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Abstract. We compute the holomorphic twists of four-dimensional superconformal algebras, and argue that
the resulting algebras act naturally by holomorphic vector fields on holomorphically twisted superconformal
theories. For various standard examples of holomorphic twists, we demonstrate that this symmetry enhances
to the action of an infinite-dimensional local Lie algebra, the Dolbeault resolution of all holomorphic vector
fields on the punctured superspace (C2|N−1)×. Analogously, as discovered recently, global symmetries by
a Lie algebra g enhance to the Dolbeault resolution of holomorphic functions valued in g; at the classical
level, both of these higher symmetry algebras act naturally on the holomorphic twist of any Lagrangian
theory, whether superconformal or not. We show that these algebras are related to the two-dimensional
chiral algebras extracted from four-dimensional superconformal theories by Beem and collaborators; further
deforming the differential by their superconformal term induces the Koszul resolution of a plane in C2, and
the cohomology of the higher symmetry algebras are the usual chiral algebras of holomorphic vector fields
and g-valued functions on C×—i.e., Virasoro and Kac–Moody. We show that the central charges of their
chiral algebras arise from recently studied central extensions of the higher symmetry algebras. However, the
higher algebras admit many further deformations not originating in the global superconformal algebra; we
argue that these deformations can, for example, localize to any smooth complex curve in C2, resolving the
holomorphic vector fields there, and expect that they will lead to even more exotic behavior in the case of
singular or nonreduced curves. We consider explicit examples of N = 2 gauge theories, and demonstrate
that an anomaly to realizing the higher symmetry algebra at the quantum level vanishes precisely when
the theory is, in fact, superconformal; for such theories, we also give an explicit description of the chiral
algebras that result after further deformation. Direct study of the representation theory of these higher
symmetry algebras should lead to a decomposition of the superconformal index in terms of characters,
and has the potential to generalize many familiar features of two-dimensional conformal theories to a more
general higher-dimensional setting.
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1. Introduction

At root, a twist of a supersymmetric field theory is obtained by taking the invariants of an appropriate

fermionic element of the super-Poincaré algebra. This generally means asking that the chosen supercharge be

a Maurer–Cartan element, and therefore define a deformation of the differential; the twist is then precisely

the corresponding deformation. Maurer–Cartan elements in super-Poincaré algebras have been classified [1],

[2]; since the internal differential is here trivial, the Maurer–Cartan equation reduces to the familiar condition

{Q,Q} = 0.

The most heavily studied examples of twists are topological. Such twists extract a topological quantum

field theory from a supersymmetric theory as studied in physics. Such twists are of enormous interest,

since topological quantum field theories are amenable to axiomatization and provide invariants of manifolds.

However, as tools for studying the full field theory, topological twists leave much to be desired: they are

only available in the presence of sufficient extended supersymmetry, and forget much of the data of the

supersymmetric theory from which they arose.

The primordial examples of twists are in fact not topological, but rather are the holomorphic twists.

These have been studied by many authors over the last twenty-five years; we cite [3]–[6] just for example.

As tools for the study of the original supersymmetric theory, these have three distinct advantages over other

twists: firstly, they are more often available, appearing in any even-dimensional theory for which nontrivial

Maurer–Cartan elements are present. For example, any four-dimensional supersymmetric theory admits

a holomorphic twist. Secondly, the holomorphic twist is the least forgetful twist; the space of nilpotent

supercharges is naturally stratified [1], and as such lives naturally over a poset. Holomorphic twists always

form the minimal elements of this poset, and therefore can be used to study any other twist by further

deformation. This also means that, even for theories that do admit topological twists—such as N = 2

theories in four dimensions—the holomorphic twist can be used to extract much finer information about the

original theory.
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The third and final point is that holomorphic theories have a richer and more intricate structure than

topological theories, admitting (for example) nontrivial operator product expansions that depend holomor-

phically on the spacetime. The familiar example to keep in mind is the distinction between two-dimensional

topological field theories (which, by a simple and familiar classification, correspond to finite-dimensional

Frobenius algebras) and vertex algebras.

Vertex algebras—and, relatedly, the familiar phenomenon of symmetry enhancement in two-dimensional

chiral theories, which replaces finite-dimensional global or conformal symmetries by infinite-dimensional

Kac–Moody or Virasoro algebras—have long been seen as peculiar to two-dimensional physics. One main

philosophical point of this note is to argue that these phenomena, which have been of such enormous

importance and profit to theoretical physics at least since the foundational work of [7], occur in holomorphic

theories much more generally, and are not at all peculiar to two dimensions per se.

The reason that attention has largely been restricted to two-dimensional theories thusfar has to do with

two distinct phenomena. The first of these is that the wave equation, on which free field theory is based,

factors into left- and right-moving (or holomorphic and anti-holomorphic) sectors. This means that ordinary

field theory in two dimensions is very closely related to holomorphic field theory, even in the absence of

supersymmetry. In higher dimensions, this of course fails; as outlined above, though, there is still a close

connection between supersymmetric and holomorphic theories.

The second, perhaps more subtle, reason is often alluded to in the physics literature by citing Hartogs’

theorem, which implies that every holomorphic function on Cn \ 0 (for n ≥ 2) extends to a holomorphic

function on Cn. It thus seems to be hopeless to make sense of an analogue of the Kac–Moody construction

in more than one complex dimension. Let us give a brief outline of the usual argument for this enhancement

in two dimensions that shows how it seems to break down for n ≥ 2.

Suppose a theory has a global symmetry by a Lie algebra g. The only obstruction to a local symmetry is

the presence of derivatives in the kinetic term; as such, the holomorphic theory admits a symmetry by all

holomorphic functions with values in g, since only the ∂ operator appears in the action functional. On the

local operators, there is a symmetry by any holomorphic function on the punctured affine plane,

(1) Ohol(C
n \ 0) ⊗ g −−−→

n=1
C[z, z−1] ⊗ g.

When n = 1, there is then a central extension by the residue pairing, which gives rise to the Kac–Moody al-

gebra and is represented in interesting fashion on the local operators. When n > 1, there are no meromorphic

functions and no such pairing on Ohol(C
n \ 0) exists.

However, a natural analogue of this pairing does exist. It is, however, not defined on Ohol itself, but rather

on its derived replacement: the Dolbeault complex Ω0,•(Cn \0). (It is worth emphasizing here that a twist of

a physical field theory will always produce such a derived replacement, since the original sheaves of fields or

currents are locally free over C∞ functions at the cochain level.) The homotopy type of Cn \ 0 is, of course,
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that of the (2n − 1)-sphere, and so the wedge product followed by integration over the top class defines a

pairing on differential forms. To obtain a pairing on Dolbeault forms, we form the map

(2) (α, β) 7→

∫

S2n−1

(α ∧ β) ∧ Ω,

where Ω is a holomorphic Calabi–Yau form on Cn \ 0. The degree of the pairing on Dolbeault cohomology

is therefore n − 1, which is zero precisely in complex dimension one. In general, Dolbeault cohomology of

punctured affine space is supported in degrees 0 and d−1, and can be thought of as consisting of holomorphic

functions on affine space in degree zero, together with their dual (multiples of the Bochner–Martinelli kernel)

in degree d−1. These are superimposed, purely by accident, in complex dimension one, and form the positive-

and negative-degree parts of the Laurent polynomials C[z, z−1]. Thus, in our view, the second confusing

coincidence in complex dimension one consists precisely in the fact that Dolbeault cohomology is supported

only in degree zero, and the residue pairing is defined without any shift of grading.

At this stage, it is worth remarking on a connection between the structure at hand and recent work [8]

studying higher operations in topological quantum field theory arising from the homology of the operad

of little n-disks (i.e., of configuration spaces of points in Rn). The ghost number in our higher algebras is

essentially Dolbeault form degree, and a holomorphic analogue of topological descent is possible, making

use of those supercharges which witness a nullhomotopy of the antiholomorphic translations in the twisted

theory. The graded pairing that gives rise to higher central extensions, as we have emphasized, arises from

the top class in the homology of Cn \ 0, which is the same class that gives rise to the bracket operation

on local operators in TQFT discussed in [8], albeit paired with the Calabi–Yau form. In a sense, for us,

Cn \ 0 is playing the role of a holomorphic analogue of Conf2(R2n); one physical interpretation of our higher

symmetry algebras is that nonlocal operators play an important role, giving rise to algebraic structures on

local operators via holomorphic descent. We expect that it is possible to study a holomorphic analogue

of the operad of little disks, and to use it to characterize secondary operations in holomorphic theories at

the level of operads which can imposed concretely via a holomorphic analog of descent; however, we do not

pursue this here, reserving such questions for future work.

Using the formalism of factorization algebras and the pairing discussed above, higher analogues of Kac–

Moody algebras were recently introduced in [9], [10]. It was then argued in [10], [11] that these algebras

appear naturally in holomorphic twists of four-dimensional field theory as twists of the current supermultiplet

associated to a global symmetry. A natural higher analogue of the Virasoro algebra in holomorphic theories

was also proposed in [12]; it consists precisely of the Dolbeault resolution of the holomorphic vector fields

on Cn \ 0. (The reader will recall that the Virasoro algebra is a central extension of the Witt algebra of

holomorphic vector fields on C \ 0.) Local L∞ central extensions generalizing the well-known Kac–Moody

and Virasoro central extensions were shown to exist. In particular, the space of local central extensions of
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the higher Virasoro algebra was shown in [12], [13] to be two-dimensional; it is easy to guess that these

cocycles correspond to the a and c central charges of four-dimensional conformal field theory.

In the present work, our aim is to explore the relation of the four-dimensional higher Virasoro algebra

to superconformal symmetry in the full theory. After reviewing some background on holomorphic theories

in §2, we compute the holomorphic twist of the four-dimensional superconformal algebra in §3, and argue

that the resulting algebra, sl(3|N− 1) (or psl(3|3) when N = 4), acts naturally as a finite-dimensional closed

subalgebra of the holomorphic vector fields on an appropriate holomorphic superspace, C2|N−1. See Theorem

3.10 for the precise statement. In §4, we show that the holomorphic twists of supersymmetric theories in four

dimensions naturally live over this superspace, and admit natural actions of the higher symmetry algebras

at the classical level. At this stage it plays no role if the untwisted theory is in fact superconformal or not.

For the precise results pertaining to symmetry enchancements of twists of four-dimensional theories, see

Propositions 4.16–4.18.

In §5, we introduce the central extensions mentioned above, which first play a role upon quantization of the

theory. §6 then goes on to consider further deformations of the enhanced symmetry algebra as a factorization

algebra, which play a role in other twists of the theory. We consider, in particular, the deformation of

the centrally extended higher Kac–Moody and Virasoro factorization algebras by a Maurer–Cartan element

arising from a special supersymmetry in the global superconformal algebra, making connection with the work

of Beem and collaborators [14]. For us, this deformation appears as a simple odd vector field implementing

the Koszul resolution of a subspace C ⊂ C2. The main results of Section 6 can be summarized as follows.

Theorem 1.1. Let KMN=2,κ and VirN=2,c be the N = 2 higher Kac–Moody and Virasoro factorization

algebras on C2, as defined in Definitions 5.5 and 5.9 respectively. Let KM′
N=2,κ and Vir′N=2,c be the corre-

sponding factorization algebras deformed by the Maurer–Cartan element z2
∂
∂ε arising as a special supercharge

in the global superconformal algebra (see §6). Then:

• KM′
N=2,κ is equivalent to a stratified factorization algebra on C2 which is trivial away from z2 = 0

and along the plane Cz1 = {z2 = 0} is equivalent to the Kac–Moody vertex algebra at level −κ/2.

• Vir′N=2,c is equivalent to the stratified factorization algebra on C2 which is trivial away from z2 = 0

and along the plane Cz1 = {z2 = 0} is equivalent to the Virasoro vertex algebra at level −12c.

In words, at the level of stratified factorization algebras, the deformations of our higher symmetry algebras

reproduce the chiral algebras studied in [14]; these are strictly contained within the full higher Virasoro and

Kac–Moody symmetries, and are obtained from them by a further twist. We also reproduce the correct

correspondence between four- and two-dimensional central extensions of these algebras; this is strong evidence

that the central extensions of the higher algebra correspond precisely to the higher-dimensional central

charges of the physical theory, just as in two dimensions.
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Other examples of chiral algebras have been extracted from four-dimensional N = 2 theories, and we

expect that the higher Virasoro and Kac–Moody algebras can profitably be used to understand all of them.

Many of these appear from further twists; for example, the half-holomorphic twist of [15] is implemented

by a natural further deformation. We expect that the recent results of [16]–[18], producing chiral algebras

isomorphic to those of [14] from this half-holomorphic twist in the presence of an Ω-deformation, can be

swiftly understood in our setting. The first study of infinite-dimensional symmetry at the level of the

holomorphic twist was performed in [19], but was restricted to the setting of a product of Riemann surfaces;

for us, the essential geometry for the study of local operators in four dimensions is that of C2 \ 0. However,

it is worth noting that the formalism of factorization algebras allows us to think of symmetries by local Lie

algebras across all complex surfaces uniformly.

In addition, we emphasize that the symmetry enhancement in the holomorphic theory means that many

more deformations of the differential are available after the holomorphic twist. Of course, any appropriate

Maurer–Cartan element of the global superconformal algebra gives rise to such a deformation, but new

deformations appear in the holomorphic twist which are not visible at the level of the full theory. While we

reserve a full analysis for future work, we explore some of these new deformations briefly in §6.3, arguing

that the higher Virasoro algebra in N = 2 supersymmetric theories admits a deformation that localizes it to

the holomorphic vector fields on any smooth affine curve in C2, not just to planes. We expect even more

interesting behavior in the case of singular or nonreduced curves, though we do not explore this direction

further here.

In §7, we turn to some explicit examples of theories, and in particular to N = 2 super-QCD. We demon-

strate that the higher Virasoro symmetry is, in fact, anomalous, and can be realized in the quantum theory

precisely when the familiar condition Nf = 2Nc is satisfied—i.e., when the full theory is in fact superconfor-

mal. The beta function of the full theory is thus visible as an anomaly in the holomorphic twist—in spite

of the fact that the holomorphic theory itself is automatically scale-invariant. We then offer a precise char-

acterization of the chiral algebras (or two-dimensional holomorphic theories) that appear upon deforming

N = 2 superconformal QCD as above, again reproducing results of [14] in our formalism.
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2. Holomorphic twists and renormalization

Renormalization group flow is one of the most fundamental characteristics of interacting field theories.

As is well-known, quantization of classical field theories introduces subtleties into classical notions of scale

invariance and scaling dimension, due to the need to work within a regularization scheme. As a result,

operators acquire anomalous scaling dimensions, and even classically scale-invariant coupling constants can

undergo renormalization group flow, as measured by the beta function.

Of special interest in physics are the fixed points of the renormalization group flow; these are, by definition,

scale-invariant field theories. However, under certain mild assumptions, scale invariance is enough to ensure

the invariance of the theory under conformal transformations of the spacetime. (See e.g. [20], [21] for recent

literature on the relationship between scale and conformal invariance.)

When supersymmetry is also present, it combines with conformal invariance to produce a superconformal

field theory, invariant under a simple super-Lie algebra containing all spacetime symmetries. We review

conformal and superconformal symmetry below in §3; in this section, our goal is to review some of our

conventions for discussing field theories, to offer a few remarks on holomorphic field theory in particular,

and then to remind the reader of some results on renormalization group flow in holomorphic theories.

Twisting a supersymmetric field theory tends to dramatically simplify its dependence on the scale. This

is most familiar from topological field theories, where the twisting supercharge Q is chosen so that the action

functional takes the form

Ssusy = {Q,F} + Stop,

where Ssusy is the original supersymmetric action, and Stop is a topological action functional. In other

words, the original action is topological up to a Q-exact term. The twisted theory is then independent of

the spacetime metric, and in particular of the scale [22].

It turns out that renormalization group flow is drastically simplified even in holomorphic twists of super-

symmetric theories. Some of the key results that ensure that this holds are true even for general holomorphic

theories, not necessarily arising from twists. A holomorphic theory is one which is invariant under holomor-

phic diffeomorphisms of spacetime, and depends only on a complex (or perhaps Kähler or Calabi–Yau)

structure on the spacetime, rather than a Riemannian structure. For a precise definition see [23, §2.2].

In this section, we will deduce some consequences for holomorphic twists of supersymmetric theories from

the results about renormalization of holomorphic theories in [23]. In particular, we are interested in the

fact that the beta function in holomorphically twisted theories vanishes to all loop orders. This is because

the one-loop beta function is zero for any holomorphic theory (Theorem 2.1), and because the class of

holomorphic theories arising from twists in four dimensions are in fact one-loop exact (Proposition 2.2). To

give the reader some context, we begin by setting up our conventions for field theory.
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2.1. Field theory in the BV formalism. Our model follows the Batalin–Vilkovisky formalism for quan-

tization as developed in [24], [25]. For an overview that is closest to the content in this article, we also refer

to [23, §2].

In physics, it is most common to study gauge theories in the BRST formalism. Here, one starts with a

space of fields F given as the space of sections of some graded vector bundle on spacetime, a BRST operator

QBRST acting on functions on fields O(F), and a local BRST action functional SBRST ∈ Oloc(F). Here, local

means that SBRST is given as the integral of a Lagrangian density built from (poly)differential operators

acting on the fields. For a precise definition see [25, Definition 3.5.1.1].

Our method of quantization uses BV formalism, which at the classical level is an extension of usual the

BRST setup. Classically, in the BV formalism, one still starts with a space of BV fields E which again arises

as the space of sections of a graded vector bundle. In addition, E is equipped with a (−1)-symplectic form

that endows functionals of the fields O(E) with a bracket {−,−} of degree +1 called the BV bracket. The

next piece of data is the BV action S ∈ Oloc(E) which satisfies the classical master equation (CME)

{S, S} = 0.

A quantum BV theory consists of a space of fields and an effective action functional {S[L]}L∈(0,∞), which

is a family of non-local functionals on the fields that are parametrized by a length scale L and satisfy

(1) an exact renormalization group (RG) flow equation,

(2) the scale L quantum master equation (QME) at every length scale L, and

(3) as L→ 0, the functional S[L] has an asymptotic expansion that is local.

The first condition says that the scale L action S[L] defines a functional at every other scale. The second

condition guarantees a proper path integral measure at scale L (indeed the QME can be seen as a definition

of the measure). The third condition implies that the effective action is a quantization of a classical field

theory. A complete definition can be found in [25, §8.2].

In this section we will only be concerned with conditions (1) and (3). A theory satisfying these two

conditions is called a “prequantization” of a field theory.

The length scale appearing above is associated with a choice of Riemannian metric on the underlying

manifold, but the formalism of [24] keeps track of how the space of quantum BV theories depends upon such

a choice (and other choices that might go into issues like renormalization). Indeed, a choice of a metric g

allows one to construct a smooth heat kernel KL, L > 0 satisfying the heat equation ∆gKL + ∂LKL = 0,

where ∆g is the metric Laplacian associated to g. As t → 0 the heat kernel becomes distributional, and is

equal to the kernel of the classical BV bracket. In other words {−,−} = ∂K0 , where ∂K0 denotes contraction

with the heat kernel.

Furthermore, a gauge fixing condition allows one to define from KL the propagator of the theory. In this

setup, a gauge fixing condition is realized as a cohomological degree −1 operator QGF on the fields of the BV
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theory. The propagator is obtained by applying QGF to the heat kernel Kt and integrating over all length

scales:

P =

∫ ∞

L=0

QGFKLdL.

The propagator, of course, is still distributional but one can make UV and IR cutoffs to obtain a smooth

partial propagator: PL<L′ =
∫ L′

t=L
QGFKtdt. It is this partial propagator that is used to construct the

effective action {I[L]}.

The RG flow from scale L > 0 to L′ > 0 is encoded by an invertible linear map

W (PL<L′ ,−) : O(E)[[~]] → O(E)[[~]]

defined as a sum over weights of graphs W (PL<L′ , I) =
∑

ΓWΓ(PL<L′ , I). Here, Γ denotes a graph, and the

weight WΓ is defined as follows. One labels the vertices of valence k by the kth homogenous component of

the functional I. The edges of the graph are labeled by the propagator PL<L′ . The total weight is given by

iterative contractions of the homogenous components of the interaction with the propagator.

Condition (2) above says that a family of functionals {I[L]} defining a QFT must satisfy the RG flow

equation:

I[L′] = W (PL<L′ , I[L])

for all L < L′. Given a classical interaction I ∈ Oloc(E), there is a natural way to attempt construct an

effective family of functionals satisfying the RG flow equations. Indeed, it follows from elementary properties

of the homotopy RG flow operator W (PL<L′ ,−) that if the functional

I[L] “ = ” W (P0<L, I)

were to be well-defined for each L > 0, then the RG flow equations would automatically be satisfied for the

collection {I[L]}. The problem is that this naive guess is ill-defined due to the distributional nature of the

propagator P0<L. The approach of Costello [24] is to introduce a small parameter ǫ > 0 and to consider the

limit of the functionals W (Pǫ<L, I) as ǫ→ 0. For most theories, this ǫ→ 0 limit is ill-defined, but there always

exist ǫ-dependent counterterms ICT (ǫ) rendering the existence of the ǫ→ 0 limit of W (Pǫ<L, I − ICT (ǫ)).

2.2. Holomorphic renormalization. The main result of [23] is that for holomorphic theories there is no

need to introduce counterterms, at least at one loop. In other words, holomorphic theories on Cd are one-loop

finite for any dimension d.

Theorem 2.1 ([23]). Holomorphic theories on Cd admit a finite one-loop (pre)quantization. In particular,

the one-loop β-function of a holomorphic theory is identically zero.

The key idea behind this result is the existence of a particular gauge fixing condition that is present in a

holomorphic field theory. In general, the fields of a holomorphic field theory on X are given as holomorphic
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sections of holomorphic vector bundle V on X . In the BV formalism, it is necessary to take a free resolution

of the fields, so that the full BV fields are given by the Dolbeault complex

Ω0,•(X,V).

The linear BRST operator for the theory is of the form ∂ + D where D is some holomorphic differential

operator acting on V. When X = Cd, we pick the flat metric and the associated adjoint to the ∂-operator is

our choice for the gauge fixing condition

QGF = ∂
∗
.

This choice allows us to construct heat kernels and propagators as above, and a direct analysis of the

associated Feynman diagrams yields the theorem.

2.3. Twists of supersymmetric theories on C2. We have already mentioned that any supersymmetric

field theory in four-dimensions admits a holomorphic twist. Further, at one-loop, RG flow acts trivially at

the level of the holomorphic twist. In fact, by our understanding of the catalog of holomorphic twists of

supersymmetric theories in four dimensions this is enough to argue that RG flow acts trivially at all loops.

This follows the holomorphic theories that arise from twists of four-dimensional supersymmetric theories

are one-loop exact. This means, there exists a quantization so that no Feynman diagrams appear past

one-loop.

This exactness follows from the fact that the the twisted theories arise as deformations of cotangent field

theories. For a definition of a cotangent theory fitting our description see [25, §4.6]. The key feature of a

cotangent theory is that the fields are of the form

E = T ∗[−1]F

with T ∗[−1] denoting the shifted cotangent bundle. The BV pairing is given by the natural dual pairing

〈−,−〉 between F and F∗. Moreover, if we write β for a coordinate in the fiber of T ∗[−1]F and γ in the base,

the classical action must be of the form ∫
〈β, F (γ)〉

where F is some polynomial (possibly involving derivatives) in the field γ.

Proposition 2.2. The holomorphic twist of four-dimensional N = 1, 2, 4 supersymmetric gauge theories

are all deformations of cotangent theories. (See Propositions 4.10, 4.11, 4.14.) In particular, the holomor-

phic twist of a four-dimensional supersymmetric theory on R
4 admits a one-loop exact and one-loop finite

(pre)quantization.

As an immediate corollary:
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Corollary 2.3. The renormalization group flow for a holomorphic theory on C2 that arises as a twist of

four-dimensional supersymmetric theory is trivial.

Remark 2.4. One-loop exactness is not a general feature of holomorphic theories on C2. For example,

the holomorphic symplectic boson, see Definition 4.8, with target a general symplectic manifold admits no

one-loop exact quantization in general.

Remark 2.5. The interpretation of Proposition 2.2 deserves special note. One might be tempted to conclude

that the beta function of the original theory is invisible in the holomorphic twist, and therefore that any

holomorphically twisted theory enjoys a higher Virasoro symmetry, independent of whether or not the

untwisted theory is in fact superconformal.

We find that this reasoning holds at the classical level. The theorems of §4 show that the algebra

of holomorphic vector fields on superspace (without central extension) acts on any holomorphic twist in

four dimensions. However, this is not particularly surprising, since the beta function first appears upon

quantization and represents an anomalous contribution to scale invariance.

However, we calculate below in §7, in the example of N = 2 super-QCD, that an anomaly prevents

realization of the higher Virasoro algebra at the quantum level. The value of this anomaly is proportional

to the same representation-theoretic factors that appear in the beta function of the untwisted theory. It

therefore seems reasonable to conjecture that the beta function of the untwisted theory becomes the higher

Virasoro anomaly of the holomorphic twist in generality; however, we offer no proof of this fact in general

here.

3. Holomorphic twists of superconformal algebras

3.1. The conformal and superconformal symmetry algebras. We here review some basic notions of

conformal and superconformal symmetry in physical theories. Our index conventions are standard; indices

for the vector representation of an orthogonal group are raised and lowered with the metric. We sometimes

use the isomorphism between the vector representation of so(4) and the tensor product of its two chiral

spinors; spinor indices are raised and lowered with the su(2)-invariant alternating form ǫαβ .

Definition 3.1. The conformal algebra in dimension d > 2, with signature (p, q), is so(p+ 1, q + 1).

Proposition 3.2 (Standard; see for example [26]). The conformal algebra acts by vector fields on Rp,q.
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Proof. This is essentially by definition, since the conformal group is the set of diffeomorphisms of Rp,q that

act by local rescaling on the metric. We remind the reader that the relevant vector fields form a finite-

dimensional algebra in dimensions greater than two, and can be explicitly given as

(3)

Pµ =
∂

∂xµ
,

Mµν = xµ
∂

∂xν
− xν

∂

∂xµ
,

∆ = −E,

Kµ = |x|2
∂

∂xµ
− 2xµE.

Here E = xµ∂µ is the Euler vector field. It is straightforward to check that these satisfy the commutation

relations

(4)

[D,Pµ] = Pµ,

[D,Kµ] = −Kµ,

[Mµν ,Kρ] = gρνKµ − gµρKν ,

[Mµν , Pρ] = gρνPµ − gµρPν ,

[Kµ, Pν ] = 2Mµν + 2gµνE,

[Mµν ,Mρσ] = gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ,

with other commutators vanishing. For a proof that these vector fields span the space of solutions to the

conformal Killing vector field equations, see [26]. �

Remark 3.3. In dimension four, the accidental isomorphism so(6) ∼= su(4) gives rise to a convenient way of

thinking about the vector fields defined above. Let us pass to using complex coefficients. We can realize the

action of the complexified conformal group on complexified Minkowski space C4 by considering the quotient

of GL(4,C) by a particular parabolic subgroup:

(5) Fl(2; 4) = GL(4,C)/P, P =



∗ ∗

0 ∗



 .

(We choose to use GL(4,C), rather than SL, for the sake of convenience; note, however, that the unit-

determinant condition can be imposed everywhere, and does not affect our discussion.) Here P consists of

two-by-two blocks with the lower left block zero and other blocks arbitrary. The resulting symmetric space

is the space of 2-flags in C4; it has an open dense subset isomorphic to C4, given by cosets represented by

matrices of the form

(6)


 1 0

xαα̇ 1


 ∈ GL(4,C).
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The reader will recall that the chiral (or antichiral) spinor of Spin(6), equivalent to the fundamental (or

antifundamental) representation of SU(4), becomes one chiral and one anti-chiral spinor of Spin(4) ∼= SU(2)×

SU(2), which can be thought of as sitting block-diagonally inside SU(4). Our index convention in (6) is

meant to suggest this. The vector fields witnessing the natural action of GL(4,C) on Fl(2; 4) from the left

become the conformal vector fields of (3) when restricted to the image of this embedding of Minkowski space

in Fl(2; 4).

The construction of Remark 3.3 becomes even more important in the context of superconformal symmetry.

In a limited number of cases classified by Nahm [27]—in particular, when the spacetime dimension does not

exceed six—the conformal algebra can be extended to supersymmetric theories, which then admit the action

of a simple superconformal algebra c(d,N) containing both the conformal algebra and the N-extended super-

Poincaré algebra. A complete list of such algebras for dimension greater than two is

(7) c(d,N) =





osp(N|4), d = 3;

su(2, 2|N), d = 4, N 6= 4;

psu(2, 2|4), d = 4, N = 4;

f(4), d = 5, N = 1;

osp(6, 2|2N), d = 6.

In each case, the construction relies on an accidental isomorphism of Lie algebras, akin to that used in

Remark 3.3, that allows one to fit the spinor representations of low-dimensional spin groups into Kac’s

classification of simple super-Lie algebras [28], where no infinite families with odd elements in spinor repre-

sentations appear.

We now specialize to four-dimensional theories, and thus to the algebras su(2, 2|N) for N = 1 and 2,

and psu(2, 2|4) in the case N = 4. In our considerations, we will always complexify, and thus deal with the

complex Lie algebras sl(4|N) or psl(4|4). (The change for N = 4 comes about because sl(k|k) has a one-

dimensional center and is therefore not simple; algebras with N > 4 exist, but are not of physical relevance,

as they cannot be represented on interacting theories.) One can helpfully think of the generators of this

algebra as arranged in the following diagram:

(8)

Pαα̇

Qiα Q̄α̇i

Mαβ ∆, Rij M̄α̇β̇

Sαi S̄α̇i

Kαα̇
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Here, vertical position in the diagram represents the conformal weight of the corresponding generator, and

horizontal position is determined by the difference in number of chiral and antichiral spinor indices. If vertical

position is interpreted as a Z-grading, parity is determined by its value modulo two. The charges Qiα and S̄α̇i

together form a chiral spinor of so(4, 2), which is equivalent to the antifundamental representation of su(2, 2);

they transform in the fundamental representation of the R-symmetry group. Likewise, Q̄α̇i and Sαi together

sit in the fundamental representation of su(2, 2) and the antifundamental representation of R-symmetry.

(We generally follow the conventions of [29].)

The superconformal algebra acts naturally by vector fields on supermanifolds. For example, the usual

superspace for N = 1 supersymmetry in four dimensions is R
4|4, with one odd copy of each chiral spinor

representation; it admits an action of su(2, 2|1) by supervector fields that extends the natural action of

super-Poincaré by supertranslations. The vector fields were written explicitly in [30], and shown to arise

(as in the bosonic case) from conjugating super-Poincaré transformations by the superspace analogue of the

inversion transformation. This generalizes to extended superconformal symmetry; see [31] for details. Here,

a consistent real structure can be imposed, such that the odd part of R4|4 is the Majorana spinor of SO(3, 1).

However, this will play no role in our further considerations.

However, the standard (unconstrained) superspace is not the only superspace where the superconformal

algebra naturally acts. Of particular interest for us will be an action on superfields satisfying a chiral

constraint.

Proposition 3.4. The complexified four-dimensional superconformal algebra sl(4|N) acts geometrically by

supervector fields on the chiral superspace

(9) C
4|2N ∼= V ⊕ Π(S+ ⊗R),

where V and S+ denote respectively the fundamental and chiral spinor representations of Spin(4), and R the

defining representation of the U(N) R-symmetry.

Proof. As in Proposition 3.2, this is almost a proof by definition, although the characterizations involved

seem to be less well-known in this case. One can in fact define the four-dimensional superconformal algebra

to be the collection of vector fields on unconstrained superspace, R4|4N, that (after complexification) act

compatibly with every possible chiral constraint. That is,

(10) [X,Dαi] ∼ Dαi, [X, D̄j
α̇] ∼ Dj

α̇.

For general N, this characterization is given, for instance, in [32]; see [33] for further discussion and an

explicit treatment of the case N = 1.
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Since the superconformal transformations act preserving chiral subspaces, they also act on each chiral

subspace. In the case N = 1, the explicit supervector fields involved are

(11) Pαα̇ = ∂αα̇, Mαβ = xαα̇∂βα̇ + θα∂β + (α ↔ β), M̄α̇β̇ = xαα̇∂αβ̇ + (α̇ ↔ β̇)

for generators of affine transformations, as well as

(12) ∆ = E +
1

2
θα∂α, R = θα∂α, Kαα̇ = |x|2∂αα̇ − 2xαα̇E + θαxβα̇∂β

for dilatations and U(1) R-symmetry, and special conformal transformations, and lastly

(13)
Qα = ∂α,

Q̄α̇ = θα∂αα̇,

Sα = −xαα̇θβ∂βα̇ + θ2∂α,

S̄α̇ = xαα̇∂α

for the fermionic transformations. Here E again denotes the Euler vector field. We further note that when

N = 4, the action factors through the simple quotient psl(4|4). �

Remark 3.5. Note that the action of the conformal algebra is modified from its purely bosonic form! While the

supervector fields realizing supertranslations remain unaffected, K now contains fermion-dependent terms.

However, under the quotient map from functions on superspace to functions on (bosonic) C4, the vector

fields of Proposition 3.2 are reproduced.

As above in Remark 3.3, it is extremely helpful to justify the existence of such vector fields by relating

the affine superspace that carries this group action to a symmetric space constructed directly from the

superconformal group. In doing this, we follow the excellent discussion in [31]; the interested reader is

referred there for more information.

Definition 3.6. Let C
m|n be a supervector space. A flag is a sequence of subobjects in the category of

supervector spaces,

(14) 0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ C
m|n, dimVi = mi|ni,

where each containment is strict. As in the usual case, flags are characterized by their type, which is the list

of dimensions {mi|ni}. These must form a strictly increasing sequence inside of the poset Z+ ×Z+. We will

denote the space of flags of a fixed type by Fl(mi|ni;m|n).

Observation 3.7. The flag manifold Fl(mi|ni;m|n) naturally carries an action of GL(m|n,C), exhibiting

it as a symmetric space. As in the usual case, we can see this by exhibiting the space of flags as the right

quotient of GL(m|n,C) by the stabilizer of a standard flag of appropriate type. We form a standard flag of

type m′|n′ by fixing an ordered basis of Cm|n, considered as a GL(m|n,C) module in the standard way, and

taking the flag spanned by the first m′ even and the first n′ odd basis vectors. The left GL(m|n,C) action

on the flag variety remains unbroken and gives rise to a subalgebra of the vector fields on Fl(mi|ni;m|n)
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representing gl(m|n). For example, the parabolic subgroup stabilizing a standard flag of type m′|n′ consists

of block matrices of the form

(15)




∗ ∗ ∗ ∗

0 ∗ 0 ∗

∗ ∗ ∗ ∗

0 ∗ 0 ∗







∗

0

∗

0




as a subgroup of GL(m|n,C).

We are now equipped to give supersymmetric analogues of the construction of the conformal compactifi-

cation Fl(2; 4) of four-dimensional affine space in Remark 3.3.

Proposition 3.8 ([31]). The left-chiral N-extended superspace in four dimensions is a dense open subset

in Fl(2|0; 4|N). Similarly, the right-chiral superspace is a dense open subset in Fl(2|N; 4|N), and the full

superspace C4|4N admits a compactification to Fl(2|0, 2|N; 4|N).

We note that the map for the chiral superspaces can be represented by matrices of the form

(16)




1 0 0

xαα̇ 1 0

θαi 0 0


 ,




1 0 0

xαα̇ 1 θ̄α̇i

0 0 0




respectively. The reader is referred to [31] for the proof and further discussion.

Remark 3.9. For future use, it is helpful to summarize the correspondence for the reader between supercon-

formal generators as tabulated above and a matrix presentation of sl(4|N) with the following diagram:

(17)




Mα
β Kαβ̇ Sαj

Pαβ̇ M̄ β̇
α̇ Q̄α̇j

Qiα S̄α̇i Rij


 ; ∆ =




1 0 0

0 −1 0

0 0 0


 , r =

1

N − 4




N 0 0

0 N 0

0 0 4


 .

3.2. Twisted superconformal symmetry. We now proceed to consider consequences of superconformal

symmetry for holomorphically twisted theories. It is sensible to begin by deforming the superconformal

algebra to a dg-Lie algebra, using the differential generated by the adjoint action of the holomorphic su-

percharge, and then by computing its cohomology. The resulting algebra will act on any holomorphically

twisted superconformal theory.

Theorem 3.10. Let c(N) be the complexified superconformal algebra in four dimensions. The cohomology

of c(N) with respect to a holomorphic supercharge is chol(N) = sl(3|N − 1) for N = 1 and 2, or psl(3|3) for

N = 4.
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We proceed by computing the cohomology directly; it is a quotient of the commutant of Q. To begin,

we change from Lorentz indices to holomorphic notation, adapted to the symmetry group left unbroken

in Q-cohomology; upon breaking SO(4) to U(2), the left-chiral spinor index becomes a pair of charged

singlets, labeled by ±, and the right-chiral spinor becomes the fundamental of the unbroken SU(2). As

for R-symmetry indices, we break U(N) to U(1) × U(N − 1); label the corresponding indices 0 and i, with

position of the index recording fundamental versus antifundamental representations of the corresponding

groups.

After having done this, we can represent a basis for the algebra using a diagram analogous to (8) above:

(18)

P+
α̇ , P

−
α̇

Qi+, Q
i
−, Q

0
+, Q

0
− Q̄α̇i, Q̄α̇0

M++,M−−,M+− ∆, Rij , R
0
j , R

i
0, R

0
0 M̄α̇β̇

S+
0 , S

−
0 , S

+
i , S

−
i S̄α̇i, S̄α̇0

K α̇
+,K

α̇
−

We choose the holomorphic supercharge to be Q0
+.

One can then simply use the commutation relations given above to determine exact pairs; the conclusion

is that the holomorphic momenta P−
α̇ and superconformal transformations K α̇

+ survive, together with M̄α̇β̇

and the traceless R-symmetry Rji . The surviving fermions are Q̄iα̇ and Qi− from the Poincaré supercharges,

and S̄α̇i and S−
i from the conformal supersymmetries. Together with two additional central generators, these

implement the algebra sl(3|N − 1).

We have included this discussion to orient those readers with a physics background, using relatively

standard notation, as to which of the conformal symmetries survive in the holomorphically twisted theory.

However, a proof of the proposition that is both less cumbersome and more useful can be given by just

considering the matrix group GL(4|N) together with a parabolic subgroup, and computing the holomorphic

twist directly. The advantage is that one directly obtains a description of the twist of the module GL(4|N)/P ,

with its action of the twisted superconformal algebra. (As above, it is convenient to ignore the traceless

condition for the moment and restore it later on.)

Proof of Theorem 3.10. Identifying the conformal algebra with sl(4|N) as in (17) above, the holomorphic

supercharge corresponds to the elementary matrix generator e0+. (We continue to use the index set α, α̇, i

for a basis of the supervector space C4|N; + and 0, as in the previous discussion, denote specific values of

these indices, and we will use µ for any element of this basis, chosen without specifying parity or spin.)

Using the standard commutation relations, we see that

(19) [e0+, eµν ] = δ+µe0ν − (−)|µν|δν0eµ+,
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which immediately implies that ker(adQ) is spanned by elementary matrices with µ 6= + and ν 6= 0, together

with e00 + e++, and that im(adQ) is spanned by the elementary matrices e0ν and eµ+ (allowing only the

diagonal combination e00 + e++). The cohomology is therefore isomorphic to sl(3|N − 1); if we follow the

parabolic subgroup defining the chiral superspace through the same computation, we find matrices of the

form

(20)




− − − ∗

0 − − ∗

0 − − ∗

0 ∗ ∗ ∗




Looking just at the bosonic part of this calculation (or, equivalently, setting N = 1), the reader will recognize

the parabolic subgroup defining Fl(1; 3) ∼= CP 2 as a maximally symmetric space for the group SL(3). In

general, the resulting coset space is Fl(1|0; 3|N − 1). Very similarly to the untwisted case, an open dense

subset is the holomorphic affine superspace C2|N−1 = Spec C[z1, z2; εi], where εi (1 ≤ i < N) are fermionic

scalars. �

Corollary 3.11. The twisted superconformal algebra sl(3|N − 1) acts geometrically by holomorphic super-

vector fields on C2|N−1.

Indeed, it is easy to describe these vector fields explicitly. In the case N = 1, no fermions remain, so that

we just need to give an action of sl(3) by holomorphic vector fields on C2. A straightforward calculation

shows that the vector fields

(21) pi =
∂

∂zi
, mij = zi

∂

∂zj
, ki = zie

give the desired module structure. Here e = zi∂/∂zi = tr(m) is the holomorphic Euler vector field.

In the general case, we need to add additional even vector fields to implement the R-symmetry, as well

as fermionic vector fields in the appropriate representations of sl(3) × sl(N − 1). We must also modify the

vector field implementing the conformal weight to

(22) zi
∂

∂zi
+

1

2
ε
∂

∂ε
,

although this of course just amounts to a change of basis in the Cartan subalgebra. Further, we must replace

the Euler vector field in the definition of the generators ki by ê = zi∂/∂zi + ε∂/∂ε (in the case N = 2). The

needed odd vector fields in this case are

(23)
∂

∂ε
, ε

∂

∂zi
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for positive conformal weight, and

(24) zi
∂

∂ε
, εe

for negative conformal weight. In general, we obtain one copy of this for every odd parameter; the R-

symmetry is of course implemented by the vector fields εi∂/∂εj.

4. Symmetry enhancement from holomorphic twisting

In the following section, we will demonstrate that there are natural enhancements of the twisted su-

perconformal algebras constructed above to local Lie algebras, consisting of the Dolbeault resolution of all

holomorphic vector fields on an appropriate superspace—in the affine case, just C2|N−1. Throughout, the

reader should bear in mind the familiar process in two dimensions by which the holomorphic Möbius trans-

formations are enhanced to the Witt algebra of holomorphic vector fields on C× and subsequently centrally

extended in the quantum theory to the Virasoro algebra; central extensions of higher symmetry algebras will

be discussed below in §5. We will also review, in parallel, a similar enhancement of global symmetry in holo-

morphically twisted theories to a local Lie algebra, analogous to Kac–Moody symmetry in two dimensions.

We then remind the reader of the holomorphic twists of various familiar supersymmetric theories, and show

that the higher symmetry algebras naturally act (at the classical level) as symmetries.

4.1. Local Lie algebras and symmetries. A local Lie algebra on a manifold X is, in particular, a sheaf of

Lie algebras on X . Thus, these are objects which encapsulate the notion of a gauge symmetry in physics. By

definition, a local Lie algebra is given by a cohomologically graded vector bundle L• on X which is equipped

with differential and bi-differential operators which turn the corresponding sheaf of sections L• into a sheaf

of dg Lie algebras. 1 For a precise definition we refer the reader to [34, Definition 6.2.1].

There are two varieties of local Lie algebras on a complex surface X that will be of interest to us: (1) Lie

algebras of holomorphic currents which arise as resolutions of the sheaf of holomorphic g-valued functions

on X , and (2) Lie algebras of holomorphic vector fields on X .

4.1.1. Lie algebras of holomorphic currents. These local Lie algebras are the natural enhancements of global

symmetries in holomorphically twisted theories.

Definition 4.1. Let g be a Lie algebra. The local Lie algebra of N-extended holomorphic g-currents

on a complex surface X is

(25) G•
N

(X) = Ω0,•(X, g⊗C A),

where A = O(CN−1[1]) = C[ε1, . . . , εN−1], and εi are variables of cohomological degree −1.

1There is also a version of this for L∞-algebras, in which the structure maps are required to be poly-differential operators.
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The algebras just mentioned live naturally over an arbitrary complex manifold X . Indeed, when N = 1,

it is simply given as the Dolbeault complex on X with values in g. For extended supersymmetry, we can

also give a geometric interpretation that thinks of them as objects living over a certain graded space.

Let X be a complex manifold of dimension d. For any m ≥ 0, define the graded space Xd|m to have

graded ring of functions

O(Xd|m) = O(X)[ε1, . . . , εm] = O(X) ⊗ O(Cm[1]),

where εi are variables of cohomological degree −1. Note that we here treat the odd directions as completely

algebraic, and will persist in this convention. Thus, for instance, when we write Ωp,q(Xd|m) we mean forms

of type (p, q) on X with values in the graded ring C[ε1, . . . , εm].

Another way of describing this operation is to say that we are forming the trivial holomorphic bundle

with fiber Cm over X , and then defining Xd|m to be its parity shift. Of course, there are many other

supermanifolds with body X—we could, for example, consider the parity shift of an arbitrary holomorphic

bundle—but this family are appropriate for our present purposes. This is indicated by the fact that, after

the holomorphic twist of the module of chiral superfields in §3, all remaining fermions transformed as scalars

under the structure group.

We can thus interpret the N-extended holomorphic currents as just consisting of the Dolbeault complex

with coefficients in g, but taken on the N-extended space X2|N−1:

(26) G•
N

(X) = Ω0,•(X, g) ⊗C O(CN−1[1]) = Ω0,•(X2|N−1, g).

4.1.2. Holomorphic vector fields. Let X be a complex manifold and consider the sheaf of holomorphic vector

fields Xhol(X). This is the sheaf of holomorphic sections of the holomorphic tangent bundle T 1,0X . There

is a natural resolution of this sheaf by vector bundles given by the Dolbeault complex

X•(X) := Ω0,•(X,T 1,0X)

which is equipped with a natural ∂ operator. On a ∂-acyclic open set, this resolution is quasi-isomorphic to

holomorphic vector fields. The Lie bracket of holomorphic vector fields extends naturally to X•(X) to give

it the structure of a sheaf of dg Lie algebras.

The differential and bracket on X•(X) are given by differential and bidifferential operators, respectively.

Thus, X•(X) defines a local Lie algebra on X . (In contrast, Xhol(X) is not a local Lie algebra since it is

obviously not given as the C∞-sections of a vector bundle.) We will refer to X•(X) as the local Lie algebra

of holomorphic vector fields (and will omit the bullet for cohomological degree unless necessary).

For A a graded commutative algebra, we denote its graded Lie algebra of derivations by Der(A).
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Definition 4.2. The local Lie algebra of N-extended holomorphic vector fields on a complex surface

X is

X•
N(X) =

(
Ω0,•(X,TX) ⊗C A

)
⊲⊳
(
Ω0,•(X) ⊗C Der(A)

)

where A = O(CN−1[1]) as above. (Note that N = 1 extended holomorphic vector fields are just holomorphic

vector fields again, since no fermions survive the twist of the N = 1 algebra.)

The symbol ⊲⊳ here denotes a direct sum of dg vector spaces, but equipped with a different Lie algebra

structure. The desired dg Lie structure can be described concretely as follows:

• the differential is ∂ on both summands in the above decomposition;

• the Lie bracket on Ω0,•(X,TX) ⊗C A is obtained from tensoring the ordinary Lie bracket on vector

fields with the graded commutative product on A. That is, if X ⊗ a and X ′ ⊗ a′ are sections, then

the bracket is

[X ⊗ a,X ′ ⊗ a′] = [X,Y ] ⊗ aa′;

• the Lie bracket on Ω0,•(X) ⊗C Der(A)) is obtained from tensoring the graded commutative wedge

product on differential forms with the Lie bracket on derivations on A. That is, if ω⊗D and ω′⊗D′

are sections, then the bracket is

[ω ⊗D,ω′ ⊗D′] = (ω ∧ ω′) ⊗ [D,D′];

• the remaining brackets are through the Lie derivative of holomorphic vector fields on X and the

natural action of Der(A) on A.

Just as in the case of the current algebras associated to a Lie algebra, there is an interpretation of these

local Lie algebras of vector fields as vector fields living on a certain graded manifolds. If X is a complex

manifold and m ≥ 0, we have the graded manifold Xd|m. Its holomorphic tangent bundle TXd|m has as

its space of sections Γ(Xd|m, TXd|m) which splits as a vector space Γhol(X,TX)[ε1, . . . , εm] ⊕ Ohol(X) ⊗

Der(C[ε1, . . . , εm]). The local Lie algebra XN=m is a resolution of this sheaf of holomorphic section, where

we only resolve by forms on the manifold, and treat the odd directions as algebraic.

Notation 4.3. When X = C2 we will abbreviate the local Lie algebras GN(C2) and XN(C2) by GN and XN

respectively.

4.2. Holomorphic theories on complex surfaces. In this section we introduce some classes of holo-

morphic field theories in complex dimension two, and recall how they arise by holomorphically twisting

N = 1, 2, 4 theories in four dimensions.
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Definition 4.4. Let h be a graded Lie algebra,2 X a complex surface, and L a holomorphic line bundle on

X . Holomorphic BF theory with values in L⊗ h is the BV theory whose fields are

A ∈ Ω0,•(X,L⊗ h)[1]

B ∈ Ω2,•(X,L∗ ⊗ h∗).

with action functional

S(A,B) =

∫

X

〈B ∧ FA〉L⊗h =

∫

X

〈B ∧ ∂A〉L⊗h +
1

2

∫

X

〈B ∧ [A,A]〉L⊗h

where 〈−,−〉L⊗h denotes the graded symmetric pairing between L⊗ h and L∗ ⊗ h∗.

4.2.1. Holomorphic matter. There is a special case of the definition of holomorphic BF theory that warrants

its own name, since its interpretation of the moduli space of classical solutions to the equations of motion

has quite a different feel. Suppose that in the definition of holomorphic BF theory we take the graded Lie

algebra h to have trivial Lie bracket, and hence given by a graded vector space h = V[−1]. The shift we

introduce here is conventional, and is meant to capture the specific examples we have in mind. Repeating

the same definition as above for this special case, we obtain the following.

Definition 4.5. Let V be a finite dimensional graded vector space and L a line bundle on a complex surface

X . The holomorphic βγ system on X , twisted by L, with values in V, is the the BV theory whose fields

are

γ ∈ Ω0,•(X,L) ⊗ V

β ∈ Ω0,•(X,L∗) ⊗ V
∗[1]

with action functional

S(β, γ) =

∫

X

〈β ∧ ∂γ〉L⊗V.

Here, the braces 〈−,−〉L⊗V denotes the graded symmetric pairing between sections of L⊗ V and L∗ ⊗ V∗.

The graded vector space V may not be concentrated in a single degree, as this example indicates.

Example 4.6. A typical example concerns the graded vector space V = V [ε] = V [1] ⊕ V , where V is an

ordinary vector space and ε is a formal parameter of degree −1. In this case, we can use the Berezin integral

to identify

V
∗ ∼= V ∗[ε][−1].

The pairing between V and V∗ is

(v + εv′, φ+ εφ′) 7→

∫

C0|1

〈v + εv′, φ+ εφ′〉V = 〈v, φ′〉 + 〈v′, φ〉

2A similar definition applies for any L∞ algebra.
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where 〈−,−〉V is the dual pairing between the ordinary vector spaces V and V ∗.

Thus, for this particular V = V [ε] we can think of the βγ system twisted by L as a theory on the graded

manifold X2|1 = T [−1]X , where the fields are

γ ∈ Ω0,•(X2|1, L) ⊗ V

β ∈ Ω0,•(X2|1, L∗) ⊗ V ∗

and the action is

S(β, γ) =

∫

X2|1

〈β ∧ ∂γ〉.

Example 4.7. We can further simplify a special case of this theory when we have made an additional choice

on the complex surface X . Suppose we choose a square root of the canonical bundle on X . Then, the βγ

system, twisted by L = K
1/2
X , with values in V = V [ε] is equivalent to the theory with a single set of fields

given by

ϕ ∈ Ω0,•(X,K
1/2
X ) ⊗ T ∗V ⊗ C[ε] = Ω0,•(X2|1,K

1/2
X ) ⊗ T ∗V

where the action is

S(ϕ) =

∫

X2|1

〈ϕ ∧ ∂ϕ〉.

This example leads us to the following special case of a higher βγ system.

Definition 4.8. Let (Z, ω) be a symplectic vector space and K
1/2
X a choice of a square root of the canonical

bundle on the complex surface X . The holomorphic symplectic boson system on X with values in Z is

the BV theory whose fields are

ϕ ∈ Ω0,•(X2|1,K
1/2
X ) ⊗ Z

which we write in components as ϕ = ϕ+ εϕ′ ∈ Ω0,•(X,K
1/2
X ) ⊗ Z[ε]. The action is

S(ϕ) =
1

2

∫

X2|1

ω(ϕ ∧ ∂ϕ) =

∫

X

ω(ϕ ∧ ∂ϕ′).

Remark 4.9. More generally, one can consider a σ-model of the form

X → T [−1]Z

where (Z, ω) is an arbitrary holomorphic symplectic manifold. After twisting by K
1/2
X , the AKSZ construction

endows the (derived) space of maps Map(X,T [−1]Z) form with a (−1)-shifted symplectic structure.

To write the theory in the notation of the βγ system, we simply take the symplectic vector space Z = T ∗V .
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4.3. A catalog of results about twisting. We now provide a list of results which characterize the twist

of a four-dimensional supersymmetric theory with respect to a holomorphic supercharge. Recall, the (com-

plexified) supertranslation algebra in four dimensions is the Z/2-graded Lie algebra

tN=k = C
4 ⊕ Π(S+ ⊗ C

k ⊕ S− ⊗ C
k)

where C4 is the complexified abelian Lie algebra of translations, and S± are the positive/negative spin

representations of so(4). There is a nontrivial Lie bracket determined by Clifford multiplication

Γ : S+ ⊗ S− → C
4.

For more details on supersymmetry algebras, we recommend [1] or [2, §3.1].

By a holomorphic supercharge, we mean an odd square-zero element of the supertranslation algebra

Q ∈ tN such that the image of [Q,−] (which lies in C4) is of dimension two. To this data, one defines the

holomorphically twisted theory as in [5, §15] It was observed in [2], [5] that such a supercharge always exists

in four dimensions, and any two choices of a holomorphic supercharge gives rise to equivalent theories up to

conjugation.

We summarize the results of twisting with respect a holomorphic supercharge, starting with N = 1

supersymmetry.

Proposition 4.10 (Well-known; for various treatments, see [6], [11], [35]). The holomorphic twist of N = 1

super Yang-Mills with values in an ordinary Lie algebra g coupled to the chiral multiplet with values in a

representation V is equivalent to the coupled holomorphic BF -βγ system where h = g and V = V .

Next, we move on to N = 2 supersymmetry.

Proposition 4.11 ([36], [37]). The holomorphic twist of N = 2 super Yang-Mills with values in an ordinary

Lie algebra g coupled to the hypermultiplet with values in a symplectic representation V is equivalent to

holomorphic BF theory with values in h = g[ε] coupled to the holomorphic symplectic boson with values in

Z.

Remark 4.12. On affine space X = C2 the canonical bundle is trivial so the theory of the holomorphic

symplectic boson with values in the symplectic vector space V is equivalent to the βγ system with values in

W where W is any subspace satisfying V = T ∗W . Thus, the holomorphic twist of the N = 2 hypermultiplet

on C2 is equivalent to a particular βγ system on C2.

Remark 4.13. This is a general remark about a convention that we are taking for the holomorphic twist

of N = 2. As explained in [5], part of the data one needs to twist a field theory is that of a twisting

homomorphism. This is a group homomorphism

ρ : C
× → GR
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where GR is the R-symmetry group, with the property that the weight of the twisting supercharge Q under

ρ is +1. For N = 2, the R-symmetry group is GL2(C), so there are different choices for ρ one can make given

a fixed supercharge. Recall, the odd part of the supertranslation algebra for N = 2 is of the form

S+ ⊗ C
2 ⊕ S− ⊗ C

2

where S± are the positive and negative irreducible spin representations of so(4,C). The holomorphic twist

corresponds to choosing a Q of the form

Q = q ⊗



1

0



 ∈ S+ ⊗ C
2.

Up to conjugation, there are two choices for ρ for which such a Q has weight +1. They are

ρ1(t) =


t 0

0 t


 and ρ2(t) =


t 0

0 t−1




Both ρ1 and ρ2 lead to holomorphic theories, but they differ in their respective presentations as a BV theory.

One can show that ρ1 leads to the description of twisted N = 2 supersymmetry that we present here.

The choice of ρ2 leads to a very similar holomorphic theory, with the only difference that the cohomological

degree of ǫ is +1, instead of the −1 that we use.

Finally, we finish with the result of the holomorphic twist of maximal supersymmetry.

Proposition 4.14 ([5], [37]–[39]). The holomorphic twist of N = 4 super Yang-Mills with values in an

ordinary Lie algebra g is equivalent to holomorphic BF theory with values in g[ε1, ε2]. When g is semi-

simple, it can alternatively be described as holomorphic Chern–Simons theory with values in g[ǫ1, ǫ2, ǫ3].

Remark 4.15. The equivalence between holomorphic Chern-Simons for the graded Lie algebra g[ǫ1, ǫ2, ǫ3] and

holomorphic BF theory for the graded Lie algebra g[ε1, ε2] can be seen as follows. Holomorphic Chern-Simons

on C2|3 has fields

α ∈ Ω0,•(C2, g[ǫ1, ǫ2, ǫ3])

with action ∫

C2|3

(
κ(α ∧ ∂α) +

1

3
κ(α ∧ [α, α])

)
∧ Ω

where Ω = d2z is the standard holomorphic top form on C2 and κ is the Killing form.

When g is semi-simple the Killing form identifies g with g∗. Thus, we can write the fields of holomorphic

BF theory as

(A,B) ∈ Ω0,•(C2, g[ε1, ε2])[1] ⊕ Ω2,•(C2, g[ε1, ε2])

A+ δB ∼= Ω0,•(C2, g[ε1, ε2])[1][δ]

25



where δ is a parameter of degree one. The correspondence between fields of holomorphic Chern-Simons and

BF theory can be realized by ǫ1 ↔ ε1, ǫ2 ↔ ε2, and ǫ3 ↔ δ.

4.4. Symmetry enhancement. There are two type of symmetries of supersymmetric theories that we focus

on. The first is a global (or flavor) symmetry by a Lie algebra g. For instance, any supersymmetric theory of

matter in some g-representation has such a symmetry. The other is superconformal symmetry, which makes

sense in N = 1, 2 or 4 supersymmetry. In this section we see how the twists of the supersymmetric theories

we have just cataloged have enhanced symmetries by enlargements of the (twists) of a global g symmetries

and a superconformal symmetry.

For instance, if a classical supersymmetric theory has a classical global symmetry by a Lie algebra g, then

the holomorphically twisted theory has a symmetry by the local Lie algebra GN. Likewise, the superconformal

algebra gets enchanced to a symmetry by the Lie algebra of (graded) holomorphic vector fields XN.

The precise statement for N = 1 is the following.

Proposition 4.16. Suppose TN=1 is a theory on R
4 with N = 1 supersymmetry and a (classical) global

symmetry by a Lie algebra g which commutes with the supersymmetry algebra. Then, for any holomorphic

supercharge Q, the twisted theory T
Q
N=1 has a (classical) symmetry by the following local Lie algebras:

• holomorphic g-currents: GN=1 = Ω0,•(C2, g);

• holomorphic vector fields: X = XN=1 = Ω0,•(C2, TC2).

Proof. By Proposition 4.10, the twist of a general N = 1 theory is equal to holomorphic BF theory coupled

to a holomorphic βγ system. Since the global g symmetry commutes with Q, it follows that g is a symmetry

of the twisted theory TN=1. In particular, the action of g commutes with ∂ and hence extends to an action

by the local Lie algebra Ω0,•(C2, g) in such a way that the original global symmetry by the Lie algebra g is

compatible with the embedding g →֒ Ω0,•(C2, g) by the constant functions.

In the background field language, the explicit coupling between a holomorphic g-current α ∈ GN=1 and

the gauge theory is ∫
〈B,α · A〉g +

∫
〈β, α · γ〉V

where α ·A and α · γ denotes the original action of g combined with the wedge product of Dolbeault forms.

For instance, if α = ω ⊗X ∈ Ω0,•(C2) ⊗ g and γ = η ⊗ v ∈ Ω0,•(C2) ⊗ V then

α · γ = (ω ∧ η) ⊗ (X · v).

For the second part, we observe that holomorphic vector fields XN=1 act on the fields of the BFβγ system

by Lie derivative. The explicit coupling is given by

∫
〈B, ξ · A〉g +

∫
〈β, ξ · γ〉V

where ξ ∈ XN=1 = Ω0,•(C2, TC2) and ξ · α denotes Lie derivative of ξ on a Dolbeault form α. �
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The statement for N = 2 is similar.

Proposition 4.17. Suppose TN=2 is a theory on R
4 with N = 2 supersymmetry and a (classical) global

symmetry by a Lie algebra g which commutes with the supersymmetry algebra. Then, for any holomorphic

supercharge Q, the twisted theory T
Q
N=2 has a (classical) symmetry by the following local Lie algebras:

• holomorphic g-currents on C2|1: GN=2 = Ω0,•(C2, g[ε]);

• holomorphic vector fields on C2|1: XN=2.

Proof. By Proposition 4.11 the holomorphic twist is equivalent to holomorphic BF theory for the Lie algebra

g[ε] coupled to the holomorphic symplectic boson valued in a symplectic vector space (V, ωV ). In the

background field language, the explicit coupling between a graded holomorphic g-current α ∈ GN=2 and the

gauge theory is ∫

C2|1

〈B,α ·A〉g +

∫
ωV (ϕ ∧ (α · ϕ)

where we are writing the fields using the notation α = α+ εα′ ∈ Ω0,•(C2, g[ε]) as introduced above, and the

integral takes into account the Berezin integral over C0|1.

For the second part, we observe that holomorphic vector fields XN=2 act on the fields of the BF theory

and the symplectic boson by Lie derivative. The explicit coupling is given by

∫
〈B, ξ ·A〉g +

∫
ωV (ϕ ∧ ξ · ϕ)

where ξ ∈ XN=2 and ξ · α denotes the graded Lie derivative. �

Proposition 4.18. Let TN=4 denote N = 4 super Yang–Mills theory on R4. For any holomorphic supercharge

Q, the twisted theory T
Q
N=4 has a (classical) symmetry by the local Lie algebra XN=4of holomorphic vector

fields on C2|3.

Proof. By Proposition 4.14 the twist of N = 4 super Yang–Mills theory with gauge algebra g is given by the

holomorphic Chern–Simons theory whose fields are

(27) α ∈
(
Ω0,•(C2, g)[ε1, ε2, ε3]

)
∼= Ω0,•(C2|3, g),

Here Ω = d2z is the standard Calabi–Yau form on C2. The action of XN=4 is the obvious geometric one by

graded Lie derivative. �

Remark 4.19. We also expect the algebra XN=4 to play a role for other holomorphic twists of theories

with N = 4 supersymmetry. However, these all contain gravitational multiplets. We restrict our considera-

tions in this work to theories with rigid supersymmetry, deferring consideration of holomorphically twisted

supergravity to future work [40].
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5. Central extensions and symmetry algebras

In this section we turn our attention to central extensions of the algebras GN and XN introduced in the

last section. The central extensions we characterize are given by local cocycles of the respective local Lie

algebras. These local cocycles determine classes in the local cohomology of the local Lie algebra. The local

cohomology of a local Lie algebra L is version of Lie algebra cohomology where the cochains are required

to satisfy a locality axiom. This means that as a cochain L⊗k → C it must be given as the integral of a

Lagrangian density involving differential operators applied to the sections of L. For a precise definition see

[34, §3.4].

The thesis of [25], [34] is that the observables of a quantum field theory form a factorization algebra.

Likewise, there is a precise sense in which the symmetry algebra of a theory also forms a factorization

algebra. The construction is known as the factorization enveloping algebra, whose precise definition we refer

to [34, §6.3]. This is simultaneously a generalization of the enveloping algebra of a Lie algebra and the chiral

enveloping algebra of a Lie⋆ algebra as in [41]. In general, a local Lie algebra L on a manifold X defines a

cosheaf that we denote Lc. The value of the factorization enveloping algebra associated to L is given as the

Chevalley–Eilenberg cochain complex computing Lie algebra homology of Lc(U):

C•(Lc(U)) = (Sym (Lc(U)[1]) , dCE) .

We denote the factorization enveloping algebra by C•(Lc).

Local cocycles of a local Lie algebra L allow one to modify (or twist) the factorization enveloping algebra.

We will be most concerned with cocycles of degree +1, as these correspond to ordinary central extensions

at the level of Lie algebras or vertex algebras. Indeed, given such a cocycle φ ∈ C•
loc(L) of degree +1 one

defines the C[K]-linear (K an algebraic parameter of degree zero) factorization algebra

C̃φ• : U 7→ (Sym (Lc(U)[1]) [K], dCE +Kφ) .

The fact that φ is a cocycle ensures the total differential squares to zero. Notice that upon setting K = 0

one recovers the ordinary factorization enveloping algebra.

The reason for considering central extensions in the context of field theory can be seen in the following

way. Local Lie algebras, such as GN and XN, exist as classical symmetries of a field theory, as we saw above

in the twists of four-dimensional N = 1, 2, 4. A natural question is whether or not these symmetries persist

at the quantum level. In general, there are two possible scenarios. The first scenario occurs when there

is an internal anomaly present in the symmetry. This can arise when the local Lie algebra acts on some

interacting field theory (such as a gauge theory). In order for the symmetry to exist at the quantum level,

it must be the case that all internal anomalies vanish. Second, even if internal anomalies vanish, it may be

the case that the symmetry algebra only acts projectively. This means that while the original algebra does

not act at the quantum level, a central extension does.
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In field theory, all anomalies and central extensions that arise are local. So it is necessary to characterize

the local cohomology of the local Lie algebras which act as symmetries.

5.1. Extensions in two dimensions. There are two-dimensional versions of the algebras GN and XN that

are much more familiar in the context of CFT. For any Riemann surface Σ, and Lie algebra g, one defines

the current algebra G2d as the familiar Dolbeault resolution

G2d = Ω0,•(Σ, g).

There is essentially a single interesting cocycle φ2d(κ) ∈ Cloc(G2d) of degree +1 on G2d, which is obtained by

fixing an invariant pairing κ ∈ Sym2(g∗)g. The formula for the cocyle is

φ2d(κ) : α 7→
1

2πi

∫

Σ

κ(α∂α).

As we will review in §7, there is a close relationship between holomorphic two-dimensional factorization

algebras and vertex, or chiral, algebras. It is shown in [34, §5.4, Theorem 5.4.2] that the vertex algebra

corresponding to the twisted factorization enveloping algebra C̃
φ2d(κ)
• (G2d) is equivalent to the Kac–Moody

vertex algebra at level κ.

For vector fields, there is the natural two-dimensional analog of the local Lie algebra XN:

X2d = Ω0,•(Σ, TΣ)

where TΣ is the holomorphic tangent bundle. Again, there is essentially one interesting cocycle of degree

+1, ψ2d ∈ C•
loc(X2d) defined by the formula

(28) ψ2d : α(z)
∂

∂z
7→

1

2πi

∫

Σ

∂zα(z)∂(∂zα(z)).

It is shown in [42] that the vertex algebra corresponding to the twisted factorization enveloping algebra

C̃ψ2d
• (X2d) is equivalent to the Virasoro vertex algebra.

Remark 5.1. In physics, it is typical to choose the normalization of ψ2d differently than is done here, including

a factor of 1/24 in (28). While this is a matter of convention, it is important to remember this factor in

making comparisons to the central charge of two-dimensional conformal theories as quoted in the literature.

We have opted for the convention of (28) because it is uniform both between the Virasoro and Kac–Moody

cases and across different dimensions.

5.2. Extensions of Kac–Moody type in four dimensions. In this section we define a class of local

cocycles of cohomological degree one for the local Lie algebras GN for N = 1 and 2. Most of the cocycles

exist on a general complex surface, but we will especially be interested in the affine case C
2. A similar

analysis of possible cocycles can be given in the case N = 4, but we do not perform this in detail here.
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5.2.1. N = 1 supersymmetry. The case N = 1 was studied in detail in [10], and we cite a result which

completely characterizes the local cohomology.

Theorem 5.2 ([10]). For any complex surface X there is a map of cochain complexes

φN=1 : Sym3(g∗)g[−1] → C•
loc (GN=2(X))

θ 7→

(
α 7→

1

(2πi)2

∫

X

θ(α ∧ ∂α ∧ ∂α)

)

When X = C2, this map defines an isomorphism

Sym3(g∗)g ∼= H1
loc

(
GN=1(C2)

)trans,U(2)

where the right-hand side is H1 of the translation invariant, U(2)-invariant local functionals on GN=1(C2).

To the local cocycle φN=1(θ), one can construct the twisted factorization enveloping algebra C̃
φN=1(θ)
• (GN=1(X))

on any complex surface X . This was the flavor of factorization algebras studied in [10] as higher dimensional

analogs of the Kac–Moody vertex algebra. In particular, on the punctured disk X = C2 \ 0, it was shown

that one obtains a two-variable generalization of the affine algebra. By construction, this two-variable affine

algebra appears as a symmetry of the twist of any theory with N = 1 supersymmetry.

5.2.2. N = 2 supersymmetry. For the N = 2 current algebra there are two classes of cocycles to which we

direct our attention. The first class arises from pulling back the classes φN=1 via the map of local Lie algebras

GN=2 → GN=1

which specializes ε = 0. We denote these classes by φ
(3)
N=2.

The next set of classes arise when we fix some additional data on the complex surface X . For any

holomorphic one form ω ∈ Ω1,hol(X) satisfying ∂ω = 0 there is a class of cocycles of degree +1 that we

denote by φ
(2),ω
N=2 .

Lemma 5.3. Suppose X is any complex surface and let ω ∈ Ω1,hol(X) be a ∂-closed holomorphic one-form.

There are maps of cochain complexes

φ
(2),ω
N=2 : Sym2(g∗)g[−1] → C•

loc (GN=2(X))

κ 7→

(
α+ εα′ 7→

1

(2πi)2

∫
κ(α ∧ ∂α′) ∧ ω

)

and

φ
(3)
N=2 : Sym3(g∗)g[−1] → C•

loc (GN=2(X))

θ 7→

(
α+ εα′ 7→

1

(2πi)2

∫
θ(α ∧ ∂α ∧ ∂α)

)
.
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Proof. The fact for φ
(3)
N=2 follows from the result for N = 1. For N = 2, we need to check that for each

κ ∈ Sym2(g∗)g that dφ
(2),ω
N=2 (κ) = 0 where d is the differential on the local Chevalley–Eilenberg complex. This

differential splits into two parts d = ∂ + dCE where ∂ is the usual ∂-operator on X extended to functionals

in the natural way, and dCE encodes the Lie structure on g[ε]. The term dCEφ
(2),ω
N=2 (κ) vanishes since κ is

invariant. The term ∂φ
(2),ω
N=2 (κ) vanishes by the following:

(∂φ
(2),ω
N=2 (κ))(α + εα′) =

1

(2πi)2

∫

X

∂ (κ(α ∧ ∂α′)) ∧ ω

=
1

(2πi)2

∫

X

∂ (κ(α ∧ ∂α′) ∧ ω)

=
1

(2πi)2

∫

X

ddR (κ(α ∧ ∂α′) ∧ ω)

= 0.

In the second line we used the fact that ω is holomorphic. In the third line we have used the fact that

∂ω = 0. �

The normalization factor of (2πi)−2 is conventional, and will be apparent later on in our comparison to

the level of the ordinary Kac–Moody algebras.

When X = C2 obvious candidates for ω are the translation invariant one-forms dzi for i = 1, 2. In this

case we denote φ
(2),i
N=2

def
= φ

(2),dzi
N=2 for i = 1, 2.

Remark 5.4. A more invariant way to write the local cocyles appearing in the lemma above are as an integrals

over superspace C2|1. For instance:

φ
(2),i
N=2(α = α+ εα′) =

1

(2πi)2

∫

C2|1

κ(α ∧ ∂α) ∧ dzi.

We also note that as φ
(2),i
N=2(κ) is a cocycle we can form the twisted factorization enveloping algebra on

C2, which warrants its own definition.

Definition 5.5. The N = 2 higher Kac–Moody factorization algebra on C2 is the twisted factorization

enveloping algebra

C̃
φ
(2),i
N=2(κ)

• (GN=2) .

(In Theorem 1.1 this factorization algebra was referred to as KMN=2,κ. )

A deformation of this factorization algebra will be the subject of study in §6.1. We could also consider the

version of the twisted factorization envelope involving the cocycle φ
(3)
N=2(θ), but it will not be particularly

for us in this paper, see Remark 6.7.

5.3. Extensions of Virasoro type in four dimensions. We now describe some local cocycles of the local

Lie algebra of graded vector fields XN, restricting ourselves as above to the cases N = 1 and 2.
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5.3.1. N = 1 supersymmetry. For XN=1, which is just the local Lie algebra of the Dolbeault resolution of

holomorphic vector fields on a complex surface X , the local cohomology was computed in [23]. In fact, the

computation is valid for holomorphic vector fields on any complex manifold.

Theorem 5.6. [12, §4.5] Let X be a complex manifold of dimension d and let X(X) be the local Lie algebra

Ω0,•(X,TX) given by the Dolbeault resolution of holomorphic vector fields on X. There is an isomorphism

of graded vector spaces

H•
loc(X(X)) ∼= H•

dR(X) ⊗H•(wd)[2d].

Here wd is the Lie algebra of formal vector fields on the formal d-disk, and H•(wd) is its continuous (Gelfand–

Fuks) cohomology.

Remark 5.7. For any graded vector bundle E there is an embedding of local functionals inside of all func-

tionals Oloc(E) →֒ Ored(E). This translates to an embedding of sheaves of cochain complexes C∗
loc(L) →֒

C∗
Lie,red(Lc) for any local Lie algebra L. In the case of vector fields, there is a related cochain complex that

has been studied extensively in the context of characteristic classes of foliations [13], [43]–[45], and more

recently in [46]. Suppose, for simplicity, that X is a compact manifold. The (reduced) diagonal cochain

complex is the subcomplex

C∗
∆,red(X(X)) ⊂ C∗

Lie,red(X(X))

consisting of cochains ϕ : X(X)⊗k → C satisfying ϕ(X1, . . . , Xk) = 0 if
⋂k
i=1 Supp(Xi) = ∅. That is, the

cocycle vanishes unless all of the supports of the inputs overlap nontrivially. The inclusion of the local cochain

complex C∗
loc(X(X)) ⊂ C∗

Lie,red(X(X)) factors through this subcomplex to give a sequence of inclusions

C∗
loc(X(X)) →֒ C∗

∆,red(X(X)) →֒ C∗
Lie,red(X(X)).

This theorem implies that local cohomology classes on any complex manifold are characterized by a pair

of a de Rham cohomology class on X together with a Gelfand–Fuks class on wd.

On C2 there is an explicit formula for generating local cocycles of this cohomology. If ξ is a holomorphic

vector field on C2, its Jacobian is the function valued 2 × 2 matrix whose ij entry is ∂ziξj(z), where ξi(z) is

the ith component of the vector field ξ. Similarly, if

ξ = ξ1(z, z)
∂

∂z1
+ ξ2(z, z)

∂

∂z2
∈ X•(C2)

is a Dolbeault valued vector field, then its Jacobian Jξ is the 2 × 2 Dolbeault valued matrix whose ij entry

is

L∂zi ξj ∈ Ω0,•(C2).

In degree one, the local cohomology of holomorphic vector fields on C2 is two-dimensional

H1
loc(X

•
N=1) ∼= H3(w2) ∼= C〈[K1], [K2]〉,
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spanned by the cocycles K1,K2 which have the following explicit descriptions:

K1(ξ) =

∫

C2

Tr(Jξ) ∧ Tr(∂Jξ) ∧ Tr(∂Jξ)

K2(ξ) =

∫

C2

Tr(Jξ) ∧ Tr(∂Jξ ∧ ∂Jξ) −

∫

C2

Tr(Jξ ∧ Jξ) ∧ Tr(∂Jξ).

These two cocycles are the holomorphic analogs of the so-called a and c cocycles which describe conformal

anomalies for theories on R
4 [12].

5.3.2. N = 2 supersymmetry. Next, we turn to local cohomology classes for the local Lie algebra XN=2 on

C2. There is just one class of cocycles we focus on in this work, but a complete classification like in the case

of N = 1 will be the subject of future work.

The definition is the following.

Definition 5.8. For i = 1, 2 define the local cocycle ψi
N=2 ∈ C•

loc(XN=2) by the formula

ψi (ξ + εξ′) =
1

(2πi)2

∫
tr(Jξ) ∧ ∂ tr(Jξ′) ∧ dzi

where ξ, ξ′ ∈ Ω0,•(C2, T 1,0) are Dolbeault valued vector fields on C2. Notice that ψi is independent of odd

vector fields of the form f(z1, z2, ε)
∂
∂ε .

The verification that ψi is a cocycle is a direct calculation similar to the Kac–Moody case above, and the

details are left to the reader. We remark that as ψi is a cocycle we can then form the twisted factorization

enveloping algebra.

Definition 5.9. The N = 2 higher Virasoro factorization algebra on C2 is the twisted factorization

enveloping algebra

C̃cψ
i

• (XN=2) .

where c ∈ C. (In Theorem 1.1 this factorization algebra was referred to as VirN=2,c.)

A deformation of this factorization algebra will be the subject of study in §6.2.

6. Deformed symmetry algebras

In this section we study some instances of deformations (further twists) of the symmetry algebras obtained

from four-dimensional N = 2 and N = 4 theories that we introduced in §4. As we have already seen, any

4-dimensional supersymmetric theory with a global flavor symmetry admits, at the level of the holomorphic

twist, a symmetry enlarging the flavor algebra, given by the local Lie algebra of holomorphic currents

GN. Likewise, at the classical level, a graded Lie algebra consisting of holomorphic vector fields, which we

denoted XN, acts on the holomorphic twist of any supersymmetric theory. For instance, in N = 2, we have

the symmetry algebra XN=2 given by the Dolbeault resolution of holomorphic vector fields on the graded

manifold C2|1. We found that this was an enhancement of the twist of the N = 2 superconformal Lie algebra.
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Within the local Lie algebra of graded holomorphic vector fields, there are further deformations that we

are free to turn on at the level of the holomorphic twist. These are classified by the set of Maurer–Cartan

elements; these are then promoted to deformations of the differential, either in their action on a module, or

in their adjoint action on the algebra itself.

Some such supercharges exist even at the level of the global superconformal algebra. One interesting

deformation, which (in the untwisted supesrconformal algebra) arises from a special supersymmetry, is given

by the holomorphic vector field

(29) z2
∂

∂ε
∈ XN=2(C2).

This is the supercharge considered by Beem et al. [14]; we will show in this section that the chiral algebras

they consider agree precisely with the corresponding truncations of our higher symmetry algebras.

Given the enhancement to a local Lie algebra, however, there is a whole new class of deformations available

in the holomorphic twist that did not exist in the untwisted theory. For instance, as a generalization of the

above example, for any holomorphic polynomial f ∈ C[z1, z2], one can consider the graded vector field

f(z1, z2)
∂

∂ε
∈ XN=2(C2).

This is a Maurer–Cartan element in the dg Lie algebra XN=2(C2), and hence determines a deformation (at

least at the classical level) of any holomorphic twist of a four-dimensional N = 2 theory. While we do not

consider these new deformations explicitly in great detail here, we will offer some remarks on them in §6.3

below.

6.1. A superconformal deformation of the higher current algebra. We deform the N = 2 current

algebra by modifying the differential by the special conformal supercharge (29):

(30) G
′
N=2 :=

(
Ω0,•(C2, g[ε]) , ∂ + z2

∂

∂ε

)
.

Leaving the internal ∂ differential implicit, we can view this deformation as a two-term complex

(31)

−1 0

ε Ω0,•(C2, g) Ω0,•(C2, g)
z2

∂
∂ε

The Lie bracket remains unmodified, identical to that on GN=2. This deformation is clearly given by a

differential operator on C2, and hence this deformation remains a local Lie algebra on C2.

At the level of sheaves, the two-term complex (31) is a Dolbeault resolved version of the usual Koszul

resolution of the pushforward of the structure sheaf OCz1
along the map i : Cz1 →֒ C2 which is the embedding

34



of Cz1 at z2 = 0:

(32)



 −1 0

ε Ohol(C2) ⊗ g
z2

∂
∂ε−−−→ Ohol(C2) ⊗ g



 ≃
−→ i∗O

hol(Cz1) ⊗ g

The quasi-isomorphism is the restriction map that takes a holomorphic function on C2 to its restriction

along Cz1 ; an explicit quasi-inverse is given, for example, by pulling back a holomorphic function on Cz1

along the obvious projection map π : C2 → Cz1 and placing the result in degree zero.

As with any local Lie algebra, we can consider both its sheaf of sections G′
N=2 and its cosheaf of compactly

supported sections G′
N=2,c. Just as in the case of the sheaf of sections, in cohomology there is an isomorphism

of graded cosheaves on C2:

(33) H∗
(
G′
N=2,c

)
∼= i∗H

∗
(
Ω0,∗
c (Cz1 , g)

)
.

This statement for cosheaves follows formally from the result about sheaves, but only at the level of coho-

mology. We are interested in a cochain level of this localization result—not only at the level of cosheaves

of Lie algebras, but at the level of the corresponding factorization algebras. The reader will recall that any

local Lie algebra G gives rise to a factorization algebra, obtained by taking its Chevalley–Eilenberg cochain

complex (which computes Lie algebra homology) of compactly supported sections C•(Gc).

For the sheaf of sections, the restriction map provides an explicit quasi-isomorphism between the deformed

object on C2 and the object localized on Cz1 , as we have discussed. In the case of compactly supported

sections, the restriction map is still perfectly well-defined, since Cz1 is a closed subspace. The problem arises

when trying to exhibit a quasi-inverse to this map; there is no longer a natural way to do this without

additional auxiliary choices, and there is correspondingly no longer a quasi-isomorphism between the two

objects as cosheaves on C2.

By (33), we know that the factorization algebra H•(C•(G′
N=2,c)) is stratified at the level of cohomology,

with respect to a stratification by the subspace Cz1 and its complement, and agrees along the z1-plane with

the cohomology of the factorization algebra C•

(
Ω0,∗
c (Cz1 , g)

)
. We will find that upon making some auxiliary

choices, we can make the equivalence between these two factorization algebras explicit at the cochain level,

and thus exhibit a stratum-wise equivalence up to homotopy of stratified factorization algebras.

First off, we note that the factorization algebra C•

(
G′
N=2,c

)
restricted to the large open stratum C2 \Cz1

is quasi-isomorphic to the constant factorization algebra with stalk C.

Lemma 6.1. There is a quasi-isomorphism of factorization algebras

C•

(
G′
N=2,c

)∣∣
C2\Cz1

≃ C
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Proof. This follows from a statement just about cosheaves of Lie algebras. Indeed, the cosheaf G′
N=2,c, when

restricted to the large open stratum, is equivalent to the trivial cosheaf:

GN=2,c|C2\Cz1
≃ 0

To see this, it suffices to notice that restricting to z2 6= 0 amounts to inverting z2 in the ring of holomorphic

functions on C2, over which Ω0,∗(C2) is a module. Multiplication by an invertible element acts by an

isomorphism on the module, so that the complex (32) is obviously acyclic after localization at z2. �

Next, we would like to characterize the factorization algebra C•

(
G′
N=2,c

)
on the stratum Cz1 . The general

idea here will be to choose an open tubular neighborhood U of the small stratum, and then to push forward

the restriction of the factorization algebra C•

(
G′
N=2,c

)
to Cz1 along the projection map. In the case at hand,

there is already an obvious projection map π : C2 → Cz1 , but we want to emphasize that our considerations

likely generalize to arbitrary curves in C2, as considered below in §6.3.

These considerations are justified since we only care about the factorization product in the z1-direction.

Following this logic, we thus consider the factorization algebra

π∗ C•

(
G
′
N=2,c

)∣∣
U

on Cz1 . This is our model for the restriction of the factorization algebra on C
2 to the stratum Cz1 . Again,

the tubular neighborhood U might as well be C2 here.

Our goal is to find the explicit relationship between this “restricted” factorization algebra and the factor-

ization algebra C•

(
Ω0,•
c (Cz1 , g)

)
. In order to do this, we must fix some additional data. Let ρ : C2 → C be

a smooth function on C2 and U1 ⊂ U1 ⊂ U2 ⊂ U be open tubular neighborhoods of Cz1 × {0} satisfying the

following two conditions:

• ρ|U1 ≡ 1, and

• ρ|C2\U2
≡ 0.

We will refer to ρ as a bump function along z2 = 0; it can be taken to have image in [0, 1] ⊂ C, but this does

not play a role.

Using ρ, define the following map of cosheaves of cochain complexes on Cz1

sρ : Ω0,•
c (Cz1 , g) → π∗G

′
N=2,c

α 7→ ρ π∗α− ε
∂(ρ)

z2
∧ π∗α.

Note that, by assumption ∂(ρ) ≡ 0 along z2 = 0, so the expression above is well-defined.
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Proposition 6.2. For every choice of ρ as above, the map

sρ : Ω0,•
c (Cz1 , g)

≃
−→ π∗G

′
N=2,c

is a quasi-isomorphism of cosheaves of cochain complexes on Cz1 .

Remark 6.3. One can view sρ as an approximation to the map which “pulls back” a compactly supported

Dolbeault form along the map π : C2 → C. The first problem is that since π is not proper, pulling back does

not preserve compact support. So, in order to make sense of the pulled back map we must weight it with

the function ρ. The second problem arises due to the fact that ρ is not holomorphic, and so the assignment

α 7→ ρ π∗α is not compatible with the ∂-operator. It is, however, compatible up to a term proportional to

z2. Hence we can add the ε-dependent term to correct this naive assignment to a cochain map.

Remark 6.4. The map sρ is independent of the bump function ρ up to homotopy. Indeed, a different choice

of a bump function ρ′ will result in homotopy equivalent maps sρ ∼ sρ′ .

Proof of Proposition 6.2. First, we check that sρ is a cochain map. Since the statement is independent of

the Lie algebra g, we will assume g = C is the trivial Lie algebra for this proof.

For α ∈ Ω0,•
c (Cz1), note

(
∂ + z2

∂

∂ε

)
(sρ(α)) = ∂(ρ) ∧ π∗α+ ρπ∗∂(α) − ε

∂(ρ)

z2
∧ π∗∂(α) − ∂(ρ) ∧ π∗α

= ρπ∗∂(α) − ε
∂(ρ)

z2
∧ π∗∂(α)

This is precisely sρ(∂α), as desired.

We now compute the cohomology of the cosheaf π∗G
′
N=2,c. On an open set U ⊂ Cz1 , the value of this

cosheaf is Ω0,•
c (U × Cz2). Using Serre duality, we can identify

Ω2,•(U × Cz2)∨ ∼= Ω
0,•

c (U × Cz2)[2].

This leads to an embedding

(π∗G
′
N=2,c)(U) →֒

(
Ω2,•(U × Cz2)∨[ε][−2], ∂ + z2

∂

∂ε

)
.

Since the operator ∂+ z2
∂
∂ε is elliptic, we can apply the Atiyah–Bott Lemma [47] to see that this embedding

is a quasi-isomorphism.

Thus, it suffices to compute the cohomology of

(
Ω2,•(U × Cz2)∨[ε][−2], ∂ + z2

∂

∂ε

)
.
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By the ∂-Poincaré lemma, this is a equivalent to two-term cochain complex

(
Ω2,hol(U × Cz2)∨[ǫ][−2], z2

∂

∂ε

)
.

where Ω2,hol denotes the sheaf of holomorphic sections of the canonical bundle on C2. We recognize this

cochain complex as being linear dual to the ordinary Koszul resolution (32) of Ω1,hol(U)[−1]. Thus, we can

identify the cohomology of π∗G
′
N=2,c(U) with

Ω1,hol(U)∨[−1]

where Ω1,hol(U) is the holomorphic sections of the canonical bundle on U . Finally, by one-dimensional Serre

duality on Cz1 and by applying Atiyah-Bott Lemma again, this is precisely the ∂-cohomology of Ω0,•
c (U), as

desired. �

A simple observation reveals that sρ is certainly not compatible with the Lie brackets, hence is not a map

of precosheaves of dg Lie algebras. However, the failure for sρ to be compatible with the Lie brackets is exact

for the differential. In other words, sρ can be corrected to an L∞ map of precosheaves of dg Lie algebras.

This L∞-map will be enough to deduce the statement about factorization algebras, as any L∞ map induces

a map on the Chevalley-Eilenberg cochain complexes.

In what follows, we set s
(1)
ρ = sρ. Define the 2-ary map of degree (−1):

s
(2)
ρ : i∗Ω0,•

c (Cz1 , g) × i∗Ω0,•
c (Cz1 , g) → G′

N=2,c[−1]

(α, β) 7→ ε
ρ(ρ− 1)

z2
[π∗α, π∗β].

Note that the expression is well-defined since 1 − ρ ≡ 0 along z2 = 0.

Proposition 6.5. The pair of maps (s
(1)
ρ , s

(2)
ρ ) determine an L∞ quasi-isomorphism of precosheaves of dg

Lie algebras on Cz1 :

(s(1)ρ , s(2)ρ ) : Ω0,•
c (Cz1 , g) π∗G

′
N=2,c.

Proof. By Proposition 6.2, all we need to check is that the pair define a L∞-morphism. The L∞ relation we

need to check is of the form

(34) [s(1)ρ (α), s(1)ρ (β)] − s(1)ρ ([α, β]) =

(
∂ + z2

∂

∂ε

)
s(2)ρ (α, β) − s(2)ρ (∂α, β) − (−1)|α|s(2)ρ (α, ∂β)

for α, β ∈ Ω0,•
c (Cz1 , g). We prove this relation directly. For sake of clutter, we omit the pullback along π

notation: α ↔ π∗α ∈ Ω0,•(C2, g).

On one hand, the left hand side of (34) is

[
ρα− ε

∂(ρ)

z2
∧ α, ρβ − ε

∂(ρ)

z2
∧ β

]
−

(
ρ[α, β] − ε

∂(ρ)

z2
∧ [α, β]

)
.

38



Combining terms, we see this is equal to

ρ(ρ− 1)[α, β] − ε
∂(ρ)(2ρ− 1)

z2
∧ [α, β].

Now, the right hand side of (34) is

(
∂ + z2

∂

∂ε

)(
ε
ρ(ρ− 1)

z2
[α, β]

)
− ε

ρ(ρ− 1)

z2
[∂α, β] − (−1)|α|ε

ρ(ρ− 1)

z2
[α, ∂β]

which matches with the left-hand side by inspection. �

Corollary 6.6. Let π : C2 → Cz1 and ρ be as above. The L∞ map (s
(1)
ρ , s

(2)
ρ ) of Proposition 6.5 defines a

quasi-isomorphism of factorization algebras on Cz1 :

C•(sρ) : C•

(
Ω0,•
c (Cz1 , g)

) ≃
−→ π∗C•

(
G
′
N=2,c

)

Proof. This is a formal consequence of Proposition 6.5 and the fact that pushing forward commutes with

taking Chevalley–Eilenberg chains. Indeed, if f : X → Y is any map and L is a local Lie algebra on X , then

there is a natural isomorphism of cosheaves

C•(f∗Lc)
∼=
−→ f∗C•(Lc).

�

6.1.1. Central extensions. We now consider the case where we turn on some non-trivial central extension of

the deformed local Lie algebra G′
N=2.

In §5 we introduced classes in the local cohomology of the undeformed algebra GN=2 that we denoted

φ
(2),i
N=2(κ) , φ

(3)
N=2(θ) ∈ C•

loc(GN=2)

where κ ∈ Sym2(g∗)g and θ ∈ Sym3(g∗)g, and i = 1, 2.

Upon deforming GN=2  G′
N=2 each of these remain classes in the local cohomology of the deformed

algebra. However, only some of these classes remain nontrivial.

Lemma 6.7. The local cohomology classes φ
(2),1
N=2(κ) and φ

(3)
N=2(θ) are cohomologically trivial in C•

loc(G
′
N=2)

for any κ and θ as above.

Of the classes we introduced, this leaves the only nontrivial classes to be of the form φ
(2),2
N=2(κ). To ease

notation, we will henceforth denote this class by φ4dκ = φ
(2),2
N=2(κ). Recall from §5.1 that the local Lie algebra

of holomorphic vector fields on C has a unique cocycle denoted φ2dκ .

Proposition 6.8. Under the pull-back along sρ = (s
(1)
ρ , s

(2)
ρ ) we have

(35) s∗ρφ
4d
κ = −

1

2
φ2dκ = φ2d−κ/2.
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Recalling that the choice of κ plays the role of the central charge, this matches with the claim in [14] that

k2d = −k4d/2.

Proof. For type reasons, only the pullback along the component s
(1)
ρ will contribute a nontrivial class in the

cohomology of Ω0,•
c (Cz1 , g). Let α ∈ Ω0,•

c (Cz1 , g), then

(s(1)ρ )∗φ4dκ (α) = φ4dκ (s(1)ρ (α))

= φ4dκ

(
ρπ∗α− ε

∂(ρ)

z2
∧ π∗α

)

= −
1

(2πi)2

∫

C2

dz2 ∧ κ

(
∂(ρ)

z2
∧ π∗α ∧ ∂ (ρπ∗α)

)

= −
1

(2πi)2

∫

C2

dz2
∂(ρ2)

2z2
∧ κ (π∗α ∧ ∂(π∗α)) −

1

(2πi)2

∫

C2

dz2
∂(ρ)∂(ρ)

z2
∧ κ (π∗α ∧ π∗α)

= −
1

4πi

∫

Cz1

κ(α∂α)

= −
1

2
φ2dκ (α).

In the fifth line, we have applied Stokes’ theorem on an annulus, followed by the residue theorem, in the

z2-direction; see [48, §5.1]. But the integral over Cz2 is also simple to compute by elementary methods, and

this is perhaps more illuminating. We imagine that our bump function depends only on the radial direction

in Cz2 ; that is, ρ = f(r2) = f(z2z2) for some appropriate function f . (The result remains true even if ρ is a

more generic bump function.) It is then easy to see that

∫

Cz2

dz2 ∧ dz̄2
ρ

z2

∂ρ

∂z̄2
=

∫
dz2 ∧ dz̄2 ff

′(36)

= −2i

∫ ∞

0

πd(r2) ·
1

2

df2

d(r2)

= −πi (f2)
∣∣∞
0

= +πi,

independent of the choice of f . �

6.2. A superconformal deformation of the holomorphic stress tensor. As above, we deform the

local Lie algebra of N = 2 holomorphic vector fields by the adjoint action of z2
∂
∂ε :

(37) X′
N=2 =

(
Ω0,•(C2|1, TC

2|1), ∂ +

[
z2
∂

∂ε
,−

])
.

Consider the map of sheaves

r : XN=2 → i∗
(
Ω0,•(Cz1 , TCz1)

)
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which sends a graded vector field to the restriction of the z1-component to the plane z2 = 0. That is, if we

write a graded vector field as

ξ = ξ1(z1, z2, ε)
∂

∂z1
+ ξ2(z1, z2, ε)

∂

∂z2
+ ξε(z1, z2, ε)

∂

∂ε

then r(ξ) = ξ1(z1, z2 = 0, ε = 0) ∂
∂z1

. The map r commutes with the Lie bracket with the graded vector field

z2
∂
∂ε , so r also defines a map from the deformed N = 2 holomorphic vector fields

r : X′
N=2 → i∗

(
Ω0,•(Cz1 , TCz1)

)

that we denote by the same letter.

Proposition 6.9. Applied to the deformed N = 2 holomorphic vector fields, the map

r : X′
N=2

≃
−→ i∗

(
Ω0,•(Cz1 , TCz1)

)

defines a quasi-isomorphism of sheaves on C2.

Proof. The proof is a simple calculation. We can represent the complex X′
N=2 by the following diagram:

(38)

−1 ε Ω0,•(C2) ∂
∂z1

ε Ω0,•(C2) ∂
∂z2

0 Ω0,•(C2) ∂
∂z1

Ω0,•(C2) ∂
∂z2

ε Ω0,•(C2) ∂
∂ε

1 Ω0,•(C2) ∂
∂ε

z2
∂
∂ε

z2
∂
∂ε

−ιdz2
∂
∂ε

−ιdz2
∂
∂ε

z2
∂
∂ε

The key observation is that the right quadrilateral forms an acyclic sheaf. Indeed, both the top right and

bottom left diagonal maps are isomorphisms of sheaves of dg vector spaces. We thus conclude that the

deformed sheaf X′
N=2 is quasi-isomorphic to the sheaf

(39) ε Ω0,•(C2) ∂
∂z1

Ω0,•(C2) ∂
∂z1

z2
∂
∂ε

appearing at the top left of (38) in degrees −1 and 0. From here, the argument is identical to that in

the previous section, since we are once more dealing with the Dolbeault resolution of the Koszul complex

representing Cz1 ; only the Lie structure is different. �
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For the cosheaf version of the deformation, we proceed as we did with the current algebra in the previous

section. Let ρ : C2 → C be a bump function along z2 = 0 as in §6.1. Define the map of cosheaves

(40)

sρ : Ω0,•
c (Cz , TCz) → π∗ X′

N=2,c

∣∣
U

ξ
∂

∂z
7→ (ρ π∗ξ)

∂

∂z1
− ε

(
∂(ρ)

z2
∧ π∗ξ

)
∂

∂z1
.

Proposition 6.10. The map sρ is a quasi-isomorphism of cosheaves of cochain complexes. It can be corrected

to an L∞ morphism of precosheaves of dg Lie algebras.

Proof. We first check that sρ is a cochain map. For simplicity of notation, we omit the pullback symbol π∗.

Observe that

(41)

[(
∂ + z2

∂

∂ε

)
, sρ(ξ∂z)

]
=

[(
∂ + z2

∂

∂ε

)
,

(
ρξ − ε

∂ρ

z2
∧ ξ

)
∂

∂z1

]

=

((
∂ + z2

∂

∂ε

)(
ρξ − ε

∂ρ

z2
∧ ξ

))
∂

∂z1
,

so that the computation reduces to that done for Dolbeault forms in the proof of Proposition 6.2.

We proceed further by showing that the cohomologies on each side agree. This is sufficient, since sρ has an

obvious one-sided inverse given by the restriction map. But the argument of Proposition 6.9 is then enough

to reduce the computation of the cohomology in this case to that done for Dolbeault forms in the proof of

Proposition 6.2.

The L∞ correction term takes a familiar form:

(42)

s(2)ρ : Ω0,∗
c (Cz1 , TCz1) ⊗ Ω0,∗

c (Cz1 , TCz1) → X′
N=2,c[−1]

(
ξ
∂

∂z1
, λ

∂

∂z1

)
7→ ε

ρ(ρ− 1)

z2

[
ξ
∂

∂z1
, λ

∂

∂z1

]
.

The proof that (s
(1)
ρ , s

(2)
ρ ) together define an L∞ map proceeds by a straightforward calculation identical to

that given above in the Kac–Moody case; the key fact is that ∂ also obeys a Leibniz rule with respect to the

Lie bracket of Dolbeault-valued vector fields. �

6.2.1. Central extensions. We now prove that the analogue of Proposition 6.8 holds in the Virasoro case as

well, again reproducing the result of [14]. Recall from Definition 5.8 above that the relevant cocycle takes

the form

(43) ψi(ξ + εξ′) =
1

(2πi)2

∫
tr(Jξ) ∧ ∂ tr(Jξ′) ∧ dzi.

Proposition 6.11. Pulling back along the L∞ map sρ, we have that

(44) s∗ρψ
2 = −

1

2
ψ2d, s∗ρψ

1 = 0.
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Accounting for a factor of 24 related to the normalization of ψ2d and discussed in §5.1, this matches the

claim in [14] that c2d = −12c4d.

Proof. Just as in the previous case, the calculation amounts to computing the pullback of this cohomology

class along sρ, which can be done as follows: Let ξ∂1 be a Dolbeault-valued vector field on Cz1 . Then

s∗ρψ
2(ξ∂1) = ψ2(sρξ∂1)

= ψ2

(
ρπ∗ξ

∂

∂z1
− ε

(
1

z2
∂̄ρ ∧ π∗ξ

)
∂

∂z1

)
.(45)

Setting the argument equal to λ + ελ′, and omitting the pullback symbol π∗ for simplicity of notation, we

can now directly compute that

(46) Jλ =


L∂1(ρξ) 0

L∂2(ρξ) 0


 =


ρL∂1ξ 0

ρ̇ξ 0




and

(47) Jλ′ = −


L∂1

(
1
z2
∂̄ρ ∧ π∗ξ

)
0

L∂2

(
1
z2
∂̄ρ ∧ π∗ξ

)
0


 =


 z2

−1∂ρ ∧ L∂1ξ 0(
z2

−2∂ρ− z2
−1 ∂

∂z2
(∂ρ)

)
∧ ξ 0


 .

Taking traces, applying the ∂ operator, and multiplying, we obtain

(48) tr(Jλ) ∧ ∂ tr(Jλ′) = ρL∂1ξ ∧ z2
−1∂ρ ∧ ∂ (L∂1ξ) .

We now note that L∂1ξ = ∂ξ/∂z1, so that the cocycle reduces to

(49)

s∗ρψ
i =

1

(2πi)2

∫

C2

1

2z2

∂ξ

∂z1
∧ ∂(ρ2) ∧ ∂

(
∂ξ

∂z1

)
∧ dzi

= −
1

2

1

(2πi)2

∫

C2

(
dz2 ∧

∂(ρ2)

z2

)(
∂ξ

∂z1
∧ ∂

∂ξ

∂z1

)
.

Since ξ is a Dolbeault form on Cz1 , it is clear just by reasons of form degree that ψ1 pulls back to the trivial

cocycle, whereas s∗ρψ
2 can contain a top form. Performing the integral over Cz2 as in Proposition 6.8 above,

we obtain

(50) s∗ρψ
i = −

1

2

1

2πi

∫

Cz1

∂ξ

∂z1
∧ ∂

∂ξ

∂z1
= −

1

2
ψ2d,

reproducing precisely the description of the familiar Virasoro cocycle in one complex dimension given in [42]

and recalled above in §5.1. �

6.3. Exotic deformations of higher symmetry algebras. In the preceding subsections, we have shown

that the deformation considered by Beem and collaborators (which originates in the global superconformal

algebra) appears naturally in our context, taking the form of a Koszul differential, and that their chiral

algebras arise from the corresponding deformation of our higher symmetry algebras. However, we wish to

43



emphasize that there are additional possible deformations of our algebras, which are not visible at the level

of global superconformal symmetry. While we reserve detailed study of such exotic deformations for future

work, we will offer a few remarks below to demonstrate their interest, and will argue in particular that

there exist deformations of XN=2 that localize to the holomorphic vector fields on any affine algebraic curve

in C2, and not just to planes. Our remarks are schematic; in particular, we do not here discuss the correct

statements at the level of cosheaves.

Consider the following general setup: Let A denote a commutative differential graded algebra, or more

generally a sheaf of such objects. We will ask that A be nonnegatively graded with cohomological differential,

and will denote a basis of Der(A), the degree-zero derivations of A, as a left A-module with the symbols ∂i.

For example, if A = C[z1, z2], then ∂i = ∂/∂z1 or ∂/∂z2.

We then form the tensor product A⊗C[ε], with ε an odd variable of degree −1. A priori, this is a bigraded

cdga, when equipped only with the internal differential on A. We are interested in the dg-Lie algebra of its

(super) derivations, which was described above in the example of holomorphic vector fields on superspace.

As a left A-module, graded by ε-degree, we can describe its content with the following table:

(51)

−1 0 1

A · ε ∂∂ε

A · ε∂i A · ∂
∂ε

A · ∂i

Now, we ask for deformations of the differential, of total cohomological degree +1, that arise from the

adjoint action of an element of this dg-Lie algebra on itself. Any Maurer–Cartan element gives rise to such

a deformation of the differential. The simplest class of such elements consist of odd derivations that have

vanishing self-bracket and also anticommute with the internal differential on A, so that both terms of the

Maurer–Cartan equation are independently zero. In this case, for degree reasons, there are two possible

choices:

• an element of the form f ∂
∂ε , where f is a closed element of degree zero in A; or

• an element of the form fi ∂i, where fi are degree-one elements of A, such that the result commutes

with the internal differential.

Both types of deformation are interesting; for example, if A is the Dolbeault complex, we can generate the

deformation of the ∂̄ differential to the de Rham differential by an operator of the second type. However,

such deformations have essentially only to do with A itself, and so we will be interested in the first class of

deformations here; these include the deformations made possible by extended superconformal symmetry.
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The adjoint action of such an element generates the following differentials (which are maps of left A-

modules) on our diagram from above:

(52)

A · ε ∂∂ε

A · ε∂i A · ∂
∂ε

A · ∂i

f

f

∂if

−∂if

Observation 6.12. The cohomology of (52), in ε-degree −1, is the left A-module

(53)
⊕

i

{x ∈ A : f · x = (∂if) · x = 0} · ε∂i.

In particular, when f is not a zerodivisor in A, there is no cohomology in this degree. Furthermore, the

cohomology in ε-degree +1 is the left A-module

(54) A/〈f, ∂if〉 ·
∂

∂ε
.

Thus, when A is (for example) a polynomial ring in degree zero, the cohomology is precisely the coordinate

ring of the singular locus of the affine hypersurface f = 0, and vanishes when f is a smooth and reduced

hypersurface. When, on the other hand, f = pn for some irreducible (smooth) polynomial p, the cohomology

will be the quotient of the polynomial ring by the ideal pn−1; this is a typical example of behavior in the

unreduced case.

Let us now consider the cohomology in degree zero. We can describe it as the set of elements of the form

(55) gi∂i + gεε
∂

∂ε
,

where the g’s are elements of A and a summation over i is understood. These elements are subject to the

single relation

(56) gεf = gi∂if,

and are considered modulo the ideal consisting of elements of the form

(57) gi = fhi, gε = hi∂if,

which are the image of the differential on elements hiε∂i of degree −1.

Let us simplify now to the case where A = C[z1, . . . , zd] is the coordinate ring of affine d-space. We can

analyze the cohomology of stratum by stratum, as we did previously, according to whether we are on the

zero locus of f or in its complement. If we assume that f is invertible, it is clear that the cohomology is

trivial. As a sheaf, the cohomology is therefore supported only along the stratum f = 0. However, if we

45



restrict to this locus (under the assumption that f is smooth and reduced), it is easy to see that the gi

are subject to the single linear relation gi∂if = 0, so that the vectors appearing in cohomology resolve the

tangent sheaf to f = 0. gε is subject to no relation, but the image of the differential is generated by ∂if ,

so that—by the Jacobian criterion for smoothness—it contributes nothing in cohomology. In general, the gi

contribute a copy of the naive tangent space to the hypersurface, and gε contributes a copy of functions on

the singular locus, accompanied by ∂
∂ε .

7. Deformations of N = 2 theories

We now turn towards deformations of four-dimensional theories from the point of view of the holomor-

phic twist. As in the last section, we choose to focus on the holomorphic twist of theories with N = 2

supersymmetry, and a specific deformation which arises from the N = 2 superconformal algebra.

Classically, we start with a holomorphic gauge theory on C2 which consists of a pure gauge sector and a

holomorphic matter (or σ-model) sector. The physically inclined reader will recognize the theory we consider

as the holomorphic twist of N = 2 gauge theory coupled to some hypermultiplets valued in a symplectic

representation, see Proposition 4.11. In other words, the theory we consider is the holomorphic twist of

N = 2 supersymmetric QCD with Lie algebra g and matter valued in a representation V .

Next, we turn on a deformation of this theory, which amounts to deforming the ∂ operator via ∂  ∂+z2
∂
∂ε .

For a more explicit description of the deformation see Equation (62) below. This is the same deformation we

studied in the previous section at the level of symmetry algebras. Indeed, we know by Proposition 4.17 that

the N = 2 symmetry algebras GN=2, XN=2 act on the holomorphic twist of any N = 2 theory. Analogously,

the deformed symmetry algebras G′
N=2, X′

N=2 act on this deformation of the holomorphic twist of any N = 2

theory.

We stress that at the classical level, the theory we start with makes sense for any such N = 2 gauge theory,

but at the quantum level we find an anomaly in the deformed theory which agrees with the condition that

the theory we started with be superconformal. Specifically, we will show the following.

Proposition 7.1. The holomorphic twist of N = 2 supersymmetric QCD on C2 with Lie algebra g and

matter valued in a representation V , exists at the quantum level. There is an anomaly to quantization of

N = 2 QCD in the presence of the holomorphic deformation we will introduce in Equation (62) below. This

anomaly vanishes if and only if

(58) Trgad(X2) − TrV (X2) = 0

as a characteristic polynomial for the Lie algebra g.
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Remark 7.2. This condition can be rewritten in terms of the quadratic Casimir invariant and the dimension

of the given representations; it then takes the form

(59) c2(g) dim(g) = c2(V ) dim(V ).

For semisimple gauge algebras of type A and matter in fundamental hypermultiplets, this can be rewritten

simply using the typical physics parameters Nf and Nc, which indicate gauge algebra su(Nc) and matter

representation V = fund⊕Nf . Using familiar expressions for the quadratic Casimir invariants [49], the

condition becomes

(60) Nc(N
2
c − 1) =

N2
c − 1

2Nc
·NfNc ⇒ Nf = 2Nc,

which reproduces the well-known condition for N = 2 QCD to be superconformal. One can thus interpret

the theorem as indicating that the failure of the original theory to be superconformal is manifested as an

anomaly that prevents realization of the higher symmetry algebra at the quantum level.

Theorem 7.3. Suppose the anomaly condition (58) is satisfied and let Obs(g, V ) be the factorization algebra

of quantum observables on C2 associated to the holomorphic theory. Then, Obs(g, V ) is equivalent to a

stratified factorization algebra on C2, which is trivial away from Cz1 ⊂ C2, and equivalent to a holomorphic

translation invariant factorization algebra Obsz1(g, V ) on Cz1 .

The final goal is to characterize the factorization algebra Obsz1(g, V ) in a more familiar algebraic descrip-

tion. By [25, Theorem 2.2.1], a holomorphic translation invariant factorization algebra F on C (satisfying

some natural conditions) defines a vertex algebra that we will denote V[F]. We then utilize results of [25], [50]

which will allow us to relate solutions of the QME, which we have produced by the method of renormalization,

and vertex algebras. The conclusion is the following.

Proposition 7.4. As a vertex algebra, V [Obsz1(g, V )] is equivalent to the g-BRST reduction of the βγ

system valued in V .

7.1. A holomorphic deformation of N = 2. The holomorphic theory we start with is a coupled holomor-

phic BF − βγ system, as we introduced in §4.2. We assume the holomorphic BF theory has underlying Lie

algebra h = g[ε] where g is an ordinary Lie algebra3 and ε is a parameter of degree −1. The βγ system we

consider is valued in the graded vector space V = V [ε] where V is a g-representation, and ε is as above.

Physically, as we recollected in Proposition 4.11, this theory is equivalent to the holomorphic twist of

N = 2 supersymmetric QCD with Lie algebra g and matter transforming in the symplectic g-representation

T ∗V .

3Taking g to be an ordinary Lie algebra as opposed to a dg or L∞ algebra is for simplicity here, and to match with the familiar
situation in the N = 2 untwisted theory. What is important is that we have this extra odd direction labeled by ε.
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The coupled theory is abstractly summarized by thinking about it as the holomorphic BF theory for the

semi-direct product graded Lie algebra

gV
def
= g[ε] ⋉ V [ε][−1]

where the semi-direct product is induced by the g representation V . With this notation, the fields of the

theory can be written succinctly as

Ω0,•(C2) ⊗ gV [1] ⊕ Ω2,•(C2) ⊗ g∗V .

In the first component lives the pair of fields (A, γ) and in the second component are the conjugate fields

(B, β).

The full action can be written as

(61) S(A,B, γ, β) =

∫

C2|1

〈B,FA〉g +

∫

C2|1

〈β, ∂Aγ〉V

where FA = ∂A+ 1
2 [A,A] and ∂Aγ = ∂γ + [A, γ]. More explicitly, in terms of the components α = α+ εα′,

we can expand the action as

S =

∫

C2

〈B′, ∂A+
1

2
[A,A]〉g +

∫

C2

〈B, ∂A′ + [A,A′]〉g

+

∫

C2

〈β′, ∂γ + [A, γ]〉V +

∫

C2

〈β, ∂γ′ + [A, γ′] + [A′, γ]〉V

The first and second lines correspond to the first and second terms in (61). Note that due to the nature of

the pairing between fields and anti-fields, the primed fields (−)′ appear precisely once in each term in the

action.

We turn on the following deformation of the holomorphic twist of the free hypermultiplet

(62) IS(β′, γ′) =

∫

C2

z2〈B
′ ∧ A′〉g +

∫

C2

z2〈β
′ ∧ γ′〉V .

Equivalently, as an integral over the graded space C2|1 we can write this action as

IS(β, γ) =

∫

C2|1

〈B ∧ z2
∂

∂ε
A〉g +

∫

C2|1

〈β ∧ z2
∂

∂ε
γ〉V .

The deformed theory is completely described by a local Lie algebra that we denote by L(g, V ). In other

words, the Maurer-Cartan elements of L(g, V ) are equivalent to solutions to the classical equations of motion

of the deformed theory S + IS . The underlying graded Lie algebra is of the form

(63) L(g, V ) = Ω0,•(C2) ⊗ gV [1] ⋉ Ω2,•(C2) ⊗ g∗V .

The differential has two components ∂ + z2
∂
∂ε .
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7.2. An exact quantization and the QME. We have recalled in §2 that holomorphic theories admit

very well-behaved one-loop quantizations in any dimension. Following the earlier discussion, the approach

to renormalization for holomorphic theories in the BV formalism that we take is developed in [23].

There are two approaches to producing a renormalized BV action in the case of the deformed holomorphic

theory we study here:

(1) Treat the deformation z2
∂
∂ε as part of the kinetic term in the action. This amounts to deforming the

linear BV operator

∂  ∂ + z2
∂

∂ε
.

Since this deformation does not commute with the gauge fixing operator QGF = ∂
∗
, the approach

of [23] does not directly apply, and some extra work must be done in producing the renormalized

action.

(2) Consider the deformation as a particular background of the theory. This means that we treat the

deformation as prescribing a one-parameter family of theories over the ring C[c], where the deformed

action has the additional interaction term

c

∫
z2〈β

′γ′〉.

In general, treating quadratic terms as deformations of the interacting part of theory is ill-posed

since RG flow can produce connected diagrams of infinite size. Due to the particular form of this

deformation, however, the graph expansion is still well-defined even in the presence of this quadratic

term.

In principle, by the general formalism to constructing BV theories developed in [51], both approaches to

quantization will yield equivalent results. However, one approach may involve significantly more complicated

analysis in order to evaluate the respective Feynman diagrams. We will take approach (2) to studying

the quantization of the deformed holomorphic theory, since we can most directly borrow the calculations

performed in [23].

In doing this, it is convenient to split up the action in the following way:

(64) S + IS = Sfree + I + IS

where Sfree is the free part of the action in (61), I is the interacting part of the action in (61), and IS is the

deformation in (62).

The gauge fixing condition we choose is given by the operator

QGF = ∂
∗
⊗ 1
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which acts on the fields of the theory Ω0,•(C2) ⊗ gV [1]. As in §2, we are using the adjoint to the Dolbeault

operator on C2 induced by the standard flat metric. Since the free part of the action only involves the ∂

operator, the holomorphic renormalization recollected in §2 applies.

There is a simple combinatorial observation of the allowable Feynman diagrams that can appear in the

graph expansion of the holomorphic theory in the presence of the deformation. Without the deformation, it

is a consequence of Proposition 2.2 that the theory admits a quantization that is exact at one-loop. Even in

the presence of the deformation, at one-loop the only possible diagrams that can appear must have external

edges labeled by the fields A = A+ εA′ or γ = γ + εγ′. Moreover, since the propagators trade a A for a B

and a γ for a β, this means that the holomorphic gauge still provides an exact quantization at one-loop.

The next thing we need to know is that the renormalization group flow acts trivially at one-loop in the

presence of the deformation. Indeed, by a slight variant of [23, Lemma 3.12], we have the following:

Lemma 7.5. The limit

I[L] + IS [L]
def
= lim

ǫ→0
W (Pǫ<L, I + IS)

exists. Thus, there exists a one-loop finite prequantization of holomorphic theory, even in the presence of the

deformation IS.

Proof. The first observation is algebraic. Ordinarily, for the weight expansion to be well-defined one must

look at graphs with vertices of valence ≥ 3. See [24, Chapter 2]. The interaction IS is only quadratic in

the fields, but it is nilpotent: {IS , IS} = 0. Thus, the weight expansion over graphs with bivalent vertices

labeled by IS , and trivalent vertices labeled by I is well-defined.

The remainder of the proof is analytic. In fact, the proof is nearly identical to the analysis performed in

the proof of [23, Lemma 3.12], so we only point out the key additional argument necessary to handle this

case.

For finite ǫ and L, a general term in the weight of a wheel diagram will be of the form

∫

(C2)k

(
k∏

α=1

dzα1 dzα2

)
Φ(z1, . . . , zk)

(
k∏

α=1

Pǫ<L(zα, zα+1)znα

2

)
.

This integral corresponds to taking the weight of a wheel diagram with k vertices. Here:

• Φ is a compactly supported smooth function on (C2)k;

• Pǫ<L is the propagator on C2 obtained from the holomorphic gauge fixing condition;

• nα ∈ {0, 1} for α = 1, . . . , k.

For the situation considered in [23], it is assumed that the interactions (or vertex labels) are translation

invariant; this corresponds to taking nα = 0 for each α = 1, . . . , k in the above formula. In the general case,
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we simply observe that we can absorb the factors of znα

2 into the compactly supported function Φ:

Φ(z1, . . . , zk) → Φ′(z1, . . . , zk) =

(
k∏

α=1

znα

2

)
Φ(z1, . . . , zk).

The new function Φ′ is still compactly supported, and so we can apply an identical analysis carried out

in [23]. �

In order for the effective family {I[L]}L>0 to define a quantum field theory it must satisfy the quantum

master equation (QME). The renormalized QME exists at each fixed L > 0 and is of the form

∂I[L] +
1

2
{I[L], I[L]}L + ~∆LI[L] = 0.

Since our theory is one-loop exact, and satisfies the classical master equation, the only possible anomaly

appears at one-loop. Thus, if the equation is not satisfied, then the effective family is said to be anomalous

and the scale L anomaly is given by

Θ[L] = ~
−1

(
∂(I[L] + IS [L]) +

1

2
{I[L] + IS [L], I[L] + IS [L]}L + ~∆L(I[L] + IS [L])

)

By general manipulations of RG flow and the QME, we know that the limit L→ 0 of Θ[L] exists

Θ = lim
L→0

Θ[L]

Moreover, the functional Θ is local and since Θ is an obstruction, it is also a cocycle. We now turn to

computing this cocycle.

7.3. Anomaly cocycle. The quantization I[L] + IS [L] is defined as a sum over graphs of genus ≤ 1. It

is clear that the anomaly Θ[L] is also given as a sum over graphs. In fact, as L → 0, for the holomorphic

theories we consider it is shown in [23, Proposition 4.4] that this sum concentrates over graphs given by

wheels with a particular number of vertices.

Proposition 7.6 (see [23, Proposition 4.4]). The anomaly Θ = limL→0 Θ[L] is given as the sum over wheels

with precisely three vertices:

~Θ = lim
L→0

lim
ǫ→0

∑

Γ∈Wheel3,e

WΓ,e (Pǫ<L,Kǫ, I + IS) .

Here, the sum is over wheels with 3 vertices equipped with a distinguished edge e. A general term in the sum

is depicted in Figure 1.

For a wheel Γ with distinguished internal edge e, the weight WΓ,e(Pǫ<L,Kǫ, I) is the graph integral where

the heat kernel Kǫ is placed on the distinguished edge and the propagators Pǫ<L are placed on the other

internal edges. The vertices are labeled by I as usual.
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Figure 1. The anomaly

The anomaly Θ is thus given by a sum over weights associated to one-loop wheel diagrams. By a simple

observation on allowable diagrams that can appear, we see that Θ is only a function of the A-field. Thus, it

is represented by a cocycle in the local Chevalley–Eilenberg complex

Θ ∈ C•
loc(Ω

0,•(C2, g[ε])) = C•
loc(GN=2).

We characterized certain classes in this local cohomology in §5.

Proposition 7.7. The anomaly cocycle Θ is a nonzero multiple of the local cocycle φ
(2),2
N=2(κ(g, V )) ∈

C•
loc(GN=2) where κ(g, V ) is the invariant polynomial

κ(g, V ) = chg
2(gad) − chg

2(V ) ∈ Sym2(g∗)g.

In particular, the anomaly vanishes if and only if κ(g, V ) = 0.

Proof. This is a direct calculation applying the formula for the anomaly given in Proposition 7.6. We will

be short in our calculation of the anomaly, and will emphasize the structural features of the calculation.

By Proposition 7.6, the anomaly is given by evaluating the weight of a wheel where we place the inter-

actions I or IS on the vertices and the propagator on the edges (and the heat kernel on a distinguished

edge).

Note that for type reasons (since IS is nilpotent) at most one of the vertices in the 3-vertex wheel can

be labeled by IS , the remaining vertices are labeled by I. The propagator depends just on the free theory,

which has the form Sfree =
∫
β∂γ +

∫
B∂A. Thus, the propagator splits into two parts:

P = Pβγ + PBA

Enumerating the possible 3-vertex wheels that can appear, we find the following four cases, depicted in

Figure 2:

(I) All vertices labeled by I and all internal edges labeled by Pβγ ;

(II) All vertices labeled by I and all internal edges labeled by PBA;

(III) Two vertices labeled by I, one vertex labeled by IS and all internal edges labeled by Pβγ ;

(IV) Two vertices labeled by I, one vertex labeled by IS and all internal edges labeled by PBA;
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γ

(I)

A

A

A

(II)

γ

γ

(III)

A

A

(IV)

Figure 2. The anomaly. The trivalent vertices are labeled by the cubic interaction I. The
bivalent vertices labeled by • are labeled by IS .

By general considerations, the anomaly evaluated on A = α⊗X ∈ Ω0,•(C2)⊗ g[ε] where α is a Dolbeault

form and X = X + εX ′ ∈ g[ε], will have the form

Θ(A) = Θan(α)Θalg(X).

Here, Θan is a local functional of the abelian local Lie algebra α ∈ Ω0,•(C2) and Θalg is an algebraic function

of the graded Lie algebra X = X + εX ′ ∈ g[ε].

We can read off the algebraic factor directly in each of the cases (I)-(IV). Note that for type reasons

cases (I) and (II) yield functionals that are independent of ε and hence are just functions of the ordinary Lie

algebra g. For the algebraic factor in case (1), the value on an element X ∈ g is

TrV [ε](X
3) = TrV (X3) − TrV (X3) = 0.

Hence, case (I) does not contribute to the anomaly. Similarly, the contribution to the algebraic factor in

case (II) is

Trg[ε](X
3) = Trg(X3) − Trg(X3) = 0.

So, case (II) also does not contribute to the anomaly.

In the last two cases (III), (IV), note that the number of external edges is two (since there is a bivalent

vertex). Thus the algebraic factor is quadratic as a polynomial on g[ε]. Moreover, it must be linear in X ∈ g

and in εX ′ ∈ εg. We can identify such polynomials as quadratic polynomials just on the ordinary Lie algebra

g. Doing this, we see that the algebraic factor for case (III) is TrV (X2) and for case (IV) is −Trgad(X2).

Notice the sign difference since V appears shifted by cohomological degree one relative to g in the complex

of fields.

The only thing left to compute is the analytic factor in cases (III) and (IV). The analytic factor will again

be quadratic, since one of the vertices in bivalent. We can therefore assume that we have an abelian Lie

algebra, and simply compute the weight of the wheel Γ with 3-vertices where two of the external edges are

labeled by elements α ∈ Ω0,∗
c (C2) and one is labeled by the linear function z2. In fact, the general formula

for the analytic weight of a wheel of this shape for any holomorphic theory on C2 has been computed in [10,

53



Appendix B] (there, a formula for the weight in any dimension is given). For general differential form inputs

α, β, γ the formula is a symmetric sum of terms of the form

∫
α∂β ∂γ.

Thus, in our case the analytic weight is
∫
α ∂α∂(z2) =

∫
α ∂α dz2 as desired. �

Remark 7.8. The odd vector field z2
∂
∂ε that we are deforming the theory by sits inside of the graded Lie

algebra of holomorphic vector fields XN=2 on C
2|1, see Definition 4.2. We argued in §3 that graded Lie algebra

XN=2 is the enhancement of the twist of the N = 2 superconformal algebra. Moreover, in Proposition 4.17 we

showed that this enchanced algebra is a classical symmetry of the holomorphic twist of any four-dimensional

N = 2 theory on R4.

A more general problem than the one we study in this section is whether we can quantize the symmetry

by the full algebra XN=2 acting on the classical theory. Of course, we will see the same anomaly as above,

but a natural question is whether there are other anomalies. If the Lie algebra g and the representation V

are traceless (that is, Trgad(X) = 0 and TrV (X) = 0 for all X ∈ g), for instance when g is semi-simple, then

it turns out that there are no other anomalies. That is, so long as the condition

0 = κ(g, V ) = chg
2(gad) − chg

2(V ) ∈ Sym2(g∗)g

is satisfied then the full algebra XN=2 is a symmetry of the theory at the quantum level.

We have just computed the anomaly to quantizing the holomorphic theory in the presence of the defor-

mation IS . If we assume that the anomaly is trivial then we obtain a QFT described by the effective family

{I[L] + IS [L]}L>0. So long as g is semi-simple, this quantization is the unique one-loop exact quantization

(up to homotopy) which preserves translation invariance and is U(2)-invariant.

By the general formalism of [25], this QFT defines a factorization algebra of observables which we will

denote by Obs(g, V ). This is a factorization algebra on C2 defined over C[[~]] whose ~ → 0 limit is the

factorization algebra Obs(g, V )/~ which assigns to an open set U ⊂ C2 the cochain complex

(Obs(g, V )/~) (U) = C• (L(g, V )(U))

where L(g, V ) is the local Lie algebra describing the classical theory as introduced in (63). In other words

(Obs(g, V )/~) (U) is the cochain complex of classical observables, which are given by functions on the fields

supported on U ⊂ C2 equipped with the classical BRST differential.

7.4. Localization. The idea of localization is very similar to our analysis of the deformed symmetry fac-

torization algebras in §6. We will show that in the presence of the deformation IS , the factorization algebra

of observables becomes equivalent to a stratified factorization algebra which is trivial away from the plane
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Cz1 . Along the plane Cz1 , in the next section we will characterize the complex one-dimensional factorization

algebra in terms of a vertex algebra.

Our main tool will be a spectral sequence converging to the cohomology of Obs(g, V ), similar to the one

considered in [52]. The key property of this spectral sequence is that the first page computes the cohomology

of the observables where we turn off the interactions which are of cubic order and higher. That is, it is simply

the cohomology of the free theory in the presence of the deformation. We will find that the cohomology of

the free theory localizes to the Cz1 plane; see Lemma 7.9. Upstairs, on C2 the spectral sequence converges

to the cohomology of the interacting quantum field theory. By the fact the the theory localizes at the E1-

page, we conclude that the final page of the spectral sequence also localizes to an interacting theory on Cz1 .

Schematically, the picture is the following:

(65)

{Free theory on C2} {Interacting theory on C2}

{Free chiral theory on Cz1} {Interacting chiral theory on Cz1}

localize localize

Now, we get into the proofs of the above assertions. As a graded factorization algebra, the Obs(g, V ) is

given by C•(L(g, V ))[[~]], where we recognize C•(L(g, V )) is the factorization algebra of classical observables

Obs(g, V )/~. The underlying graded factorization algebra of C•(L(g, V )) is of the form

∏

n≥0

Symn (L(g, V )∨[−1])

where (−)∨ denotes the continuous linear dual. Define the following filtration on Obs(g, V ) by

F pObs(g, V ) =
∏

2m+n≥k

C~
m ⊗ Symn (L(g, V )∨[−1]) .

The spectral sequence associated to this filtration has first page given by the cohomology with respect

to the linear part of the differential. This is the free limit of the classical theory. The linear term in the

differential has two terms: ∂ + z2
∂
∂ε , so the E1-page is given by the following factorization algebra

(66) F1 := H•

(
Sym

(
L(g, V )#∨[−1]

)
, ∂ + z2

∂

∂ε

)
.

Here, the # notation L(g, V )# indicates that we are completely forgetting the Lie structure and only re-

membering the underlying cochain complex.

At this page, we see the factorization algebra localizes to the z1-plane. The proof is completely similar to

that of Lemma 6.1.
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Lemma 7.9. The factorization algebra F1 from (66) restricted to C2 \ Cz1 is equivalent to the constant

factorization algebra with stalk C:

F1|C2\Cz1
≃ C.

Proof. It suffices to prove that the sheaf of cochain complexes
(
L(g, V )#, ∂ + z2

∂
∂ε

)
restricted to C2 \ Cz1 is

quasi-isomorphic to the trivial sheaf. This follows from the familiar short exact sequence (32). �

Just as in §6, we define the factorization algebra F′
1 on Cz1 by the pushforward of F1 along π : C2 → Cz1 :

(67) F′
1 = π∗F1.

The next page in the spectral sequence involves the interacting part of the theory, and its quantization.

Instead of analyzing the full quantization on C2, we will only characterize the quantization of the localized

theory on Cz1 . This is sensible, by our analysis of the first page in the spectral sequence, since we know the

factorization algebra becomes completely trivial away from the z1-plane.

7.5. BRST reduction. To study the quantization of the chiral theory on Cz1 we make use of an elegant

result of [50] which sets up a correspondence between quantizations of chiral theories and vertex algebras.

First, we recall the definition of BRST reduction of a vertex algebra.

Suppose that V is any Z-graded conformal4 vertex algebra, and a field JBRST(z) of conformal weight one,

cohomological degree one, and has trivial OPE with itself

JBRST(z)JBRST(w) ∼ 0.

One then defines the following endomorphism (of cohomological degree one) of the vertex algebra

QBRST =

∮
dz

2πi
JBRST(z),

which is called the BRST charge. The condition that JBRST(z) has trivial OPE with itself implies that

(QBRST)2 = QBRST ◦QBRST = 0 acting on V, and hence we can form the complex (V, QBRST). This object

is a dg vertex algebra. Its cohomology

H∗ (V, QBRST)

is a graded vertex algebra, known as the BRST reduction of V with respect to JBRST(z).

Remark 7.10. The use of terminology is potentially confusing here. In the physics literature, “BRST” typi-

cally refers to the familiar homological technique for quantizing gauge theories by introducing ghosts, closely

connected to the Chevalley–Eilenberg construction. What is called “BRST reduction” here is essentially a

deformation of the differential, which in most examples imposes the gauge symmetry, but can also be totally

unrelated to any Lie algebra action. The terminology follows typical usage in the vertex algebra literature;

4The same definition holds for quasi-conformal vertex algebra, where we do not demand an action by the full Virasoro, just
{Ln}n≥−1.
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a special case of the procedure is sometimes referred to as “Drinfeld–Sokolov reduction,” especially in parts

of the literature more closely connected to physics.

Throughout this article, we have used the term “twist” to describe precisely the procedure of deforming

the differential, but this term is normally restricted to cases where the origin of the deformation is in the

action of the physical supersymmetry algebra on the full theory; this is not necessarily the case for the

deformations at hand here. The physical origin of the BRST reduction at hand lies in passing from the

free to the interacting theory, as we have tried to make clear in (65) and related discussion above. At the

four-dimensional level this is, in typical physics usage, neither a BRST nor a twisting differential, but a

general deformation of the differential which induces the interaction spectral sequence of [52].

There is, however, a somewhat askew sense in which BRST is, perhaps, an appropriate name even with

respect to physics conventions. Recall that, in the BV formalism, there is a notion of cotangent theory,

commented on in §2.3 above. (Physicists would probably think of a cotangent theory as being one for which

the BV formalism can be safely ignored; except for supergravity theories, this is usually the case.) In a

cotangent theory, the base of the shifted cotangent bundle is the BRST theory, in which antifields are not

present; when it carries an internal differential, usually due to the presence of gauge symmetry, this is called

the BRST differential.

However, in the twist of a cotangent theory, part of the BRST differential originates in the twisting

supercharge. (This is one origin of the overlap in nomenclature.) When supersymmetry is realized off-shell

through the use of an auxiliary-field formalism, the twisted theory is still a cotangent theory; the auxiliary

fields may be eliminated via their equations of motion. However, after eliminating auxiliary fields, the

BRST differential (really, the twisting supercharge) may depend on interaction terms—in particular, on

superpotential terms—in its action on the component fields. This is the sense in which the introduction of

interactions may be thought of as a deformation of the differential, even without passing to the BV formalism

(where the action functional is encoded in the BV differential in any case).

We see no possible choice of nomenclature that does not lead to some confusion or break with tradition, and

hope that this remark makes readers sufficiently aware of the existing semantic burden. However, the specific

example of two-dimensional BRST reduction we consider below is an example both of a free-to-interacting

deformation and of a Chevalley–Eilenberg differential; the theory is the twist of a two-dimensional (0,2)

theory with purely gauge interactions.

There is a useful characterization, due to Li [50], of the quantum master equation for chiral theories on C

in terms of vertex algebras.

Theorem 7.11 ([50]). Suppose E is a free chiral theory on C with corresponding vertex algebra V[E]. Then,

an ~-dependent field of the vertex algebra Ihol(z) of cohomological degree one satisfies the OPE in V[E]:

Ihol(z) · Ihol(w) ∼ 0
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if and only if the corresponding family of functionals

I[L] = lim
ǫ→0

W

(
Pǫ<L,

∫
dz Ihol

)

satisfies the renormalized QME.

We see that the condition on Ihol(z) in the theorem above is nearly identical to the condition of the field

JBRST(z) in the general definition of BRST reduction. On the other hand, since the resulting family of

renormalized functionals {I[L]} satisfies the QME, we know by the abstract formalism of [25], [34] that it

defines a quantum field theory and hence a factorization algebra ObsE,I on C.

It is automatic that this factorization algebra is holomorphic and satisfies the conditions of [34, Theorem

2.2.1]. Thus, by this theorem, it defines a graded vertex algebra

V[ObsE,I ].

Combining this with Theorem 7.11, one can obtain the following result which will appear in [53]. This is a

characterization of the vertex algebra associated to the observables of the quantization of the chiral theory.

Proposition 7.12 ([53]). Suppose E, Ihol are as in Theorem 7.11. Then, there is an isomorphism of graded

vertex algebras between the vertex algebra V[ObsE,I ] obtained from the observables of the quantum field theory

and the BRST reduction of the free vertex algebra V[E] with respect to the field Ihol(z):

V [ObsE,I ] ≃ H∗

(
V[E], Q =

∮
dz

2πi
Ihol(z)

)

Remark 7.13. The factorization algebras we consider are all defined over C[~]. When we take the associated

vertex algebra we adhere to the convention to specialize ~ = 2πi.

We now wish to apply this to the factorization algebra F′
1 as in (67) associated to the localized free chiral

theory on Cz1 and the factorization algebra of the resulting chiral deformation obtained from the localization

of the interacting theory on C2.

First off, we note that the factorization algebra F′
1 is equal to the cohomology of a factorization algebra

associated to a free chiral theory on Cz1 . This is a free chiral theory consisting of a g-valued ghost a, its

antifield b, and an ordinary βγ system valued in V whose fields we denote γ1d and β1d to not confuse them

with the higher dimensional βγ system. The action functional of the free chiral theory on Cz1 is

∫

Cz1

(b∂a+ β1d∂γ1d).

The factorization algebra of this free chiral theory will be denoted Obsfreez1 (g, V ). The cohomology of this fac-

torization algebra is precisely the factorization algebra F′
1. The vertex algebra corresponding to Obsfreez1 (g, V )
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is generated by the free fields a(z), b(z), γ1d(z), β1d(z) has nontrivial OPE’s given by

a(z)b(w) ∼
〈a, b〉g
z − w

γ1d(z)β1d(w) ∼
〈γ, β〉V
z − w

.

Denote this vertex algebra by Vfree[g, V ].

The spectral sequence with E1-pages F1 converges to the cohomology of the factorization algebra Obs(g, V )

on C2. For the factorization algebra on Cz1 this amounts to taking a further cohomology of F′
1 which depends

on the interacting part of the field theory.

This can be realized by deforming the free chiral theory Obsfreez1 (g, V ) by the chiral deformation

I1d =

∫

Cz1

〈β1d, [a, γ1d]〉V + 〈b, [a, a]〉g.

The resulting theory is simply the BF βγ system on Cz1 .

By Proposition 7.12 the associated vertex algebra is given by the cohomology of the graded vertex algebra

Vfree[g, V ] with respect to the differential Q =
∮

dzIhol(z):

V[Obsz1(g, V )] = H•

(
V
free[g, V ], Q =

∮
〈β(z), [a(z), γ1d(z)]〉V +

∮
〈b(z), [a(z), a(z)]〉g

)
.

This is the description of the BRST reduction of the βγ system by the affine Kac–Moody Lie algebra

generated by the fields a(z), see, for instance, [54].

Remark 7.14. The results of this section can be interpreted as a proof, in our formalism, of the descriptions

of two-dimensional chiral algebras associated to Lagrangian theories given in [14, §3], and in particular of

the case of N = 2 super-QCD [14, §5.1–2].
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