass)

occurs.

An analogous behavior is characteristic of the gas of

charged bosons in the field of charged impurities. The

corresponding harmonics of the potentials take on the form

Vq �
4pe 2

q 2
;




jUqj2
�

� N

�

4pe 2

q 2

�2

; �33�

where N is the number density of scattering centers. For the

system to be stable, it is necessary to assume the existence of a

uniform background which compensates for the charge of

bosons. In expression (31), not only the potential of

interaction with the scatterers but also the compressibility

ĝ�q� is changed. The ground state proves to be separated by a

gap from the excited states; however, the main result

described by expressions (31) and (32) remains unaltered.

Bose condensation means the existence of superconduc-

tivity with a London penetration depth l20 � mc 2=4pn (where
m and n are the effective mass and the density of bosons,
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respectively) and with the conductivity s�o� as o ! 0:

s�o� � i
c 2

4p

1

l2
1

o
; l � l0

1
������������

1ÿ A
p : �34�

The occurrence of a transition follows from the divergence of

l as A ! 1.

Now, the condition A � 1 connects the concentrations of

the scattering impurities �N� and the bosons �n�. At the

critical concentration of impurities Nc, namely

Nc / n 5=4 ; �35�

a transition from the state of an ideal conductor to an

insulating state occurs.

The Efetov model, which was discussed in Section 2.2,

allows a periodic arrangement of granules, so that the

transition in this model resembles the Mott transition. In the

Gold model, an important feature is precisely the chaotic

nature of the arrangement of impurities, and the transition

from the superconducting to the insulating state rather

resembles the Anderson transition to the Bose-glass phase.

However, in the case of a bosonic system it is impossible to

assume the complete absence of interaction, unlike the case of

the Anderson transition in the electron system. The need to

take into account the interaction between the bosons can be

explained as follows.

Let us assume that there is only one impurity and only one

localized state near it. In the absence of interaction, all the

bosons will be condensed into this localized state, i.e., we

obtain an insulator. It can be said that the superconducting

state of noninteracting bosons is unstable with respect to an

arbitrarily weak random potential and that the interaction

between bosons stabilizes superconductivity. Hence, relation-

ship (35) appears: a decrease in the boson concentration

weakens interaction and, therefore, the critical concentration

of impurities decreases, as well.

2.4 Bosons at lattice sites

Fisher et al. [55] suggested in their study a model which

partially inherits properties of the two previously considered

models [45, 52]. The authors of Ref. [55] investigated the

properties of a system of bosons arranged at sites in the

lattice, which possess weak repulsion and are characterized by

a finite probability of hopping between the sites and by a

chaotically changing binding energy at a site. This model is

especially interesting for us, since a general scaling scheme for

a superconductor±insulator transition was constructed on the

basis of ideas developed in Ref. [55].

The Hamiltonian of the system in question takes on the

following form

Ĥ � Ĥ0 � Ĥ1 ;

Ĥ0 � ÿ
X

i

�ÿJ0 � m� dm�n̂i �
1

2

X

i

Vn̂i�n̂i ÿ 1� ; �36�

Ĥ1 � ÿ 1

2

X

i j

Ji j�F̂�
i F̂j �H:c:� ;

where n̂i is the operator of the number of particles at site i; Ji j
is proportional to the frequency of hoppings between the sites

i and j; the sum
P

j Ji j � J0 is assumed to be identical for all

the sites; m is the common chemical potential; V is the

interaction energy of two bosons at one site, and H.c. denotes

the Hermitian conjugate. Randomness in the system is

introduced with the aid of variations dmi in the chemical

potential from site to site (an average of dmi over the system is

equal to zero). The field operators of the bosonic field, F̂�
i

and F̂j, in the Hamiltonian Ĥ1 can be expressed through the

operators of creation and annihilation of particles, a�
k and ak,

that were used in Hamiltonian (27):

F̂i � F̂�ri� �
X

k

ck�ri�ak ; F̂�
i �

X

k

c �
k �ri�a�

k ; �37�

where ck�r� is the wave function of a particle in the state with

a wave vector k. The field operators can be considered as the

operators of particle annihilation or creation at a given point

of space; their commutator is �F̂i; F̂
�
j � � di j, and F̂�

i F̂i � n̂i.

Let us first consider a system without disorder and

construct a phase diagram on the plane �J; m� (Fig. 9a). To
start, we take the case of Ji j � 0. Let the potential m be

determined by the external thermostat and let it be able to

change continuously. The number of bosons n at all the sites is

one and the same, since all the sites are equivalent, and is an

integer. The number n should be found by minimizing the

energy of bosons residing at a single site:

e�n� � ÿmn� 1

2
Vn�nÿ 1� : �38�

Since n is discrete, each value of n is realized on a certain

interval of m values, namely, nÿ 1 < m=V < n. At the

boundary of this interval, the values of the energy (38) for

two neighboring values of n become the same: at m � nV, we

have

e�n� � e�n� 1� � ÿV

2
n�n� 1� : �39�

The role of an elementary excitation in the system is

played by an extra or missing boson at one of the sites. The

energy required to add a boson to the system or remove it

0

1ÿ D=V

1� D=V

2ÿ D=V

2� D=V

1

2
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n � 2
(MI)2
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J=V
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BG

b
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1

2

3

n � 2

n � 3

n � 1

(MI)3

1

2
(MI)2

(MI)1

Jc=V J=V

m=V

SF

a

Figure 9. Phase diagrams at T � 0 for a system of bosons interacting at the

sites: (a) in the absence of disorder, and (b) in the presence of disorder.

�MI�n is a Mott insulator with n bosons at each site; SF is a superfluid

phase. Arrows indicate transitions from the state of the Mott insulator to

the superfluid phase: (arrow 1) transitions with a change in the density of

bosons; (arrow 2) transitions at the constant density of bosons. BG is a

Bose glass with a different number of bosons at different sites. Arrow 3

indicates the transition from the Bose insulator to the superfluid phase

(taken from Ref. [51]).
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from the system depends on the position of the chemical

potential m relative to the boundaries of the interval. If m is

fixed at a level

m

V
� nÿ 1

2
� a ; ÿ 1

2
< a <

1

2
;

then, to add a boson to the system or remove it from the

system, an energy on the order of

de� � �V

�

1

2
� a

�

�40�

is required

It was assumed above that the interaction with the

thermostat ensures the possibility of a smooth change in m

and that n, considered as an average number of bosons at a

site, can assume only discrete integer values. If, on the

contrary, we can smoothly vary the total number of bosons

in the system, then n changes continuously, and the chemical

potential takes only discrete values:

m � �n�V ; �41�

where �n� is the integer part of the number n, and the number

of bosons is equal to �n� at some sites, and to �n� � 1 at other

sites. According to formula (39), the energies e��n�� and

e��n� � 1� are equal at values of the chemical potential equal

to those defined by formula (41). In Section 5.2, we shall

consider the experimental realization of precisely such a case.

Now, let us return to the systemwith smoothly changing m

and integer n, and include weak hoppings J > 0 into the

examination, i.e., require that, during the determination of

the equilibrium state, the kinetic energy be taken into

account, as well. This will influence the state of the system

only if J proves to be larger than at least one of the energies

specified in estimate (40). In particular, at integer values of

m=V this will occur at arbitrarily small J, and the critical value

J � Jc will be maximum at half-integer m=V. Hence, the phase

plane �J; m� will be divided into two regions (Fig. 9a). To the

left of the solid line, in the interval of the values of the

chemical potential,

V�nÿ 1� < m < Vn ; �42�

the system resides in the state of an insulator with an identical

number n of bosons at all sites. Since there is no disorder

whatever in the system, this insulator is called the Mott

insulator (MI). Thus, to the left of the solid line we obtained

a set of Mott insulators (MI)n that differ in the number of

bosons n at the sites.

To the right of the phase boundary, it is possible to

introduce a boson into the system by supplying it only with

kinetic energy J, without assigning it to a specific site. Such

bosons will be delocalized. They can freely move around the

system, and at T � 0 they, through the Bose condensation,

provide superfluidity.

On the upper part of the boundary of an (MI)n region, for

m=V > n, the potential energy required for an additional

boson to appear at some site is compensated for by its kinetic

energy. Therefore, the additional boson can freely jump over

sites and go into the Bose condensate. For any point m=V < n

of the lower part of the phase boundary, the same reasoning is

valid for the hole (one boson missing from a site). After the

intersection of the boundary, the number of bosons ceases to

be fixed and an integer, and begins smoothly changing as m

varies. In contrast to these transitions caused by a change in

the density of bosons, at the central point of the boundary,

m=V � n, a transition at a constant density can occur, when

the kinetic energy of the bosons grows so that they obtain the

possibility of moving across the sites, overcoming intrasite

repulsion.

Now, let us introduce disorder into the system of bosons,

suggesting that dmi are distributed uniformly inside the

interval �ÿD;D�, with D < V=2. Let us again first exclude

the hoppings between the sites, assuming J � 0. Then, we are

obliged tominimize the energy for each of the sites separately:

e�ni� � ÿ�m� dmi�ni �
1

2
Vni�ni ÿ 1� : �43�

If we `smear' the quantity m in inequality (42) over an interval

�D, then, to retain condition (42), we should correspondingly

shift the boundaries of the interval:

V�nÿ 1� � D < mi � m� dmi < Vnÿ D : �44�

As a result, we obtain the diagram presented in Fig. 9b: the

ordinate axis is divided into intervals centered at half-integral

values of m=V, inside which, as before, an equal number of

bosons is located at each of the sites. Inside these intervals, the

Mott insulator is retained. On the remaining part of the

ordinate axis, disorder prevails and the number of bosons at

the sites proves to be different. Here, we are dealing with an

insulator of another typeÐa Bose glass.

The introduction of a finite probability of a boson

hopping between the sites, J 6� 0, leads to the emergence of a

Bose-glass state from the ordinate axis into the plane, so that

the transition to the superfluid state occurs from the

disordered insulator (arrow 3 in Fig. 9b). Moreover, in the

case of a strong disorder, D > V=2, the Mott-insulator

regions disappear at all.

The above qualitative picture of phase transitions in the

system of bosons on a lattice of sites can naturally be extended

to insulator±superconductor transitions if we assume the

bosons to be charged. The transitions to the superconducting

state can occur both upon a change in the concentration n

with the chemical potential as the control parameter,

dx � mÿ mc, and upon an increase in the hopping frequency,

dx � Jÿ Jc. In the above-considered model, the transitions

can occur both from the MI state and from the BG state.

However, since we are discussing the superconductivity in

Fermi systems, the existence of the Bose-glass state, i.e., of

localized pairs, should first be proved.

2.5 Superconducting fluctuations

in a strong magnetic field in the framework

of the Bardeen±Cooper±Schrieffer model

In the BCS model, Cooper pairs appear only via the

fluctuation mechanism at temperatures exceeding Tc or, for

T < Tc, in the magnetic field with B > Bc2�T �. Nevertheless,

their effect on conductivity is considerable. We here are first

interested in the question of whether there is an anomalous

component of this influence, i.e., is it possible to observe, in a

certain domain of parameters, an increase in resistance under

the effect of superconducting fluctuations, as occurs in

granular superconductors [25, 26, 45]?

In the plane �T;B�, the region of existence of fluctuations

is that where B > Bc2�T �, including

T > Tc�B � 0� � Tc0 at B � 0 : �45�
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The fluctuations in a zero magnetic field, i.e., in region (45),

were studied sufficiently long ago [56±58]; however, at low

temperatures,

T5Tc0 ; B > Bc0 ; �46�
such studies were possible to conduct only comparatively

recently [59], and only for two-dimensional systems (see also

monograph [60]). A positive answer to the question that is of

interest for us can be found in the results of Ref. [59] in the

dirty limit Tc0t5 1 (where t is the mean free time) for two-

dimensional superconductors at low temperatures in fields

near Bc2�0� in the region

t � T

Tc0

5 1 ; b�T � � Bÿ Bc2�T �
Bc2�0�

5 1 : �47�

Three forms of quantum corrections exist for conductiv-

ity, which are caused by superconducting fluctuations (they

are also called corrections in the Cooper channel). These are

the Aslamazov±Larkin correction caused by the contribution

to the conductivity from fluctuation-induced pairs; theMaki±

Thompson correction connected with the coherent scattering

of paired electrons by impurities, and the correction caused

by a decrease in the density of states of normal electrons at the

Fermi level as a result of the appearance of Cooper pairs [60].

In region (47), the contributions from all these corrections are

of the same order. The resulting correction ds to the

conductivity calculated in the first (single-loop) approxima-

tion in this region takes on the form

ds � 2e 2

3p2�h

�

ÿ ln
r

b
ÿ 3

2r
� c�r� � 4

ÿ

rc 0�r� ÿ 1
�

�

; �48�

where c�x� is the logarithmic derivative of the G function,

r � �1=2g 0��b=t�, and g 0 � exp g � 1:781 is expressed through
the Euler constant g.

Formula (48) is illustrated in Fig. 10. The most important

thing, from the viewpoint of the problem that is of interest for

us, is that the corrections to the conductivity arising as a result

of superconducting fluctuations can be not only positive but

also negative. In the low-temperature limit of t5 b in fields

B > Bc2�0�, formula (48) acquires the form

ds � 2e 2

3p2�h
ln b : �49�

The correction to the conductivity is negative and becomes

quite large as b ! 0 (curve t � 0 in Fig. 10a).

The curves corresponding to very small positive b in

Fig. 10b describe a reentrant transition, in spite of the absence

of the granular structure in the superconductor (cf. Fig. 8).

These curves are first held up against the curve b � 0, increase

alongwith it, and then return to the level of ds � 0, so that the

resistance first decreases and then returns to the level

corresponding to the resistance in the normal state.

The calculation of fluctuation corrections has been done

in the dirty limit of the BCS theory. Although the dirty limit

means the presence of disorder, so that the mean free path is

assumed to be less than the coherence length, both in the BCS

theory and in Ref. [59] a normal metal±superconductor

transition is considered. The curve Bc2�T � in the phase plane

�T;B�, used in paper [59] (presented in Fig. 11), implies just

such a transition. The curve t � 0 inFig. 10a demonstrates the

behavior of the fluctuation correction upon a decrease in the

magnetic field strength, i.e., upon motion downward along

the vertical arrow on the phase plane in Fig. 11. It turned out

that the superconducting fluctuations in this region lead to an

increase in the resistance. Strictly speaking, the results of

calculations [59] are valid only in the region where Ds5 s.

However, based on the results of analogous calculations in

t � 0:2

t � 0

0:1

0

0

�h

e2
ds

0.05 0.10 0.15 0.20

b�0�

0.4
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ÿ0.2
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a

0

0
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e2
ds
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t
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Figure 10. Fluctuation correction (48) to the conductivity of a two-dimensional dirty superconductor as a function of (a) magnetic field at four different

temperatures, and (b) temperature at five different strengths of the magnetic field [59]. Thick curves are the separatrices of both families of the curves.

M

b > 0

b � 0

t � 0

Bc0�0�

B

TTc0

b < 0

S

Figure 11. Phase plane �T;B� for a superconductor±dirty normal metal

transition. The region of increasing resistance due to superconductor

fluctuations is hatched (according to the results of calculations [59]).

Arrows show different trajectories in the phase plane corresponding to

different curves in Fig. 10.
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the theory of normal metals, the weak localization is assumed

to precede the strong localization [61]. If we, analogously to

the above case, extend the tendency of an increase in

resistance onto the region of Ds � s, we shall see that now

the transition to the superconducting state upon a decrease in

the field strength is preceded by the transformation of the

normal metal into an insulator (or, at least, into a high-

resistance state). In Fig. 11, the region in which this

transformation occurs is hatched. As can be seen from the

curves b > 0 in Fig. 10b, this region is very narrow.

Notice that the conductivity in the vicinity of the critical

point �b � 0, t � 0� depends on the way we approach this

point. According to the curve b � 0 in Fig. 10b, the

conductivity s tends to infinity as t tends to zero. This

means that along this path in the phase plane, which is

arbitrarily indicated in Fig. 11 by the middle horizontal

arrow, the system approaches a superconducting state.

As we shall see when examining experiments on films of

different materials in Sections 4.1 and 4.2, an important

factor, which is established quite clearly, is the character of

the slope of the separatrix RBc
�T � of the family of curves

RB�T � in the limit T ! 0 (in experiment, it is usually the

resistivity that is measured rather than the conductivity). In

the calculation performed in paper [59], such a separatrix is

the curve b � 0 in Fig. 10b:

s
ÿ

T; b�0� � 0
�

� s
ÿ

T;B � Bc2�0�
�

! 1 as T ! 0 : �50�

In the region where the results of calculation [59] are valid, the

derivative q�ds�=qt of this curve grows in absolute value with

decreasing temperature.

The intersection of the curves in Fig. 10b at low

temperatures indicates the presence of a negative magne-

toresistance. It turns out that the increase in resistance as a

result of superconducting fluctuations and the presence of a

negative magnetoresistance are characteristic not only of

granular superconductors (see Fig. 5) but also of dirty

quasi-homogeneous superconductors, and inequality (6) is

not a fundamental limitation for the occurrence of these

effects.

2.6 Fermions at lattice sites. Numerical models

Within the framework of the fermionic model, the role of the

superconducting interaction in the presence of disorder was

also studied by numerical methods. In Refs [62, 63], the

authors investigated the behavior of a system of N fermions

with spin s � �1=2 on a planar lattice with a model

Hamiltonian

H � ÿt
X

hiji;s
c
y
iscjs �

X

i; s

�Wi ÿ m�nis �U
X

i

ni"ni# ; �51�

where the probability t of an electron hopping to a nearest

adjacent site is assumed as the natural scale of all energies; c
y
is

and cis are the operators of creation and annihilation of a

fermion, respectively; the operator nis � c
y
iscis corresponds to

the occupation numbers of states, and the representation of

the subscripts i and j in the vector form implies that the

summation is extended over the lattice. The energy of

electrons at the sites, ei � Wi ÿ m, takes on random values

on the interval �ÿW=2;W=2�, where m is the chemical

potential, and the Hubbard energy is assumed to be

negative, U < 0, which should reflect the presence of super-

conducting interaction.

The basic calculations were conducted on a lattice L2 �
24�24. The total number of electrons hniL2 with each spin

direction was varied on the interval 0:24 hni4 0:875.
Naturally, the number of electrons at a concrete site

differs from hni because of the presence of the random

potential Wi. It turned out that with increasing disorder

(increase inW ) the amplitude of the local order parameter,

D�r� / hci"ci#i ;

also suffered strong fluctuations and, at sufficiently large W,

it was found that D � 0 on a significant part of the lattice; i.e.,

the superconductivity disappeared at all. Just as with the

allowance for the Coulomb interaction [44], the nominally

spatially uniform but strongly disordered system becomes

similar to a granular superconductor. The appearance of a

spatial modulation of the order parameter is accompanied by

increasing phase fluctuations, and all these factors taken in

totality lead to the transition from a superconductor to an

insulator. Nevertheless, the single-particle gap in the density

of states is still long retained. Its evolution at the initial stage

of the introduction of disorder is shown in Fig. 12. As can be

seen from this figure, it is the coherent peaks that prove to be

most sensitive to the random potential.

The results of Refs [62, 63] can be directly compared with

experimental data. First of all, this relates to the dispersion of

the local values of the superconducting gap. According to the

calculated results, the occurrence of disorder on the scale of

the spacing between the adjacent sites (the values ofWi are in

no way correlated) in the presence of a superconducting

attraction leads to the appearance of a macroscopically

inhomogeneous structure resembling a granular supercon-

ductor. To reveal this inhomogeneity, it was necessary to

place the tunnel microscope into a dilution refrigerator. The

first similar experiments appeared in 2008 (see Sections 6.2

and 6.4).

A similar problem on a three-dimensional lattice with L3

sites was solved in Ref. [64], where the sameHamiltonian (51)

was investigated, but the problem was formulated somewhat

differently. At U � 0, the Hamiltonian (51) is reduced to the

single-particle Andersonmodel with ametal±insulator transi-

0ÿ2ÿ4 2 4 e=t

g�e�

g�e�

g�e�

W=t � 4

W=t � 2

W=t � 0

0

0.2

0.4

0

0.2

0.4

0.2

0.4

0

Figure 12.Density g�e� of single-particle states on a 24� 24 lattice at three

levels of disorderW=t and an average electron density hni � 0:875 [63].
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tion at W=t � Wc=t � 16:5. The influence of the mutual

attraction of electrons at a site on this transition was studied

for U < 0.

The occupation number of the lattice sites with electrons,

hni, was assumed to be about 1=4. The localization proper-

ties of the model with attraction �U=t � ÿ4� were deter-

mined from the behavior of an additional pair of electrons

introduced into the system at the Fermi level. In the case of a

small disorder, W=t � 2, the electrons introduced were

uniformly distributed over the lattice (Fig. 13a). However,

a localization of the pair occurred already at W=t � 7,

although the disorder remained substantially smaller than

that critical for the Anderson model, W < Wc (Fig. 13b).

Thus, this numerical experiment clearly demonstrates the

same tendency that is manifested through an analytical

investigation of different models: pairing of electrons favors

their localization.

3. Scaling hypothesis

3.1 General theory of quantum phase transitions

as applied to superconducting transitions

The general theory of quantum phase transitions [65, 66] is

constructed similarly to the theory of thermodynamic phase

transitions, but with an inclusion of terms in the partition

function Z that reflect the quantum properties of the system.

It is desirable that the sum Z, in spite of an increase in the

number of terms, could, as before, be considered as the

partition function of a certain hypothetical classical system.

For this to be the case, it is necessary to assume that the

dimensionality D of the hypothetical system exceeds the real

three-dimensional dimensionality d of the system; this is

achieved as a result of adding an imaginary time subspace.

Thus, the theory of quantum transitions is constructed by

mapping a given quantum system in a d-dimensional space

onto a hypothetical classical system in the D-dimensional

space in such a way that the axes of the imaginary time

subspace at a temperature T have a finite length equal to i�h=T
(in more detail, the physical scheme that serves as the basis of

this mapping can be found in reviews [7] or [65]).

According to the scaling hypothesis [67], all physical

quantities for an equilibrium system in the vicinity of a

classical phase transition have a singular part which shows a

power law dependence on some variable x with a dimension-

ality of length. In the D-dimensional space, the Dÿ d axes of

the imaginary time subspace are nonequivalent to the original

spatial axes. Therefore, apart from the correlation length x in

the subspace of dimensionality d, we are obliged to introduce

the length xj along the additional axes:

xj / x z : �52�

This length has a dimensionality of inverse energy and cannot

be more than the size i�h=T of the space in the appropriate

direction:

xj 4
i�h

T
: �53�

The volume element of this fictitious space for the hypo-

thetical classical system can be written out as

�dx�d�dxj� / �dx�d�z ; i:e:; D � z� d :

The correlation length x, in turn, depends on the proximity to

the phase transition point, which is determined by the value of

the control parameter x:

x / �dx�ÿn ; �54�

and it tends to infinity at the very transition point. The

numbers z in formula (52) and n in formula (54) are called

critical exponents.

The quantity Lj with a dimensionality of length can be

put into correspondence with the inverse energy xj, by

writing, from the dimensionality considerations based on

formula (52), that

Lj / x 1=z
j : �55�

This quantity is called the dephasing length. Upon approach-

ing the transition point, an increase is observed in not only x,

but also in xj and Lj. However, the last two quantities are

bounded in view of inequality (53). As dx ! 0 and for

T � const 6� 0, the dephasing length Lj ceases to grow at a

certain dx0�T �. A region is formed in which x depends only on

dx, and Lj, only on T:

x � x�dx� / �dx�ÿn ; Lj � Lj�T � / Tÿ1=z : �56�

This region is called critical.

Let us examine the application of the above-formulated

general postulates of the theoretical scheme using the concrete

example of a system of bosons, whichwas discussed in Section

2.4. The physical quantities characterizing a boson system can

contain both a singular part, which depends on x and xj, and

a regular part, which is independent of x and xj [55]. As an

example, we take the free-energy density of the quantum

system, which corresponds to the free-energy density of an

equivalent classical system. At T � 0, it is defined as

f �m; J� � lim
T! 0

lim
N!1

�

N

T

�ÿ1

lnZ ; �57�

where m is the chemical potential,N is the number of particles

in the system, and J is the frequency of the boson hoppings

between the sites.

The singular part fs of the free-energy density builds up on

the scale of the correlation length. Therefore, one has

fs / xÿ�d�z� / �dx�n�d�z� : �58�
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Figure 13. Projections onto the �x; y� plane for the probability of the

distribution of an extra electron pair introduced at the Fermi level into a

lattice of 6� 6� 6 sites at the same attraction energy in the Hubbard

model U=t � ÿ4, but different levels of disorder: (a) W=t � 2, and

(b) W=t � 7 [64]. In the Anderson model without attraction �U � 0�, the
critical level of disorder on such a lattice isWc=t � 16:5.
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All coordinate axes of the space with dimensionality D
are, in principle, bounded, and expression (58) for fs can

contain, besides the dimensional coefficient, an arbitrary

function of the ratio of the correlation lengths to the

appropriate sizes. For the length xj, the scale is i�h=T, while
for the length x, this is the smaller of the two valuesÐ the size

of the sample and the dephasing length:

fs � �dx�n�d�z�
F

�

x

L ;
xj

i�h=T

�

; L � min �L;Lj� : �59�

It is usually assumed that the system is infinite in space, so

that L should be replaced by the dephasing length Lj.

In the critical vicinity of the transition point, xj acquires a

maximum possible value of xj � i�h=T. Therefore, the second
argument of the function F�u1; u2� in relationship (59)

remains constant in the entire critical vicinity, u2 � 1, so

that F becomes a function of a single variable, namely, the

ratio between the lengths x and Lj:

fs � �dx�n�d�z�
F

�

x

Lj

�

� �dx�n�d�z�
F

�

dx

T 1=zn

�

; x < L : �60�

The quantity

u � dx

T 1=zn
�61�

is called the scaling variable. From the definition of the

critical region, it follows that the equation for its boundary

takes on the form x � Lj, or u � 1, or

T � �dx�zn : �62�

For certainty, we put the constant coefficient in expression

(62) equal to unity.

The arbitrary function of the scaling variable enters into

the expressions for any physical quantities in the critical

region. Subsequently, we shall be interested in the expression

for the conductivity, which in the critical region takes the

form [55]

s / �dx�n�dÿ2�
Fs

�

dx

T 1=zn

�

� e 2

�h
x 2ÿdFs

�

dx

T 1=zn

�

: �63�

The last form of the representation of expression (63) explains

its physical meaning: the coefficient of the arbitrary function

has the dimensionality of conductivity.

In expression (63), it is assumed that the system is

sufficiently large:

L4Lj : �64�

Since as T ! 0 the dephasing length Lj ! 1, at low

temperatures inequality (64) can be violated. Then, the

measurable quantity ceases to depend on temperature. For

example, the resistance, instead of tending to zero (super-

conductor) or infinity (insulator), comes to plateau with

lowering temperature. In the experiment, such a situation

happens fairly often. Suspicion in this case usually falls, first

of all, on the overheating of the electron system relative to the

temperature of the bath. However, the reason can also be the

violation of inequality (64) (see, e.g., Ref. [68] and also

Ref. [69] where the effect of finite dimensions was discussed

in detail using a concrete example). We shall run into the

saturation of resistance curves at low temperatures in the

experiments with Be (see Section 4.2) and then return to this

issue in Section 5.1 when examining the experiment that

concerned precisely the influence of the size of the system

(see Fig. 46 and the associated text).

In the review [7], which was cited at the beginning of this

section, it was assumed that the point of a quantum phase

transition is an isolated point on the abscissa axis of the phase

diagram �x;T �. This is precisely the case of the metal±

insulator transitions. In the case of the superconductor±

insulator transitions that are of interest for us here, the point

of a quantum phase transition is, on the contrary, an end

point of the Tc�x� curve of the thermodynamic superconduct-

ing transitions at finite temperatures. Let us first assume that

in the vicinity of the quantum point Tc�xc� � 0 the Tc�x�
curve finds its way inside the critical region (Fig. 14). Upon

intersection of the critical region along the line T � const, the

correlation length x becomes infinite twice, at points x � xc
and T � Tc. Therefore, the scaling function Fs�u� must

exhibit a singularity at a certain critical value uc correspond-

ing to the curve Tc�x�. Hence it follows that the critical

temperature at small dx changes in accordance with the

equation

Tc � uc�dx�zn ; �65�

which differs from equation (62) only in a numerical

coefficient.

The numerical coefficient in the equation of the bound-

aries of the critical region has no strict definition. Further-

more, in a sample with infinite dimensions the resistance to

the right of theTc�x� line is exactly equal to zero. Therefore, if
the curve Tc�x� of the thermodynamic superconducting

transitions finds its way inside the critical region, then it is

expedient to draw the boundary of the critical region precisely

along this curve, using Eqn (65) instead of Eqn (62).

Generally speaking, the Tc�x� curve can pass outside the

critical region; this variant is shown in Fig. 14 by a dotted

curve. Then, equation (65) is not applicable to this curve.

The application of the above-discussed scheme for

describing a critical region to a concrete experiment is given

in Section 4.4.

To conclude this section, let us consider the derivative

k � qr=qm which is frequently called compressibility. Since

r � ÿqf=qm, the singular part of the compressibility is defined

Critical region

T � const

Tc

Tc

T

xc x

Figure 14. Critical region in the vicinity of a quantum superconductor±

nonsuperconductor transition (the boundaries of the region described by

Eqn (62) are shown by dashed lines). The solid and dotted lines correspond

to two variants of the Tc�x� curve, of which one is described by Eqn (65).
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as

ks � ÿ q2fs

qm 2
: �66�

In the transitions corresponding to arrows 1 and 3 in Fig. 9, it

is the deviation of the chemical potential of the system from

the critical value, dx � dm, that can be chosen as the control

parameter. Then, using Eqns (58) and (66), we arrive at the

expression for the singular part of the compressibility:

ks / �dx�n�d�z�ÿ2 : �67�

For the insulator±superfluid state (and, correspondingly,

insulator±superconductor) transitions, we can go further [55]

using the condition

dm / �h
qj

qt
; �68�

which is equivalent to the well-known Josephson condition. It

relates a change in the phase j of the long-wave part of the

order parameter for the bosonic system to changes in the

chemical potential and suggests that the total compressibility

is given by

k � ÿ q2f

qm 2
/ ÿ q2f

qj 2
: �69�

Let us expand the free energy into a series in powers of the

order-parameter phase. The first term in the series will

contain the system density as the coefficient, and the second

term the total compressibility, as a result of relationship (69).

The third term of the expansion, which is determined by the

kinetic energy of the condensate, is proportional to the square

of the phase gradient and contains the density of the

superconducting component as a coefficient.

Now, let us change the boundary conditions of the system,

so that the phase in the space would change by p, and find the

difference between the energy densities of the system after and

prior to the change in the boundary conditions:

Df � fp ÿ f0 : �70�

The contribution from the first term of the expansion to Df is

equal to zero if the boundary conditions are antisymmetric.

As the size of the system increases, the third term of the

expansion approaches zeromore rapidly than the second one.

Consequently, one finds

Df / k

L2
: �71�

Comparing expressions (59) and (71), we arrive at the

following final expression for the total compressibility:

k / �dx�n�dÿz� : �72�

Changing the phase along the imaginary-time axis, we obtain,

using analogous reasoning, the expression for the singular

part of the density:

rs / �dx�n�d�zÿ2� : �73�

Since the majority of experimental results for super-

conductors have been obtained for two-dimensional or

quasitwo-dimensional systems, of special importance is the

phenomenological theory of superconductor±insulator tran-

sitions in two-dimensional superconductors, constructed on

the basis of the general theory in the work of Fisher et al. [70,

71]. Its basic ideas will be presented in Section 3.2.

3.2 Scaling for two-dimensional systems

and the role of a magnetic field

The superconductor±insulator transitions in two-dimen-

sional superconductors are closely related to the dynamics

of magnetic vortices and to the BKT transition. In

Section 1.5, we dealt with an ideal system in a zero magnetic

field. Now, we introduce disorder and a field, separately or

simultaneously. The variety of the variants obtained can be

conveniently described using a diagram similar to that given

by Fisher [71] (Fig. 15).

Let us first examine the plane B � 0. A comparatively

weak disorder pins (i.e., localizes) the system of vortices-

bosons but, according to the Anderson theorem [9], it does

not exert a strong influence on the system of 2e-bosons. The

fluctuations of the order-parameter phase are suppressed

through the pinning of vortices, so that a weak disorder

stimulates the establishment of a superconducting state. The

temperature Tc0 is not affected by weak disorder, and the

temperature Tc can only grow. A strong disorder suppresses

the temperature Tc0 (see Section 2.1). Consequently, Tc,

which is less than or equal to Tc0, is also suppressed. At a

certain critical disorder, Tc becomes zero, and the thermo-

dynamic phase transition in the zero magnetic field goes over

to a quantum transition.

Let us now return to the region of a weak disorder and

switch on a perpendicular magnetic field (plane x � 0). In a

weak field B 6� 0, the equilibrium in the vortex±antivortex

system is shifted in such a way that the concentration of

vortices with the sign corresponding to the direction of the

external field prevails:

N� ÿNÿ � B

F0

:

At a certain strength of the magnetic field, the antivortex

concentration Nÿ becomes zero, and the vortices N� align

into a lattice with a period ~b � �B=F0�ÿ1=2
[72]. In weak fields

Bc2�T �

Bc

xc

x

xc�B�
B

T
Tc0

Tc

0

Tc�x�

Bm�T �

Figure 15. Region of superconducting states in the �x;B;T � space for a

two-dimensional superconductor (the boundaries of the region are shown

by solid curves). In an ideal systemwithout amagnetic field �x � B � 0�, a
superconducting transition into a resistive state occurs at a temperature

Tc0; at the temperature Tc, a BKT transition occurs.
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at a weak disorder, the vortex lattice is pinned as a whole by

pinning centers spaced at a distance a, which is much greater

than the vortex lattice period [72]:

a4 ~b : �74�
With an increase in the field strength or disorder, the relative

number of pinning centers grows and inequality (74) becomes

weaker or is even violated. The disorder `breaks' the vortex

lattice, converting it into a vortex glass, and then causes its

melting. The melting of the vortex lattice means that the

discrete vortices obtain the possibility of moving freely, which

leads to dissipation. Thus, the strong magnetic field and

strong disorder act on the various types of bosons differ-

ently: they suppress the coherent superfluid motion of 2e-

bosons, but at the same time delocalize vortices.

Thus, the region of the superconducting states in the

diagram shown in Fig. 15 adjoins the origin and is bounded

by the surface `stretched' onto the curves Tc�x�, xc�B�, and
Bm�T �. Quantum phase transitions occur along the xc�B�
curve, and thermodynamic superconductor±nonsupercon-

ductor transitions occur on the remaining part of the sur-

face. As can be seen from the curves shown by dashed lines in

Fig. 15, a region of resistive states resides above the layer-

shape region of the superconducting states. In accordance with

the BCS theory, 2e-bosons and vortices-bosons coexist in this

layer.

The above qualitative picture helps in understanding the

origin and meaning of the theoretical model describing the

superconductor±insulator transition in two-dimensional

superconductors in terms of vortices±2e-bosons duality. The

model assumes that the system of 2e-bosons to one side of the

phase transition is in the superconductive state, and the

vortices are localized, while to the other side it is the electron

pairs that are localized and the system of vortices is superfluid

[71, 73]. Those who remain unconvinced by the above

considerations in favor of duality can find additional

arguments in Section 5.1 devoted to Josephson junction

arrays (see Fig. 44 and related comments). An additional

argument is also the symmetry of the current±voltage

characteristics of some systems (connected with supercon-

ductor±insulator transitions) relative to the interchange of the

current J and voltageV axes. This symmetry is not reduced to

the fact that in the superconductor we have V � 0, and in the

insulator J � 0, but is based on more intricate analogies (see

Fig. 41 in Section 4.5, and Figs 46b and 46c in Section 5.1).

Let us now turn to a theoretical substantiation of this

model. The two-dimensional system under consideration can

be described in two alternative languages: the language of

charged bosons, and the language of formal quasiparticles

(also of the boson type) which carry separate vortices. The

Hamiltonian for charged bosons has already been written out

above twice, namely, for a regular system of granules

[formula (19)] and for bosons at sites of a lattice with a

randomly changing binding energy at the sites [formula (36)].

Let us now represent this Hamiltonian in a form close to

formula (19):

Ĥ � Ĥ0 � Ĥ1 ;

Ĥ0 �
X

i j

1

2
Vi j�n̂i ÿ n0��n̂j ÿ n0� �

X

i

Uin̂i ; �75�

Ĥ1 � ÿJ
X

i j

cos �ji ÿ jj � Aext
i j � :

Here, the quantityAext
i j describes the external magnetic field; it

is determined by the difference of the vector potentials of the

field at the appropriate sites. This is an additional term with

respect to Hamiltonian (19) in which the magnetic field was

ignored. The operators n̂i of the number of bosons are

conjugate to the phase operator: �ji n̂j� � idi j; Vi j corre-

sponds to the Coulomb repulsion of bosons at different

sites, and Ui corresponds to the random potential changing

from site to site, with a zero average value (Hamiltonian (19)

contained no corresponding term, since the disorder in that

case revealed itself in the spread of the coefficients Ji j). The

average number of bosons is equal to n0 and is assumed to be

small in comparison with unity. The arrangement of the

vortices enters into Hamiltonian (75) through the phase

difference ji ÿ jj in Ĥ1.

According to Refs [71, 73], this system can also be

described with the aid of a Hamiltonian for an alternative

system of quasiparticles:

Ĥ 0 � Ĥ 0
0 � Ĥ 0

1 ;

Ĥ 0
0 �

X

i j

1

2
Gi j�N̂i ÿ B��N̂j ÿ B� � Ĥ0�H�a� �

X

i

} 2
i ; �76�

Ĥ 0
1 � ÿJ 0 X

i j

cos �#i ÿ #j � ai j� :

Here, N̂i is the operator of the number of vortices that is

conjugate to the operator of their phase #i; Gi j describes the

interaction of vortices, and the magnetic field B assigns their

average number. The last two terms in the expression for Ĥ 0
0

contain information on the field a created for the alternative

quasiparticles by the bare 2e-bosons randomly located at the

sites. The first term represents an expression for Ĥ0 entering

into Eqn (75), in which an operator H� a is used instead of

the operator n̂i, and the `momentum' operators }i are

conjugate to the field values ai at the sites.

Certainly, the identity of Hamiltonians (75) and (76) is

very conditional. First, the interaction Vi j between the

2e-bosons occurs according to the Coulomb law, while the

interaction between the vortices is logarithmic: Gi j / ln ri j.

However, this difference can be levelled off by the assumption

that the two-dimensional layer possesses a large dielectric

constant, so that the electric field of charges is mainly

concentrated in this layer. A more essential fact is that the

Hamiltonians (75) and (76) do not take into account normal

electrons which assist near the vortex axes. These electrons

make the motion of vortices in the presence of an external

electric field dissipative, which for sure disrupts the possible

duality. We shall not discuss under what conditions the

difference between the properties of the gas of 2e-bosons

and the gas of vortices can be considered unessential, but we

shall examine what follows from the application of the

theoretical scheme (52)±(63) to the superconductor±insula-

tor transition andwhat is subject to experimental verification.

Formula (63) for the conductivity in the two-dimensional

case takes on the form

s � e 2

�h
Fs

�

dx

T 1=zn

�

: �77�

This means that the separatrix separating the s�T � curves in
the regions of the superconductor and insulator is horizontal:

sc � s�T; x � xc� �
e 2

�h
Fs�0� � const : �78�
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This assertion is independent of whether the 2e-bosons±

vortices duality is realized or not, being a strict consequence

of the one-parametric scaling.

Formula (78) looks very simple; nevertheless, a very

strong and nontrivial assertion follows from it. The constant

sc can be neither zero nor infinity: since the separatrix

s�T � � sc separates two families of curves in the upper half-

plane s > 0, it must be finite. This assertion is nontrivial for

two reasons.

First, the finiteness of sc indicates the presence of a

metallic state at the boundary between the superconducting

and insulating states. This contradicts the conclusions of the

well-known work by Abrahams et al. [74], according to which

the system of two-dimensional noninteracting electrons

becomes localized at even an arbitrarily low disorder, so

that no two-dimensional metal can exist. The problem lies

possibly in the fact that the results of Ref. [74] relate to

fermionic systems: it is precisely for these systems that the

lowest critical dimensionality, at which the logarithmic

corrections lead to localization, is dc � 2. For bosonic

systems, one has dc � 1.

Second, assertion (78) and the related conclusions do not

agree with the results of the calculations of superconducting

fluctuations for a two-dimensional superconductor in the

dirty limit for T5Tc and B0Bc2 [59]. The absolute value of

the separatrix (50) of the set of sB�T � curves that is obtained
according to the perturbation theory grows with decreasing

temperature (see Fig. 10). The calculations are valid only for

ds5s but, in terms of sense, it is precisely the resistance

1=sBc2
that must become zero exactly at T � 0.

The presence of an intermediate metallic state can also be

established proceeding from the duality [71]. Let us consider a

narrow neighborhood lying to both sides of the transition. In

this region, the possibility must exist to write out expressions

for the physical quantities in question, relying on any of the

two representations. Assuming that both the vortices and the

2e-bosons move in this neighborhood via a diffusive mechan-

ism, we shall use two methods to express the energy that is

absorbed by the system of moving 2e-bosons or by the system

of moving vortices. The energy e absorbed by an individual

boson is proportional to the electric field strength E and

distance x over which the boson preserves the coherence

�e / Ex�. Analogously, the expression for the absorbed

energy in the case of the vortices contains the product of the

current density j determining the Magnus force and the

characteristic distance x travelled by the vortex in the time

of free motion. Let e be some function U of this product:

e � U� jx�. Then, it follows from the identity of the two

representations that

Ex / U� jx� : �79�

When approaching the transition point, where x ! 1, it

follows from the condition of preserving the identity that

U�1� ! jx and

E / j : �80�

Although both the superconductor and insulator atT � 0 are

nonlinear media exhibiting no linear response, in the

boundary state a linear response (80) exists, i.e., the

boundary state is metallic.

An even stronger assertion follows from the duality: the

conductivity of the boundary state is a universal constant [70,

71, 73] independent of the microscopic structure of the

system. Following Ref. [70], let us write out the dc con-

ductivity in the form of a limiting expression for the

frequency-dependent conductivity s�o�:

s � lim
o! 0

s�o� � �2e�2 lim
o! 0

rs�ÿio�
ÿimo

: �81�

This is a standard trick, which is used, for example, in deriving

the Kubo±Greenwood formula. Expression (81) contains

only the density of the superconductive (nonlocalized) part

of the bosons. The dependence of its limiting value for o ! 0

on the changes in the control parameter dx is determined by

expression (73). Therefore, let us isolate from the density

rs�o� the analogous dependence on x explicitly, representing

rs�o� in the form of the product of x 2ÿdÿz and a certain new

functionR of a dimensionless argument:

rs�o� � x 2ÿdÿzR
ÿ

ojxjj
�

: �82�

Recall that jxjjÿ1
is the characteristic frequency of quantum

fluctuations. Relationship (82) for the function rs�o� indeed
goes over into Eqn (73) as o ! 0 and at jxjjÿ1 � const if

R�ojxjj� tends to a constant.

Let us now examine the behavior of the functionR�ojxjj�
in the vicinity of the transition point, where x ! 1 and

xj ! 1, while o remains constant. Since the density rs�o�
must also remain finite under these conditions, it follows from

relationship (82) that in this limit we have

R
ÿ

ojxjj
�

� cd
ÿ

ojxjj
��d�zÿ2�=z

; �83�

where cd is a universal constant depending only on the

dimensionality of the system. Substituting (83) into expres-

sion (82) and then into the expression for the conductivity, we

obtain the desired formula for the dimensionality d � 2:

s � c2
e 2

�h
: �84�

Let us also consider the qualitative model reasoning from

Ref. [73]. To this end, we represent a small film with two

electrodes in the state close to the superconductor±insulator

state as a Josephson element in which phase slips are possible.

If the phase at one electrode is assumed to be zero and that at

the other electrode is designated as j�t�, then, according to

the Josephson relation, the potential drop across the elec-

trodes is given by

V � �h

2e
_j � �h

2e
_nv ; �85�

where a representation was used, according to which the

phase slip is the result of the flow of vortices _nv across the

electrode line, such that each vortex passed shifts the phase by

2p. Correspondingly, the current j through a film is

determined by the flux _nc of Cooper pairs from one electrode

to another: j � 2e _nc. As a result, the film resistance is defined

as

R � V

j
� 2p�h

�2e�2
�

_nv

_nc

�

: �86�

Since all the vortices in the superconducting state are pinned

and _nv � 0, while in the insulator _nc � 0, formula (86) relates
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only to the boundary state. It remains only to assume that, as

a result of the symmetry specified by the duality, in the

boundary state the diffusion of each Cooper pair through

the system is accompanied by the diffusion of exactly one

vortex across the current. Then, the universal resistance of the

boundary state is equal to a quantum of the resistance RQ:

RQ � 2p�h

�2e�2
� 6:45 kO=& ; i:e:; c2 �

2

p
: �87�

As has already been stated, the duality is at best fulfilled

only approximately. Therefore, Eqn (87) should be replaced

by the relationship Run � cuRQ, where cu is a constant

coefficient equal, to an order of magnitude, to unity. This

coefficient has repeatedly been calculated. The results

obtained depended on the assumptions employed; in parti-

cular, cu � 8=p according to Ref. [70], 3.51 according to

Ref. [73], 7.1 for short-range repulsive interaction between

the bosons, and 1.8 for the Coulomb interaction [75].

The last result, according to which the coefficient cu
depends on the nature of interaction, means that cu can

depend on the external or internal parameters of an electron

system. This means that the magnitude of the resistanceRun is

not universal, although its value always approximates

10 kO=&.

In conclusion of this section, let us formulate some

questions that the scaling theory of superconductor±insula-

tor transitions in two-dimensional electron systems put to

experiment. These questions concern the evolution of the

temperature dependences of the dc resistance of thin or

ultrathin films with changes in the control parameter x.

Each subsequent question makes sense only if a positive

answer to the preceding one was obtained.

(1) Does there exist for a family of Rx�T � curves a

separatrix Rxc�T � that separates the curves for which

Rx�T � ÿ!T! 0
0 (superconductor) andRx�T � ÿ!T! 01 (insulator)?

(2) Does the separatrix Rxc�T � have a finite limiting value

Run as T ! 0 on the assumption that Run 6� 0 and that

Run 6� 1?

(3) Does the derivative of the separatrix qRxc=qT tend to

zero as T ! 0?

(4) What is the magnitude of the coefficient cu and is it

stable against changes in the entire family of Rx curves under

the effect of some independent parameter X?

With the positive answers to questions 1±3, scaling curves

(77) can be constructed and the product zn of the critical

exponents can be determined.

We shall reproduce this procedure using a concrete

example in Section 4.1.

3.3 Two-parametric scaling

Everything that was said in Sections 3.1 and 3.2 is directly

applicable only to systems with a nonrenormalizable interac-

tion. The meaning of this assertion can be explained for the

example of a system of charged particles with a screened

Coulomb interaction. If the interaction is independent of the

system size L (and, at a finite temperature T, of the dephasing

length Lj), then the system near the transition point follows

the laws of one-parametric scaling, i.e., the position of the

system in the vicinity of the transition point depends only on

one control parameter x, so that dx in formulas (58)±(60) or

(63) depends on neitherL norT. In consequence, a separation

of the influence of the variables occurs: the correlation length

x depends only on x, and the dephasing length Lj, only on T.

If, on the contrary, it is necessary to take into account the

dependence of the interaction on the characteristic dimension

of the system, then the scaling becomes two-parametric.

In fact, the Hamiltonians (19), (36), (75), and (76) are

constructed in such a way that the renormalizable interaction

is neglected in them. Therefore, in all scaling schemes

describing superconductor±insulator transitions the formu-

las of one-parametric scaling are used. The question arises:

what will change in the predictions of the scaling theory if we

use the scheme of two-parametric scaling?

The difference between one-parametric and two-para-

metric scaling can be most simply explained with the aid of

flow diagrams illustrating the solutions of equations of the

renormalization-group theory [76] (see also Refs [77, 78]

for two-parametric scaling). We do this using the example

of a metal±insulator transition in two-dimensional systems.

The state of the electron system will be characterized by its

conductance y, considering it to be the only parameter that

determines the state of the system in the scheme of one-

parametric scaling. For noninteracting electrons, the

evolution of the system at a temperature T � 0 occurs

with a change in its size L in accordance with the equation

[61, 74]

d ln y

d lnL
� b�ln y� : �88�

If the system originally has a size L � 1 but is kept at a finite

temperature, then the variable L in equation (88) is replaced

by the dephasing length Lj.

The function b depends on the dimensionality of the

system d. The fact that at d � 2 it lies completely in the

lower half-plane in Fig. 16a and does not intersect the abscissa

axis means that any infinite �L � 1� two-dimensional system

of noninteracting electrons at T � 0 becomes localized.

Therefore, no metal±insulator transition exists at all in such

a system. For the transition to exist, it would be necessary for

the b�y� curve to intersect the abscissa axis b � 0 (the

interpretation of flow diagrams is considered in more detail

in Ref. [7]).

The possibility of a phase transition appears upon the

inclusion of an interelectron interactionY, which changes by

QCP

A

Y bB

0 yyc

y1

y2

b a

0

ln y

d
�
2

Figure 16. (a) Flow diagram of a two-dimensional system of noninteract-

ing electrons described by a single parameterÐconductance y [74].

(b) Part of a flow diagram for a two-dimensional electron gas with

interaction constructed in Ref. [79]; there are two independent para-

meters: conductance y, and interaction Y; QCP is the quantum critical

point (the quantitative relationships calculated in Ref. [79] have not been

retained). The diagram also conditionally shows the new axes A and B

directed along the separatrices.
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varying L or T. Now, the initial state of the system is

determined by two parameters, y and Y, and two equations

appear instead of one equation (88):

d ln y

d lnL
� by�ln y; lnY� ;

�89�
d lnY

d lnL
� bY�ln y; lnY� :

The solution to equations (89) is sought in the form of

some function L� y;Y�, whose equipotentials

L�y;Y� � const determine the evolution of the system,

namely, the changes in the parameters y and Y as

L;Lj ! 1; therefore, these equipotentials are called flow

lines. It is usually assumed that the motion of the representa-

tive point along the flow line begins from the point at which

L � l (l is the elastic mean free path). The quantum phase

transition is associated with the saddle point of the function

L, since the flow lines diverge just near the saddle point. This

is clearly seen from the flow diagram shown in Fig. 16b, which

was constructed on the basis of the calculated results (see

Ref. [79]) for the model of a two-dimensional system with a

multivalley electron spectrum. The abscissa axis in this

diagram corresponds to the conductance y of the two-

dimensional system of normal electrons; the quantity Y

plotted along the ordinate axis reflects the effective interac-

tion. The saddle point QCP is the quantum critical point at

which the metal±insulator transition occurs. If, initially, the

representative point lies in the flow line to the left of the

separatrix (point y1), with increasing L or Lj it will approach

the line y � 0, i.e., the system becomes insulating. In the flow

lines that lie to the right of the separatrix (for example,

beginning from the point y2), the representative point, on

the contrary, will move toward larger y.

The passage from one flow trajectory to another can be

implemented by varying the control parameter. In so doing,

the representative point can be placed, in particular, onto the

separatrix and then drawn nearer to the QCP by increasing L

orLj. As can be seen from the diagram, this motion along the

separatrix will change the conductance y of the system: in the

case of two-parametric scaling, the finite slope of the

separatrix in the set of temperature dependences of s or R of

the system of two-dimensional electrons is determined by the

angle at which the separatrix in the flow diagram approaches

the quantum critical point. This constitutes an essential

difference from the case of one-parametric scaling predicting

a horizontal separatrix of the temperature dependences of

conductivity for quantum transitions in any two-dimensional

system, according to relationships (77) and (78).

The occurrence of a metal±insulator transition in the two-

dimensional system of normal electrons and the presence of

the related inclined separatrix in the set of the temperature

dependences of resistance were confirmed in Ref. [80]. As we

shall see in Section 4, the inclined separatrices are also

encountered fairly often in the case of superconductor±

insulator transitions.

The presence of two independent parameters determin-

ing the state of the system changes the entire `system of

values' in the vicinity of the transition point. We shall here

restrict ourselves to the problem of correlation lengths. By

linearizing the set of equations in the vicinity of the saddle

point, we can, by replacing the variables �y;Y ! A;B�,
which involves the rotation and extension of the axes, attain

the separation of variables and reduce the set of equations

(89) to the form

d lnA

d lnL
� sA ln

A

Ac

;
�90�

d lnB

d lnL
� ÿsB ln

B

Bc

;

where sA and sB are the positive numbers.

In the new coordinate system, the motion along the

A-axis, i.e., along the separatrix B � Bc, starts from the

saddle point �Ac;Bc�; it is described by the same equation as

for the case of noninteracting electrons in a 3D space [74]. The

general solution for the first of equations (90) takes the form

�

�

�

�

ln
A

Ac

�

�

�

�

�
�

L

xA

�sA

; �91�

where the correlation length xA depends on the starting point

A0 from which the motion along the separatrix toward

infinity begins. The nearer A0 is to Ac, the greater the

magnitude of xA:

xA ! 1 for jdAj � jA0 ÿ Acj ! 0 : �92�

With the motion along the second separatrix �A � Ac� from
the starting point B0 toward the quantum transition point

QCP, we have respectively
�

�

�

�

ln
B

Bc

�

�

�

�

�
�

L

xB

�ÿsB

and xB ! 0 for jdBj � jB0 ÿ Bcj ! 0 :

�93�
Thus, since there are two equations in system (90), we had to

introduce two correlation lengths. The correlation length xA,

which corresponds to the effective size of fluctuations,

diverges at the transition point, while the corresponding

length xB, which is connected with interaction, becomes zero:

xA / jdAjÿnA ;

xB / jdBjnB ;
nA; nB > 0 : �94�

At an arbitrary point in the vicinity of the point QCP, the

physical properties of the system are determined by two

correlation lengths, and the function F, which was intro-

duced in formula (59), is now a function of four variables, so

that the general expression for the conductivity at a zero

temperature T � 0 takes on the form

s � e 2

�h
Fs

�

xA

L ;
xA
j

i�h=T
;
xB

L ;
xB
j

i�h=T

�

; L � min �L;Lj� :
�95�

Here, two additional correlation lengths along the imaginary-

time axis appeared:

xA
j / �xA�zA ; xB

j / �xB�zB ; �96�

and by the quantity L, as in Eqn (59), we imply the size L of

the sample at a zero temperature or the temperature-

dependent dephasing length Lj for a large-sized system. It is

remarkable that the length Lj plays the role of scale with

respect to both correlation lengths: xA, and xB.

When approaching the saddle point �Ac;Bc� along the

A-axis, the length xA ! 1, and xA
j reaches the maximum

value �h=T. Upon approaching the saddle point along the
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B-axis, the length xB, which must have been approaching

zero, is bounded from below by a certain minimum value, in

the simplest case, by the mean free path, xB 0 l; simulta-

neously, xB
j also appears to be bounded from below

�xB
j 0 l zB�. Thus, the last three of the four correlation

lengths, i.e., xA, x
A
j , xB, and xB

j , have constant values in the

critical region depicted in Fig. 17, and expression (95) reduces

to

s � e 2

�h
Fs

�

xA

L ; T

�

: �97�

In themost interesting case of an infinite system �L � Lj�, we
obtain

s � e 2

�h
Fs

�

dA

T 1=zn
; T

�

�98�

instead of formula (77).

It is precisely in this form that the scaling relation (97) was

used for an analysis of experimental data [78].

Owing to the second argument of the function Fs, the

behavior of the family of s�T � curves near the quantum phase

transition changes. Let us fix the magnitude of the control

parameter A in such a manner as to fulfill the condition

dA � 0. This means that from the entire set of s�T � curves we
chose a separatrix corresponding to the temperature depen-

dence of the conductivity of the boundary state. As is seen

from relationship (98), the conductivity remains temperature-

dependent, although the first argument of the function Fs

remains unaltered, being identically equal to zero. We have

already noted this temperature dependence in the analysis of

the two-parametric flow diagram in Fig. 16. Given the

mechanism of the formation of the dephasing length, the

temperature dependence of the separatrix can be calculated

analytically [78].

Thus, the existence of a sloped separatrix is a signature of

two-parametric scaling.

4. Experimental

For the sake of convenience, we shall divide the variety of

experiments performed into three groups based on the type

and specific features of the material and control parameter.

Let these be ultrathin films with a thickness b serving as a

control parameter; materials of a variable composition

which can be varied in this way or that, and high-

temperature superconductors. Such groups will be

described in Sections 4.1±4.3. Section 4.4 is devoted to

experiments in which the breakdown of superconductivity

leads to the formation of a `bad' metal with a negative

derivative qR=qT of the resistance R at low temperatures.

Finally, in Section 4.5 we shall consider data on the current±

voltage characteristics and nonlinear phenomena in the

vicinity of a superconductor±insulator transition.

4.1 Ultrathin films on cold substrates

The general scheme of experiments on ultrathin films

deposited on cold substrates is as follows. A substrate with

preliminarily applied contacts is placed into the measuring

cell of a cryostat; the film is deposited in several small steps,

and after each new deposition, the temperature dependence of

the resistance is measured. Thus, a whole series of films is

obtained and measured in a single experiment without

warming the cell to temperatures substantially exceeding

liquid-helium temperature. In particular, it is precisely such

a procedure that was used in experiments whose results are

given in Fig. 3.

Since the interval of effective thicknesses, in which such

experiments are performed, varies from 4±5 A
�

to several

dozen angstroÈ ms, we can be sure that the study concerns just

a two-dimensional object: d � 2. A second advantage of this

arrangement of the experiment lies in the fact that we can

reach a constancy of all random factors affecting the

resistance and clarify the effect of precisely the film thickness

on the temperature dependence of its resistance. However, in

such an experiment we should avoid the coalescence of atoms

into droplets during film deposition, i.e., we should avoid the

formation of a granular film. To this end, the cold substrate is

most frequently precoated with a layer of amorphousGe with

a thickness b0 � 5 A
�
, which wets the substrate, remaining by

itself amorphous at low temperatures, i.e., it does not impose

its lattice period to the overlying film [81].

The important role played by the layer of amorphous Ge

is beyond all doubt; it is illustrated, for instance, in Fig. 3. At

the same time, the processes that are responsible for the

transport properties of ultrathin films and the mechanisms

of the influence of the film thickness b are not yet completely

clear. Usually, it is assumed that the film thickness b

determines the effective mean free path of electrons owing to

the diffuse scattering of electrons by the film surface, whereas

the Ge layer does not exert a direct effect on the film

conductivity. It is, however, possible that, since the thick-

nesses b0 and b are comparable, the Ge layer affects the

electronic spectrum or the effective concentration of electrons

in the film under study. There also exist other possible

variants of the influence of the Ge layer on electron transport

in the main film [82]. At the same time, this is of no

consequence, in a sense, since the very fact of the effect of

the thickness b is beyond any doubt and quantitatively this

effect can be characterized by the resistance of the film rather

than by the film thickness. This quantitative characteristicÐ

resistance per squareÐallows comparing films of different

materials.

Ultrathin bismuth films. These films appear to have been

studied most thoroughly. The phase transition obtained on

these films is illustrated in Fig. 18a. The thinnest films behave

as insulators; their resistance increases exponentially with

decreasing temperature. In the thickest films, a superconduct-

ing transition occurs, and its temperature Tc lowers with

B

T

xB � l

xAf � �h
T

�Ac;Bc�

A

Figure 17. Critical vicinity of a saddle point in a flow diagram for two-

parametric scaling.
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decreasing thickness of the film. The film thicknesses

indicated alongside the curves are the average values

calculated from the amount of the deposited material and

known density of the metal.

The direct vicinity of the phase transition can be

examined in some more detail using Fig. 18b, which

displays R�T � curves for a dense series of weakly differing

states. Generally speaking, some additional information is

required to assume that the resistance of the states lying

inside the interval marked by arrows on the right-hand side

of Fig. 18b tends to infinity as T ! 0, i.e., that these states

can be considered to be insulating and the insulator±

superconductor transition to be unsplit (cf. the experimen-

tal data for the three-dimensional NbÿSi system shown in

Fig. 1). To investigate this question, the temperature

dependences of the conductance of those states that

exhibited no superconducting transition were studied. It

turned out [85, 86] that the conductance y for the thinnest

films changes according to the Arrhenius law:

y � y0 exp

�

ÿT I
0

T

�

; �99�

and that with increasing film thickness b this dependence is

replaced first by the Shklovsky±Efros law:

y � y0 exp

�

ÿT I
0

T

�1=2

; �100�

and then by a logarithmic dependence:

y � y0 ÿ ln
T

T I
0

: �101�

All three formulas (99)±(101) contain a parameterT I
0 with

the dimensionality of temperature (superscript I indicates

that here we are dealing with the dependences on the insulator

side). This makes it possible to bring all experimental points

together to a single y�T=T I
0� curve with the aid of a simple

procedure. For the y�T=T I
0� curve represented in the �lnT; g�-

axes, the change in T I
0 is reduced to a shift of the curve along

the abscissa axis. Therefore, starting from the y�T=T I
0� curve

for the thinnest film and merging each following curve with

the preceding one by means of a parallel translation, we can,

by gradually enlarging the range of variability of the

argument T=T I
0 , construct a curve of the universal function

y�x�, in which all experimental points lie and which is

described to a good accuracy in the different segments by

formulas (99)±(101).

The parameter T I
0 proves to be a monotonic function of

the film thickness b or the film resistance R � measured at a

certain fixed temperature T � that exceeds the superconduct-
ing transition temperature. In an analogous way we can also

proceed on the superconductor's side of the transition,

selecting there the parameter TS
0 in such a way that all

experimental yb�T � curves become merged into a single

curve y�T=T S
0 �. By building up both functions, T I

0�R �� and
T S
0 �R ��, we shall see that they have a singularity at one and

the same value R � � R �
c corresponding to the resistance of

the separatrix at a temperature T � (Fig. 18c). This means that

we approach one and the same value of the critical thickness

bc from both sides, i.e., the phase transition is unsplit.

The above-described empirical procedure for determining

T I
0�R �� is valid for the entire insulator's domain rather than

for the critical vicinity of the quantum transition. In the

critical vicinity, the theory poses limitations both on the form

of the y�T � functions and on the scaling variable. According

to the theory [70, 71] constructed on the basis of the general

theory of quantum transitions and the model of dirty bosons,

the separatrix that separates the R�T � curves with a super-

conducting transition (Fig. 18a, b) from the curves in which

there is no transition, should pass horizontally in two-

dimensional systems, and on both sides of the separatrix the

sign of the derivative along the curves should remain

constant, although different in the regions of the super-

conductor and insulator (see the end part of Section 3.2). In

essence, it is precisely the fulfilment of these two conditions

that symbolizes the first level of agreement with the theory

and makes it possible to carry out the scaling procedure and

to determine critical exponents in accordance with formula

(77). In connection with the experiments discussed, it is

expedient to write out the latter formula as

R�dx;T � � RcF

�

dx

T 1=nz

�

; dx � jbÿ bcj : �102�

As follows from Fig. 18a, b, the results of experiments

performed on Bi films seem ideal from the viewpoint of

these conditions. The separatrix Rbc�T � � R�T; b � bc� is

indeed horizontal, as is predicted by the theory [70, 71]. The

processing of the results using formula (102) indeed makes it

possible to bring together all the experimental points from the

curves given in Fig. 18b to two branches of a single scaling
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Figure 18. (a) Evolution of the temperature dependences of the resistance

of amorphous Bi films deposited on a Ge underlayer of thickness b0 � 6 A
�

with film thickness b increasing from above downward [83]. (b) Central

part of an analogous series ofR�T; b � const� curves on an enhanced scale
and with a smaller step in b on the interval of thicknesses b from 9 to 15 A

�
;

the films were deposited over a Ge underlayer 10 A
�
thick onto the (100)

surface of an SrTiO3 single crystal [84]. (c) Characteristic scaling

parameters T I
0 and T S

0 on each side of the quantum phase transition; the

quantity d plotted on the abscissa represents normalized difference

between the film resistance R � and the critical value R �
c at T � � 14 K:

d � �R � ÿ R �
c �=R �

c [85].
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curve (Fig. 19a) and to determine the product nz of the critical

exponents.

The representation of the temperature dependence of

resistance R�T � near the transition point on an extended

scale (Fig. 19b) shows that even in bismuth the separatrix is

only approximately horizontal, and in other materials the

situation is even worse. In Al and Pb films, the transition

manifests itself but the separatrix is sloped. For example, in

Al films the resistance along the separatrix changes by a factor

of at least 1.5, from 20 to 30 kO, as the temperature decreases

from 15 to 1 K. This diminishes the accuracy of the scaling

procedure.

However, the agreement is worse even for Bi films at the

following level of comparison with the results of the theory.

According to the scaling theory of `dirty bosons', the metallic

state corresponding to the separatrix must possess a universal

value of the resistance, Run, which is on the order of the

resistance RQ given by formula (87). The resistance Run must

be insensitive to the microscopic features of a concrete system

and must depend only on the universality class of the

transition. The universality of Run allows, in principle,

calculating the proportionality factor cu � Run=RQ by tak-

ing advantage of some comparatively simple model. Some

different numerical values of cu were given in Section 3.2 after

formula (87). Whatever the true value of Run, it must be

reproduced in different experiments. However, the values of

Run obtained in various laboratories using different materials

and distinct intermediate underlayers (e.g., amorphous Si or

Sb instead ofGe) had approximately a twofold spread, from 6

to 12 kO. The universality of the critical resistance Run is

confirmed only to an order of magnitude.

As has already been noted, the bosonic scenario for the

quantum phase transition assumes the existence of electron

pairs on both sides of the superconductor±insulator transi-

tion. This means that themodulusD of the order parameter at

the transition, i.e., the energy of pairing or the width of the

superconducting gap, must not become zero; the super-

conductivity must be destroyed as a result of strengthening

fluctuations of the order-parameter phase. This was checked

on films of several metals (Pb and Sn in Ref. [87], Bi in

Refs [88, 89]) using tunnel experiments whichmake it possible

to measure the density of states as a function of energy near

the Fermi level. The first example of such measurements is

given in Fig. 20. From the value of the tunneling voltageV0, at

which the normalized tunneling conductivity GN is equal to

unity, it is possible to estimate the superconducting gap:

D � eV0. When approaching the transition, i.e., as the film

thickness b approaches a critical value bc, the superconduct-

ing gap D behaves as usual: it tends to zero, remaining

proportional to the transition temperature, D / Tc.

At the same time, according to Fig. 20, a certain

uncommonness in the behavior of the system is nevertheless

observed: the density of states, which is proportional to GN,

does not vanish inside the gap. This is apparently due to the

fact that the method of measuring density of states with the

aid of a tunneling junction is integral, and over the area of the

contact there are a large number of vortices of both signs,

inside which the superconductivity is destroyed and the

electrons are normal [90]. As can be seen from Fig. 20, the

averaged density of states at the Fermi level (in the middle of

the gap) becomes greater as the state of the system gets nearer

to the transition point.
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Figure 19. (a)Resistance of ultrathin Bi films [curvesR�T � fromFig. 18b] as a function of the scaling variable in the temperature range from 0.14 to 0.50K.

Different data symbols correspond to different temperatures [84]. (b) Temperature dependences of the resistance of the last insulating and first

superconducting films in the sequences of Bi, Pb, andAl films with a gradually increasing thickness b. In the case of Al films, the nonhorizontal position of

the separatrix is seen clearly [85].
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Figure 20. Normalized differential tunneling conductivity for four ultra-

thin Bi films of different thicknesses b on aGe substrate [89]. Alongside the

curves, the superconducting transition temperatures determined from the

Rb�T � curves are indicated. For clarity, the curves are moved upward,

each by 0.5, relative to the preceding one; the figures given at the ordinate

axis correspond to the lower curve recorded for the film with the

superconducting transition temperature Tc � 1:64 K; V0 is the voltage

across the tunneling junction, at which GN � 1. The arrows show the

residual density of states in the middle of the gap. The dashed line is drawn

to make more visual the gradual decrease in the gap width with

approaching the transition point.
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Since the moving vortices cause fluctuations of the order-

parameter phase, it is clear that as the transition is

approached the amplitude of these fluctuations grows

rapidly, simultaneously with a decrease in the gap width.

However, it is difficult to say what occurs earlier, i.e., whether

this is the growth of the fluctuations in the phase or the

decrease in the gap width. In any case, no signs of the

retention of the gap (modulus of the order parameter) has

been found in this experiment at the transition in the absence

of a magnetic field.

An increase in the number of vortices indicates an increase

in the number of normal electrons near the vortex axes (in

their cores). Until we deal with ultrathin films, it makes no

sense to discuss whether the electrons in the vortex core are

localized or quasifree relative to the motion along the vortex

axis, whereas in the case of thicker films and three-dimen-

sional systems such a question appears to be appropriate.

Let us now go over to the description of experiments with

another control parameterÐa magnetic field.

The superconducting transition in a film with a thickness

b > bc can be destroyed by a magnetic field. In this case, we

obtain a superconductor±insulator transition with amagnetic

field as the control parameter. The thicker the film, the less its

normal resistance and the stronger the critical field. The

application of a magnetic field gives the possibility of

conducting several fundamentally new experiments on ultra-

thin Bi films and, in particular, to compare the different ways

of approaching a superconductor±insulator transition.

Figure 21, which was taken from Ref. [89], demonstrates

the magnetic-field-induced behavior of an ultrathin Bi film

with a thickness b > bc, which, without a field, appears to be

superconducting with a transition temperature of 1.64 K. All

RB�T � curves can bemore or less unambiguously divided into

two groups: those that demonstrate a tendency toward the

establishment of a superconducting state with decreasing

temperature (R ! 0 as T ! 0), and those for which it is

possible to assume thatR ! 1 as T ! 0. The strength of the

field Bc in which a separatrix is obtained that separates these

two groups of curves with different asymptotic behaviors is

considered as critical. In Fig. 21a, according to this definition,

one has Bc � 2:5 T.
Let us compare the RB�T � resistance curves given in

Fig. 21a with analogous Rb�T � curves plotted in Fig. 18a, b.

In the last figure, the superconducting transition temperature

decreases as the critical thickness bc is approached, whereas in

the case of similar RB�T � curves shown in Fig. 21a with the

magnetic field in the role of the control parameter no visible

shift in the temperature of the superconducting transition onset

is observed, but at temperatures less than that of the transition

onset, an increase in dissipation is observed with increasing

the magnetic field strength.

The comparison of the behavior of resistance curves can

be supplemented by the comparison of tunnel characteristics

(cf. Figs 20 and 21b). It is seen from Fig. 21b that an increase

in the field strength leads to an increase in the density of states

in the center of the gap. This, in general, is natural: the

strengthening of a field should lead to an increase in the

density of vortices. According to the theoretical calculation of

the density of states averaged over a cell of the vortex lattice

for the `conventional' (far from the superconductor±insulator

transition) type-II superconductor [90, 91], in the middle of

the gap we have GN � B=Bc2. Near the transition, however,

there is a finite density of states in the zero field; in Fig. 21b, it

amounts to approximately 0.2, just as in Fig. 20 for the same

film. At the same time, the density of states is GN � 0:9 in a

field Bc � 2:5 T, when the superconductivity should see-

mingly be destroyed; it becomes close to unity in a field of

approximately 4 T, at which the resistance curve R4T�T �
demonstrates a clear tendency toward growth with decreasing

temperature (Fig. 21a).

One more specific feature of tunnel characteristics seen in

Fig. 21b is that all of them intersect the straight lineGN � 1 at

the same point corresponding to the voltage V � V0 across

the junction. It is usually assumed that this point of

intersection determines the magnitude of the gap. Thus, the

tunneling experiment shows that the magnetic field in

ultrathin superconducting bismuth films does not suppress

the gap D, as usually occurs in superconductors, but leads to a

growth of the density of states inside the gap and to a decrease in

the coherent peak.

This behavior of the superconducting gap with strength-

ening magnetic field, discovered in Ref. [89], is a serious

argument in favor of the idea that the modulus of an order

parameter can remain finite on the insulator side of the

transition as well, taking account, instead of the super-

conducting gap, of the energy of the pairwise superconduct-

ing correlations of the localized electrons. As the magnetic

field aligns electron spins due to the Zeeman effect, the

correlation energy has to decrease, and the hopping con-
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Figure 21. (a) Temperature dependences of the resistance of an ultrathin Bi

film in magnetic fields of up to 5 T [89]; the temperature of the

superconducting transition in the zero field is arbitrarily determined as

the value of T at which the resistance decreases to half the normal value.

(b) Normalized differential tunneling conductivity of the same film, which

demonstrates the evolution of its density of states in a magnetic field in the

vicinity of the Fermi level [89]. The arrow indicates the residual density of

states inside the gap at B � 0 (cf. Fig. 20).
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ductivity to increase. For films with a thickness b > bc, we can

therefore expect the appearance of a negative magnetoresis-

tance in strong fields at low temperatures. In the series of the

RB�T � curves in Fig. 21a this could manifest itself in the low-

temperature intersection of curves recorded in strong mag-

netic fields. However, as can be seen from Fig. 21a, no such

intersection occurs in bismuth films in fields of up to 5 T,

although, it cannot be excluded that fields below 5 T are

insufficiently strong.

By detecting transitions on films of different thicknesses

and tracing the dependence of the critical resistance Rc at

transitions in the presence of a magnetic field on the thickness

b using one and the same series of films, it is possible to verify

the universality of the critical resistance in one experiment

[92]. From the theoretical viewpoint, the value of Rc at

transitions in a field can differ from those at transitions in

the absence of a field, but it should nevertheless be universal

as well. However, it turned out that Rc at transitions in a

magnetic field substantially varies with a change in the

thickness of the film, despite the fact that all the transitions

a fortiori relate to one and the same class of universality, and

the poorly controlled experimental factors are identical. With

an increase in b, a decrease is revealed in the normal resistance

of the film, a strengthening of the critical field, and a decrease

in the critical resistanceRc, although, according to Fig. 21, the

normal resistance of the bismuth film and its critical

resistance Rc in a magnetic field are virtually coincident.

This is, however, not the case in beryllium.

Ultrathin beryllium films. Beryllium can be deposited onto

a cold polished surface in the form of a continuous film even

in the case of a very small effective thickness and even in the

absence of an amorphous Ge underlayer [93]. Then, the

superconducting transition temperature of amorphous Be

films can reach 10 K, although the transition temperature of

crystalline Be is less than 30 mK. [In this sense, Be behaves

similarly to Bi: an amorphous Bi film deposited onto a cold

substrate can become superconducting at a temperature

above 5 K (see Fig. 18a), whereas crystalline Bi does not

exhibit superconductivity at all.]

As is seen from Fig. 22, the ultrathin Be films also display

superconductor±insulator transition. Both the film thickness

b and the magnetic field B can serve here as the control

parameter. The family of resistance curves in a zero field at

different thicknesses differs only a little from the appropriate

curves for Bi (the nonmonotonic behavior of two curves in the

immediate vicinity of the transition point is probably due to

some factors related to experimental conditions, for example,

an overheating of the sample or the presence in it of a certain

characteristic small size limiting the coherence length [see

inequality (64)]. These two families of curves differ signifi-

cantly only in the values of the critical resistance.

The family of resistance curves in a magnetic field

(Fig. 22b) deserves more attentive consideration. If we limit

ourselves to temperatures T < 1:6 K, we can easily single out

a clearly pronounced horizontal separatrix in the field

B � 0:65 T. However, this separatrix has an additional rise

for T > 1:6 K, which apparently also refers to superconduc-

tivity. Indeed, forT > 3:8K the resistanceR is independent of

the magnetic field or depends on it very weakly, but for

T < 3:8 K a strong field dependence appears. This depen-

dence is naturally explained by the influence of the field on the

superconducting fluctuations or on the equilibrium super-

conducting state. Therefore, we should consider the tempera-

ture TcB � 3:8 K corresponding to the onset of transition as

the representative temperature of the superconducting transi-

tion in the film under consideration; if we utilize the

traditional method and select the temperature Tc at which

the resistance in the zero field decreases by a factor of two (or,

for example, by 10%) relative to the normal resistance, then

we should obtain a value of approximately 2.5 K.

The separatrix of the family of curves presented inFig. 22b

is characterized by two different values of the resistance,

namely, by the normal resistance RN � 10:7 kO=&, and by

the quantum critical resistance Rc � 4:4 kO=&. Other ultra-

thin Be films behave analogously. As the film thickness

increases, RN gradually decreases to 5.6 kO=& and the

critical resistance Rc grows to 7.8 kO=& [95]. The critical

resistance is Rc < RN in some films, and Rc > RN in other

(thicker) ones. The thermodynamic superconducting transi-

tion in the absence of a field, with a Tc of about 3 K, and the

quantum phase transition in the magnetic field are in no way

connected with one another. In this case, the quantum

transition corresponds well to the one-parametric scaling

scheme: the separatrix is strictly horizontal and all the data

fall in a single curve upon their processing with formula (102).

However, the duality of the 2e-bosons±vortices system is not

realized: the resistance Rc depends on the film thickness.
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Figure 22. Superconductor±insulator transition in ultrathin Be films. (a)

Variation of the temperature dependences of the resistance of amorphous

Be films upon increasing their thickness b; the numbers (1±10) alongside

the films correspond to the number of sequential depositions; near curves 1

and 10, the effective thickness of the corresponding films is indicated [94].

(b) Temperature dependences of the resistance of ultrathin Be film with an

effective thickness b intermediate between the thicknesses of films 8 and 9

in magnetic fields from zero to 2 T [95, 96].
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According to what was said in Sections 1.4, 2.2, 2.4, and

2.5, we can expect the occurrence of a transition to a Bose

insulator in Be with the localization of electron pairs at the

transition to the insulating state and their subsequent

decomposition and delocalization of electrons in a strong

magnetic field. This process must be accompanied by

emergence of a significant negative magnetoresistance simi-

lar to that observed in granular films (see Figs 4 and 5). This

process was not revealed in Bi films (see, however, the

comments on Fig. 21a), but it was observed on a giant scale

in InO and TiN films (see Section 4.2). In beryllium, the giant

negative magnetoresistance was indeed observed [97±99], but

only in the high-resistance films lying in the diagram in the

insulator region, although comparatively close to the super-

conductor±insulator transition. Figure 23 gives an example of

the field dependence of the resistance measured at a

temperature of 100 mK. The initial resistance of the film,

which was equal to about 4MO, first increased by almost two

orders of magnitude with increasing field strength and then

decreased by almost three orders of magnitude.

Thus, superconductivity in beryllium is observed in low-

resistance (thicker) films, while giant negative magnetoresis-

tance occurs in high-resistance (thinner) films, so that the

relation between and the common nature of these phenomena

are not evident a priori. However, a thorough analysis of

indirect data (see Ref. [100]) suggests that the negative

magnetoresistance of the high-resistance films is due to

precisely the decomposition of localized pairs in the Bose

insulator that was formed in weak magnetic fields.

Thus, the experiments on ultrathin films, which are

undoubtedly two-dimensional systems, showed that:

(a) the separatrix separating the resistance curvesR�T � at
different thicknesses, which refer to the superconductor

domain and to the insulator region, is horizontal in Bi and

Be films, although it has generally a finite slope, dR=dT 6� 0,

as T ! 0 in films of other metals (Fig. 19b);

(b) the critical resistance Rc takes on various values in

films of different materials, on different substrates, etc.,

although these values differ by no more than a factor of two

either way from RQ � �h=�2e�2 � 6:45 kO; in transitions

occurring in a magnetic field, Rc varies with varying film

thickness in films of one and the same series [92];

(c) in transitions occurring in a magnetic field used as the

control parameter, the critical resistance Rc can differ from

the film resistance RN in the normal state (Fig. 22b);

(d) if the role of the control parameter is played by the film

thickness b, then both the transition temperature (see Figs 18,

22a) and the gap width (see Fig. 20) decrease as the transition

point is approached; in this case, the gap `becomes over-

grown' gradually: a finite density of states appears in it, which

increases with the approaching transition (see Fig. 20);

(e) if the film thickness b is close to the critical value bc,

then the magnetic field does not shift the onset of the resistive

transition toward lower temperatures (Fig. 21a) and does not

suppress the gap or, to be exact, does not decrease the value of

the characteristic energy D in the spectrum, but gradually

increases the density of states inside the gap (Fig. 21b); it

should be noted, however, that the last result was obtained

only on Bi films.

4.2 Variable-composition materials

Alloys and compounds whose electrical properties are

determined by deviations from the stoichiometric composi-

tion or by special type of defects compose a special type of

materials in which, in principle, superconductor±insulator

transitions can be observed. Usually, these are films with a

thickness on the interval

100 A
�
9 b9 2000 A

�
: �103�

Due to the thickness limitation from below, the state of the

film is low-sensitive to the state of the boundary and electron

scattering by the boundary. In thicker films, problems are

expected with the homogeneity of the concentration distribu-

tion of the constituent elements or vacancies and with the

formation of granulesÐhence, the limitation on b from

above. The dimensionality of the electron systems in such

films should be interpreted with caution: the electron mean

free path l in them is usually less than b; the London

penetration depth l determining the diameter of vortices is

greater than b, and the superconductive coherence length z is

comparable to b.

It is precisely such properties that are characteristic of

amorphous InÿO films, the description of experiments on

which we turn to now.

4.2.1 Amorphous In±O films. Upon the deposition of high-

purity In2O3 on an SiO2 substrate using electron-beam

sputtering in a vacuum, an amorphous InOx film is formed

without crystalline inclusions with a certain oxygen deficit

q � 1:5ÿ x [101, 102]. The concentration q of vacancies,

which act as donors, depends on the residual oxygen pressure

in the vacuum chamber during sputtering. In small limits, q

can be additionally changed by means of a soft annealing at a

temperature no higher than 50 �C; the annealing in a vacuum

increases q, while the annealing in air, on the contrary,

decreases it. The oxygen deficit, in turn, determines the

concentration n of electrons that do not participate in

chemical bonds between In and O atoms. These electrons

can be either localized under the action of the random

potential of the amorphous material or be delocalized if n is

sufficiently large, n > nc. At low temperatures, the system of

delocalized electrons becomes superconducting.

Figure 24a displays the temperature dependences of the

resistance of an amorphous InÿO film in three different

states [101]. For the quantitative characterization of the film
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Figure 23. Field dependence of the resistance of a Be film with a thickness

slightly less than critical [99].

January 2010 Superconductorëinsulator quantum phase transition 27



states, the product kFl was employed, which was determined

at room temperature from the data on the film resistance and

theHall effect in the films. This product, in general, takes into

account both the electron concentration n � k 3
F=3p

2 and,

through the electron mean free path l, the degree of

disorder. When the state of the metal is close to the

localization threshold, the parameter kFl becomes less than

unity. In this region, kFl still can be used for the characteriza-

tion of the film, although l cannot yet be considered as the

mean free path.

The fact that the twomeasured dependencesR�T � plotted
in Fig. 24a on the �1=T; lnR� coordinates are straight lines

with different slopes means that in the appropriate states the

resistance changes according to the law R � R0 exp�T I
0=T �

with different activation energies T I
0 . In the lower curve, a

superconducting transition is observed, whose temperature

Tc is indicated by an arrow. As can be seen from Fig. 24b, no

gap is seen on the abscissa axis between the T I
0�kFl � and

Tc�kFl � functions. This means that the transition is unsplit

(cf. the data for the NbÿSi system in Fig. 1, and for

amorphous bismuth in Fig. 18). Although these graphs

correspond rather to the phase diagram given in Fig. 2c, the

existing accuracy does not make it possible to exclude the

variant displayed in Fig. 2b.

Basic experiments on the quantum phase transition in

InÿO films were conducted in a magnetic field. Their results

can be presented in two forms: as a series of RB�T � curves
recorded in different magnetic fields, or as a set of isotherms

RT�B�. If the series of RB�T � curves possesses a horizontal

separatrix RBc
�T � � Rc, i.e., the transition can be described

within the framework of one-parametric scaling, then the

isotherms RT�B� intersect at one point with an abscissa

B � Bc. In some series of experiments with weak critical

fields Bc, it is precisely this that is the case [103, 104, 106]. In

other experiments, for example, in the absence of a magnetic

field (see Fig. 24), as well as in the case of strong critical fields

Bc, the separatrix of the families of curves R�T � has finite

slope, which can be of different signs (Fig. 25). Earlier, the

positive slope of the separatrix, qR=qT > 0, as in Fig. 25a,

was considered to be the indication of the presence of granules

and macroscopic inclusions. After the appearance of paper

[59], grounds appeared to consider that this separatrix can, on

the contrary, indicate the absence of macroscopic character-

istic lengths in the random potential. In any case, it can be

asserted that the schemes of one-parametric scaling are

insufficient for describing these experiments.

It should be noted that in the curves given in Fig. 25 there

are no signs of the suppression of the superconducting

transition temperature by a magnetic field, just as in the case

of ultrathin films. The decrease in the resistance in a magnetic

field of 1 T starts virtually at the same temperature as in a zero

field (cf. Fig. 21a).

The most interesting and most important feature of the

R�B� isotherms for the InÿO film is the presence of a

maximum [104] and negative magnetoresistance in strong

magnetic fields. Figure 26 displays two families of R�B�
isotherms in magnetic fields, namely, in a field perpendicular

to the film (Fig. 26a) and in a field parallel to it (Fig. 26b). The

states of the film in these two experiments are close to each
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Figure 24. (a) Temperature dependences of the resistance of an amorphous

InÿO film 2000 A
�

thick in three states: immediately after deposition

(upper curve) and after two subsequent heat treatments [101]; the arrow

above the lower curve indicates the superconducting transition tempera-

ture Tc at which the resistance is half the maximum. (b) Dependences of

the activation energy T I
0 of insulating films and of the transition

temperature Tc of superconducting films on the parameter kFl [101].
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other, although they are not identical. All isotherms in each of

these states intersect almost at one point, whose coordinates

determine the critical values of the resistance Rc and the field

strength Bc (Fig. 26a). As can be seen from a comparison of

both families, the R�B� dependences differ qualitatively only

in weak fields, B < Bc, where the resistance is determined by

the motion of vortices and, therefore, strongly depends on the

field direction. In strong fields, B > Bc, the difference is only

quantitative.

The appearance of a negative magnetoresistance seems to

be quite natural within the framework of the assumption of

the localization of electron pairs with opposite spins, since the

magnetic field aligning the spins destroys pair correlations

[107, 108]. The fact that the effect is observed for all field

directions [108] confirms the suggested interpretation. An

additional confirmation comes from an analysis of the

temperature dependences of the film resistance in strong

magnetic fields.

The observed increase in the resistance with a temperature

decrease in the field B � 5 T, i.e., near the maximum of the

R�B� dependence, is described, albeit with low accuracy, by

the activation dependence (99) with an activation energy of

0.13 K [107]. The dependences in stronger fields can be

described by none of the formulas (99)±(101). They can,

however, be described (Fig. 27) with the aid of the formula

for the conductivity s in the critical vicinity of the metal±

insulator transition in three-dimensional space:

s � s1 � s2T
1=3 ; s2 > 0 ; �104�

where the parameter s1 reverses sign at the metal±insulator

transition (see Ref. [7]). Where s1 > 0, this parameter makes

sense of the conductivity at T � 0: s1 � s�T � 0� > 0.

According to the standard interpretation of the temperature

dependences of the conductivity of three-dimensional systems

in the vicinity of the metal±insulator transition, it follows

from the results displayed in Fig. 27 that in the electron

system of the InÿO film the quantum superconductor±

insulator transition in the field Bc is followed, upon a further

increase in the field induction, by an insulator±metal

transition in a field BIÿM � 10 T. The assumption of the

3-dimensional nature of the system is reasonable, since the

mean free path of normal electrons is a fortiori less than the

film thickness b � 200 A
�
.

A detailed study of the vicinity of the quantum super-

conductor±insulator transition in InÿO films in a magnetic

field was performed by Sambandamurthy et al. [109]. The

authors of Ref. [109] revealed a state in which the resistance at

a temperature of 70 mK increased by more than five orders of

magnitude in comparison with the critical resistance

Rc � 5 kO (see Fig. 28; cf. Fig. 26a). In comparison with the

state presented in Figs 26 and 27, the newly found state falls

more deeply into the insulator region with a field change and

proves to lie outside the critical region of the metal±insulator

transition. Correspondingly, the temperature dependences of

the resistance bear an activation nature, in accordance with

formula (99). The activation energy T I
0 depends on the

magnetic field B, reaching a maximum at the same strength

Bmax of the field as theR�B� dependence itself (Fig. 28b).With

strengthening field in the region of B > Bmax, the activation

energy decreases gradually, so that in a field of about 20 T we

can expect that T I
0 will become zero, i.e., the insulator will

pass into a metal for this state of film, as well.

Even in the maxima of the R�B� functions, the values of
the activation energy T I

0 are small; they lie in the temperature

range of 0.5±2 K, like the temperatures Tc of the super-

conducting transition [109]. As can be seen from Fig. 24, the

activation energy is greater on the insulator side; it lies on the

interval of 2±7 K. The existence of an activation energy

indicates the presence of a gap in the spectrum. It follows

from all available experimental data that this gap is connected

with a superconducting interaction, although there is no

superconductivity itself at these values of the control

parameters. By analogy with the gap in high-temperature

superconductors, we shall call this gap a pseudogap (see also

the note in the end part of Section 4.3).

For the sake of convenience, let us divide the possible

states in InÿO films into groups. To those states that in a zero

magnetic field are located on the insulator side, we ascribe

index 0; to the states lying in the superconducting region, for

which the resistance in the zero field at T � 0 is equal to zero,

we ascribe indices 1±4 in such a manner that the deeper the

state is located in the superconducting region, the greater the

index. A convenient measure of the proximity of states to the
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transition point is the critical field Bc. State 1, whose

properties are demonstrated in Fig. 28, is nearest to the

transition point (Bc � 0:45 T); in state 2, the critical field is

Bc � 2 T (Fig. 26a), and state 3 (Fig. 29), on the contrary, lies

the most deeply in the superconducting region (Bc � 7:2 T).

The nearer the state to the transition point, the higher the

resistance peak in the R�B� curve. For state 1 with its

Bc � 0:45 T, the value of Rmax at T � 70 mK exceeded Rc by

five orders of magnitude [109]; for state 2 with Bc � 2 T, the

ratio Rmax=Rc was about 10, and for state 3 with Bc � 7:2 T,

this ratio was only 1.35 [110, 111]. With a further increase in

the charge carrier concentration and a shift deeper into the

normal region, the peak of the magnetoresistance disappears

completely (state 4).

Simultaneously, there occurs a narrowing of the magnetic

field interval DB � BIÿM ÿ Bc: DB � 20 T for state 1

(Fig. 28b), 8 T for state 2 (Fig. 26a), and 0 for state 3. The

last follows from the results of the extrapolation displayed in

Fig. 29 (curve with circles). A procedure similar to that

demonstrated in Fig. 27 showed that at any values of the

magnetic field strength, including Bmax, the parameter s1
is positive, i.e., a finite conductivity should be retained at

T � 0 and any B > Bc. This means that the superconductor±

insulator transition transforms into the superconductor±normal

metal transition with increasing concentration of charge

carriers in the amorphous InÿO film.

The peak in the R�B� dependence is retained near the

superconductor±insulator transition in the insulator region,

as well, i.e., in the samples in state 0 [109, 110]. A qualitative

difference from the curves shown in Fig. 26 lies only in the fact

that the resistance atB � 0 has a finite and by nomeans small

value (a similar curve for Be films was given in Fig. 23).

According to measurements [110], the resistance variation

with temperature in fields close to Bmax obeys the activation

law (99); in a high field B � 15 T, the pseudogap was closed

and an insulator with a finite density of states at the Fermi

level was formed, in which the resistance obeyed the Mott

law: R / exp �T0=T �1=4.
The above-described results of measurements performed

on amorphous InÿO films can be represented in a common

phase diagram. Attempts to construct such a diagram were

made at various stages of the studies [104, 107, 109]. The

variant presented in Fig. 30 does not appear to be final, either.

However, it is suitable in that it provides a possibility of

involving and comparing all data that are available to date.

In order to help the reader in comparing different

experiments performed on various InO samples, the diagram

in Fig. 30a is given in a schematic form. As the axes, the

control parameters s andBwere chosen. The conductivity s is

analogous in its meaning to the parameter kFl, which was

used earlier in Ref. [101]. Concrete samples in the diagram are

marked by vertical straight lines.

The total of all these measurements can be formulated as

follows. The greatest peak of magnetoresistance (an increase

and the subsequent decrease) is observed in those states that

are close to the transition point in a zero magnetic field and

which are located in this case to the right of the transition, on

the superconductor side (samples of type 1 and 2, Fig. 30a).

However, this property is apparently not universal; in Be, as

we saw in Section 4.1 (see Figs 22 and 23), the peak of

magnetoresistance lies to the left of the transition, while in

Bi it is not at all present.

The complete phase diagram is displayed in Fig. 30b. In

order to facilitate the comparison of the data of different

experiments, the s-axis is represented in a dimensionless

form. As the basis for constructing this diagram, the data

from Ref. [109] were taken: white triangles denote Bc values;

the dark triangles correspond to Bmax; the base-down

triangles mark the states with a superconductivity, and the

base-up triangles correspond to states exhibiting no super-

conductivity. The straight cross marked the field strength

equal to 14±15 T, at which, according to Fig. 28, the basic

decrease in the resistance of a sample in the appropriate state

stops and the activation energy becomes poorly determined

[109]. The data fromRefs [106, 107, 110] are shown by circles:

white circles designate Bc; dark circles correspond to Bmax,

and the circle with an interior straight cross stands for the

field of the insulator±metal transition. Analogously, we used

white and dark squares for the data fromRef. [111]. The solid

curves separate the superconducting phase from the non-
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Figure 29. Magnetoresistance of an amorphous InÿO film 200 A
�
thick

whose representative point lies relatively deep in the superconducting

region [107]. The upper curve is drawn through points (shown by circles)

obtained by the extrapolation of the experimental values of R�T � at

various B to T � 0 using formula (104).
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Figure 30. (a) Phase diagram in the �s;B� plane, which shows the mutual

arrangement of superconducting, insulating, and metallic phases in

amorphous InÿO films at low temperatures. The diagram is presented

schematically, i.e., without values of the quantities laid off along the

coordinate axes and without experimental points, although with dashed

straight lines representing different types of samples (see the main text).

(b) The same diagram, but with experimental points. The dashed curve

separates the region of the existence of the Bose glass (continuous to the

left of the curve BIÿM, and in the form of fine inclusions to the right of this

curve). All dark symbols refer to the curve Bmax; white symbols, to the

curve Bc, and the symbols with interior crosses, to the curve BIÿM. The

meaning of the different symbols is explained in the main text.
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superconducting ones (line Bc), and the insulator from the

metal (line BIÿM). The dotted curve Bmax passes through all

dark symbols. The Bc curve is drawn through the white

symbols, and the BIÿM curve passes through the symbols

with interior crosses. The dashed curve M separates the

region of the existence of localized pairs. On the left-hand

side of Fig. 30b, this curve separates the regions of the Fermi

glass and Bose glass; on the right-hand side, this curve

separates the region in which the inclusions of a Bose glass

in metal are present.

If we extrapolate the BIÿM�s� curve to the superconduct-

ing region, then the mutual arrangement of the points of the

superconductor±insulator and metal±insulator transitions at

B � 0will prove to correspond to the diagramgiven inFig. 2c.

This agrees with the conclusions made above on the basis of

Fig. 24.

4.2.2 Polycrystalline TiN films. Polycrystalline TiN films are

produced by magnetron sputtering of a target from pure Ti in

a nitrogen plasma. The resistivity of the films depends on the

nitrogen pressure during sputtering, apparently, since the

pressure determines the excess concentration of nitrogen in

the resultant film, so that the subscript x in the TiNx formula

can reach a value of 1.3 [112, 113]. The standard thickness of

the films on which the experiments were performed was about

50 A
�
. In air, the films are very stable at room temperature.

Their resistance should be considered as a check rather than

control parameter; the temperature of the superconducting

transition in a zero field can serve as another check parameter

for evaluating the proximity of the state to the super-

conductor±insulator transition.

Figure 31a shows the resistance curves R�T � which

include the onset of the superconducting transition for four

TiN films [114]. The vertical bars in the curves indicate the

Tmax temperatures at which the resistance reaches amaximum

(onset of the transition). Furthermore, the transition tem-

peratures Tc are indicated alongside the curves; they were

calculated under the assumption that the conductivity

s � 1=R consists of the normal part

sn � a� bT 1=3 �105�
and the contribution Dss caused by the superconducting

fluctuations (Aslamazov±Larkin correction [56]):

s � sn � Dss � a� bT 1=3 � e 2

16�h

�

ln
T

Tc

�ÿ1

; Dss5 sn :

�106�

A comparison of the Tmax and Tc temperatures in Fig. 31a

with the superconducting transition temperature Tc0 � 4:7 K
of the massive TiN sample shows that the superconductivity

in these films is strongly suppressed by disorder, so that their

states are indeed located at the edge of the superconducting

region.

In formula (106), an expression was taken for the normal

conductivity that is valid in the critical vicinity of the normal

metal±insulator transition in the three-dimensional region

[7], and an expression valid in the two-dimensional system

was taken for the contribution of superconducting fluctua-

tions to the conductivity. The use of different dimensional-

ities is justified by the fact that the mean free path of normal

electrons is l5 b � 50 A
�
, and the coherence length z in TiN

and, all the more, the London penetration length l

determining the transverse size of vortices, are much more

than the film thickness, i.e., z; l4 b. Figure 31b depicts the

conductivity s � � sÿ Dss which, upon fulfillment of the

right-hand inequality in formulas (106), coincides with sn.

Formally, the accuracy of this representation and the

extrapolation are small, since the inequality in formulas

(106) is violated for sure near the transition point and s �

proves to be the difference of two large quantities, one of

which contains a free parameter Tc. However, the very

selection of the representation (105) for sn sharply limits

the interval of possible values of the parameter Tc; moreover,

the term Dss diminishes rapidly with increasing temperature,

so that the s � curve on the right-hand side of the graphs in

Fig. 31b practically coincides with the directly measured

quantity 1=R: s � � s � 1=R. All this substantially elevates

the reliability of the conductivity extrapolation being

performed [114, 115].

The extrapolation of the straight lines given by formula

(105) to the temperature T � 0 yields negative values of the

parameter a. Consequently, if there were no superconducting

transition, the state with which we are dealing would be

insulating. On the whole, we obtain a phase diagram

predicted by Larkin [8] for three-dimensional systems; it is

schematically depicted in Fig. 2c. The states of four films that

have been studied in Ref. [114] are found on the left-hand side

of the critical region of the nonexistent normal metal±

insulator transition; with changing T, their representative

points move vertically along the x � const lines.

A superconductor±insulator transition for another series

of TiN films [116] is demonstrated in Fig. 32. Here, we should

first of all note the sharpness of this transition. The resistance

of the superconducting film and the film that becomes

insulating differ by only 5% at T � 10 K. An analysis of the

curve that is nearest to the transition point, which lies in the

insulating region, shows that the film resistance changes

according to the activation law (99) with the activation

energy T I
0 � 0:38 K. Using the above analysis of curves in

Fig. 31 and the phase diagram in Fig. 2c as the base, we can
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Figure 31. (a) Temperature dependences of the resistance of four TiN films

in which the superconductivity is partially suppressed by disorder [114].

The meaning of the temperatures Tmax and Tc indicated alongside each

curve is explained in the main text. For all the curves, one has Tmax � 2Tc.

(b) Temperature dependences of the normal part of the conductivity, s �,
for the same four films, obtained after subtracting the Aslamazov±Larkin

correction with an optimum value of Tc from the total conductivity; the

dashed curves have been obtained by the extrapolation of the s ��T �
dependences for T0 1 K [114].
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assert with confidence that the boundary state at the

transition, which corresponds to the separatrix of the family

of curves in Fig. 31, is not metallic, either. This means that the

scheme of one-parametric scaling is not applicable to TiN.

All characteristic features of the superconductor±insula-

tor transition in a magnetic field that were observed in

TiN films [113, 114] are very similar to those that were

observed in other materials. The sets of R�T � curves

obtained in weak fields [113] are similar to those observed

for ultrathin films (Figs 21a, 22b) or for InÿO films (see

Fig. 25). The reproducibility and the origin of the double

reentrant transition which was observed in some TiN films in

Ref. [113] have not been explained so far (similar double

reentrant transitions were also observed on the Josephson

junction arrays; see Fig. 44 in Section 5.1 and the accompany-

ing text). The R�T � curves in strong magnetic fields [114]

resemble analogous curves for InÿO in Fig. 26, not only

qualitatively, but even quantitatively. The peak of magne-

toresistance is observed in the states on both sides of the

transition point in a zero field, with a somewhat larger

amplitude in the region of the insulator [117]: the resistance

in strong fields decreased by three orders of magnitude at a

temperature of 60 mK.

4.3 High-temperature superconductors

Superconductor±insulator transitions have repeatedly been

observed in all basic families of cuprate high-temperature

superconductors. The structure of high-temperature super-

conductors belonging to these families represents a stack of

cuprate CuO2 planes containing mobile carriers. The cou-

pling between the planes is weak; therefore, the high-

temperature superconductors in the normal state demon-

strate, as a rule, a strong anisotropy of conductivity. In

high-temperature superconductors there are control para-

meters which change the degree of doping of the cuprate

planes at zero temperature and the probability of carrier

scattering in these planes and of tunneling between the planes.

At the same time, the systems of carriers in high-temperature

superconductors possess some specific features that are not

covered with the theoretical concepts discussed in Section 2.

The aim of this section is just to reveal and to discuss these

features.

Both the superconductivity and, apparently, the conduc-

tivity proper exist in high-temperature superconductors

owing to their specific atomic structure determining the

appearance of a periodic potential in which the electron

system is embedded. This potential must mainly be retained

with a change in the control parameters. Therefore, the most

common control parameter is the concentration of substitu-

tional impurities or vacancies. Figure 33a displays the curves

of the temperature dependence of resistance Rab along the

basal plane for samples of different compositions for the

compound Bi2Sr2CaCu2O8�y (abbreviated as BSCCO), in

which Pr atoms substitute for part of the Ca atoms located

between the cuprate planes: Ca ! �CazPr1ÿz� [118]. At a

critical concentration of Ca atoms, zc � 0:52, a superconduc-
tor±insulator transition occurs. An analogous effect is

observed upon the substitution of some other rare-earth

atoms [119] and Y [120, 121] for Ca. Since both the rare-

earth elements andY are substitutional impurities in BSCCO,

their substitution for Ca atoms does not change the crystal

structure of the compound.

It is obvious that the conductivity is always realized

against the background of a certain disorder, which com-

monly exists as a result of a nonstoichiometry. However, the

corresponding randompotential must be small in comparison

with the crystal potential, which must ensure the retention of

the initial electronic structure. In Fig. 33a, the control

parameter appears to act on the system via a smooth change

in the average parameters of the structure rather than through

a change in the level of local disorder. The opposite limiting

case is demonstrated by the experiment conducted in

Ref. [122], whose results are given in Fig. 33b. An epitaxial

YBa2Cu3O7ÿd (YBCO) film about 2000 A
�
thick was placed

into a beam of 1-MeV Ne� ions which passed through the

film, producing defective regions in the form of cylinders with

a diameter of about 8 A
�
. Small doses ~f of irradiation led to a

reduction in the superconducting transition temperature Tc

and to an increase in the residual part of resistance, R0� ~f �, in
the temperature dependence R�T � of resistance for T > Tc:

R�T � � R0� ~f � � RT�T � :

At large doses ~f, the superconductivity disappeared, and the

resistance increased with decreasing T, according to the

Shklovsky±Efros law (100). The irradiation caused the break-
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down of the crystalline potential. Therefore, the transition

observed is, in fact, a consequence of the destruction of the

`living environment' of the electron system itself.

Let us examine the evolution of the normal and super-

conducting properties caused by a change in the chemical

composition using the example of La2ÿxSrxCuO4 (LSCO)

compounds. Superconductivity in LSCO exists if the degree

of doping x lies on the interval

0:049 x9 0:26 : �107�

At the optimum degree of doping, xopt � 0:16, the super-

conducting transition temperature reaches approximately

40 K [123].

With overdoping, x > xopt, the normal state is the usual

metal, in which the anisotropy of resistance changes only a

little with a change in the temperature, while in the super-

conducting state the superconducting planes are strongly

coupled [124]. Therefore, the quantum phase transition at

T � 0 and x belonging to the right-hand edge of interval (107)

is a 3D superconductor±normal metal transition [125].

However, the signs of the derivatives of the longitudinal

�rab� and transverse �rc� resistivities become different in the

region xopt > x0 0:04: in the direction perpendicular to the

CuO2 planes, the resistivity rc grows rapidly with decreasing

temperature, while the resistivity rab along the layers

diminishes [124, 126]. As a result, the anisotropy of resistivity

at temperatures slightly greater than the transition tempera-

ture, T0Tc, can exceed three orders of magnitude. With a

further reduction in x, the derivative qr=qT proves to be

negative in both directions, so that the nonsuperconducting

state becomes similar to a usual insulator [127, 128].

With decreasing a degree of doping x, a transformation of

the superconducting state itself occurs. The bonds between

the cuprate planes weaken strongly, so that the planes

transform into quasiindependent two-dimensional systems,

and the quantum transition at x belonging to the left-hand

edge of interval (107) is converted into a 2D superconductor±

insulator transition [125, 129]. Nevertheless, the arising

superconducting state is global and three-dimensional,

although the process of the establishment of this state can be

extended over a certain temperature range. In Ref. [129],

which contains an analysis of different experiments with

La2ÿxBaxCuO4 �x � 0:125�, a whole series of phase transi-

tions was experimentally examined in this compound with

decreasing temperature. First, charge structuresÐ stripesÐ

appear in the CuO2 planes and the coupling between the

cuprate planes weakens, after which an antiferromagnetic

ordering of magnetic moments localized on copper ions

occurs. Then, a 2D superconducting transition occurs in the

cuprate planes, but dissipation is retained because of the

presence of fluctuation vortices, and only with a further

decrease in temperature does a BKT transition manifests

itself, and a coherent superconducting state is established.

If the disorder disrupts the identity of cuprate planes

which in fact become superconducting above all, then the

temperature of the appearance of the superconducting

current can depend on the direction of this current (the

`Fridel effect' [130, 131]). As can be seen from Fig. 34a, the

resistivity rab becomes zero at T � 18 K, whereas rc does so

only at T � 10 K [129]. An analogous effect was observed in

the underdoped YBCO crystal (Fig. 34b [132]), although the

anisotropy of conductivity in YBCO is substantially less.

It is understandable from the above that the occurrence of

quantum phase transitions in high-temperature superconduc-

tors depends on a whole number of side factors which can

change and complicate the entire picture of the phenomenon,

e.g., the strong anisotropy of the crystal structure, the

difference in the mechanisms of electron transport along and

across the cuprate planes, the magnetic ordering of the

localized spins, etc. We shall not go deeply into this

boundless region, and limit ourselves only to brief notes

concerning the influence of the magnetic field.

By varying the chemical composition, we can make the

superconducting transition temperature small, i.e., bring the

system to a state close to the transition in a zero magnetic

field, and then destroy superconductivity with the aid of a

magnetic field and investigate the transition in the magnetic

field as was done, for example, in ultrathin Bi films (see

Fig. 21). When this program is realized for the basic families

of high-temperature superconductors, the families of the

thus-obtained curves are visually very similar to those given
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above, but an increase in the resistance in the normal phase

occurs according to a logarithmic rather than an activation

law [133, 134].

In Sections 4.1 and 4.2, much attention was given to the

negative magnetoresistance in strong fields, which indicates

the destruction of fluctuation-related incoherent Cooper

pairs or the destruction of pair correlations between localized

carriers. Negative magnetoresistance in strong fields was also

repeatedly observed in high-temperature superconductors. In

YBCO [135] and BSCCO [135, 136], a negative derivative

qr=qBwas observed for the transverse resistivity rc, while the

in-plane resistivity rab remained positive or equal to zero.

This is explained apparently by the specific character of

transverse magnetotransport in these families. However, a

negative magnetoresistance in LSCO is also observed in rab.

The curves (taken from Ref. [134]) in Fig. 35a are very

similar to those that were discussed above in connection with

the experiments on InO and TiN. In this case, the negative

magnetoresistance is probably explained by the destruction

of fluctuation-related quasilocalized superconducting pairs,

which, according to Galitski and Larkin [59], must lead to an

increase in the conductivity along two-dimensional layers.

An analogous effect was also observed in the magnetoresis-

tance of the electronic high-temperature superconductor

Nd2ÿxCexCuO4. We shall return to a semiquantitative

analysis of these data in Section 4.4.

The pair correlations of localized carriers lead to the

emergence of a gap or, at least, to a decrease in the density of

states at the Fermi level. Superconducting pair correlations

in a system of delocalized carriers simultaneously bring

about superconductivity and the appearance of a super-

conducting gap. Therefore, the decrease in the density of

states at the Fermi level that is caused by a superconducting

interaction but is not accompanied by establishing super-

conductivity can naturally be called the pseudogap. This

term already exists, and it appeared precisely in connection

with high-temperature superconductivity. Usually, the pseu-

dogap implies an anisotropic rearrangement of the density of

states for T > Tc, which is caused by antiferromagnetic

fluctuations, fluctuations of charge-density waves, or by

structural rearrangements accompanied by phase separa-

tion [137]. Amorphous or fine-crystalline materials, which

were discussed in Sections 4.1 and 4.2, demonstrate the

simplest isotropic variant of a pseudogap emerging only

due to the random potential without the participation of the

periodic crystal field.

All that was said in this section relative to the specific

features of the high-temperature superconductors that are

connected with superconductor±insulator transitions also

refers to organic superconductors. Organic crystals are

usually strongly anisotropic and possess two-dimensional or

even quasione-dimensional conducting structure. In these

anisotropic structures, different states of the electron system

are competing, e.g., superconducting states, ferro- and

antiferromagnetic states, or states with waves of charge or

spin density, etc. [138]. Quite unusual sequences of phase

transitions can be observed in this case, for example, a

transition in a zero magnetic field to the superconducting

state at a certain temperature Tc1 with the subsequent reverse

transition for Tc2 < Tc1 to a high-resistance normal state

[139]. To isolate a pure superconductor±insulator transition

under these conditions is quite difficult. As an example,

Fig. 36 depicts the evolution of the curves for the tempera-

ture-dependent longitudinal resistance of a two-dimensional

organic superconductor k-(BEDT-TTF)2Cu[N(CN)2]Cl in a

magnetic field. It is evident that the superconducting state is

established in a zero magnetic field only partially, and that in

strong fields no exponential increase in the resistance occurs

with decreasing temperature.

4.4 Crossover from superconductor±metal

to superconductor±insulator transitions

In Section 1.2, an algorithm was formulated that makes it

possible to distinguish between a superconductor±insulator

transition and a superconductor±normal metal transition.

According to this algorithm, it is necessary to extrapolate

the temperature dependence of the conductivity s�T � to

T � 0 on the nonsuperconducting side; the type of transition

is determined by the sign of the extrapolated value

lim s�T ! 0�. Such a complex procedure is required since in

a three-dimensional metal near the metal±insulator transition

there is a region of `bad' metal with a conductivity s�0�
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smaller than the Mott limit (see, e.g., Ref. [7]):

s�0� � e 2

�h

1

x
< sM � e 2

�h
kF :

The temperature-dependent part of the conductivity of the

`bad' metal is determined by the quantum correction and has

a positive derivative qs=qT > 0, just like the hopping

conductivity in the insulator. In other words, the sign of the

derivatives qs=qT and, naturally, qR=qT changes in the depth

of the metallic region for s�0� > sM rather than at the metal±

insulator transition point.

When we discussed in the Introduction which of the

transitions, superconductor±insulator or normal metal±

insulator, occurs earlier with a change in the disorder or

electron concentration and, superimposing the appropriate

schematic phase diagrams (see Fig. 2), moved them relative

to one another, we did not take into account that on the

abscissa axis of the normal metal±insulator diagram there is

one additional characteristic point, xM, at which s�0� � sM.

If we take this circumstance into account, then two variants

should appear in the diagram in Fig. 2a, depending on the

location of the point xM. If the point of the quantum

transition MÿS is located between the points IÿM and

xM, then the superconductor transforms at this point into a

bad metal and the derivative qR=qT is negative at this point,

but the resistance tends to a finite value as T ! 0. The

behavior of the resistance during such quantum transition is

very similar to that observed in the transitions in InO or

TiN, but the increase in the resistance with decreasing

temperature on the nonsuperconducting side of the transi-

tion, and the maximum of the magnetoresistance will change

by only several percent rather than by several orders of

magnitude. The evolution of conductivity in the amorphous

NbÿSi alloy shown in Fig. 1 corresponds to precisely such a

case. An analogous behavior of conductivity appears to be

observed in the MoÿGe [141, 142] and MoÿSi [143, 144]

films, in ultrathin Ta films [145], and in the high-temperature

superconductor NdCeCuO [146±148].

Before going over to concrete examples, it is necessary to

make a refinement. The diagrams in Fig. 2 relate, strictly

speaking, only to three-dimensional systems, while all

experiments [141±145] were carried out on thin films. In the

two-dimensional systems of normal noninteracting electrons

there is formally no metallic state at absolute zero; at any

arbitrarily small disorder, a temperature decrease leads, first,

to a changeover from the logarithmic increase in the

resistance to an exponential increase at

T � � eF exp �ÿ2kFl � ; �108�

and then to the electron localization at a temperature T � 0.

However, it is evident from formula (108) that already at

kFl ' 2ÿ3 the temperature T � becomes inaccessibly low,

and in the temperature range with T > T � the conductivity

of a two-dimensional system is described by the classical

formula with a relatively small quantum correction. There-

fore, in two-dimensional systems everything depends on the

location of the intersection of the curve T ��x� and the curve

of superconducting transitions Tc�x� (Fig. 37). In each

experimental facility and each laboratory, a minimum

accessible temperature Tmin exists. The unattainable region

is depicted in the diagrams in Fig. 37 by gray. The transitions

discussed in this section are realized when the point of

intersection of the T ��x� and Tc�x� curves is located in the

unattainable region (Fig. 37a); after the breakdown of

superconductivity, the resistance changes logarithmically in

accordance with formula (101). A real superconductor±

insulator transition occurs when the point of intersection is

located above the level of Tmin, as in the diagram shown in

Fig. 37b.

Let us illustrate the aforesaid by a concrete example.

Figure 38 displays the temperature dependences of the

resistance of amorphous ultrathin Ta films of different

thicknesses b [145]. All films with b5 bc � 3:1 A
�
are super-

conducting. If we select Tmin � 0:5 K as the lower tempera-

ture boundary, then the resistance of the films with a

thickness ranging 3:1 > d > 2:1 nm at a temperature of

down to Tmin varies logarithmically, and in a film with

d � 1:9 nm there occurs a crossover to the exponential

increase in the resistance. But if we decrease Tmin to 10 mK,

Tmin

T
T � b

Tc

S

x

I

nS ë S

Tmin

T

x

qM
qM

T � a

Tc

S
I

nS ë S

Figure 37. Two variants of the phase diagram for two-dimensional

systems. Curve T ��x� is plotted with formula (108); the dashed straight

line T � Tmin specifies the temperature range T > Tmin in which all

realistic experiments are performed; qM denotes quasimetal, and nS,

nonsuperconductor (analogous diagrams for three-dimensional systems

were given in Fig. 2).
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ultrathin Ta films of different thicknesses [145]. The superconducting

transition temperature decreases with thickness b and becomes zero at

b � 3:1 nm.
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then the interval of thicknesses of films with a logarithmic

dependence of resistance will narrow, but hardly disappear.A

fortiori we cannot expect an exponential increase in the

resistance in the superconducting region at temperatures

higher than the superconducting transition temperature.

Therefore, after fixing an appropriate value of a control

parameter, we can destroy superconductivity by a field and

implement a transition to the state of a bad metal with a

negative derivative of the resistance with respect to tempera-

ture, qR=qT < 0. The main difference between this state and

the insulating state is a relatively slow logarithmic increase of

resistance upon a decrease in temperature. Such an increase is

observed, for instance, in the film of the amorphous

Nb0:15Si0:85 alloy [149] in a magnetic field of 2 T, whereas a

superconducting transition in a zero field occurs at

Tc � 0:23 mK.

When the evolution of the states takes place in accor-

dance with the variant presented in Fig. 37b, we can expect

the appearance in the nonsuperconducting phase of not only

a negative derivative of the resistance with respect to

temperature, qR=qT < 0, but also a negative magnetoresis-

tance, qR=qB < 0, in strong magnetic fields. However, the

effect should be small compared to that observed in InO or

TiN, since only a weak localization caused by quantum

corrections to the conductivity occurs on the nonsupercon-

ducting side of the transition. Such negative magnetoresis-

tance in strong fields was indeed observed in at least two

materials: in amorphous MoÿSi films [143, 144], and in

textured Nd2ÿxCexCuO4 films [146±148] (Fig. 39).

The temperature dependences of the resistance of the

latter material in different magnetic fields are given in

Fig. 39a, b. As can be seen, the uncommon behavior of the

resistance, which makes it possible to discuss these experi-

ments in connection with superconductor±insulator transi-

tions, was only observed at low temperatures,T5Tc. This is,

first and foremost, the negative derivative qR=qT < 0 at low

temperatures in the fields in which the superconductivity has

already been destroyed. Figure 39b, where the low-tempera-

ture part of these curves is given on an enlarged scale,

illustrates a second feature, namely, the intersection of the

R�T � curves in fields of 5 and 7 T. At a temperature lower

than the point of intersection of these curves, the increase in

the field strength leads to a decrease in the resistance.

Since the relative changes in the resistance caused by

variations of the temperature and field strength in

Nd2ÿxCexCuO4 films are small, the experimental curves can

be compared with the results of theoretical calculations [59]

performed within the framework of the perturbation theory.

The purpose of this comparison is twofold. First, to explain to

which extent the high-temperature superconductor with a

superconductivity destroyed by a magnetic field behaves in

the region of strong superconducting fluctuations similar to a

conventional superconductor. The second purpose is to

answer the question of whether the superconducting fluctua-

tions in the dirty limit at low temperatures can, to an order of

magnitude, describe the observed negative magnetoresistance

and whether they are the forerunners of localization of

superconducting pairs.

The comparison was carried out in Ref. [148] for a film in

which the superconducting transition in the zero magnetic

field occurred at Tc � 12 K. The conductivity was calculated

using the formula

Rÿ1 � s0 � ds�B;T � ÿ a
e 2

2p�h
ln

T

~T
; �109�

where the term ds�B;T � defined by formula (48) takes into

account the superconducting fluctuations, and the last term,

which is called the Aronov±Altshuler correction and which

allows for electron±electron interaction in the diffusion

channel, is not connected with the superconducting interac-

tion. The value of Tc0 that enters into formula (48) and the

value of the classical conductivity s0 were taken from the

experiment; the value of ~T � 20 K determines the tempera-

ture at which the Aronov±Altshuler correction is zero, and

the coefficient a � 1=2 was selected so as to obtain the

agreement of the calculated results with the experimental

curve in the field of 7 T. The resultant set of curves shown in

Fig. 39c possesses features inherent in the family of experi-

mental curves displayed in Fig. 39b: the curves break out into

those that are bent downward, and those that are bent

upward, whereas the magnetoresistance is negative in strong

fields at low temperatures. Notice that we obtained correct

scales of the variation of the resistance depending on the

temperature and field strength, and also the `correct' region of

the appearance of negative magnetoresistance.

This group of materials with the intermediate type of

transition also includes the two-dimensional superconducting

electron system at the interface between two layered oxides,

LaAlO3 and SrTiO3, which are both insulators. The (100)

surface of single-crystal SrTiO3 terminated by a TiO2 layer

was coated with an LaAlO3 filmwith a thickness ofmore than

four unit cells [150]. The density of two-dimensional electron

gas at the thus-created interface could be changed by applying

a voltage across the gate deposited onto the back part of the

SrTiO3 crystal.

Figure 40a displays eight curves obtained at different gate

voltages from the set of 35 curves published in Ref. [150].

These curves demonstrate the full set of the possible behaviors
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of the films, i.e., a sharp increase in the resistance with a

decrease in temperature [the flattening of the curve corre-

sponding to the gate voltage equal to ÿ300 V at low

temperatures is explained by a size effect (see inequality (64)

and Ref. [64])], a comparatively slow logarithmic increase in

dR / ÿ lnT, the emergence of superconducting fluctuations,

and, finally, the superconducting transition whose tempera-

ture increases with increasing two-dimensional electron

density at the interface.

Like in ultrathin films, the superconducting system

discussed here is undoubtedly two-dimensional. This means

that the transition to the superconducting dissipationless

state in the zero field occurs in two stages: Cooper pairs are

formed at a temperature T � Tc0, but the dissipation remains

finite due to the motion of vortices, diminishing with

decreasing temperature, to the temperature of the BKT

transition, Tc < Tc0 (see Section 3.2). Although the resis-

tance in the vicinity of Tc is several orders of magnitude less

than the normal resistance RN of the film, it remains reliably

measurable. This makes it possible, by using the formula [151]

R�T � / exp
bR

�Tÿ Tc�1=2
; �110�

where bR depends on the difference Tc0 ÿ Tc and the dynamic

parameters of the vortex system, to determine Tc in each

separate state and thus to find the dependence of Tc on the

control parameter, which in this case is the electron concen-

tration n. According to formula (65) (see also Fig. 14), this

makes it possible to determine the product zn of the critical

exponents. Such a procedure, which was followed in

Ref. [150], yielded a value of zn � 2=3 for an electron system

in the heterostructure LaAlO3ÿSrTiO3 in the zero field:

Tc / �nÿ nc�2=3 :

The procedure described is an alternative to the one

usually utilized, in which the resistance is represented as the

function of a scaling variable (61) (see, e.g., Fig. 19a). It would

be of interest to compare the values of zn obtained by these

twomethods. However, we are not aware of such experiments

at present.

The dependences plotted in Fig. 40b demonstrate a

negative magnetoresistance in this two-dimensional system,

which is similar to that observed in InÿO [109, 110] and Be

(see Fig. 23) [99]: positive in weak fields, and negative in

strong fields, but substantially lower in magnitude. Both the

absolute and relative values of the negative magnetoresis-

tance increase when moving away from the superconducting

region. In this respect, the electron system in the

LaAlO3ÿSrTiO3 heterostructure resembles the ultrathin Be

films.

On the other hand, the magnetoresistance of the

LaAlO3ÿSrTiO3 heterostructure behaves just as it does

upon the destruction of weak localization by a magnetic

field. As a result of a strong disorder and frequent events of

elastic scattering, the areas of the closed diffusion trajectories

are very small, which shifts the process of destroying the weak

localization to the strong-field region. This inference is

applied to all examples of negative magnetoresistance in this

section.

4.5 Current±voltage characteristics

and nonlinear phenomena

A quantum superconductor±insulator transition occurs

between two opposite extremely nonlinear states of a

medium: an increase in current in a superconductor to a

certain limit does not lead to the appearance of a voltage, and

the increase in voltage in the insulator at T � 0 does not lead

to the appearance of a current until the potential of the

electric field creates the possibility of transitions between

localized states. Let us simulate both these states using single

tunnel junctions. As a model for the superconducting state,

we take a tunnel junction with two superconducting sides. If

this junction is in the Josephson regime, the current J through

it can increase at a zero voltage �V � 0� up to a critical value

Jc; then, the voltage moves jumpwise into a linear character-

istic J � V=R (curve S in Fig. 41). A similar junction between

a normal metal and a superconductor can serve as amodel for
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comparison of these curves with the magnetoresistance curves, the gate
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figure) tunnel junctions, and a schematic of their zero-temperature

current±voltage characteristics.
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an insulator. The existence of one superconducting bank

emphasizes that we are dealing with an insulator that was

formed with the participation of a superconducting interac-

tion. At a voltage V � D=e, the current through the junction,

which first was equal to zero �J � 0�, also gradually moves

into a linear characteristic (curve I in Fig. 41).

Both characteristics are realized in the represented form at

a current (characteristic S) or voltage (characteristic I) that is

specified from outside. With a decrease in the external action,

a hysteresis usually arises, and the representative point

approaches the origin along the dashed line (shown in

Fig. 41 by arrows). Hystereses also arise when studying the

current±voltage characteristics of the substance in the state

near the superconductor±insulator transition, rather than the

characteristics of the junctions.

The curves S and I in Fig. 41 describe the current±

voltage characteristics of the corresponding junctions very

roughly, since many important factors are ignored here.

However, these over-simplified representations demonstrate

one important feature of the nonlinear properties of these

states: if the axes J and V are interchanged, the curves S and

I pass into one another (this feature was already mentioned

in Section 3.2).

In the physics of metals and semiconductors, the density

of states on the sides of a tunnel junction is measured with the

aid of differential current±voltage characteristics qJ=qV�V�.
Above, we have already considered similar experimental

curves (see Figs 20 and 21). In the superconducting junctions

and materials, because of the presence of supercurrents, it is

necessary to assign the current rather than voltage, when

studying current±voltage characteristics. Therefore, it is

usually the function qV=qJ�J� that is measured, whose

interpretation is somewhat more complex, in spite of the

above-noted symmetry.

Figure 42a, which was taken from Ref. [152], displays

the results of measurements of the function qV=qJ�J� in a

TiN sample with a superconducting transition temperature

Tc of about 1 K and a critical field Bc of approximately

2.9 T. In the field of 1 T, a current smaller than a certain

critical value, J < Jc � 0:6 mA, flows through the sample

without resistance. The current J > Jc destroys supercon-

ductivity. As the current increases, the response curve

dV=dJ�J �, having passed through a maximum, acquires a

value corresponding to the resistance of the normal state,

which amounts to approximately 4.6 kO. It should be

emphasized that the response curve dV=dJ�J � does not

relate to the density of states, and the presence of a

maximum is connected with a redistribution of current

over the section of the film, which is accompanied by a

gradual decrease in the proportion of the supercurrent (the

film width is 50 mm, which is substantially more than the

London penetration depth).

With strengthening field, the width of the interval of the

superconducting currents decreases (curves at B � 1:5 and

2.5 T) and in the vicinity of the critical fieldBc theminimumof

dV=dJ�J � near J � 0 transforms into a maximum. The same

transformation of the dV=dJ curves in the vicinity of the zero

current in fields of order Bc was also observed in other

materials in the neighborhood of superconductor±insulator

transitions, e.g., in InO [153] and Ta [154] (Fig. 42b).

The right-hand part �J > 0� of the qV=qJ�J � plots in

Fig. 42b strongly resembles the fan of theR�T � curves arising
with a change in the magnetic field strength used as the

control parameter (cf., for example, Fig. 25). In Ref. [153],

both series of curves were obtained using one and the same

InO sample. A comparison showed that if we make a

transformation T / J 0:4, then the curves are superimposed

on each other rather well. This made it possible to explain the

evolution of the current±voltage characteristics similar to

those that are shown in Fig. 42b by an overheating of the

electron system relative to the ambient temperature, via

constructing one series of curves with the aid of calculations

based on another series.

The electron temperature Te is determined by the balance

between the Joule heat VJ � J 2R�Te�, which is liberated in

the sample, and the energy flux Q from the electrons to the
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phonons:

Q � a�T 5
e ÿ T 5� � J 2R�Te� ; �111�

where a is the proportionality factor, the phonon temperature

is assumed to be equal to the ambient temperature T, and the

resistance is assumed to be dependent only on Te. Using the

experimentally obtained functions R�Te� and equation (111),

which implicitly assigns Te�J �, it is possible to calculate the

current±voltage characteristics qV=qJ as functions of the

argument aÿ1=2J containing a as an adjustable parameter,

and to compare them with the experimental curves.

Interest in the current±voltage characteristics near the

superconductor±insulator transition was stimulated, in

particular, by the fact that the scaling relationships for

the conductivity or for the resistance near the transition

point can be generalized by including dependences on the

electric field strength E [71]. For two-dimensional super-

conductors, the generalized expression for the resistance is

as follows [71, 141]:

R�B;T;E � � RcF

�

dx

T 1=zn
;

dx

E 1=�z�1�n

�

: �112�

(The above-considered expressions (77) and (102) are

obtained from expression (112) if the field strength E is

assumed to be small and fixed.) It appeared very interesting

to apply two independent scaling procedures to determining

two different combinations of critical exponents: zn and

�z� 1�n. However, the experiments [153] showed that an

increase in the field strength E immediately leads to a

deviation of the electron temperature Te from the ambient

temperature T. Since it is precisely Te that should be used in

formula (112) as the temperature, it is hardly possible to

investigate the dependence of function (112) on the second

argument at the constant first argument.

Apparently, it is precisely the overheating of the electron

system and the deviation of its temperature from the ambient

temperature that also explain the hysteresis phenomena that

were observed first in InO [155] and then in TiN [116] deep in

the insulator region at very low temperatures.

The InO sample, whose dJ=dV�V � curves are presented in
Fig. 43a, was superconducting in the zero magnetic field, but

its critical field amounted only to 0.4 T. This means that the

sample was very close to the superconductor±insulator

transition (sample of type 1 according to the classification of

Fig. 30a; white square in Fig. 30b). The desired current±

voltage characteristics were recorded in a magnetic field of

2 T, i.e., deep in the insulator region. Therefore, it is the

voltageV across the sample rather than the current J that was

the regulated variable here. The dJ=dV�V � curves are

strongly temperature-dependent: at the low-temperature

characteristic at a voltage V � 5 mV, there is a jump between

the upper and lower branches; the lower branch cannot be

fixed at all, since the signal decreases by more than three

orders of magnitude. At a temperature T � 150 mK, which

should be considered `high' in this case, the jump is observed

no longer, although the instability and the telegraphic noise at

small V are retained.

Analogous curves were obtained for TiN (Fig. 43b) in the

sample whose representative point was also located very close

to the quantum transition point, but on the insulator side. Its

resistance in the zero field changed according to the activation

law (99) with an activation energy T I
0 � 0:25 K. At a

temperature of 20 mK, jumps also occur between the two

branches, and again the lower branch of the characteristic is

located below the noise level. A hysteresis is highly visible in

Fig. 43b, i.e., a difference in the voltages at which the jumps

upward and downward occur. The position of the jumps

depends on the magnetic field applied to the sample.

It was initially assumed that the jumps indicate the

transition of the system of localized carriers to a highly

correlated state. Later on, another interpretation was

suggested by Altshuler et al. [156]. It was shown in Ref. [156]

that in the case of an exponential dependence (99) of

resistance on the temperature the deviation of the electron

temperature Te from the phonon temperature Tph leads to an

S-like current±voltage characteristic J�V � and to a bistability.
The concrete predictions made in Ref. [156] were confirmed

by measurements on InO [157].

5. Related systems

5.1 Regular arrays of Josephson junctions

Formally, even a single Josephson junction is a device in

which it is possible to accomplish a superconductor±insulator
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transition. Indeed, let us turn to the curve S in Fig. 41, which

schematically depicts the current±voltage characteristic of a

Josephson junction. With the flow of a Josephson dc current

J4 Jc through the junction, the potential difference between

the banks of the junction is equal to zero, so that a super-

conducting state is realized in the junction. However, the

Josephson current can be suppressed in some way, although

preserving the superconductivity of the banks. Then, the

current±voltage characteristic of the junction will follow

curve I in the same Fig. 41 with a current jump at a voltage

V � 2D=e, and this can be considered to be the realization of

an insulating state.

The Josephson current can be suppressed, for example, by

changing the coupling of the junction with the dissipative

environment [21, 158] or by changing the environment itself.

To do this, an experimentalist has at his disposal a whole

series of parameters, e.g., the Josephson energy EJ and the

Coulomb energy EC of the junction itself:

EJ �
p

4

�

�h=e 2

Rn

�

D ; EC � e 2

2C
�113�

(Rn andC are the normal resistance and the capacitance of the

tunnel junction, respectively), and also the shunt resistance

Rsh whereby he can simulate the external source of dissipa-

tion. By varying these parameters, it is possible to make a

`nonconducting' junction from a `superconducting' junction

and even to construct a phase diagram for the states of a single

junction [159].

The development of experimental methods made it

possible to create one- and two-dimensional periodic arrays

from identical Josephson junctions. On this basis, there arose

a separate branch of the physics of superconductivity, with a

rich variety of physical phenomena (see, e.g., the review

[160]). We here only briefly consider the ideas and the results

that have a direct relation to the subject of this review and are

concerned only with the systems whose properties allow

comparison with the properties of continuous films.

Let us begin with two-dimensional systems. Let us

imagine a square array with the number of cells on the order

of 200� 50, in whose nodes the islands of an aluminium film

are located, which are connected between themselves through

Josephson tunneling junctions AlÿAlOxÿAl, placed in the

middles of the edges of a mesh. The typical sizes, taken from

Ref. [161], are as follows: the area of a unit cell scell � 4 mm2;

the area of an island sisl � 1 mm2; the area of a tunnel junction

stun � 0:01 mm2, and its Coulomb energy EC, on the order of

1 K. The arrays of another research group were several times

less in area scell of the cell and approximately the same for the

values of stun and EC [162].

Special experiments showed that it is possible to ensure

that the spread in the parameters would not exceed 5%. This

array, in essence, is similar to a granular superconducting film

in which all granules are strictly identical and have an

identical temperature Tc of the superconducting transition,

superconducting gap D, number of nearest neighbors, etc.

Figure 44a displays temperature dependences of the

normalized resistance of six such arrays of identical size,

differing in the energy ratios x � EC=EJ. The superconduc-

tor±insulator transition demonstrated by this set of curves is

very similar to those that occur in continuous films. In

principle, this is rather natural, if we take into account that

the model of a granular superconductor [45] discussed in

Section 2.2 is also entirely applicable to Josephson junction

arrays. The arrays, from the viewpoint of this theory, are

simultaneously both simpler andmore complex objects than a

continuous granular film. The simplicity consists in the

parameters of all granules±cells being identical and measur-

able independently; all nonzero constants Bi j and Ji j entering

into Hamiltonian (19) are also identical and are determined

by the capacitance C and normal resistance Rn of a junction,

respectively. An additional complexity lies in the fact that the

array is a multiply connected object and its unit cell is by no

means determined only by the parameters (113) of the

junction itself; the energies EC and EJ, on the one hand, and

the areas of the cell �scell� and island �sisl�, on the other hand,

are completely independent. The energies EC and EJ can be

sufficiently small �EC � EJ 9D�, but the areas scell and sisl can
remain comparatively large. Accordingly, the theory of

transport phenomena in such arrays [163, 164] does not

reduce to the theory of granular superconductors.

We analyzed the temperature dependence of resistance at

low temperatures in two arrays which behave, judging from

the temperature dependences of their resistance shown in

Fig. 44a, as insulators. It was found that this dependence

follows an activation law

R& / exp
T I
0

T
; T I

0 � D� 0:25EC : �114�

Relation (114) for T I
0 is by nomeans a numerical coincidence.

This relation was observed independently by three experi-

mental groups [161, 162, 165] in different square arrays. This

means that even in arrays±insulators the aluminium islands

remain superconducting and serve as containers for Cooper

pairs. For an electron to tunnel from one island to another,

first, there should occur a destruction of the pair, which

requires an energy D per electron, and, second, there should

occur a redistribution of effective charges in all tunnel

capacitances (which requires an additional energy EC=4).
In a magnetic field, the coefficient T I

0 in the Arrhenius law

(114) decreases to 0:25EC; the magnetic field destroys the

superconductivity in aluminium islands and makes the gap D

vanish (Fig. 44b). Thus, negative magnetoresistance can exist
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Figure 44. (a) Zero-field temperature dependences of the resistance of six

square Josephson junction arrays consisting of 190� 60 cells each,

differing in the energy ratios x � EC=EJ [161]. The horizontal dashed line

marks the value of the universal resistance Run � cuRQ � 16:4 kO, where

RQ is defined by formula (87) and the value cu � 8=p is taken from

Ref. [73]. (b) A decrease in the activation energy T I
0 in the Arrhenius law

(114) with strengthening magnetic field for a Josephson array in an

insulating state [162]. The dotted curve corresponds to the calculated

quantity 0:25EC � D�B�.
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in insulating arrays, as well. In contrast to continuous films

(e.g., InO; see Figs 27, 30), these arrays behave as insulators in

strong fields, as well, since the normal electrons, because of

the Coulomb blockade, remain localized in the islands. A

similar behavior was also observed in granular superconduc-

tors (see Fig. 5).

Let us now return to Fig. 44a, according to which the

critical value of the control parameter is xc � 1:7. The R�T �
curve at x near this value has additional features, namely, the

decrease in the resistivity related to the development of a

superconducting state is replaced by an increase in the

resistance by three orders of magnitude at temperatures

below 200 mK, and then, for T < 40 mK, the resistance

continues decreasing. Such a behavior is called a double

reentrant transition. Double reentrant transitions were also

observed in continuous films, e.g., TiN [113]. However, there

is no complete clarity of this issue to date; it is assumed that

such transitions are due to an inhomogeneous granular

structure. In this sense, the experiments on arrays have one

advantage: the structure of arrays can be controlled much

better. However, it is unclear to which extent the double

reentrant transitions are reproducible on different arrays.

Recall that the reentrant behavior near the transition

point in a granular superconductor was predicted in Ref. [45]

(see Fig. 8 and comments on it in Section 2.3 and Refs [46±

48]).

The difference between the arrays and continuous films is

especially substantial in very weak magnetic fields perpendi-

cular to the array plane. The field is concentrated in the

regular periodically repetitive holes of the array. Since the

holes are surrounded by superconducting rings, the magnetic

flux through them is quantized, so that an integer number of

vortices passes through each hole, each vortex containing one

magnetic flux quantum F0 � 2p�h=2e. Therefore, for measur-

ing the field B in the arrays, the concept of frustration f, the

average number of magnetic flux quanta per array's cell, is

used:

f � B

WF0

; �115�

where W is the number of cells per cm2. The characteristic

value of the field B depends on the dimensions of the cell but,

generally speaking, it is very small: the frustration f � 1

usually corresponds to a field induction B in the range from

� 4 G [161, 166] to � 40 G [162, 167].

The measurements of the transport properties of arrays in

amagnetic field [161, 162, 166, 167] showed that the resistance

R� f � has minima at those values of frustration that are

described by rational fractions: f � fnm � n=m, where n and

m are integers, and is periodic in f in the sense that in the

vicinity of the values f and f� 1 the function R� f � behaves
alike. Figure 45 presents, as an example, R� f � isotherms for

two temperatures, 0.08 and 0.18 K, on a square Josephson

junction array (x � 0:9, i.e., x < xc). It is seen that the array

resides in the superconducting state not only in the zero field

at f � 0, but also at f12 � 0:5, when vortices exist in each

second cell of the array. When the lattice of vortices is

commensurate with the lattice of holes, then the lattice of

vortices is rigidly pinned, and the magnetic field is stationary

located outside of the superconducting film and in no way

influences the superconductivity of the array. Small changes

in a magnetic field disrupt the commensurability of the

lattices and the vortices become mobile, which leads to

dissipation accompanying the flow of current through the

lattice of junctions.

The R� f � curve (see Fig. 45) also exhibits minima at

f � f13 � 1=3 and f � f23 � 2=3. Their depth depends on the

quality and number of periods of Josephson lattice and on the

temperature. Under favorable circumstances, the resistance

at these points can also reach zero. The heights of the local

maxima of the resistance also depend on the same factors: one

can see clearly from Fig. 45 that a temperature decrease leads

to their growth.

Thus, a change in themagnetic field gives rise to a chain of

phase transitions between superconducting states at f � fnm
(certainly, with sufficiently small n and m) and insulating

states in the case of the incommensurability of the lattices of

vortices and junctions. For this to occur, magnetic fields are

required that are several thousand times weaker than those

that cause analogous chains of transitions under the condi-

tions of the quantum Hall effect (see, e.g., the review [7]).

It is easily seen that the picture represented strongly

provokes the introduction of the idea of the vortex±electron

pair duality: the vortices are localized at f � fnm and the pairs

ensure superconductivity; the pairs exist for sure in the

insulating state and are localized for sure in the islands. It

only remains to suppose that the vortices can be super-

conducting and that the transition to the insulating state is

certainly caused by their delocalization. The duality, how-

ever, implies that the vortex system allows a representation in

the form of a gas of quasiparticles. It should be noted that the

array gives more grounds for such representation than a

continuous film. When moving in the film, a vortex is always

in the dissipative medium, while moving over an array, it

mostly exists outside of the film (see, in particular, Ref. [168]

in which for arrays of a special form it was possible to derive a

dual transformation exactly).

Naturally, the same technique makes it possible to

prepare one-dimensional arrays of Josephson junctions.

Transitions in such systems were studied in Ref. [169]. The

sample depicted in Fig. 46a has the form of a strip consisting

of aluminium islands, each connected with its neighbors to

the left and to the right through two parallel tunnel junctions

Al=Al2O3=Al. These two junctions implement a Josephson
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Figure 45. Resistance of a Josephson junction array with a normal

resistance R& � 10:5 kO and parameter x � 0:9 as a function of frustra-

tion f at a temperature of 180 mK (solid curve) and 80 mK (dashed curve)

[166]. The arrows indicate the critical values of the resistance �Rc� and

frustration � fc� determined as the coordinates of the point of intersection

of the isotherms.
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coupling between the adjacent elements of the one-dimen-

sional system. In this case, the effective Coulomb binding

energy EC � e 2=2C is determined by the total capacitance of

two parallel junctions, and the effective Josephson energy EJ

can be varied using a magnetic field, since it depends on the

magnetic flux BS passing through a hole with an area

S � 0:12 mm2, along whose perimeter the junctions are

located:

EJ � EJ0

�

�

�

�

cos
pBS

F0

�

�

�

�

; F0 �
2p�h

2e
� 20:7 G mm2 : �116�

The theoretical model describing this system is discussed in

detail in the review [65] as the simplest example of a quantum

phase transition.

In Ref. [169], three identical chains of different lengths

(containing 255, 127, and 63 junctions) were measured.

Figures 46b and 46c display the current±voltage character-

istics of the longest chain. In the zero magnetic field, the

superconducting current Jc reaches approximately 0.8 mA

(Fig. 46b). Jc diminishes with strengthening field, to become

zero at a field of about 62 G. Then, the current±voltage

characteristic changes radically: a section with J�V � � 0

�jVj < Vt� appears in it (Fig. 46c). The threshold voltage Vt

increases with strengthening field, reaching a maximum at

B � 86 G. This is that induction of the field at which,

according to formula (116), the energy EJ becomes zero.

Figure 46d displays the temperature dependences of the

resistance of two chains of different lengths in magnetic fields

that include the field of the superconductor±insulator transi-

tion. All the curves referring to the short chain flatten out at

low temperatures:

R�T � � const for T < Tshort ;

where Tshort decreases gradually from 0.3 K at B � 0 to

0.15 K at B � 64 G. This should be expected according to

the scaling hypothesis, since the argument of the arbitrary

function in Eqn (63) for L < Lj is x=L rather than x=Lj,

and x is temperature-independent in the case of one-

parametric scaling. On the contrary, the resistance

increases in the long chain at the lowest temperatures and

in the fields B0 60 G. This means that inequality (64) for

the long chain at temperatures down to the lowest ones used

in measurements was fulfilled, at least, on the insulator side.

The last limitation is connected with the fact that on the

superconducting side the R�T � curves for the long chain

also come to a constant level for T < Tlong. However,

Tlong < Tshort in all the fields.

5.2 Superconductor±insulator type transitions

in an atomic trap

The terminology used in the consideration of quantum phase

transitions recently appeared in atomic physics in connection

with experiments on the Bose condensation of a gas of

ultracold atoms. The authors of Ref. [170] discussed the

possibility of establishing conditions for atoms, which

resemble those under which electrons exist in solids and

which lead to quantum phase transitions. Soon after, this

experiment was realized in Ref. [171].

The rarefied gas of 87Rb atoms was subjected to laser

cooling and placed into a magnetic trap in which the atoms

were retained because of the presence of a magnetic moment

in them. The total number of bosonic atoms in the trap,

N � 2� 105, was much fewer than that in 1 mm3 of the

substance, but it was sufficient for the statistical laws to be

applicable to them. A three-dimensional crystal lattice was

imitated with the aid of three standing linearly polarized

optical waves with a wavelength l � 852 nm that were

orthogonal to each other and had mutually orthogonal

polarizations. The neutral atoms in the field of an electro-

magnetic wave acquire an electric dipole moment propor-

tional to the field strength. The force acting on the atom is

determined by the product of the dipole moment by the field

gradient. The potential for the atoms, which is proportional

to the sum of the intensities of all three waves, takes the form

of the potential of a simple cubic lattice:

U�x; y; z� � U0

�

sin2 �kx� � sin2 �ky� � sin2 �kz�
�

; �117�

where k � 2p=l, and U0 is the depth of the potential well in

one standing wave of the laser field. This depth can be varied

by changing the intensity of the laser waves. It can be

conveniently characterized by comparing it with the kinetic

energy Ek � �h 2k 2=2m of an atom, which is assigned by the

laser wavelength l and by the atomic mass m. In the

experiment under consideration, the well depths could be

changed from zero to 22Ek. On the whole, the trap contained

about 150,000 sites with an average number of atoms of

approximately 2.5 per site in the center of the trap.

Since the potential for the bosonic atoms, created by

standing laser waves, does not contain disorder, the system

designed in Ref. [171] corresponds to the model of bosons on

a lattice of sites [55], which was discussed in Section 2.4. The

corresponding phase diagram is given in Fig. 9a. The growth

of the hopping frequency J occurs with a decrease in the well

depth of the periodic potential (117). According to the

predictions of the theory [55], at small J, i.e., at a large

amplitude U0 of the periodic potential, all bosons are
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Figure 46. (a) Schematic of a one-dimensional chain of paired Josephson

junctions with cells each containing a hole with an area S and two

Josephson junctions along the perimeter of the hole. (b) Current±voltage

characteristic of a chain with a length of 255 cells in the superconducting

state in a zero magnetic field at T � 50 mK; Jc is the critical super-

conducting current [169]. (c) Same, in a magnetic field B � 71 G, i.e., in

the insulating state (the critical field of the superconductor±insulator

transition is approximately 62 G [169]); Vt is the threshold voltage.

(d) Temperature dependences of the resistance of two one-dimensional

chains of paired Josephson junctions of various lengths (255 cells, solid

curves; and 63 cells, dashed curves) in different magnetic fields. The field

values from bottom to top: B � 0, 27, 47, 53, 57, 60, 62, and 64 G [169].
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localized in the wells and together form a Mott insulator; as

U0 decreases to a critical value, the bosons are delocalized and

pass into the Bose condensate.

For determining the degree of the coherence of atomic

wave functions, a testing laser was utilized. In order to

eliminate the influence of the structure-forming periodic

potential, it was sharply switched off, so that the atomic

wave functions began to evolve in the free space. Since the

temperature was very low and the kinetic energy of the

atoms was very small, the evolution proved to be compara-

tively slow, and it was possible to fix the interference pattern

that appeared as a result of diffraction of the laser beam by

the atomic system with that degree of coherence of wave

functions that was formed against the background of the

periodic potential.

The results of measurements are represented in eight

interference patterns (Fig. 47); the amplitudeU0 of a periodic

potential in which the pattern was formed is indicated in Ek

units in the upper left-hand corner of each pattern. In the

absence of a periodic potential �U0 � 0�, the interference

pattern is a result of the diffraction of the laser beam by the

unstructured Bose condensate. As long as the amplitude of

the periodic potential is small �U0 � �3ÿ10�Ek�, all bosonic
atoms remain delocalized, but the Bose condensate formed of

them exhibits a spatial density modulation. Since the totality

of all the atoms comes forward as a single quantumobject, the

relaxation of the system after switching off the external

periodic potential occurs slowly. Therefore, the modulation

picture takes the form of a usual Laue diffraction pattern, and

the intensity of the side interference maxima grows with

increasing amplitude of the periodic potential. In this case,

the representative point is located in the phase diagram in

Fig. 9a sufficiently far to the right, in the region of super-

fluidity. According to the notation used in Ref. [55], the

system is superfluid. However, when the minima of the

periodic potential become sufficiently deep �U0 0 13Ek�,
there occurs a localization of the bosonic atoms: the

representative point in the phase diagram of Fig. 9a

approaches the ordinate axis. The wave functions of the

localized bosons are incoherent, and the system rapidly

relaxes after switching off the potential. Therefore, the

interference structure fades, giving way to the incoherent

background �U0 � �14ÿ20�Ek�.
It is thus far unclear what problems, besides mere

demonstration, can be solved with the conducting of such

experiments, but for sure the further development of this

avenuewill not be long delayed. In any case, experiments have

already appeared with ultracold atoms, in which a disorder-

tuned Anderson transition is investigated [172, 173].

6. Concluding discussion

In this review, we attempted to describe and to compare

different theoretical approaches to the issue of superconduc-

tor±insulator transitions, conclusions and predictions within

the frameworks of different models, and also to enumerate

and to systematize experimental facts. In this section, we shall

try to summarize available data, by refining the statement of

the problem and formulating what may be considered solidly

established and what requires additional study. Here, we also

describe some comparatively new results which can play a key

role in further studies.

6.1 Scenarios of the transition

There is no doubt that the very existence of a quantum

superconductor±insulator transition has been established for

sure and that, together with the characteristics of the material

(such as the film thickness, disorder, charge-carrier concen-

tration), a magnetic field can also play the role of a control

parameter. The question is rather why the transitions in

various materials occur in different scenarios and what

factors determine which of the scenarios is realized.

In the Introduction we have already discussed the

division of the transitions into two basic types, fermionic

and bosonic, depending on what occurs at the transition

point: whether the modulus of the order parameter becomes

zero or the amplitude of the fluctuations of its phase reaches

a critical value. The critical values of the conductance

examined experimentally in the two-dimensional case,

which are on the order of 10 kO, cannot apparently help in

the selection of a scenario. The values (87) obtained through

calculations within the framework of the bosonic model,

which is based on the 2e-bosons±vortices duality [70, 73, 75],

have the same order of magnitude. However, the logarithmic

estimate of the critical conductance in the fermionic

scenario, derived in Ref. [8] on the base of the results

obtained in Refs [11, 40]:

yc �
�

1

2p
ln

1

Tc0t

�2

; �118�

also gives a close value of Run if we make a reasonable

assumption that ln �1=Tc0t�0 5.

The basic experimental evidences in favor of the bosonic

model are the negative magnetoresistance in strong magnetic

fields and the presence of a pseudogap. Although the negative

magnetoresistance is also predicted [59] within the framework

of the BCS scheme with allowance for superconducting

fluctuations in the magnetic field at low temperatures T � 0,

the giant magnitude of the magnetoresistance peak in InO,

TiN, and ultrathin Be films makes it necessary to give

preference to the explanations that proceed from the bosonic

model and to assert that, at least in these materials, on the

nonsuperconducting side of the transition there indeed exist

equilibrium electron pairs in localized states. The presence of

a pseudogap can be established directly, primarily, from the

tunnel current±voltage characteristics. It should be noted,

however, that the measurements available are undoubtedly

insufficient not only to perform a classification of materials

on their basis, but even to reliably interpret the characteristics

themselves.
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Figure 47.Diffraction of a testing laser beam in a system of ultracold 87Rb

atoms depending on the amplitude of the periodic potential created by

standing laser waves; the wave amplitude is indicated in the upper left-

hand corner of each pattern [171].

January 2010 Superconductorëinsulator quantum phase transition 43



In order to speak about the bosonic model, it is probably

not necessary that both facts be simultaneously established

experimentally, i.e., the presence of a negative magnetoresis-

tance, and the presence of a pseudogap. In this respect, the

experimental data on ultrathin Bi films are demonstrative.

The negative magnetoresistance in Bi films is virtually absent.

However, the current±voltage characteristics of the tunneling

contacts on Bi films exhibit some specific features, namely, a

finite differential conductivity at a zero bias V, which

indicates a finite density of states inside the superconducting

gap, and the intersection of all current±voltage characteristics

at one point in the lineGN � 1 upon variation of themagnetic

field, which indicates that the gap is independent of the

magnetic field [89]. These features were demonstrated in

Figs 20 and 21. In particular, when the control parameter is

the magnetic field, the modulus of the order parameter at the

transition point does not, apparently, become zero.

Giant negative magnetoresistance arises when a decrease

in the binding energy of a pair as a result of the paramagnetic

effect leads to delocalization and even to an insulator±metal

transition, as in InÿO films [108]. But if the decrease in and

the switching-off of pair correlations does not lead to

delocalization, then its influence on the transport can be

insignificant. This effect was demonstrated theoretically in

numerical calculations by the Monte Carlo method: at

specific relationships between the parameters, the pairing

strongly influences the probability of the localization [64].

As can be seen from Fig. 13, the Anderson localization exists

only in the presence of attraction between the electrons in a

certain interval of values of the parameterW=t characterizing
disorder.

Thus, InÿO and amorphous Bi represent, apparently,

two different variants of a bosonic scenario. However, the

number of variants is probably not limited to these two cases.

Recall that the maximum of the peak of magnetoresistance in

InÿO is located on the superconducting side of the transition

point in the zero field, while in Be films, on the side of the

insulator. We shall return to this issue in Section 6.3.

Characteristically, the transitions in the majority of the

materials that were considered in this review stimulate the

discussion of precisely the bosonic scenario. The explanation

for this can probably be perceived from the diagram inFig. 2a.

If it is a decrease in the efficiency of the superconductive

interaction that is the main response of the system to a change

in the control parameters, then the system will most probably

go from the superconductive state to the metallic, rather than

insulating, state. Therefore, transitions in the fermionic

scenario should primarily be sought among the materials in

which the breakdown of superconductivity yields a `bad'

metal; the corresponding examples were given in Section 4.4.

On the other hand, the events in both scenarios are very

similar in the immediate proximity to the transition point: the

initially uniform system becomes macroscopically inhomoge-

neous according to the BCS theory (see Sections 2.1 and 2.6);

negative magnetoresistance appears in the dirty limit (see

Section 2.5), and the Cooper pairs appear in two-dimensional

superconductors at a temperature that exceeds the transition

temperature Tc � TBKT (see Section 1.5).

6.2 Role of macroscopic inhomogeneities

Initially, the theory of transitions in granular superconduc-

tors was developing separately and superconductor±insulator

transitions in granular and uniformly disordered systems

were considering as different phenomena. Gradually, how-

ever, it became clear that, first, the physical properties of

systems of these two types (their transport properties,

magnetoresistance, etc.) near the transition points are very

similar, and, second, macroscopic inhomogeneities as a

certain kind of granularity spontaneously appear in uni-

formly disordered systems near the transition point. This

`electronic±structural instability' can arise for two reasons: as

a result of a strong disorder [62, 63] or electron±electron

interaction [44]. As in systems of normal electrons, these two

principally different factors lead to analogous consequences.

With the development of the technology of low-tempera-

ture tunnel spectroscopy, the possibility appeared of experi-

mentally studying induced macroscopic inhomogeneities.

The authors of Ref. [174] could simultaneously and indepen-

dently measure the resistance and current±voltage character-

istic in a TiN film 5 nm thick with the aid of the Pt=Ir tip of a

scanning tunneling microscope mounted in a dilution refrig-

erator. As a result of strong disorder, the film was in a state

close to the superconductor±insulator transition: the super-

conducting transition in it occurred on the temperature

interval of 2±1.3 K, whereas the superconducting transition

temperature in the bulk material is T bulk
c � 4:7 K [113].

The differential conductivity of the tunnel junction,

measured at a temperature of 50 mK, has a usual form: it

reveals a superconducting gap inside which the density of

states decreases to zero. However, these measurements

demonstrate two specific features. First, the average width

of the gap, ~D, was approximately 265 meV, in contrast to the

value of the gap D bulk � 730 meV. The second feature is seen

fromFig. 48, which demonstrates the result of scanning of the

film surface. The superconducting state proved to be spatially

inhomogeneous (see also the earlier study [175]).

A quantitative comparison with the theory has not yet

been done, although the material in Ref. [174] for such a

comparison in fact already exists: according to this study, the

stronger the disorder, i.e., the nearer the sample to the

quantum transition point, the greater the ratio ~D=Tc in it.

This result, which confirms the theory developed in Refs [44,

63], is very important even in the qualitative form.

Notice that the electron system behaves differently near

the metal±insulator transition: the electron wave functions

become fractal [176].

6.3 Localized pairs

Although the existence of localized superconducting pairs can

at present be considered as a recognized fact, the conditions

that favor their appearance, their internal structure, and the

wave function have not virtually been discussed.
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Figure 48. Spatial fluctuations of the superconducting gap D in a TiN film

[174] (see a colored variant of the pattern at http://www.ufn.ru).
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The formation of localized pairs is favored or, on the

contrary, prevented by the statistical properties of the

random potential. Let us explain what we mean by the

example of amorphous InÿO in which the strongest shift of

the state into the depth of the insulator region was observed

under the effect of a magnetic field, with the subsequent

appearance of the strongest negative magnetoresistance (see

Fig. 28). The structural element of this material is the In2O3

molecule inside which all valence electrons participate in the

formation of covalent bonds and, therefore, are strongly

coupled. The chemical composition of the real amorphous

substance is described by the formula In2O3ÿy. The fraction

y=2 of structural units has an oxygen vacancy, and two valence
electrons in the immediate neighborhood of each vacancy prove

to be weakly connected with the ion core and are easily

delocalized, leaving pairwise correlated wells in the random

potential. In the case of two other materials with giant

negative magnetoresistance (TiN and amorphous Be), there

is probably also an analogous `quasichemical' influence on

the structure of the random potential.

The possibility of superconducting interaction between

localized carriers is merely postulated in many theoretical

models. For example, the attraction between the electrons at a

separate lattice site was introduced in Hamiltonian (51)

without discussing the problem of its origin. When asking

this question, it is useful to glance at the problem of Cooper

pairing due to the exchange of phonons from another angle,

by examining the transition from an insulator to a normal

metal on the basis of the wave functions of electrons in a

strongly disordered medium [177].

For the realization of a coherent electronic state, condi-

tion (3) determining the minimum size (4) of a superconduct-

ing particle should be satisfied. In a volume with smaller

characteristic dimensions, the superconductivity is already

absent, but as long as the spacing between the electron energy

levels remains smaller than the energy �hoD of a short-wave

phonon:

de5 �hoD ; �119�

the superconducting interactionmanifests itself in the form of

the parity effect [see formulas (5)±(7)]. This means that with

switching on a superconducting interaction the phonon

attraction mechanism can decrease the energy of the pair of

electrons localized at the same site only if condition (119) is

satisfied.

For a localized electron, inequality (119) can prove to be

too rigid: using formula (3) for the estimation and expressing

de through a Bohr radius aB of the localized state, we shall

obtain a hardly feasible inequality

�g0a 3
B�ÿ1

5 �hoD : �120�

However, Feigel'man et al. [177] pointed to the fact that

limitation (119) can be softened by the proximity to the

metal±insulator transition. Indeed, when approaching the

metal±insulator transition from the side of the insulator, the

localization length Lloc grows from aB to infinity. Therefore,

returning to the phase diagrams shown in Fig. 2, we can say in

the language of these diagrams that to the left of the point

xIÿM there is an interval of values of the control parameter,

xL < x < xIÿM ; �121�

in which the wave functions of normal electrons are localized,

but nevertheless are subject to the action of superconducting

interaction; the left-hand edge xL of this interval is deter-

mined by the equality de � �hoD.

The fractal nature of the wave functions of the localized

electrons near the metal±insulator transition can extend this

interval. The fractal dimensionality of wave functions is

Df < 3; according to the numerical calculations [178], this

quantity is Df � 1:30� 0:05 near a standard 3D Anderson

transition. The fractal nature of the wave function increases

its significant dimension Lloc, preserving the volume in which

the modulus squared of the wave function differs from zero.

The mutual arrangement of superconductor±insulator

and metal±insulator transitions under a change of the

control parameter proves, thus, to be one additional essential

factor, besides the `quasichemical' one, that is essential for the

formation of localized pairs. This arrangement, as we know,

can be different. Two of the possible phase diagrams on the

plane �x;B� at T � 0 are represented in Fig. 49. These

diagrams differ in the mutual arrangement of the line of the

superconducting transitions and the line of the Anderson

transitions, which divide the regions of metal (M), insulator

(I), and superconductor (S). The region in which the pairing is

possible but is affected by the fractality of wave functions is

marked out with gray.

Both these phase diagrams can seemingly be realized in

practice: the diagram displayed in Fig. 49a is realized in InO

and TiN (it can easily be checked that it is precisely this

diagram that is depicted in Fig. 30), while the diagram

represented in Fig. 49b applies to Be films.

Formally, the above-developed ideas about the localized

pairs and the negative magnetoresistance connected with

their destruction are applicable to the gray part of region I

designated in Fig. 49 as I2. However, the peak of magnetore-

sistance also exists in the gray part of the metallic region (see,

e.g., the experimental data on themagnetoresistance of InO in

Fig. 29). The pairing in this region probably occurs according

to the strengthened variant of superconducting fluctuations

described in Ref. [59]. Finally, an extremely interesting region

Sf exists as well. It was called in Ref. [177] the region of fractal

superconductivity. Its study is only beginning.

From the viewpoint of an experimental study of the wave

function of localized pairs, of great interest are experiments

[179] on ultrathin Bi films on anodized aluminium oxide

substrates with holes of radius rhole � 23 nm, which form a

I

I2

I2

B B

M

a b

S

Sf

I
M

S

xL xIÿS xIÿM x xL xIÿM x

Figure 49. Two variants of an insulator (I)±metal (M)±superconductor (S)

phase diagram on the �x;B� plane at T � 0. Gray regions are those in

which the superconducting interaction occurs between electrons with

fractal wave functions. Diagram (a) appears to be realized in InO and

TiN films, and diagram (b) in Be films.
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periodic lattice with a period of 95 nm (Fig. 50a). The film

deposited onto such a substrate also had a periodic lattice of

holes. The process of film application and step-by-step testing

was described in detail in Section 4.1. For conjugating the film

with the substrate, a layer of amorphous Ge coated with an

additional Sb layer 1 nm thick was used. For a control, a

substrate without holes was placed nearby, onto which the

deposition was produced in parallel and which was also tested

after each thickening of the Bi film.

The sets of R�T � curves for the films produced on two

substrates are very similar, both to each other and to those

that were repeatedly demonstrated above (for example, see

Fig. 18). On the thinnest (both continuous and perforated)

films, the resistance at low temperatures changes according to

the Arrhenius law (99). For an analysis, one such state was

chosen (on a substrate with a lattice of holes) not very distant

from the transition point. This state is insulating in the sense

that the film resistance grows exponentially with a decrease in

the temperature (Fig. 50b). However, magnetoresistance

oscillations determined by frustration (115) appear in this

film in weak magnetic fields: the resistance oscillates with a

period Df � 1 (the concept of frustration was discussed in

detail in Section 5.1). The most probable explanation of the

frustration dependence of resistance lies in the fact that the

magnetic field in the film is structured and is expelled to the

holes. According to classical electrodynamics, this means that

persistent currents flow around the holes, and it follows from

the periodicity of oscillations and quantization conditions

(10) and (115) that these currents are formed by electron pairs

with a charge 2e. It turns out that on the scales of rhole
superconducting currents exist, whereas on the scale of the

sample dimension there are neither superconducting currents

nor conductivity at all.

By analogy with the Bohr radius aB of a localized electron,

let us designate the attenuation length of the wave function of

an isolated localized electron pair as a2B. Because of the

overlap of the wave functions of pairs, the attenuation occurs

on the scale

Lloc 5 a2B ; �122�

which is specified by relationship (54) and is determined by

the deviation of the control parameter from the critical value

(analogously, the hopping conductivity near the metal±

insulator transition is determined by the correlation length

Lloc rather than by aB). The experiment performed in

Ref. [179] makes it possible to estimate the limitation from

below on the attenuation length of the wave functions of

localized pairs in a concrete film at concrete values of the

control parameters, which are given in Fig. 50:

rhole < Lloc < 1 : �123�

No theoretical explanation of this `local Meissner effect' in a

macroscopic insulator exists so far. In particular, it is not

clear how inequality (123) is correlated with the penetration

depth.

Inequality (122) makes it possible to qualitatively under-

stand the nature of positive magnetoresistance on the left-

hand slope of the magnetoresistance peak in InÿO on the

field interval

Bc > B > Bmax : �124�

We have not yet discussed this segment of the magnetoresis-

tance curves R�B� (see Figs 26 and 28).

It is assumed that the conductivity in the field interval

(124) is determined by diffusion and hoppings of the localized

pairs. Therefore, the decrease in Lloc with strengthening field

on this interval is accompanied by a decrease in the hopping

probability and by an increase in the resistance. In this case,

however, there is also an opposite effect of the field action on

Lloc: an increase in the field strength leads to a decrease in the

binding energy and a growth in a2B and, therefore, to an

increase in Lloc. The presence of two opposite effects appears

to lead to the expansion of interval (124); its right-hand edge

is determined by the field strength at which Lloc � a2B, so that

the first factor is levelled off.

6.4 Pseudogap

The concept of a pseudogap in the vicinity of a super-

conductor±insulator transition was mentioned above in

Section 4.3 in connection with the localization of electron

pairs. Since this term is not commonly accepted, let us

formulate a definition which will be utilized here. We shall

call the pseudogap a minimum, caused by the superconduct-

ing interaction, in the density g�e� of single-particle states at
the Fermi level in the system that is not in a coherent

dissipationless state. This definition, first, involves the long-

and well-known minimum g�e� in the fluctuation regime of

conventional superconductors for T > Tc [59], and, second,

the entire region of the states of a two-dimensional super-

conductor. In an ideal two-dimensional superconductor in a

zero magnetic field, this is the range of temperatures (11) in

which, along with Cooper pairs, there coexist vortices causing

dissipation. The finite temperature range exists both in the

presence of disorder and in a magnetic field. This region can

be represented with the aid of Fig. 15: it is located between

two surfaces, from which the upper one is stretched onto the

dashed curves passing through the point Tc0, and the lower

one is stretched onto the solid curves passing through the

point Tc.

Formally, these involve all the cases of existence of

nonlocalized electron pairs in a dissipative medium with a

suppressed macroscopic coherence. A fundamentally new
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Figure 50. Behavior of a perforated Bi film on the nonsuperconducting

side of a quantum phase transition: (a) periodic lattice of holes on the

substrate for a Bi film and its unit cell shown by a rhombus;

(b) temperature dependence of the film resistance indicating that the film

is in an insulating state, and (c) temperature dependences of the addition

DR to the resistance of the film in the presence of a field ( f � 1=2 and

f � 1) as compared to the resistance without a field [179].
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possibility of the existence of a pseudogap can be due to the

effect of localized pairs on the function g�e� or, speaking

more carefully, the pairing effect on fractal electron wave

functions.

Until recently, no experimental measurements of the g�e�
function or the pseudogap in it in the vicinity of super-

conductor±insulator transitions were available. However,

such studies have appeared recently owing to the use of low-

temperature scanning tunneling microscopy. The unique

potentials of this technique and at the same time the related

problems are clearly seen by the example of Ref. [180] in

which TiN films were investigated.

The measurements were carried out utilizing two TiN

films 5 nm in thickness. The resistance was measured at each

temperature in parallel with the current±voltage character-

istic. This made it possible to compare the evolution of the

density of states g�e� with the resistive curve of the transition

(Fig. 51).

The results of the comparison are as follows. At the lowest

temperatures, the curve of the density of states looks the way

it usually does in superconductors: it exhibits a dip to zero in

the region of eF � D, and two coherent peaks on the sides.

With the appearance of dissipation [in the vicinity of the BKT

transition (see, for comparison, Fig. 6)], the coherent peaks

disappear, and the minimum in the vicinity of eF becomes less

deep. The Cooper pairs in this regionmove in a gas of vortices

and antivortices causing fluctuations of the order-parameter

phase. The binding energy of pairs does exist, and the

coherence is absent.

Then the minimum of the function g�e� becomes smeared,

but it is retained even at comparatively high temperatures.

The problem here lies in the fact that it is difficult to

distinguish whether this minimum indicates the presence of

localized pairs or is caused by superconducting interaction in

the Cooper channel, i.e., by conventional superconducting

fluctuations or even by the Aronov±Altshuler correction [33]

to g�e� (caused by electron±electron interaction in the

diffusion channel) which has no relation to superconductiv-

ity, at all. As is known, this correction increases with

strengthening disorder and transforms into a Coulomb gap

at the normal metal±insulator transition (see Fig. 31 and the

related discussion concerning the location of a virtual metal±

insulator transition in TiN).

Thus, since the superconducting transitions are broad-

ened near the quantum superconductor±insulator transition

as a result of strengthening disorder, tunneling spectroscopy

made it possible to reliably observe a `conventional' pseudo-

gap in the zero magnetic field. It can be supposed that when it

is possible to combine tunneling spectroscopy with a strong

magnetic field, this will help in revealing and isolating the

effect from the localized pairs, as well.

6.5 Scaling

The basic collection of experimental data was compared with

the results of scaling models for two-dimensional systems.

The extent of agreement was discussed in detail in Sections 4.1

and 4.2 (for the successive stages of the comparison, see the

end part of Section 3.2). To summarize the discussion, the

following can be said.

No resistance Run that is universal for all the systems

exists. However, the theory, apparently, does not insist on its

existence [75]. The problem can, rather, be formulated as

follows: does there exist a special resistance Rc connected

precisely with the quantum phase transition or is this the

same resistance RN that characterizes the boundary state

(separatrix) at a high temperature? Some answers to this

question come from the experiments on Be, in which Rc does

exist and Rc 6� RN, and the passage from one limit to

another in the temperature dependence of resistance of the

boundary state takes the form of a step (see Fig. 22). On the

other hand, the separatrix in Bi everywhere has a small slope

qR=qT, so that Rc � RN (see Fig. 18). This can be considered

as a random coincidence, and the inclined separatrices in the

case of Al films (Fig. 19b) or InÿO films (Fig. 25) can be

seen as a smooth passage from RN to Rc. Since an inclined

separatrix does not make it possible to continue the

procedure of scaling with the employment of a scaling

variable, the question of Rc acquires a special importance:

if the resistance Rc is not a universal quantity, it is important

to understand how it depends on the properties of the
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corresponding quantum boundary state and whether it is

possible to directly affect Rc.

Formally, an inclined separatrix means that one should

apply two-parametric scaling. This is especially necessary if

the separatrix exhibits a tendency toward an increase in the

slope up to infinity with decreasing temperature, as in the case

of TiN (see Fig. 32) or high-temperature superconductors (see

Figs 33 and 35). However, the schemes of two-parametric

scaling still have not been applied to superconductor±

insulator transitions, to the best of our knowledge.
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