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1 Introduction

M-theory, though it was proposed to unify all of the five perturbative string theories, has

been a mysterious theory for a long time. Recently this theory was demystified largely

partially due to the discovery of the worldvolume theory of the fundamental M2-branes.

Namely, it was proposed [1–3] that the worldvolume theory of min(N1, N2) M2-branes and
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|N2 − N1| fractional M2-branes on the target space geometry C
4/Zk is described by the

N = 6 superconformal Chern-Simons theory with the gauge group U(N1)k×U(N2)−k and

two pairs of bifundamental matters where the subscripts (k,−k) denote the Chern-Simons

levels.

Due to the localization techniques [4, 5], the infinite-dimensional path integral in defin-

ing the partition function of the ABJM theory on S3 is reduced to a finite-dimensional ma-

trix integration. It is convenient to consider the reduced grand potential1 J(µ) [6] for the

partition function by regarding the rank N = min(N1, N2) as the number of particles and

introducing the dual chemical potential µ [7]. Then, it was known [8]2 that, if we further

redefine the effective chemical potential µeff appropriately [16], aside from the perturbative

part of the reduced grand potential given by a cubic polynomial of the effective chemical po-

tential [7, 9, 12], the non-perturbative part is separated into that of pure worldsheet instan-

tons [9, 17] and that of pure membrane instantons [11], Jnp(µeff) = JWS(µeff) + JMB(µeff).

The worldsheet instanton JWS(µeff) takes the form of the free energy of the topological

string theory, while the membrane instanton JMB(µeff) takes the form of the derivative of

the free energy of the refined topological string theory in the Nekrasov-Shatashvili limit

(sL/R = 2jL/R + 1)

JWS(µeff) =
∑

jL,jR

∑

d

Nd
jL,jR

∞∑

n=1

(−1)(sL+sR−1)nsR sin 2πgsnsL
n(2 sinπgsn)2 sin 2πgsn

e−nd·T ,

JMB(µeff) =
∑

jL,jR

∑

d

Nd
jL,jR

∞∑

n=1

∂

∂gs

[
gs
− sin πn

gs
sL sin

πn
gs
sR

4πn2(sin πn
gs
)3

e
−nd·T

gs

]
. (1.1)

Here the two Kähler parameters and the string coupling constant are identified as

T± =
4µeff

k
± πi

(
1−

2M

k

)
, gs =

2

k
, (1.2)

with M = N2−N1 and Nd
jL,jR

is the BPS indices of the local P1×P
1 geometry (see [18, 19]

for reviews). The appearance of the topological string theory and the local P1×P
1 geometry

may look surprising at first sight. This is partially motivated by the Fermi gas formalism [7],

which rewrites the partition function of the ABJM theory into that of a non-interacting

Fermi gas system. The spectral operator of this system is given by eĤ = (2 cosh q̂
2)(2 cosh

p̂
2)

where q̂ and p̂ are the canonical position/momentum operators. Then, it was observed [7]

that the Newton polygon of the classical spectral curve
∑

m,n e
mq+np = eE with m,n = ±1

2

is nothing but that of the P
1 × P

1 geometry under the change of variables.

After establishing the results for the M2-branes on the background with large super-

symmetry, it is interesting to explore more general backgrounds. Namely, we can naturally

ask what happens when we consider other superconformal Chern-Simons theories, which

are natural generalizations of the ABJM theory. Especially, we are interested in whether

the non-perturbative part of the reduced grand potential of those superconformal Chern-

Simons theories falls into the same expression (1.1), or if not, what the generalization

1See (2.3) later for the definition of the reduced grand potential.
2See also [6, 7, 9–16] for earlier works leading to this result.
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of (1.1) is. Interestingly, in [20] it was conjectured that the reduced grand potential of a

large class of the spectral determinants falls into the same expression as (1.1), where the

geometry is read off from the classical spectral curve as in the case of the ABJM theory.

The investigation of the grand potential of general superconformal Chern-Simons the-

ories starts from a special class enjoying the supersymmetry N = 4. It was found [21–25]

that for the circular quiver of unitary gauge groups the superconformal Chern-Simons the-

ory enjoys the supersymmetry enhancement of N = 4 if the Chern-Simons levels satisfy

ka = (k/2)(sa − sa−1) with sa = ±1.

One of the simplest models [26] among the N = 4 superconformal Chern-Simons theo-

ries is the theory with the gauge group U(N)k×U(N)0×U(N)−k×U(N)0, which is dubbed

(2, 2) model from the number of ±1 appearing continuously in {sa} = {+1,+1,−1,−1}.

In fact, it was observed [26] that the non-perturbative part of the grand potential has the

structure of (1.1) with gs = 1/k and a particular choice of Kähler parameters T . Moreover,

the diagonal Gopakumar-Vafa invariants, special combinations of the BPS indices, of the

(2, 2) model match with those of the local D5 del Pezzo geometry. This is indeed natural

from the viewpoint of the Newton polygon since the spectral curve of the (2, 2) model is∑
m,n e

mq+np = eE with m,n = 0,±1.

Due to the complexity with large degrees of freedom, it was difficult to study this

generalization carefully. Very recently, from the improvements in the Fermi gas formalism,3

we were able to revisit the (2, 2) model by considering the rank deformations [36] and found

that the reduced grand potential of the rank deformed (2, 2) model still falls into the same

non-perturbative expression (1.1) with the total BPS indices listed in [37] split in a very

non-trivial way. We also studied the rank deformations of the Z2 orbifold4 of the ABJM

theory, or the (1, 1, 1, 1) model with {sa} = {+1,−1,+1,−1}, which are connected to the

(2, 2) model at the edge of the rank deformations through the Hanany-Witten duality [38].

We found that the free energy of the topological string theory (1.1) unifies the moduli

space of the rank deformations of these two dual models with the six Kähler parameters

of the local D5 del Pezzo geometry. From this unified viewpoint, the worldsheet instanton

exponent e−
2µeff

k of the (1, 1, 1, 1) model is realized by a non-trivial cancellation in the

worldsheet instantons whose exponent is generically e−
µeff
k .

Another interesting model is the (2, 1) model with the gauge group

U(N)k×U(N)0×U(N)−k whose levels are specified by {sa} = {+1,+1,−1}. Al-

though the study of this model dates back to [39], it was, however, difficult to find the

general structure for a long time. In this paper, we shall present a complete description of

the (2, 1) model (without rank deformations). We have found that the description of the

(2, 1) model falls into the same expression as (1.1) if we choose the Kähler parameters and

the BPS indices appropriately, though it looks quite different at first sight.

The study of this model is interesting also from the viewpoint of the Newton poly-

gon. Though the spectral curve of the (2, 1) model is
∑

m,n e
mq+np = eE with m = 0,±1,

3See [27–35] for related improvements in the Fermi gas formalism.
4The physical interpretation of the repetition of the spectral operator is the orbifold in the target space

of the M2-branes [22, 23]. This should not be confused with the orbifold in the background geometry of

the topological string theory.
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n = ±1
2 , we cannot consistently truncate to these points in the Newton polygon. In fact,

after rescaling p/2 → p, the Newton polygon is indistinguishable as a convex hull from that

for the (2, 2) model. So our main task in this paper is to identify how theD5 del Pezzo geom-

etry appears in the (2, 1) model. After observing that the instanton expression of the (2, 1)

model keeps many BPS indices of the local D5 del Pezzo geometry as mementos, we con-

struct a framework so that these mementos can be utilized to describe the model correctly.

Considering the rather long analysis of the (2, 1) model starting from [39], our resulting

statement is surprisingly short. The reduced grand potential of the (2, 1) model is given

by the same expression of topological strings (1.1) with the four Kähler parameters

T±
↑ =

2µeff

k
± πi

(
1 +

1

k

)
, T±

↓ =
2µeff

k
± πi

(
−1 +

1

k

)
. (1.3)

The BPS indices are obtained by identifying those of the local D5 del Pezzo geometry as

the representations of the original algebra so(10) and decomposing the representations to

the subalgebra so(6)×u(1)×u(1) where the two u(1) charges are identified respectively as

the two degree differences of ± and ↑↓.

As a bonus of our study, we can also study the Z2 orbifold of the (2, 1) model, that is,

the (2, 1, 2, 1) model with {sa} = {+1,+1,−1,+1,+1,−1}. We have identified the reduced

grand potential of the (2, 1, 2, 1) model with the topological string description (1.1) with

the BPS indices being those of the local E7 del Pezzo geometry. This is motivated by a

suggestive expression of the Newton polygon of the E7 del Pezzo geometry in [40].

The organization of this paper is as follows. In section 2 we first review the

known results of the (2, 1) model. After acquiring some clues from the obser-

vations on the relation to the rank-deformed (2, 2) model with the gauge group

U(N)k×U(N + M)0×U(N + 2M)−k×U(N + M)0 and on the group-theoretical view-

point for the (2, 2) model in section 3, in section 4 we present carefully how the

reduced grand potential is described with the free energy of topological strings. In

section 5 we shortly revisit the two-parameter rank deformation of the (2, 2) model

U(N + MII)k × U(N + MI)0 × U(N + 2MI + MII)−k × U(N + MI)0 studied in [36] by

expressing the reduced grand potential in a more economical language of characters. In

section 6 we turn to the (2, 1, 2, 1) model and describe the reduced grand potential of this

model using the language of characters. Finally we conclude with some discussions.

In appendix A we summarize the instanton coefficients and the group-theoretical data

which are necessary in order to check the relation between the representation theory for

so(10) and the instanton coefficients of the (2, 1) model and the rank deformed (2, 2) model.

Appendix B is the collection of the instanton coefficients of the (2, 1, 2, 1) model and the

group-theoretical data for E7 and so(12) relevant to our proposal.

2 (2, 1) model

In this section we review the result for the (2, 1) model [26, 39] shortly. The infinite-

dimensional path integral in defining the partition function of the (2, 1) model is reduced

– 4 –
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to a finite-dimensional matrix integration [5]

Z(N) (2.1)

=

∫
DNµ

N !

DNλ

N !

DNν

N !

∏N
m<m′(2 sinh

µm−µm′

2 )2
∏N

l<l′(2 sinh
λl−λl′

2 )2
∏N

n<n′(2 sinh
νn−νn′

2 )2
∏N

m,l 2 cosh
µm−λl

2

∏N
l,n 2 cosh

λl−νn
2

∏N
n,m 2 cosh νn−µm

2

,

with the integrations

Dµ =
dµ

2π
e

ik
4π

µ2
, Dλ =

dλ

2π
, Dν =

dν

2π
e−

ik
4π

ν2 . (2.2)

It was found that the reduced grand potential of the (2, 1) model defined as5

∞∑

n=−∞

eJ(µ+2πin) =

∞∑

N=0

eNµZ(N), (2.3)

by introducing the chemical potential µ dual to the rank N , is given separately as the

summation of the worldsheet instanton part and the membrane instanton part

J(µ) = Jpert(µeff) + Jnp(µeff), Jnp(µeff) = JWS(µeff) + JMB(µeff), (2.4)

aside from the perturbative part,

Jpert(µeff) =
C

3
µ3
eff +Bµeff +A, C =

1

π2k
, B = −

1

12k
+

k

12
, (2.5)

with A given in [39], if we reexpress with the effective chemical potential µeff suitably. For

integral k, µeff is given by

µeff =





µ− 2e−2µ
4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; 16e−2µ

)
, for odd k,

µ− 6e−2µ
4F3

(
1, 1,

7

4
,
5

4
; 2, 2, 2; 64e−2µ

)
, for even k,

(2.6)

where the first few non-perturbative terms are extrapolated into real functions of k using

the WKB expansion [26].

The worldsheet instantons are given by

JWS(µeff) =
∞∑

m=1

dme−m
2µeff

k . (2.7)

The coefficients dm are determined as real functions of k by the interpolation from the

coefficients at integral k, which are found to satisfy the multi-covering structure

dm =
∑

n|m

1

n
δm

n

(
k

n

)
, (2.8)

5See [6] for an explanation on the reason to study the reduced grand potential instead of the original

grand potential, which is defined simply as eJ
original(µ) for the same right-hand side of (2.3).
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where the multi-covering component δd(k) takes the following form

δd(k) =

∑
n δd,n cos

πn
k

(2 sin 2π
k )2

, (2.9)

with a finite number of non-vanishing integral coefficients δd,n at each degree. The first

several components δd(k) are summarized in appendix A.1.

The membrane instantons are given by the general form

JMB(µeff) = J̃b(µeff)µeff + J̃c(µeff), J̃b(µeff) =
∞∑

ℓ=1

b̃2ℓe
−2ℓµeff , J̃c(µeff) =

∞∑

ℓ=1

c̃ℓe
−ℓµeff ,

(2.10)

where the instanton coefficients of odd instantons c̃2ℓ−1 are constants in µeff, while those

of even instantons are the standard linear polynomials in µeff with b̃2ℓµeff + c̃2ℓ satisfying

the derivative relation

c̃2ℓ = −k2
d

dk

b̃2ℓ
2ℓk

. (2.11)

The first several coefficients were investigated from the WKB expansion up to O(k9)

in [26, 39]. The coefficients of the odd instantons can be expressed in the following simple

multi-covering structure

c̃2ℓ−1 =
∑

n|2ℓ−1

(−1)
n−1
2

n
γ 2ℓ−1

n

(nk), (2.12)

or explicitly

c̃1 = γ1(k), c̃3 = −
1

3
γ1(3k) + γ3(k), c̃5 =

1

5
γ1(5k) + γ5(k), · · · , (2.13)

where γd(k) takes the following form

γd(k) = −

∑
n γd,n sinπnk

sin2 πk
2

, (2.14)

with a finite number of positive integral coefficients γd,n at each degree. Once we accept

this multi-covering structure and utilize the WKB expansion of surprisingly high order

O(k29) [41] obtained with the derivative formalism of [42], we can further determine γd(k)

of higher degree d. The explicit expressions of the functions γd(k) are listed in appendix A.1.

The multi-covering structure for the even instantons was not clearly understood. Nev-

ertheless, we achieved to determine the first few coefficients without recognizing the multi-

covering structure

b̃2 =
8 + 11 cosπk + 8 cos 2πk + cos 3πk

π sin 2πk
, (2.15)

b̃4 =
136 + 256 cosπk + 255 cos 2πk + 192 cos 3πk + 136 cos 4πk + 64 cos 5πk + 21 cos 6πk

2π sin 4πk
,

from the ansatz

b̃2ℓ =

∑
n b̃2ℓ,n cosπnk

ℓπ sin 2πℓk
, (2.16)

– 6 –
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with a finite number of non-vanishing integers b̃2ℓ,n. With the abundant WKB data [41]

we could further determine higher instanton coefficients b̃2ℓ. Before going on to the higher

instantons, however, let us provide several new observations which are essential to reveal

the whole structure of the instanton coefficients.

3 Observations

In this section we shall make several observations for the non-perturbative part of the (2, 1)

model and the (2, 2) model, which are helpful later in solving the models.

3.1 Worldsheet instanton relation

In [26] we observed that when setting all the cosine functions in the numerators of the

worldsheet instantons of the (2, 1) model in (A.1) to be 1 (with the replacement of k by

2k) we correctly reproduce the worldsheet instantons of the (2, 2) model for 1 ≤ d ≤ 5. This

relation is not valid any more for higher instantons, though the expressions look close. We

find that this observation should be replaced by the following more accurate observation.

In [36] we studied the (2, 2) model with rank deformations. Among others, it was found

that the worldsheet instantons of the (2, 2) model with the rank deformation U(N)k×U(N+

M)0×U(N + 2M)−k×U(N +M)0 are given by (see (3.20) in [36])

δ
(2,2)
1 (k,M)=

4cosMπ
k

sin2 π
k

, δ
(2,2)
2 (k,M)=−

4+cos 2Mπ
k

sin2 π
k

, δ
(2,2)
3 (k,M)=

12cosMπ
k

sin2 π
k

, (3.1)

δ
(2,2)
4 (k,M)=−

32+16cos 2Mπ
k

sin2 π
k

+5, δ
(2,2)
5 (k,M)=

220cosMπ
k +20cos 3Mπ

k

sin2 π
k

−96cos
Mπ

k
.

Comparing these functions with the worldsheet coefficients of the (2, 1) model (A.1), it is

interesting to observe a close relation. Namely, if we replace k by k/2 and set M = ±1/2

in (3.1), we can reproduce the worldsheet instantons of the (2, 1) model (A.1) correctly

δd(k) = δ
(2,2)
d

(
k

2
,±

1

2

)
. (3.2)

This observation explains the match in lower instantons and the mismatch in higher

instantons observed in [26]. The relation observed in [26] is correctly reproduced in lower in-

stantons if we assume the relation (3.2). Since the cosine functions in the numerator of (3.1)

comes from the rank deformation, setting the cosine functions in δd(k) to be 1 amounts

to changing M = ±1/2 to M = 0. When we proceed to higher instantons and perform

the replacement (3.2), the numerator of (3.1) contains the cosine functions with larger

arguments, which cause the mismatch after being reexpanded by the denominator sin2 π
k .

There is an important implication from this observation. Though in [39] and [26] it

was difficult to see whether the non-perturbative part fits to (1.1), with the expression of

the Kähler parameters for the rank-deformed (2, 2) model [36]

T± =
µeff

k
± πi

(
1−

M

k

)
, (3.3)

– 7 –
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the relation (3.2) means that we can give a general expression for the worldsheet instanton

if we choose the Kähler parameters and the string coupling constant schematically as

T ∼
2µeff

k
± πi±

πi

k
, gs ∼

2

k
. (3.4)

If we look at the membrane instanton more carefully, however, the fit to the expres-

sion (1.1) is not so trivial since the odd membrane instantons in (2.10) does not have

the linear term in µeff. A naive idea would be the cancellation between e
− T

gs ∼ e−µeffe±
πi
2 ,

though a careful study shows that the cancellation does not work due to the extra factor

in e
− T

gs ∼ e−µeffe±
πki
2 e±

πi
2 . This problem, in turn, can be solved by introducing all of the

four Kähler parameters in (3.4). In fact, with this setup, we shall see later in section 4.1

that the cancellation happens beautifully. The introduction of the four Kähler parameters

is partially motivated by the study of the Z2 orbifold of the ABJM theory, or the (1, 1, 1, 1)

model, in [36]. In relating this model to the (2, 2) model by changing the brane configu-

ration, we found a non-trivial cancellation of odd instantons, which is very similar to the

cancellation of the linear µeff term here.

3.2 Multi-covering structure for membrane instantons

Once we have found the relation to the (2, 2) model in the worldsheet instantons, we are

motivated to relate the membrane instantons of the (2, 1) model with those of the (2, 2)

model as well. Interestingly, we find that the even membrane instantons (2.15) possess the

following novel multi-covering structure

b̃2ℓ =
∑

n|2ℓ,n∈2N

(−1)ℓ

n
β 2ℓ

n
(nk) +

∑

n|2ℓ,n∈2N−1

1

n
β′

2ℓ
n

(nk), (3.5)

or explicitly

b̃2 = −
1

2
β1(2k) + β′

2(k), b̃4 =
1

4
β1(4k) +

1

2
β2(2k) + β′

4(k),

b̃6 = −
1

6
β1(6k) +

1

3
β′
2(3k)−

1

2
β3(2k) + β′

6(k), · · · , (3.6)

where βd(k) is defined from the membrane instanton coefficient β
(2,2)
d (k) of the (2, 2) model

without rank deformations (see (3.15) and (3.17) in [26]) as

βd(k) = β
(2,2)
d

(
k

2

)
. (3.7)

Indeed, in these expansions the new component β′
d(k) at each order takes the form of

β′
d(k) =

∑
n βd,n sinπnk

2π sin2 πk
2

, (3.8)

with a finite number of positive integers βd,n, as in the case of the ABJM theory and the

(2, 2) model. Once we adopt this new multi-covering structure, we can also determine the

coefficients of even instantons β′
d(k) of higher degrees d. The explicit expressions of the

– 8 –
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functions β′
d(k) are summarized in appendix A.1, where the expressions of βd(k) are also

recapitulated.

The above novel multi-covering structure (3.5) can be understood from the pole can-

cellation. As our goal is to express the instanton effects as the free energy of topological

strings (1.1) where the pole cancellation occurs among the multi-covering components of

each degree without mixing, it is reasonable to require the instanton coefficients to have the

same substructure. The multi-covering structure (3.5) assisted with βd(k), along with (2.8)

and (2.12), is very important to respect this substructure of the pole cancellation. For ex-

ample let us consider the multi-covering component of degree d = 2 in the instanton coeffi-

cient of e−4µeff at k = 2. If we adopted β′
2(k) coming directly from b̃2 for the multi-covering

component of b̃4 at degree d = 2, the poles in the combination

1

2
δ2

(
k

2

)
e−

8µeff
k +

(
µeff − k2

d

dk

1

4k

)
1

2
β′
2(2k)e

−4µeff , (3.9)

in the limit k → 2 were not cancelled any more. The reason of adopting the multi-covering

structure (3.5) will be explained more carefully from the viewpoint of the free energy of

topological strings (1.1) in section 4.1.

3.3 Group-theoretical viewpoint

Before proceeding to the analysis, we shall explain another interesting observation. In [36]

it was found that the total BPS indices identified in [37] are split due to the introduction

of two Kähler parameters. We recapitulate the BPS indices discovered in [36] in table 1,

though the table is rearranged in a different way. With this rearrangement it is not difficult

to find the relation to the decomposition of the representations in the algebra so(10) to the

subalgebra so(8)×u(1). For example, the spin (0, 32) sector of degree 4 is reminiscent of the

decomposition of the adjoint representation 45 and the spin (0, 2) sector of degree 5 is the

decomposition of the representation 144

45 → (8v)+2 + (28)0 + (1)0 + (8v)−2,

144 → (8s/c)+3 + (56s/c)+1 + (8s/c)+1 + (56s/c)−1 + (8s/c)−1 + (8s/c)−3. (3.10)

Hence, the BPS index 29 in table 1 should be interpreted as the representations 28 and 1,

while 64 is interpreted as the representations 56s/c and 8s/c.

Reversely, after assuming that the BPS indices are obtained by decomposing the so(10)

representations to the subalgebra so(8)×u(1), with table 6 of the decomposition of various

irreducible so(10) representations, we can check that no other candidate combinations of

the so(10) representations can form the BPS indices 45 or 144 with the same decomposition.

This is true also for the other BPS indices. We have listed the representations in table 1.

Though in [37] the representations seem determined directly from the Weyl orbits, our

determination of the representations is rather indirect through the decomposition.

It is known that the lattice points in the weight lattice with the identification of the

root lattice are classified by the congruency class Z4 for so(10), so are the irreducible repre-

sentations. It is interesting to further observe that the representations of so(10) appearing
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d (jL, jR) BPS (−1)d−1
∑

|d|=1

(
Nd

jL,jR

)
d+−d−

representations

1 (0; 0) 16 8+1 + 8−1 16

2 (0, 12) 10 1+2 + 80 + 1−2 10

3 (0, 1) 16 8+1 + 8−1 16

4 (0, 12) 1 10 1

(0, 32) 45 8+2 + 290 + 8−2 45

(12 , 2) 1 10 1

5 (0, 1) 16 8+1 + 8−1 16

(0, 2) 144 8+3 + 64+1 + 64−1 + 8−3 144

(12 ,
5
2) 16 8+1 + 8−1 16

Table 1. The BPS indices Nd

jL,jR
for 1 ≤ d ≤ 5 of the (2, 2) model with the rank deformation

U(N)k×U(N + M)0×U(N + 2M)−k×U(N + M)0. The information on the non-vanishing BPS

indices in the first three columns is recapitulated from the tables in [37] and the split into various

degree differences in the fourth column comes from [36].

in the total degree d are all the representations in the congruency class of d mod 4. For

example, the representations appearing for odd d are all fermionic ones with the dimensions

being multiples of 16. For this reason, from now on our tables of the decomposition of the

so(10) representations and the characters in appendix A are listed by the congruency class.

This observation for the BPS indices of the (2, 2) model from the group-theoretical

viewpoint may apply not just to the (2, 2) model. We also expect the group-theoretical

viewpoint to work later in our study of the (2, 1) model.

4 Topological string

In this section we shall see that the instanton effects of the (2, 1) model are consistent with

the free energy of topological strings (1.1). First we provide a set of four Kähler parameters

which realizes the following structures of the instanton coefficients,

• the multi-covering structures of dℓ (2.8), b̃2ℓ (3.5) and c̃2ℓ−1 (2.12),

• the vanishing odd coefficients, b̃2ℓ−1 = 0, and

• the derivative relation between c̃2ℓ and b̃2ℓ (2.11).

Then we determine the BPS indices for small degrees. Interestingly, the BPS indices again

correspond to the decomposition of the so(10) representations, where two differences of

the degrees specifying the split of the BPS indices are identified with the two u(1) charges

in the decomposition to the subalgebra so(6)×u(1)×u(1). This is how the observations in

section 3 are brought to life. Furthermore, once the representations are determined from

the (2, 2) model, this enables us a top-down derivation for all of the instanton coefficients

of the (2, 1) model.

– 10 –



J
H
E
P
1
1
(
2
0
1
7
)
0
8
9

4.1 Kähler parameters

Our starting point is the same topological string free energy (1.1)

JWS(µeff) =
∑

jL,jR

∑

d

Nd
jL,jR

∞∑

n=1

(−1)(sL+sR−1)nsR sin 2πgsnsL
n(2 sinπgsn)2 sin 2πgsn

e−nd·T ,

JMB(µeff) =
∑

jL,jR

∑

d

Nd
jL,jR

∞∑

n=1

∂

∂gs

[
gs
− sin πn

gs
sL sin

πn
gs
sR

4πn2(sin πn
gs
)3

e
−nd·T

gs

]
. (4.1)

The main assumption is to introduce the following four Kähler parameters

T±
↑ =

2µeff

k
± πi

(
1 +

1

k

)
, T±

↓ =
2µeff

k
± πi

(
−1 +

1

k

)
, (4.2)

with the string coupling constant identified as gs = 2/k. Due to the relation

d · T = d
2µeff

k
+ dmπi+ dw

πi

k
, (4.3)

with

d =
∑

±

(d±↑ + d±↓ ), dm = (d+↑ − d+↓ )− (d−↑ − d−↓ ), dw = (d+↑ + d+↓ )− (d−↑ + d−↓ ), (4.4)

we find that the whole information on the degrees d is simply encoded6 in the total degree

d, the membrane degree dm and the worldsheet degree dw. Hence, hereafter we sum the

BPS indices over all degrees giving the same set of (d, dw, dm) and label the BPS indices

by these degrees

N
(d,dw,dm)
jL,jR

=
∑

{d|(d,dw,dm)}

Nd
jL,jR

. (4.5)

For our later analysis we further assume the even property of 2jL + 2jR − 1 − d and the

symmetry of the BPS indices

N
(d,dw,dm)
jL,jR

= N
(d,−dw,dm)
jL,jR

. (4.6)

Let us deduce the instanton coefficients from (4.1). As was noticed in [33], the imag-

inary part ±πi in the Kähler parameters (4.2) realizes the multi-covering structure of the

worldsheet instanton (2.8) when 2jL + 2jR − 1− d is even,

JWS(µeff) =
∞∑

m=1

dme−m
2µeff

k , dm =
∑

n|m

1

n
δm

n

(
k

n

)
, (4.7)

where the multi-covering component of the worldsheet instanton is described by the BPS

indices summed over all of the membrane degrees

δd(k) =
∑

dw

∑

jL,jR

N
(d,dw)
jL,jR

[
sR sin 4π

k sL

(2 sin 2π
k )2 sin 4π

k

e−dw
πi
k

]
, N

(d,dw)
jL,jR

=
∑

dm

N
(d,dw,dm)
jL,jR

. (4.8)

6The names of membrane degrees and worldsheet degrees will be clear in the later discussion. The

even/odd parities of these degrees all coincide.
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The membrane instanton coefficients can be read off from (4.1) as

JMB(µeff) =
∞∑

ℓ=1

(̃bℓµeff + c̃ℓ)e
−µeff , (4.9)

with b̃ℓ and c̃ℓ given respectively by

b̃ℓ =
∑

nd=ℓ

∑

jL,jR

∑

dw

∑

dm

N
(d,dw,dm)
jL,jR

e−ndm
πki
2 e−ndw

πi
2
−d sin πkn

2 sL sin
πkn
2 sR

4πn(sin πkn
2 )3

, (4.10)

and

c̃ℓ =
∑

nd=ℓ

∑

jL,jR

∑

dw

∑

dm

N
(d,dw,dm)
jL,jR

e−ndm
πki
2 e−ndw

πi
2

×

(
πi(kdm + dw)

2
− k2

d

dk

1

kn

)[
− sin πkn

2 sL sin
πkn
2 sR

4πn(sin πkn
2 )3

]
. (4.11)

Now we can see the vanishing of odd coefficients b̃2ℓ−1 = 0 is realized from the symmetry

of the BPS indices (4.6). This symmetry allows us to replace e−ndw
πi
2 in (4.10) with

(e−ndw
πi
2 + endw

πi
2 )/2, which vanishes when nd = 2ℓ − 1 is odd since n, d, dw are all odd.

Moreover, for b̃2ℓ, by noticing

e−ndw
πi
2 + endw

πi
2

2

∣∣∣∣
nd=2ℓ

=

{
(−1)ℓ, for even n,

(−1)
dw
2 , for odd n,

(4.12)

we obtain the following multi-covering structure

b̃2ℓ =
∑

n|2ℓ,n∈2N

(−1)ℓ

n
β 2ℓ

n
(nk) +

∑

n|2ℓ,n∈2N−1

1

n
β′

2ℓ
n

(nk), (4.13)

which is exactly what we have suggested in (3.5). Here the multi-covering components are

βd(k) =
∑

jL,jR

∑

dm

N
(d,dm)
jL,jR

−d sin πk
2 sL sin

πk
2 sR

4π(sin πk
2 )3

e−dm
πki
2 ,

β′
d(k) =

∑

jL,jR

∑

dm

N
′(d,dm)
jL,jR

−d sin πk
2 sL sin

πk
2 sR

4π(sin πk
2 )3

e−dm
πki
2 , (4.14)

with the original BPS indices N
(d,dm)
jL,jR

and the alternating BPS indices N
′(d,dm)
jL,jR

defined as

N
(d,dm)
jL,jR

=
∑

dw

N
(d,dw,dm)
jL,jR

, N
′(d,dm)
jL,jR

=

(
∑

dw≡0 (mod4)

−
∑

dw≡2 (mod4)

)
N

(d,dw,dm)
jL,jR

. (4.15)

The coefficient c̃ℓ (4.11) can be simplified in the same way. For even instantons c̃2ℓ,

from the symmetry of the BPS indices (4.6), the πidw/2 term is cancelled and the πikdm/2

term is combined into the derivative term to reproduce the derivative relation (2.11). For
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odd instantons c̃2ℓ−1, on the other hand, from the symmetry of the BPS indices (4.6), only

the πidw/2 term survives. Due to the simplification

idwe
−ndw

πi
2 − idwe

ndw
πi
2

2

∣∣∣∣
nd=2ℓ−1

= (−1)
n−1
2

+ dw−1
2 dw, (4.16)

(which can be proved from (e±
πi
2 )(n−1)(dw−1) = 1 by noting both n and dw are odd if nd is

odd), we reproduce the multi-covering structure (2.12)

c̃2ℓ−1 =
∑

n|2ℓ−1

(−1)
n−1
2

n
γ 2ℓ−1

n

(nk), (4.17)

where the multi-covering components are

γd(k) =
∑

jL,jR

∑

dm

M
(d,dm)
jL,jR

− sin πk
2 sL sin

πk
2 sR

8(sin πk
2 )3

e−dm
πki
2 , (4.18)

with the weighted BPS indices M
(d,dm)
jL,jR

M
(d,dm)
jL,jR

=
∑

dw

(−1)
dw−1

2 dwN
(d,dw,dm)
jL,jR

. (4.19)

4.2 BPS indices

After constructing the general framework to reproduce the multi-covering structure and

the derivative relation, now we can ask whether the expression of the topological string

free energy matches with the instanton coefficients if we choose the BPS indices suitably.

As in [36] we shall assume the positivity (−1)d−1N
(d,dw,dm)
jL,jR

≥ 0 and study how the original

total BPS indices listed in [37] is partitioned

Nd
jL,jR

=
∑

dw

∑

dm

N
(d,dw,dm)
jL,jR

. (4.20)

We have observed in (3.2) that the worldsheet instantons of the rank deformed (2, 2)

model agree with those of the (2, 1) model if we rescale k by 1/2 and set M = ±1/2.

Hence, if the worldsheet BPS indices N
(d,dw)
jL,jR

are those identified in table 1, this expression

automatically reproduces the worldsheet instantons of the (2, 1) model. Also, since we have

brought the expression of βd(k) from the (2, 2) model as in (3.7), we also hope to identify

the membrane BPS indices N
(d,dm)
jL,jR

to be those in table 1.

For d = 1, 2, 3, since there is only one type of spins for each degree we find the

identification

M
(1,±1)
0,0 = 4, N

′(2,±2)

0, 1
2

= −1, N
′(2,0)

0, 1
2

= −4, M
(3,±1)
0,1 = 4, (4.21)

from the comparison of the general expression (4.14), (4.18) with γ1(k), β′
2(k), γ3(k).

Combining with the condition of the total worldsheet BPS indices N
(d,dw)
jL,jR

and the total
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membrane BPS indices N
(d,dm)
jL,jR

, both of which are given by

N
(1,dw=±1)
0,0 = 8, N

(2,dw=±2)

0, 1
2

= −1, N
(2,dw=0)

0, 1
2

= −8, N
(3,dw=±1)
0,1 = 8,

N
(1,dm=±1)
0,0 = 8, N

(2,dm=±2)

0, 1
2

= −1, N
(2,dm=0)

0, 1
2

= −8, N
(3,dm=±1)
0,1 = 8, (4.22)

we find that the separated BPS indices N
(d,dw,dm)
jL,jR

are

N
(1,±1,±1)
0,0 = 4, N

(2,±2,0)

0, 1
2

= N
(2,0,±2)

0, 1
2

= −1, N
(2,0,0)

0, 1
2

= −6, N
(3,±1,±1)
0,1 = 4.

(4.23)

Looking closely at the decomposition for d = 2, for example, we find that the membrane

BPS index |N
(2,dm=0)

0, 1
2

| = 8 is split into

8 → 1+2 + 60 + 1−2, (4.24)

where we have denoted the worldsheet degree dw of N
(d,dw,dm)
jL,jR

as subscripts. Then, this

expression is reminiscent of the decomposition of the representation 8v from so(8) to the

subalgebra so(6)×u(1). This interpretation works for the other BPS indices in d = 1, 2, 3

as well.

After observing the relation to the further decomposition of the so(8) representations to

so(6)×u(1), since we have already identified the BPS indices as the representations of so(10)

for d = 4, 5 in table 1, the only remaining task is to decompose each so(8) representation

in (3.10) to so(6)×u(1),

28 → (6)+2 + (15)0 + (1)0 + (6)−2, 8v → (1)+2 + (6)0 + (1)−2, 1 → (1)0, (4.25)

56s/c → (4)+3 + (20)+1 + (4)+1 + (20)−1 + (4)−1 + (4)−3, 8s/c → (4)+1 + (4)−1.

Then we find that the degrees should be decomposed as

N
(4,0,0)

0, 3
2

= −17, N
(4,0,±2)

0, 3
2

= N
(4,±2,0)

0, 3
2

= −6, N
(4,±2,±2)

0, 3
2

= −1,

N
(5,±3,±1)
0,2 = N

(5,±1,±3)
0,2 = 28, N

(5,±3,±3)
0,2 = 4, (4.26)

which gives the alternating BPS indices and the weighted BPS indices

N
′(4,0)

0, 3
2

= −5, N
′(4,±2)

0, 3
2

= −4,

M
(5,±1)
0,2 = 32, M

(5,±3)
0,2 = 8. (4.27)

Substituting these BPS indices into (4.14) and (4.18), we find that the instanton coefficients

in (A.3) and (A.2) obtained from the WKB expansions are beautifully reproduced.

To summarize, our proposal is that the reduced grand potential of the (2, 1) model is

described by the BPS indices which are obtained by identifying the total BPS indices of the

local D5 del Pezzo geometry as the representations of so(10) and decomposing the so(10)

representations to the subalgebra so(6)×u(1)×u(1) with the two u(1) charges identified as

the two degree differences.
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4.3 Characters

We have found that we can describe the reduced grand potential of the (2, 1) model by

the free energy of topological strings if we adopt the ansatz of the four Kähler parame-

ters (4.2) and choose the BPS indices appropriately by the decomposition of the so(10)

representations. Here we point out that our proposal on the reduced grand potential can

be summarized compactly in terms of the characters of so(10).

For this purpose, we first introduce the characters of so(10) with two fugacities,

χR(p, q) =
∑

dw,dm

pdwqdm dim
(
r(dw,dm)

)
, (4.28)

each of which measures the two u(1) charges in the decomposition

so(10) → so(6)× u(1)× u(1), R →
∑

r(dw,dm). (4.29)

Then, once the total BPS index is identified as the so(10) representations,

(−1)d−1Nd
jL,jR

=
∑

R

nd,R
jL,jR

dim(R), (4.30)

each BPS index coming from the so(10) representations can be given as

(−1)d−1
∑

dw

N
(d,dw)
jL,jR

pdw =
∑

R

nd,R
jL,jR

χR(p,1), (−1)d−1
∑

dm

N
(d,dm)
jL,jR

qdm =
∑

R

nd,R
jL,jR

χR(1,q),

(−1)d−1
∑

dm

N
′(d,dm)
jL,jR

qdm =
∑

R

nd,R
jL,jR

χR(i,q), (−1)d−1
∑

dm

M
(d,dm)
jL,jR

qdm =
∑

R

nd,R
jL,jR

∂χR

∂p
(i,q).

(4.31)

This implies from (4.8), (4.14), (4.18) that the multi-covering components of the worldsheet

instantons and the membrane instantons are compactly given in terms of the characters by

δd(k) =
(−1)d−1

(2 sin 2π
k )2

∑

jL,jR

∑

R

nd,R
jL,jR

χR(e
−πi

k , 1)χjL(e
4πi
k )χjR(1),

βd(k) =
(−1)dd

4π sin πk
2

∑

jL,jR

∑

R

nd,R
jL,jR

χR(1, e
−πki

2 )χjL(e
πki
2 )χjR(e

πki
2 ),

β′
d(k) =

(−1)dd

4π sin πk
2

∑

jL,jR

∑

R

nd,R
jL,jR

χR(i, e
−πki

2 )χjL(e
πki
2 )χjR(e

πki
2 ),

γd(k) =
(−1)d

8 sin πk
2

∑

jL,jR

∑

R

nd,R
jL,jR

∂χR

∂p
(i, e−

πki
2 )χjL(e

πki
2 )χjR(e

πki
2 ), (4.32)

where we have also introduced the su(2) character

χj(q) =
q2j+1 − q−(2j+1)

q − q−1
. (4.33)
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d (jL, jR) BPS representations

6 (0, 12) 10 10

(0, 32) 130 120+ 10

(0, 52) 456 320+ 126+ 10

(12 , 2) 10 10

(12 , 3) 130 120+ 10

(1, 72) 10 10

d (jL, jR) BPS representations

7 (0, 0) 16 16

(0, 1) 160 144+ 16

(0, 2) 736 560+ 144+ 2× 16

(0, 3) 1440 720+ 560+ 144+ 16

(0, 4) 16 16

(12 ,
3
2) 16 16

(12 ,
5
2) 176 144+ 2× 16

(12 ,
7
2) 736 560+ 144+ 2× 16

(1, 3) 16 16

(1, 4) 160 144+ 16

(32 ,
9
2) 16 16

Table 2. The constituent representations for the total BPS indices of the (2, 2) model for d = 6, 7.

4.4 Higher degrees

We believe that all the evidences we have provided in section 4.2 are already quite non-

trivial. Nevertheless, in this subsection we shall proceed to even higher degrees d = 6, 7, 8

to convince the readers completely of our proposal.

After proposing to obtain the BPS indices from the decomposition of the represen-

tations, our remaining task is to identify the so(10) representations which the total BPS

indices listed in [37] consist of and to decompose the representations to the subalgebra

so(8)×u(1). This can be done completely in the study of the (2, 2) model before con-

sidering the (2, 1) model. Then, we can apply our rule of further decomposing the so(8)

representations to the subalgebra so(6)×u(1) to see whether the predicted worldsheet in-

stantons coincide with those of the (2, 1) model obtained from the numerical fitting in (A.1)

and whether the predicted membrane instantons coincide with those of the (2, 1) model

obtained from the WKB expansion in (A.2) and (A.3). Hence we start our analysis purely

on the (2, 2) model.

For d = 6 we can study either from the numerical values of the worldsheet instantons

of the (2, 2) model or the WKB expansion for the membrane instantons. In either method,

we assume that the total BPS index 456 in the spin (0, 52) can be given by an integral linear

combination of all the representations in the congruency class of 6 ≡ 2 mod 4 with the

dimensions smaller than or equal to 456 (which are 10, 120, 126, 210′ and 320), while the

total BPS indices 130 in the spins (0, 32) and (12 , 3) are given by other linear combinations of

10, 120 and 126. Then, for the former method, we ask which combination gives correctly

the numerical values listed in appendix C.1.3 of [36], while for the latter method, we ask

which combination gives correctly the WKB expansion in (A.5). In either method, we

obtain the result in table 2. For d = 7 we need to utilize both the numerical values of the
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d (jL, jR) BPS representations

8 (0, 7
2 ) 4726 1386+ 1050+ 2× 945+ 210+ 54+ 3× 45+ 1

(0, 5
2 ), (

1
2 , 4) 3431 1050+ 945+ 770+ 2× 210+ 2× 54+ 3× 45+ 3× 1

( 12 , 3) 1602 945+ 2× 210+ 54+ 4× 45+ 3× 1

(0, 3
2 ), (1,

9
2 ) 1345 945+ 210+ 54+ 3× 45+ 1

( 12 , 2), (1,
7
2 ) 357 210+ 54+ 2× 45+ 3× 1

(0, 1
2 ), (

3
2 , 5) 311 210+ 54+ 45+ 2× 1

(0, 9
2 ) 257 210+ 45+ 2× 1

( 12 , 1), (
1
2 , 5),

(1, 5
2 ), (

3
2 , 4)

46 45+ 1

(2, 11
2 ) 45 45

(1, 3
2 ), (1,

11
2 ), ( 32 , 3),

(2, 9
2 ), (

5
2 , 6)

1 1

Table 3. The constituent representations for the total BPS indices of the (2, 2) model for d = 8.

worldsheet instantons in appendix C.1.3 of [36] and the WKB expansion of the membrane

instantons in (A.5). With both the data we can again fix exactly which representations

appear in the total BPS indices. The results are listed in table 2.

For d = 6, 7 we can substitute the BPS indices into the worldsheet instanton to find

δ6(k,M) = −
756 + 579 cos 2Mπ

k + 24 cos 4Mπ
k

sin2 π
k

+

(
800 + 480 cos

2Mπ

k

)

−

(
256 + 64 cos

2Mπ

k

)
sin2

π

k
, (4.34)

δ7(k,M) =
7112 cos Mπ

k + 1288 cos 3Mπ
k + 28 cos 5Mπ

k

sin2 π
k

−

(
13120 cos

Mπ

k
+ 1696 cos

3Mπ

k

)

+

(
9472 cos

Mπ

k
+ 576 cos

3Mπ

k

)
sin2

π

k
− 2560 cos

Mπ

k
sin4

π

k
. (4.35)

We find that we can obtain the worldsheet instanton of the (2, 1) model (A.1) by substi-

tuting M = ±1/2 and replacing k by k/2 as in (3.2). By applying this rule we encounter

the cosine functions with higher arguments which can be reexpanded by the denominator,

as we have explained below (3.2). Due to this reason, the rule observed in [26] should be

modified by (3.2).

Now with the characters in appendix A.3 which computes the alternating BPS indices

N
′(d,dm)
jL,jR

and the weighted BPS indices M
(d,dm)
jL,jR

for various so(10) representations, we can

predict the membrane instantons of the (2, 1) model for d = 6, 7. We find a very non-trivial

match with those of the (2, 1) model (A.2) and (A.3) obtained by the WKB expansion.

For d = 8, since there are more degrees of freedom to identify the representations, we

need to impose one more assumption. In the table of [37] the total BPS indices 3431 appear

in both the spins (0, 52) and (12 , 4). We assume that the same numbers of the BPS indices in

different spins are identified as the same combination of the so(10) representations. Under
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this assumption, we find only two solutions. Aside from the one listed in table 3, the other

solution is to replace the representations for the total BPS indices 3431 by

2× 1050+ 945+ 2× 54+ 3× 45+ 143× 1. (4.36)

From the characters in (A.11), we find that only the set of representations listed in table 3

correctly reproduces the membrane instanton coefficient of the (2, 1) model (A.3) obtained

by the WKB expansion.

In the above identification of the representations for the BPS indices of d = 8, we

have adopted the assumption that the same BPS indices consist of the same set of the

so(10) representations. Since we do not have a persuasive reason for this assumption, we

have also performed an alternative analysis. Namely, instead of the above assumption, we

adopt our proposal of the relation between the (2, 2) model and the decomposition of the

so(10) representations to so(8)×u(1) and the relation between the (2, 1) model and the

decomposition of the same representations to so(6)×u(1)×u(1) simultaneously. Then, we

reach the same result of the identification of the so(10) representation listed in table 3.

5 Rank-deformed (2, 2) model from characters

Previously in [36] two types of rank deformations in the (2, 2) model were

studied. As we have seen in section 3.3, one of the rank deformations

U(N)k×U(N + M)0×U(N + 2M)−k×U(N + M)0 corresponds to introducing the

fugacity to distinguish the u(1) charge in the decomposition of the so(10) representations

to the subalgebra so(8)×u(1). Here let us turn to revisiting the two-parameter rank

deformation U(N +MII)k×U(N +MI)0×U(N +2MI +MII)−k×U(N +MI)0 in [36] where

the previous deformation corresponds to (MI,MII) = (M, 0).

To describe this deformation, in [36] six Kähler parameters were identified

T±
1 =

µeff

k
± πi

(
1−

MI

k
−

2MII

k

)
,

T±
2 =

µeff

k
± πi

(
1−

MI

k

)
,

T±
3 =

µeff

k
± πi

(
1−

MI

k
+

2MII

k

)
, (5.1)

and the corresponding BPS indices were studied. It was difficult to distribute the BPS

indices into various degrees precisely, which is essentially due to the relations among the

Kähler parameters

2T±
2 = T±

1 + T±
3 , T+

1 + T−
1 = T+

2 + T−
2 = T+

3 + T−
3 , T±

2 + T∓
1 = T∓

2 + T±
3 . (5.2)

In other words, the description in [36] with the six Kähler parameters is probably correct

though it may not be the most economical description because the six Kähler parameters

are too abundant for the deformation with only two parameters. Our studies in the previous

section suggest that instead of introducing many Kähler parameters it is more economical
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d (jL, jR) dI BPS (−1)d−1
∑

dII

(
N

(d,dI,dII)
jL,jR

)
dII

1 (0; 0) ±1 8 2+1 + 40 + 2−1

2 (0, 12) 0 8 2+1 + 40 + 2−1

±2 1 10

3 (0, 1) ±1 8 2+1 + 40 + 2−1

4 (0, 12) 0 1 10

(0, 32) 0 29 1+2 + 8+1 + 110 + 8−1 + 1−2

±2 8 2+1 + 40 + 2−1

(12 , 2) 0 1 10

Table 4. The BPS indices Nd

jL,jR
for 1 ≤ d ≤ 4 of the (2, 2) model with the rank deformation

U(N +MII)k×U(N +MI)0×U(N + 2MI +MII)−k×U(N +MI)0. The table is recapitulated from

the tables in [36] with a different arrangement.

to identify the u(1) charge correctly and describe the reduced grand potential by the

characters with the u(1) fugacity. From this viewpoint, in addition to the previous u(1)

charge dI appearing in decomposing the so(10) representations to so(8)×u(1), we introduce

another u(1) charge dII, both of which are given explicitly in the current degrees by

dI = (d+1 + d+2 + d+3 )− (d−1 + d−2 + d−3 ), dII = (d+1 − d−1 )− (d+3 − d−3 ). (5.3)

With these two u(1) charges we can rearrange table 2 and table 3 in [36] by table 4 .

After the rearrangement it is not difficult to find the relation to the decomposition of

the so(8) representations to [su(2)]4. Namely, due to the decomposition of the first few

so(8) representations,

8v → (2,2,1,1) + (1,1,2,2),

8s → (2,1,2,1) + (1,2,1,2),

8c → (2,1,1,2) + (2,1,1,2),

28 → (3,1,1,1) + (1,3,1,1) + (1,1,3,1) + (1,1,1,3) + (2,2,2,2), (5.4)

we can successfully identify the u(1) charge as the Cartan subalgebra of the last su(2).

From this identification of the u(1) charge we can introduce another character with

two parameters and describe the worldsheet and membrane instantons as

JWS(µeff) =
∞∑

m=1

dme−m
µeff
k , JMB(µeff) =

∞∑

ℓ=1

(̃bℓµeff + c̃ℓ)e
−ℓµeff , (5.5)

where the instanton coefficients are given by

dm =
∑

nd=m

(−1)m

n

∑

jL,jR

nd,R
jL,jR

(−1)d−1

(2 sin πn
k )2

χR(e
−πinbI , e−πinbII)χjL(e

2πni
k )χjR(1),
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b̃ℓ =
∑

nd=ℓ

1

n

∑

jL,jR

nd,R
jL,jR

(−1)dd

4π sinπnk
χR(e

−πinkbI , e−πinkbII)χjL(e
πink)χjR(e

πink),

c̃ℓ = −k2
∂

∂k

[
b̃ℓ
ℓk

]

bI,bII

, (5.6)

with (bI, bII) = (1−MI/k,−2MII/k). Note that in the coefficient c̃ℓ we treat bI and bII to

be independent of k under the derivative. Using the representations of so(10) in table 1,

table 2, table 3 and the characters in appendix A.4, we find that this simple expression

reproduces all the instanton coefficients listed in appendix C of [36] for 1 ≤ d ≤ 8.

6 Orbifold (2, 1) model

There is one more interesting theory which is solvable from the group-theoretical viewpoint.

One lesson we learned from the study of the superconformal Chern-Simons theory with

the orthosymplectic gauge group in [43] (see also [32, 33, 44, 45]) is that sometimes the

duplicate quiver is easier than the original one. In the previous sections we have struggled

for expressing the reduced grand potential of the (2, 1) model in terms of the free energy of

topological strings (1.1). Here instead let us consider the duplicate (2, 1, 2, 1) model, which

is the U(N)6 superconformal Chern-Simons theory with {sa} = {+1,+1,−1,+1,+1,−1}.

The physical interpretation of the repetition of {sa} is the orbifold [22, 23] and we often refer

to the (2, 1, 2, 1) model also as the Z2 orbifold of the (2, 1) model. Since the odd membrane

instantons of the (2, 1) model (2.10) look very similar to those of the orthosymplectic

theory [43], it is natural to expect that the odd membrane instantons are projected out

in the duplicate (2, 1, 2, 1) model as well and the reduced grand potential falls into the

standard expression (1.1) easily.

Before starting the computation of the instantons in the (2, 1, 2, 1) model, let us guess

which set of the BPS indices should govern the model. From the Newton polygon, the

general deformation of the (2, 1, 2, 1) model corresponds to a genus-three curve, which

seems not so easy from the current technology. However, as explained carefully in [40, 46]

(see figure 8 in [40]), the E7 del Pezzo geometry also appears as a special case of the same

curve with the parameters tuned (which reduces the curve to genus-one).7 Hence, we expect

that the (2, 1, 2, 1) model is governed by the BPS indices of the local E7 del Pezzo geometry.

6.1 Instantons

The reduced grand potential of the Z2 orbifold theory J [2](µ) can be obtained from the

original one J [1](µ) by applying the rule of [47],

J [2](µ) = J [1]

(
µ+ πi

2

)
+ J [1]

(
µ− πi

2

)

+ log

[
1 +

∑

n 6=0

eJ
[1](µ+πi

2
+2πin)+J [1](µ−πi

2
−2πin)−J [1](µ+πi

2
)−J [1](µ−πi

2
)

]
. (6.1)

7We can check explicitly that, in the classical limit k → 0, the genus of the curve degenerates due to the

singularity of the curve. We thank Yasuhiko Yamada for valuable discussions.
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Since we shall discuss both the (2, 1) model and the (2, 1, 2, 1) model, to avoid confusions,

we put the superscripts (2, 1) and (2, 1, 2, 1) to each quantity in this subsection to denote

which model the quantity is associated to.

When we consider the duplicate model in (6.1), we need to substitute (µ±πi)/2±2πin

for µ. The reduced grand potential J (2,1)(µ) (2.4) depends on µ only through µ
(2,1)
eff in (2.6).

Since the instanton effect in (2.6) is simply e−2µ, we can define a common effective chemical

potential µ
(2,1,2,1)
eff for the (2, 1, 2, 1) model

µ
(2,1,2,1)
eff

2
=





µ

2
+ 2e−µ

4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2;−16e−µ

)
, for odd k,

µ

2
+ 6e−µ

4F3

(
1, 1,

7

4
,
5

4
; 2, 2, 2;−64e−µ

)
, for even k,

(6.2)

independent of n and substitute (µ
(2,1,2,1)
eff ± πi)/2± 2πin for µ

(2,1)
eff in (2.4).

Note that there is a great simplification in the “twisted” sectors (n 6= 0) for the current

case. After the substitution, the exponent in the twisted sector becomes

J (2,1)

(
µ+πi

2
+2πin

)
+J (2,1)

(
µ−πi

2
−2πin

)
−J (2,1)

(
µ+πi

2

)
−J (2,1)

(
µ−πi

2

)
(6.3)

=−2n(2n+1)π2C(2,1)µ
(2,1,2,1)
eff −4

∞∑

m=1

d(2,1)m sin

(
(2n+1)mπ

k

)
sin

(
2nmπ

k

)
e−

m
k
µ
(2,1,2,1)
eff .

Note that both the even and odd membrane instanton parts cancel among themselves,

leaving only the perturbative part and the worldsheet instanton part. Furthermore, if

we use the result C(2,1) = 1/(π2k), the exponential function of the perturbative part

becomes e−
2n(2n+1)

k
µ
(2,1,2,1)
eff , giving rise to the worldsheet instanton contribution. Namely,

after substituting the worldsheet instanton part (6.3) into the logarithmic function in (6.1),

we find that the twisted sectors only give the worldsheet instanton for the current case.

Therefore, the membrane instanton part comes directly from the “untwisted” sector

(n = 0), as was the case for the perturbative part [47]. Again, the contributions from

the odd membrane instantons e−(2ℓ−1)µ
(2,1)
eff of the (2, 1) model disappear and the even

membrane instantons e−2ℓµ
(2,1)
eff give rise to the standard expression of the membrane in-

stantons e−ℓµ
(2,1,2,1)
eff . Finally, we find that the reduced grand potential of the (2, 1, 2, 1)

model becomes

J (2,1,2,1)(µ) = J (2,1,2,1)pert(µ
(2,1,2,1)
eff ) + J (2,1,2,1)np(µ

(2,1,2,1)
eff ),

J (2,1,2,1)np(µ
(2,1,2,1)
eff ) = J (2,1,2,1)WS(µ

(2,1,2,1)
eff ) + J (2,1,2,1)MB(µ

(2,1,2,1)
eff ), (6.4)

with each part given by

J (2,1,2,1)pert(µ
(2,1,2,1)
eff ) =

C(2,1,2,1)

3
(µ

(2,1,2,1)
eff )3 +B(2,1,2,1)µ

(2,1,2,1)
eff +A(2,1,2,1),

J (2,1,2,1)WS(µ
(2,1,2,1)
eff ) =

∞∑

m=1

d(2,1,2,1)m e−
m
k
µ
(2,1,2,1)
eff ,

J (2,1,2,1)MB(µ
(2,1,2,1)
eff ) =

∞∑

ℓ=1

(̃b
(2,1,2,1)
ℓ µ

(2,1,2,1)
eff + c̃

(2,1,2,1)
ℓ )e−ℓµ

(2,1,2,1)
eff . (6.5)
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Here the coefficients of the perturbative part are given by

C(2,1,2,1) =
1

4π2k
, B(2,1,2,1) = −

1

3k
+

k

12
, (6.6)

while those of the membrane instantons are given by

b̃
(2,1,2,1)
ℓ = (−1)ℓb̃

(2,1)
2ℓ , c̃

(2,1,2,1)
ℓ = 2(−1)ℓc̃

(2,1)
2ℓ , (6.7)

which indicates the derivative relation

c̃
(2,1,2,1)
ℓ = −k2

d

dk

b̃
(2,1,2,1)
ℓ

ℓk
. (6.8)

The coefficients of the worldsheet instantons d
(2,1,2,1)
m are obtained by multiplying d

(2,1)
m

with the cosine factor 2 cosmπ/k coming from the substitution of (µ
(2,1,2,1)
eff ± πi)/2 (6.2)

and also taking into account the twisted sector (6.3) with n satisfying 2n(2n + 1) ≤ m.

The explicit relations for the first few coefficients are given as

d
(2,1,2,1)
1 =2cos

(
π

k

)
d
(2,1)
1 , d

(2,1,2,1)
2 =2cos

(
2π

k

)
d
(2,1)
2 +1, (6.9)

d
(2,1,2,1)
3 =2cos

(
3π

k

)
d
(2,1)
3 −4sin

(
π

k

)
sin

(
2π

k

)
d
(2,1)
1 ,

d
(2,1,2,1)
4 =2cos

(
4π

k

)
d
(2,1)
4 −4sin

(
2π

k

)
sin

(
4π

k

)
d
(2,1)
2 +8sin2

(
π

k

)
sin2

(
2π

k

)
(d

(2,1)
1 )2−

1

2
,

··· .

To summarize, we obtain the membrane instanton coefficients in the (2, 1, 2, 1) model

of degree ℓ directly from those in the (2, 1) model of degree 2ℓ using (6.7), while for the

worldsheet instanton coefficients of degree m we need to expand (6.1) up to the m-th order

with the help of (6.3) as in (6.9). Hereafter we shall only discuss the (2, 1, 2, 1) model and

omit the superscript (2, 1, 2, 1).

6.2 Characters

Due to the difference in the odd instantons and the even instantons, we adopt an alternating

multi-covering structure motivated by (4.15).

dm =
∑

n|m

1

n

(
δ+m

n

(
k

n

)
+ (−1)nδ−m

n

(
k

n

))
. (6.10)

By comparing with the result obtained in (6.1), we find that the first few instanton coeffi-

cients are given by

δ+1 (k)− δ−1 (k) =
8

(2 sin π
k )

2
, δ+1 (k) + δ−1 (k) =

56

(2 sin π
k )

2
,

δ+2 (k)− δ−2 (k) = −
16

(2 sin π
k )

2
+ 3, (6.11)
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which gives

δ+1 (k) =
32

(2 sin π
k )

2
, δ−1 (k) =

24

(2 sin π
k )

2
. (6.12)

It is then interesting to compare these coefficients with the tables for the BPS indices of the

local E7 del Pezzo geometry in [37]. Let us decompose the E7 representation 56 appearing

in d = 1 to the subalgebra so(12)×su(2),

56 → (12,2) + (32,1), (6.13)

and identify 32 and 24 in the numerator in (6.12) respectively as 32 × 1 and 12 × 2. We

can imagine that the even(bosonic) and odd(fermionic) representations in the congruency

class of su(2) contribute to δ+d (k) and δ−d (k) respectively.

Namely, once the BPS indices in the tables of [37] are partitioned into the E7 repre-

sentations

Nd
jL,jR

= (−1)d−1
∑

R

nd,R
jL,jR

dim(R), (6.14)

we propose that the multi-covering component of the worldsheet instantons is computed by

δ±d (k) =
(−1)d−1

(2 sin π
k )

2

∑

jL,jR

∑

R

nd,R
jL,jR

n±
R
χjL(e

2πi
k )χjR(1), (6.15)

where we have defined

n
+/−
R

=
∑

ρ:even/odd

dimρ · dim r, (6.16)

for the decomposition

E7 → so(12)× su(2), R →
∑

(r,ρ). (6.17)

For the membrane instantons, we assume the standard multi-covering structure

b̃ℓ =
∑

n|ℓ

1

n
β ℓ

n
(nk), (6.18)

though for the comparison with the worldsheet instantons we also need the parity separation

βd(k) = β+
d (k) + β−

d (k), β±
d (k) =

(−1)dd

4π sinπk

∑

jL,jR

∑

R

nd,R
jL,jR

χ±
R
(e−πik)χjL(e

πik)χjR(e
πik).

(6.19)

Here we have defined the E7 characters χ±
R
(q) from the so(12) characters χr(q) as

χ±
R
(q) =

∑

ρ:even/odd

dimρ · χr(q), χr(q) =
∑

h

qh dim(r′)h, (6.20)

with h specifying the u(1) charge in the further decomposition of the so(12) representations

to the subalgebra so(10)×u(1)

so(12) → so(10)× u(1), r →
∑

(r′)h. (6.21)
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d (jL, jR) BPS representations

1 (0, 0) 56 56

2 (0, 12) 133 133

(12 , 1) 1 1

3 (0, 1) 912 912

(0, 0), (12 ,
3
2) 56 56

4 (0, 32) 8778 8645+ 133

(0, 12), (
1
2 , 2) 1673 1539+ 133+ 1

(12 , 1) 134 133+ 1

(1, 52) 133 133

(0, 52), (1,
3
2), (

3
2 , 3) 1 1

5 (0, 2) 93688 86184+ 6480+ 912+ 2× 56

(0, 1), (12 ,
5
2) 36080 27664+ 6480+ 2× 912+ 2× 56

(12 ,
3
2) 8472 6480+ 2× 912+ 3× 56

(1, 3) 7504 6480+ 912+ 2× 56

(0, 0) 6592 6480+ 2× 56

(1, 2) 1024 912+ 2× 56

(0, 3), (12 ,
1
2), (

3
2 ,

7
2) 968 912+ 56

(12 ,
7
2), (1, 1), (

3
2 ,

5
2), (2, 4) 56 56

Table 5. The constituent representations for the total BPS indices of the (2, 1, 2, 1) model for

1 ≤ d ≤ 5.

With this identification, the remaining task is to separate the BPS indices given in [37]

as the E7 representations. Fortunately, this is given explicitly in [37] (see table 5). Surpris-

ingly, we can confirm that the BPS indices with the identification of the representations

given in [37] correctly reproduce the worldsheet instantons and the membrane instantons in

appendix B.1 for 1 ≤ d ≤ 4 after decomposing the E7 representations to so(10)×u(1)×su(2)

using the group-theoretical results in appendix B.2. Comparing the congruency class Z2 of

E7, it is interesting to observe that all of the representations appearing in degree d belongs

to the class d mod 2.

The identification of the representations for d = 5 given in [37], however, does not

obey the congruency class and the decomposition of the E7 representations does not give

the instanton effects correctly. Hence we assume general degeneracies nd=5,R
jL,jR

of the repre-

sentations obeying the congruency class and solve the conditions to match the worldsheet

instantons and the membrane instantons listed in appendix B.1. We have found a unique

positive solution {nd=5,R
jL,jR

} given in table 5.
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As in the case of the rank-deformed (2, 2) model studied in the previous section, we

could introduce five Kähler parameters

Tn =
µeff

k
+ nπi, (n = 0,±1,±2). (6.22)

There are again, however, not enough data to completely determine the split of the BPS

indices. We have chosen alternatively to express our final result with the characters.

7 Discussions

We have revisited the grand potential of the (2, 1) model. We first observe that the world-

sheet instantons of the (2, 1) model coincide exactly with that of the rank deformed (2, 2)

model through the relation (3.2). This gives us a hint for the novel multi-covering struc-

ture of the membrane instantons (3.5). We also observe that the BPS indices for the (2, 2)

model are those for the local D5 del Pezzo geometry with the decomposition of the so(10)

representations to the subalgebra so(8)×u(1). With these observations in mind, we are

able to construct a framework to reproduce the multi-covering structure (2.8), (3.5), (2.12)

and the derivative relations (2.11) for the reduced grand potential of the (2, 1) model using

the topological string free energy by introducing the four Kähler parameters (4.2). After

identifying the BPS indices, we discover that the BPS indices are those obtained by fur-

ther decomposing the so(10) representations to so(6)×u(1)×u(1). We also explain that it

is natural that the same set of the BPS indices is used for both the (2, 2) model and the

(2, 1) model from the viewpoint of the Newton polygon.

We have continued to study the (2, 1, 2, 1) model, which is the Z2 orbifold of the (2, 1)

model, and find that this time the BPS indices are those of the local E7 del Pezzo geometry,

with the E7 representations decomposed to the subalgebra so(10)×u(1)×su(2). Though

we have not been able to identify the correct representations for the local E7 del Pezzo

geometry in d = 6 so far, we have listed the worldsheet instanton and the membrane

instanton in appendix B.1 so that it can be checked in the future.

From the viewpoint of five-dimensional gauge theories [48], the local D5 del Pezzo

geometry and the local E7 del Pezzo geometry are respectively associated to the N = 1

SU(2) Yang-Mills theories with Nf = 4 and Nf = 6 matters, possessing the perturbative

flavor symmetries so(8) and so(12). It is only after we include the non-perturbative effects

that the flavor symmetries are enhanced to D5 and E7. This may explain why we first

consider the decomposition of the so(10) representations to so(8)×u(1) and that of the E7

representations to so(12)×su(2) when studying the instantons. Then, it remains to see

which Weyl symmetries the models or the deformations preserve. It would be interesting

to figure out the general rule to identify the u(1) charges.

In our determination of the representations, we have observed that the representations

utilized in the BPS indices of degree d are all in the congruency class d. We would like to

know how this can be proved mathematically rigorously.

Years ago it was difficult to find the expression of the (2, 1) model and its cousins. We

believe that our work has opened up a new avenue towards more general understanding

of the partition function of the N = 4 superconformal Chern-Simons theories. We would
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like to pursue more examples, such as the (p, q) models, for a concrete view of the non-

perturbative effects.

From the above several examples along with those in [41, 42], the description of the non-

perturbative effects of the reduced grand potential using the topological string theory (1.1)

seems to work at least for the genus-one curve. For a general (p, q) model the Newton

polygon suggests the curve to be of higher genus, hence it is desired to know what the

correct description is for higher genus curves. Especially we would like to see explicitly

how recent proposals on the spectral determinant of higher genus curves [49, 50] works for

these superconformal Chern-Simons theories. Our orbifold (2, 1) model may be instructive

in the sense that on one hand the associated curve is generally of genus-three, though on

the other hand the curve degenerates to genus-one.
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A Data for (2, 1)/(2, 2) model and D5

In this appendix we summarize the data which are relevant in discussing the relation

between the instanton effects of the (2, 1)/(2, 2) models and the free energy of the topo-

logical string theory on the local D5 del Pezzo geometry. In appendix A.1 we display

the instanton coefficients of the (2, 1) model in terms of the multi-covering components.

In appendix A.2 we list the irreducible representations of so(10) and the characters with

a single u(1) fugacity associated to the decomposition of the so(10) representations to

the subalgebra so(8)×u(1). These data are used to determine the representations which

the BPS indices of the local D5 del Pezzo geometry consist of from the instanton coef-

ficients of the (2, 2) model. In appendix A.3 we list the characters with an additional

u(1) fugacity associated with the further decomposition of the so(8) representations to

the subalgebra so(6)×u(1), which appear in the instanton coefficients of the (2, 1) model.

Finally, in appendix A.4 we turn on the second fugacity in a different way so that the

characters reproduce the instanton coefficients of the (2, 2) model with the gauge group

U(N +MII)k ×U(N +MI)0 ×U(N + 2MI +MII)−k ×U(N +MI)0.

A.1 Instanton coefficients for (2, 1) model

We shall list the explicit form of the instanton coefficients for the (2, 1) model. The first

several coefficients of the worldsheet instantons are given by

δ1(k) =
4 cos π

k

sin2 2π
k

,
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δ2(k) = −
4 + cos 2π

k

sin2 2π
k

,

δ3(k) =
12 cos π

k

sin2 2π
k

,

δ4(k) = −
32 + 16 cos 2π

k

sin2 2π
k

+ 5,

δ5(k) =
220 cos π

k + 20 cos 3π
k

sin2 2π
k

− 96 cos
π

k
,

δ6(k) = −
780 + 579 cos 2π

k

sin2 2π
k

+

(
848 + 480 cos

2π

k

)
−

(
256 + 64 cos

2π

k

)
sin2

2π

k
,

δ7(k) =
7168 cos π

k + 1260 cos 3π
k

sin2 2π
k

−

(
13232 cos

π

k
+ 1696 cos

3π

k

)

+

(
9472 cos

π

k
+ 576 cos

3π

k

)
sin2

2π

k
− 2560 cos

π

k
sin4

2π

k
(A.1)

while the odd membrane instantons are

γ1(k) = −
sinπk

sin2 πk
2

,

γ3(k) = −
sinπk + sin 2πk

sin2 πk
2

,

γ5(k) = −
2 sinπk + 6 sin 2πk + 6 sin 3πk + 2 sin 4πk

sin2 πk
2

,

γ7(k) = −
(
13 sinπk + 38 sin 2πk + 68 sin 3πk + 68 sin 4πk + 38 sin 5πk + 13 sin 6πk

+ 2 sin 7πk
)/(

sin2
πk

2

)
,

γ9(k) = −
(
150 sinπk + 397 sin 2πk + 754 sin 3πk + 1053 sin 4πk + 1053 sin 5πk

+ 754 sin 6πk + 399 sin 7πk + 164 sin 8πk + 52 sin 9πk + 14 sin 10πk + 2 sin 11πk
)

/(
sin2

πk

2

)
,

γ11(k) = −
(
2469 sinπk + 5880 sin 2πk + 10694 sin 3πk + 16180 sin 4πk + 20090 sin 5πk

+ 20092 sin 6πk + 16194 sin 7πk + 10751 sin 8πk + 6064 sin 9πk + 3002 sin 10πk

+ 1328 sin 11πk + 533 sin 12πk + 184 sin 13πk + 57 sin 14πk + 14 sin 15πk

+ 2 sin 16πk
)/(

sin2
πk

2

)
, (A.2)

and the even membrane instantons are

β′
2(k) =

4 sinπk + sin 2πk

2π sin2 πk
2

,

β′
4(k) =

5 sinπk + 6 sin 2πk + 5 sin 3πk

π sin2 πk
2

,
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β′
6(k) =

3(14 sinπk + 28 sin 2πk + 48 sin 3πk + 28 sin 4πk + 14 sin 5πk + sin 6πk)

2π sin2 πk
2

,

β′
8(k) = 4

(
43 sinπk + 98 sin 2πk + 192 sin 3πk + 214 sin 4πk + 192 sin 5πk + 98 sin 6πk

+ 46 sin 7πk + 10 sin 8πk + 3 sin 9πk
)/(

π sin2
πk

2

)
,

β′
10(k) = 5

(
904 sinπk + 2080 sin 2πk + 3892 sin 3πk + 5416 sin 4πk + 6328 sin 5πk

+ 5417 sin 6πk + 3906 sin 7πk + 2119 sin 8πk + 1068 sin 9πk + 400 sin 10πk

+ 164 sin 11πk + 39 sin 12πk + 14 sin 13πk + sin 14πk
)/(

2π sin2
πk

2

)
,

β′
12(k) = 3

(
13269 sinπk + 29510 sin 2πk + 51947 sin 3πk + 76500 sin 4πk + 99103 sin 5πk

+ 106846 sin 6πk + 99191 sin 7πk + 76740 sin 8πk + 52699 sin 9πk + 31238 sin 10πk

+ 17459 sin 11πk + 8580 sin 12πk + 4190 sin 13πk + 1728 sin 14πk + 752 sin 15πk

+ 240 sin 16πk + 94 sin 17πk + 20 sin 18πk + 6 sin 19πk
)/(

π sin2
πk

2

)
. (A.3)

The auxiliary membrane instantons borrowed from the (2, 2) model by replacing k by

k/2 (3.7) are given as

β1(k) = −
2 sinπk

π sin2 πk
2

,

β2(k) =
8 sinπk + sin 2πk

2π sin2 πk
2

,

β3(k) = −
6 sinπk + 6 sin 2πk

π sin2 πk
2

,

β4(k) =
9 sinπk + 30 sin 2πk + 9 sin 3πk

π sin2 πk
2

,

β5(k) = −
20 sinπk + 100 sin 2πk + 100 sin 3πk + 20 sin 4πk

π sin2 πk
2

. (A.4)

For higher instantons of the (2, 2) model, the function expression was not obtained from

the WKB expansion

β
(2,2)
6 (k) =

8146

π2k
− 60732k +

835836π2k3

5
−

26743288π4k5

105
+

18972788π6k7

75
+O(k9),

β
(2,2)
7 (k) = −

2890808

49π2k
+

1853576k

3
−

110179048π2k3

45
+

741506416π4k5

135
−

5548809784π6k7

675

+O(k9),

β
(2,2)
8 (k) =

7168777

16π2k
−

18917506k

3
+

1543348448π2k3

45
−

14523693056π4k5

135

+
1083571808768π6k7

4725
+O(k9). (A.5)

A.2 Decomposition of so(10) representations

In this appendix we list the decompositions of the first several so(10) irreducible represen-

tations to the subalgebra so(8)×u(1). These decompositions are helpful in identifying the
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so(10) 0 ±1 ±2 ±3 ±4

1 1

10 8v 1

16 8s/c

45 28+ 1 8v

54 35v + 1 8v 1

120 56v + 8v 28

126 56v 35s/c

144 56s/c + 8s/c 8s/c

Table 6. The decomposition of the so(10) representations to the subalgebra so(8)×u(1).

irreducible representations which the total BPS indices listed in [37] consist of. We only

list the first few representations necessary for the study of 1 ≤ d ≤ 5 in table 6. For higher

degrees, we present the characters. The character for a general representation R of Lie

algebra g with fugacities ξ can be computed by the Weyl character formula

χR(ξ) = lim
ǫ→0

∑
w∈Wg

(−1)l(w)e(ξ+ǫρ,w(diωi+ρ))

∑
w∈Wg

(−1)l(w)e(ξ+ǫρ,w(ρ))
. (A.6)

Here Wg is the Weyl group, l(w) is the length of reflection w ∈ Wg and di is the Dynkin

label of the representation R with ωi being the fundamental weights and ρ =
∑

i ωi being

the Weyl vector. For the current case of the algebra so(10), if we choose the fundamental

weights as

ω1 = (1, 0, 0, 0, 0), ω2 = (1, 1, 0, 0, 0), ω3 = (1, 1, 1, 0, 0),

ω4 =

(
1

2
,
1

2
,
1

2
,
1

2
,−

1

2

)
, ω5 =

(
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
, (A.7)

the fugacity for the u(1) charge in decomposing the so(10) representations to the subalgebra

so(8)×u(1) is ξ = (2 log q, 0, 0, 0, 0).

The explicit expression of the characters are given by

χ1(q) = 1,

χ45(q) = 29 + 8(q2 + q−2),

χ54(q) = 36 + 8(q2 + q−2) + q4 + q−4,

χ210(q) = 98 + 56(q2 + q−2),

χ660(q) = 330 + 120(q2 + q−2) + 36(q4 + q−4) + 8(q6 + q−6) + q8 + q−8,

χ770(q) = 364 + 168(q2 + q−2) + 35(q4 + q−4),

χ945(q) = 441 + 224(q2 + q−2) + 28(q4 + q−4),

χ1050(q) = 420 + 280(q2 + q−2) + 35(q4 + q−4),
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χ1386(q) = 666 + 288(q2 + q−2) + 64(q4 + q−4) + 8(q6 + q−6),

χ2772(q) = 840 + 672(q2 + q−2) + 294(q4 + q−4),

χ4125(q) = 1525 + 1000(q2 + q−2) + 300(q4 + q−4), (A.8)

for the congruency class d ≡ 0 mod 4,

χ10(q) = 8 + q2 + q−2,

χ120(q) = 64 + 28(q2 + q−2),

χ126(q) = 56 + 35(q2 + q−2),

χ210′(q) = 120 + 36(q2 + q−2) + 8(q4 + q−4) + q6 + q−6,

χ320(q) = 176 + 64(q2 + q−2) + 8(q4 + q−4), (A.9)

for the congruency class d ≡ 2 mod 4 and

χ16(q) = 8(q + q−1),

χ144(q) = 64(q + q−1) + 8(q3 + q−3),

χ560(q) = 224(q + q−1) + 56(q3 + q−3),

χ672(q) = 224(q + q−1) + 112(q3 + q−3),

χ720(q) = 288(q + q−1) + 64(q3 + q−3) + 8(q5 + q−5),

χ1200(q) = 440(q + q−1) + 160(q3 + q−3),

χ1440(q) = 496(q + q−1) + 224(q3 + q−3), (A.10)

for the congruency class d ≡ 1, 3 mod 4.

A.3 BPS indices for so(10) representations

In the main text we have conjectured that the BPS indices appearing in the (2, 1)

model are those obtained by decomposing the so(10) representations to the subal-

gebra so(6)×u(1)×u(1). Then only a few combinations of the original BPS indices

N
(d,dw,dm)
jL,jR

, called the alternating BPS indices N
′(d,dm)
jL,jR

(4.15) and the weighted BPS in-

dices M
(d,dm)
jL,jR

(4.19) appear in the membrane instanton of the (2, 1) model. Hence, in this

appendix, we shall compute these indices for various so(10) representations.

These BPS indices can be computed from the characters with two fugacities indi-

cating the two u(1) charges in decomposing the so(10) representations to the subalgebra

so(6)×u(1)×u(1). With the same choice of the fundamental weights (A.7), the characters

can be obtained by substituting ξ = (2 log q, 2 log p, 0, 0, 0) into (A.6), where we omit the

characters of some so(10) representations which are not used for the BPS indices. Then,

using (4.31), the two combinations of the BPS indices are obtained in table 7 from the

characters.

The characters are given by

χ1(p,q)=1,

χ45(p,q)=17+6(q2+q−2)+(p2+p−2)(6+q2+q−2),
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N
′(d,dm)
jL,jR

0 ±2 ±4 ±6

1 1

45 5 4

54 12 4 1

210 −6 −4

770 36 20 11

945 9 16 4

1050 −20 −20 −5

1386 66 48 16 4

N
′(d,dm)
jL,jR

0 ±2 ±4

10 4 1

120 0 4

126 −4 −5

320 24 16 4

M
(d,dm)
jL,jR

±1 ±3 ±5

16 8

144 32 8

560 32 24

720 96 32 8

Table 7. (Left two) The alternating BPS indices (−1)d−1N
′(d,dm)
jL,jR

for the representations of so(10)

in the congruency class d ≡ 0 or d ≡ 2 mod 4 which are used in the membrane instanton effects β′

d(k)

for d = 2, 4, 6, 8. (Right one) The weighted BPS indices (−1)d−1M
(d,dm)
jL,jR

for the representations of

so(10) in the congruency class d ≡ 1 or d ≡ 3 mod 4 which are used in the membrane instanton

effects γd(k) for d = 1, 3, 5, 7.

χ54(p,q)=22+6(q2+q−2)+q4+q−4+(p2+p−2)(6+q2+q−2)+p4+p−4,

χ210(p,q)=46+26(q2+q−2)+(p2+p−2)(26+15(q2+q−2)),

χ770(p,q)=158+82(q2+q−2)+21(q4+q−4)+(p2+p−2)(82+37(q2+q−2)+6(q4+q−4))

+(p4+p−4)(21+6(q2+q−2)+q4+q−4),

χ945(p,q)=193+108(q2+q−2)+16(q4+q−4)

+(p2+p−2)(108+52(q2+q−2)+6(q4+q−4))+(p4+p−4)(16+6(q2+q−2)),

χ1050(p,q)=170+110(q2+q−2)+15(q4+q−4)

+(p2+p−2)(110+75(q2+q−2)+10(q4+q−4))+(p4+p−4)(15+10(q2+q−2)),

χ1386(p,q)=290+144(q2+q−2)+38(q4+q−4)+6(q6+q−6)

+(p2+p−2)(144+59(q2+q−2)+12(q4+q−4)+q6+q−6)

+(p4+p−4)(38+12(q2+q−2)+q4+q−4)+(p6+p−6)(6+q2+q−2), (A.11)

for the congruency class d ≡ 0 mod 4,

χ10(p, q) = 6 + q2 + q−2 + p2 + p−2,

χ120(p, q) = 32 + 16(q2 + q−2) + (p2 + p−2)(16 + 6(q2 + q−2)),

χ126(p, q) = 26 + 15(q2 + q−2) + (p2 + p−2)(15 + 10(q2 + q−2)),

χ320(p, q) = 88 + 38(q2 + q−2) + 6(q4 + q−4) + (p2 + p−2)(38 + 12(q2 + q−2) + q4 + q−4)

+ (p4 + p−4)(6 + q2 + q−2), (A.12)

for the congruency class d ≡ 2 mod 4 and

χ16(p, q) = 4(p+ p−1)(q + q−1),

χ144(p, q) = 4(p+ p−1)(q + q−1)[5 + q2 + q−2 + p2 + p−2],
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χ560(p, q) = 4(p+ p−1)(q + q−1)[11 + 5(q2 + q−2) + (p2 + p−2)(5 + q2 + q−2)],

χ720(p, q) = 4(p+ p−1)(q + q−1)[17 + 5(q2 + q−2) + q4 + q−4

+ (p2 + p−2)(5 + q2 + q−2) + p4 + p−4], (A.13)

for the congruency class d ≡ 1, 3 mod 4.

A.4 Characters for rank-deformed (2, 2) model

In this appendix we shall list the so(10) characters with two parameters for

the study of the (2, 2) model with the rank deformation U(N + MII)k×U(N +

MI)0×U(N + 2MI + MII)−k×U(N + MI)0. The characters are obtained by setting

ξ = (2 log qI, log qII, log qII, 0, 0) in the Weyl character formula (A.6) for the same choice

of the fundamental weights (A.7). The characters are given explicitly by

χ1(qI,qII)=1, (A.14)

χ45(qI,qII)=11+8(qII+q−1
II )+q2II+q−2

II +(q2I +q−2
I )(4+2(qII+q−1

II )),

χ54(qI,qII)=14+8(qII+q−1
II )+3(q2II+q−2

II )+(q2I +q−2
I )(4+2(qII+q−1

II ))+q4I +q−4
I ,

χ210(qI,qII)=36+24(qII+q−1
II )+7(q2II+q−2

II )

+(q2I +q−2
I )(20+14(qII+q−1

II )+4(q2II+q−2
II )),

χ770(qI,qII)=104+80(qII+q−1
II )+41(q2II+q−2

II )+8(q3II+q−3
II )+q4II+q−4

II

+(q2I +q−2
I )(52+40(qII+q−1

II )+16(q2II+q−2
II )+2(q3II+q−3

II ))

+(q4I +q−4
I )(13+8(qII+q−1

II )+3(q2II+q−2
II )),

χ945(qI,qII)=133+104(qII+q−1
II )+42(q2II+q−2

II )+8(q3II+q−3
II )

+(q2I +q−2
I )(72+54(qII+q−1

II )+20(q2II+q−2
II )+2(q3II+q−3

II ))

+(q4I +q−4
I )(10+8(qII+q−1

II )+q2II+q−2
II ),

χ1050(qI,qII)=126+96(qII+q−1
II )+43(q2II+q−2

II )+8(q3II+q−3
II )

+(q2I +q−2
I )(84+64(qII+q−1

II )+28(q2II+q−2
II )+6(q3II+q−3

II ))

+(q4I +q−4
I )(13+8(qII+q−1

II )+3(q2II+q−2
II )),

χ1386(qI,qII)=178+144(qII+q−1
II )+73(q2II+q−2

II )+24(q3II+q−3
II )+3(q4II+q−4

II )

+(q2I +q−2
I )(88+66(qII+q−1

II )+28(q2II+q−2
II )+6(q3II+q−3

II ))

+(q4I +q−4
I )(24+16(qII+q−1

II )+4(q2II+q−2
II ))+(q6I +q−6

I )(4+2(qII+q−1
II )),

for the congruency class d ≡ 0 mod 4,

χ10(qI,qII)=4+2(qII+q−1
II )+q2I +q−2

I , (A.15)

χ120(qI,qII)=24+16(qII+q−1
II )+4(q2II+q−2

II )+(q2I +q−2
I )(10+8(qII+q−1

II )+q2II+q−2
II ),

χ126(qI,qII)=20+14(qII+q−1
II )+4(q2II+q−2

II )+(q2I +q−2
I )(13+8(qII+q−1

II )+3(q2II+q−2
II )),

χ320(qI,qII)=56+42(qII+q−1
II )+16(q2II+q−2

II )+2(q3II+q−3
II )

+(q2I +q−2
I )(24+16(qII+q−1

II )+4(q2II+q−2
II ))+(q4I +q−4

I )(4+2(qII+q−1
II )),
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for the congruency class d ≡ 2 mod 4 and

χ16(qI, qII) = 2(qI + q−1
I )(q

1
2
II + q

− 1
2

II ),

χ144(qI, qII) = 2(qI + q−1
I )(q

1
2
II + q

− 1
2

II )
[
3 + qII + q−1

II + q2I + q−2
I

]
,

χ560(qI, qII) = 2(qI + q−1
I )(q

1
2
II + q

− 1
2

II )
[
7 + 6(qII + q−1

II ) + q2II + q−2
II

+ (q2I + q−2
I )(3 + 2(qII + q−1

II ))
]
,

χ720(qI, qII) = 2(qI + q−1
I )(q

1
2
II + q

− 1
2

II )
[
11 + 6(qII + q−1

II ) + 3(q2II + q−2
II )

+ (q2I + q−2
I )(3 + 2(qII + q−1

II )) + q4I + q−4
I

]
, (A.16)

for the congruency class d ≡ 1, 3 mod 4.

B Data for (2, 1, 2, 1) model and E7

In this appendix we summarize the data to relate the instanton coefficients of the (2, 1, 2, 1)

model with the free energy of the topological string theory on the local E7 del Pezzo

geometry. In appendix B.1 we collect the instanton coefficients, while appendix B.2 provides

the decompositions of the irreducible representations of E7 to the subalgebra so(12)×su(2)

and the characters of the so(12) representations.

B.1 Instanton coefficients for (2, 1, 2, 1) model

In this appendix we list the first several instanton coefficients. For the worldsheet coeffi-

cients, following the main text, we express them by separating into the ± parts. Note that,

purely from the numerical results of the instanton effects up to degree d, we only obtain

the difference δ+d (k)− δ−d (k). The separation is obtained only after studying the instanton

effects up to degree 2d or taking care of the tables for the BPS indices of the local del

Pezzo E7 geometry in [37]. For δ+d (k) we obtain

δ+1 (k) =
32

(2 sin π
k )

2
, (B.1)

δ+2 (k) = −
144

(2 sin π
k )

2
+ 3,

δ+3 (k) =
1632

(2 sin π
k )

2
− 128,

δ+4 (k) = −
29248

(2 sin π
k )

2
+ 6157− 460

(
2 sin

π

k

)2

+ 7

(
2 sin

π

k

)4

,

δ+5 (k) =
652160

(2 sin π
k )

2
− 288576 + 59328

(
2 sin

π

k

)2

− 6336

(
2 sin

π

k

)4

+ 288

(
2 sin

π

k

)6

,

δ+6 (k) = −
16629168

(2 sin π
k )

2
+ 13073657− 5292592

(
2 sin

π

k

)2

+ 1338304

(
2 sin

π

k

)4

− 215992

(
2 sin

π

k

)6

+ 20969

(
2 sin

π

k

)8

− 1020

(
2 sin

π

k

)10

+ 13

(
2 sin

π

k

)12

,
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while for δ−d (k) we obtain

δ−1 (k) =
24

(2 sin π
k )

2
, (B.2)

δ−2 (k) = −
128

(2 sin π
k )

2
,

δ−3 (k) =
1608

(2 sin π
k )

2
− 96,

δ−4 (k) = −
29184

(2 sin π
k )

2
+ 5888− 384

(
2 sin

π

k

)2

,

δ−5 (k) =
651680

(2 sin π
k )

2
− 286320 + 57552

(
2 sin

π

k

)2

− 5776

(
2 sin

π

k

)4

+ 216

(
2 sin

π

k

)6

,

δ−6 (k) = −
16626048

(2 sin π
k )

2
+ 13053696− 5262208

(
2 sin

π

k

)2

+ 1316608

(
2 sin

π

k

)4

− 207232

(
2 sin

π

k

)6

+ 18944

(
2 sin

π

k

)8

− 768

(
2 sin

π

k

)10

.

For the membrane instanton, the derivation is more direct. We only need to ap-

ply (6.7), rewrite into the multi-covering expression and separate into β±
d (k) according to

the arguments of the sine functions in the numerators. For β+
d (k) we obtain

β+
1 (k)=−

4sin2πk

πsin2πk
, (B.3)

β+
2 (k)=

50sin2πk+11sin4πk

2πsin2πk
,

β+
3 (k)=−

12(15sin2πk+15sin4πk+2sin6πk)

πsin2πk
,

β+
4 (k)=

4(863sin2πk+1630sin4πk+869sin6πk+138sin8πk+6sin10πk)

2πsin2πk
,

β+
5 (k)=−40

(
560sin2πk+1317sin4πk+1318sin6πk+576sin8πk

+127sin10πk+16sin12πk+sin14πk
)/(

πsin2πk
)
,

β+
6 (k)=3

(
248502sin2πk+608220sin4πk+824190sin6πk+610860sin8πk

+265298sin10πk+77619sin12πk+16796sin14πk+2652sin16πk+280sin18πk

+12sin20πk
)/(

2πsin2πk
)
,

while for β−
d (k) we obtain

β−
1 (k)=−

9sinπk+sin3πk

2πsin2πk
, (B.4)

β−
2 (k)=

16sinπk+16sin3πk

πsin2πk
,

β−
3 (k)=−

3(56sinπk+152sin3πk+57sin5πk+sin7πk)

2πsin2πk
,

β−
4 (k)=

4(368sinπk+1392sin3πk+1392sin5πk+400sin7πk+32sin9πk)

2πsin2πk
,

– 34 –



J
H
E
P
1
1
(
2
0
1
7
)
0
8
9

β−
5 (k)=−5

(
3888sinπk+15280sin3πk+23489sin5πk+15348sin7πk+4655sin9πk

+767sin11πk+68sin13πk+sin15πk
)/(

2πsin2πk
)
,

β−
6 (k)=48

(
3503sinπk+13119sin3πk+23847sin5πk+23873sin7πk+13336sin9πk

+4671sin11πk+1168sin13πk+217sin15πk+28sin17πk+2sin19πk
)/(

πsin2πk
)
.

B.2 Decomposition of E7 representations

To identify the representations which the BPS indices consist of for the (2, 1, 2, 1) model,

we need to decompose the E7 representations to the subalgebra so(12)×su(2) and further

decompose the so(12) representations to the subalgebra so(10)×u(1). The first several

decompositions are given in table A.88 of [51]. Though this is not enough we can continue by

the Mathematica package provided there. For our purpose, we separate the decompositions

by the congruency class. For the even congruency class we find the decompositions

1→(1,1),

133→(1,3)+(32,2)+(66,1),

1463→(66,1)+(77,3)+(352,2)+(462,1),

1539→(1,1)+(32,2)+(66,3)+(77,1)+(352,2)+(495,1),

7371→(1,1)+(1,5)+(32,2)+(32,4)+(66,3)+(462,3)+(495,1)+(1638,1)

+(1728,2),

8645→(1,3)+(32,2)+(32,4)+(66,1)+(66,3)+(352,2)+(462,1)+(495,3)

+(1728,2)+(2079,1),

40755→(32,2)+(66,1)+(66,3)+(77,1)+(77,3)+2(352,2)+(352,4)+(462,3),

+(495,1)+(495,3)+(1728,2)+(2079,1)+(2079,3)+(2112,2)+(4928
′
,2)

+(8085,1), (B.5)

while for the odd congruency class we find the decompositions

56→(12,2)+(32,1),

912→(12,2)+(32,3)+(220,2)+(352,1),

6480→(12,2)+(12,4)+(32,1)+(32,3)+(220,2)+(352,1)+(352,3)+(560,2)

+(792,2)+(1728,1),

24320→(352′,4)+(560,2)+(1728,1)+(2112,3)+(4224,1)+(4752,2),

27664→(12,2)+(32,1)+(32,3)+(220,2)+(220,4)+(352,1)+(352,3)+(560,2)

+(792,2)+(1728,3)+(2112,1)+(4928′,1)+(4928,2),

51072→(12,2)+(32,1)+(220,2)+(352,1)+(352′,2)+(352,3)+(560,2)+(560,4)

+(792,2)+(1728,1)+(1728,3)+(2112,1)+(2112,3)+(4752,2)+(4928,2)

+(8800,1),

86184→(12,2)+(12,4)+(32,1)+(32,3)+(32,5)+2(220,2)+(220,4)+(352,1)

+2(352,3)+(560,2)+(792,2)+(792,4)+(1728,1)+(1728,3)+(4752,2)

+(4928′,1)+(4928,2)+(4928′,3)+(8008,2)+(13728,1). (B.6)
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For the study of the membrane instantons in the (2, 1, 2, 1) model, we need to fur-

ther decompose the so(12) representations to the subalgebra so(10)×u(1). For this pur-

pose, the characters are helpful. These characters can be obtained by choosing ξ =

(2 log q, 0, 0, 0, 0, 0) in the Weyl character formula (A.6) if we fix the fundamental weights as

ω1=(1,0,0,0,0,0), ω2=(1,1,0,0,0,0), ω3=(1,1,1,0,0,0), ω4=(1,1,1,1,0,0),

ω5=

(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,−

1

2

)
, ω6=

(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
. (B.7)

The explicit form of the characters is given by

χ1(q) = 1,

χ12(q) = 10 + (q2 + q−2),

χ32(q) = 16(q + q−1),

χ66(q) = 46 + 10(q2 + q−2),

χ77(q) = 55 + 10(q2 + q−2) + (q4 + q−4),

χ220(q) = 130 + 45(q2 + q−2),

χ352(q) = 160(q + q−1) + 16(q3 + q−3),

χ352′(q) = 220 + 55(q2 + q−2) + 10(q4 + q−4) + (q6 + q−6),

χ462(q) = 210 + 126(q2 + q−2),

χ495(q) = 255 + 120(q2 + q−2),

χ560(q) = 340 + 100(q2 + q−2) + 10(q4 + q−4),

χ792(q) = 372 + 210(q2 + q−2),

χ1287(q) = 715 + 220(q2 + q−2) + 55(q4 + q−4) + 10(q6 + q−6) + (q8 + q−8),

χ1638(q) = 870 + 330(q2 + q−2) + 54(q4 + q−4),

χ1728(q) = 720(q + q−1) + 144(q3 + q−3),

χ2079(q) = 1089 + 450(q2 + q−2) + 45(q4 + q−4),

χ2112(q) = 880(q + q−1) + 160(q3 + q−3) + 16(q5 + q−5),

χ2860(q) = 1540 + 550(q2 + q−2) + 100(q4 + q−4) + 10(q6 + q−6),

χ4004(q) = 2002 + 715(q2 + q−2) + 220(q4 + q−4) + 55(q6 + q−6) + 10(q8 + q−8)

+ (q10 + q−10),

χ4224(q) = 1440(q + q−1) + 672(q3 + q−3),

χ4752(q) = 1980 + 1260(q2 + q−2) + 126(q4 + q−4),

χ4928(q) = 2288 + 1200(q2 + q−2) + 120(q4 + q−4),

χ4928′(q) = 1904(q + q−1) + 560(q3 + q−3),

χ8008(q) = 3740 + 1814(q2 + q−2) + 320(q4 + q−4),

χ8085(q) = 3465 + 2100(q2 + q−2) + 210(q4 + q−4),

χ8800(q) = 3200(q + q−1) + 1200(q3 + q−3),

χ9152(q) = 3520(q + q−1) + 880(q3 + q−3) + 160(q5 + q−5) + 16(q7 + q−7),

– 36 –



J
H
E
P
1
1
(
2
0
1
7
)
0
8
9

χ9504(q) = 3312(q + q−1) + 1440(q3 + q−3),

χ11011(q) = 5005 + 2002(q2 + q−2) + 715(q4 + q−4) + 220(q6 + q−6) + 55(q8 + q−8)

+ 10(q10 + q−10) + (q12 + q−12),

χ11088(q) = 5280 + 2310(q2 + q−2) + 540(q4 + q−4) + 54(q6 + q−6),

χ11088′(q) = 5368 + 2200(q2 + q−2) + 550(q4 + q−4) + 100(q6 + q−6) + 10(q8 + q−8),

χ11232(q) = 5292 + 2475(q2 + q−2) + 450(q4 + q−4) + 45(q6 + q−6),

χ13728(q) = 5280(q + q−1) + 1440(q3 + q−3) + 144(q5 + q−5). (B.8)
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[2] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons

theories and M2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].

[3] O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043

[arXiv:0807.4924] [INSPIRE].

[4] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[5] A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal

Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[6] Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton effects in ABJM theory from Fermi

gas approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].

[7] M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 03 (2012) P03001

[arXiv:1110.4066] [INSPIRE].

[8] Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the

refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].

[9] N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory,

Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

[10] C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-matrix models and tri-Sasaki

Einstein spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].

[11] N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory,

JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].

[12] H. Fuji, S. Hirano and S. Moriyama, Summing up all genus free energy of ABJM matrix

model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].

[13] Y. Hatsuda, S. Moriyama and K. Okuyama, Exact results on the ABJM Fermi gas,

JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].

– 37 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
https://doi.org/10.1088/1126-6708/2008/09/002
https://arxiv.org/abs/0806.4977
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4977
https://doi.org/10.1088/1126-6708/2008/11/043
https://arxiv.org/abs/0807.4924
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4924
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
https://doi.org/10.1007/JHEP01(2013)158
https://arxiv.org/abs/1211.1251
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1251
https://doi.org/10.1088/1742-5468/2012/03/P03001
https://arxiv.org/abs/1110.4066
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4066
https://doi.org/10.1007/JHEP09(2014)168
https://arxiv.org/abs/1306.1734
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1734
https://doi.org/10.1007/s00220-011-1253-6
https://arxiv.org/abs/1007.3837
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3837
https://doi.org/10.1103/PhysRevD.83.046001
https://arxiv.org/abs/1011.5487
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5487
https://doi.org/10.1007/JHEP11(2011)141
https://arxiv.org/abs/1103.4844
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4844
https://doi.org/10.1007/JHEP08(2011)001
https://arxiv.org/abs/1106.4631
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4631
https://doi.org/10.1007/JHEP10(2012)020
https://arxiv.org/abs/1207.4283
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4283


J
H
E
P
1
1
(
2
0
1
7
)
0
8
9

[14] P. Putrov and M. Yamazaki, Exact ABJM partition function from TBA,

Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].

[15] F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA,

JHEP 05 (2013) 006 [arXiv:1212.5118] [INSPIRE].

[16] Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton bound states in ABJM theory,

JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].

[17] A. Cagnazzo, D. Sorokin and L. Wulff, String instanton in AdS4 × CP 3,

JHEP 05 (2010) 009 [arXiv:0911.5228] [INSPIRE].

[18] Y. Hatsuda, S. Moriyama and K. Okuyama, Exact instanton expansion of the ABJM

partition function, Prog. Theor. Exp. Phys. 2015 (2015) 11B104 [arXiv:1507.01678]

[INSPIRE].

[19] M. Mariño, Localization at large-N in Chern-Simons-matter theories,

J. Phys. A 50 (2017) 443007 [arXiv:1608.02959] [INSPIRE].

[20] A. Grassi, Y. Hatsuda and M. Mariño, Topological strings from quantum mechanics,

Annales Henri Poincaré 17 (2016) 3177 [arXiv:1410.3382] [INSPIRE].

[21] D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the theta-angle

in N = 4 super Yang-Mills theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].

[22] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 superconformal Chern-Simons

theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662]

[INSPIRE].

[23] Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories,

Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [INSPIRE].

[24] S. Terashima and F. Yagi, Orbifolding the membrane action, JHEP 12 (2008) 041

[arXiv:0807.0368] [INSPIRE].

[25] Y. Imamura and K. Kimura, N = 4 Chern-Simons theories with auxiliary vector multiplets,

JHEP 10 (2008) 040 [arXiv:0807.2144] [INSPIRE].

[26] S. Moriyama and T. Nosaka, Exact instanton expansion of superconformal Chern-Simons

theories from topological strings, JHEP 05 (2015) 022 [arXiv:1412.6243] [INSPIRE].

[27] Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, ABJM Wilson loops in arbitrary

representations, JHEP 10 (2013) 168 [arXiv:1306.4297] [INSPIRE].

[28] S. Matsumoto and S. Moriyama, ABJ fractional brane from ABJM Wilson loop,

JHEP 03 (2014) 079 [arXiv:1310.8051] [INSPIRE].

[29] B. Assel, N. Drukker and J. Felix, Partition functions of 3d D̂-quivers and their mirror duals

from 1d free fermions, JHEP 08 (2015) 071 [arXiv:1504.07636] [INSPIRE].

[30] S. Moriyama and T. Nosaka, Superconformal Chern-Simons partition functions of affine

D-type quiver from Fermi gas, JHEP 09 (2015) 054 [arXiv:1504.07710] [INSPIRE].

[31] T. Nosaka, Instanton effects in ABJM theory with general R-charge assignments,

JHEP 03 (2016) 059 [arXiv:1512.02862] [INSPIRE].

[32] S. Moriyama and T. Suyama, Orthosymplectic Chern-Simons matrix model and chirality

projection, JHEP 04 (2016) 132 [arXiv:1601.03846] [INSPIRE].

– 38 –

https://doi.org/10.1142/S0217732312502008
https://arxiv.org/abs/1207.5066
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5066
https://doi.org/10.1007/JHEP05(2013)006
https://arxiv.org/abs/1212.5118
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5118
https://doi.org/10.1007/JHEP05(2013)054
https://arxiv.org/abs/1301.5184
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.5184
https://doi.org/10.1007/JHEP05(2010)009
https://arxiv.org/abs/0911.5228
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5228
https://doi.org/10.1093/ptep/ptv145
https://arxiv.org/abs/1507.01678
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01678
https://doi.org/10.1088/1751-8121/aa5f69
https://arxiv.org/abs/1608.02959
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02959
https://doi.org/10.1007/s00023-016-0479-4
https://arxiv.org/abs/1410.3382
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3382
https://doi.org/10.1007/JHEP06(2010)097
https://arxiv.org/abs/0804.2907
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.2907
https://doi.org/10.1088/1126-6708/2008/07/091
https://arxiv.org/abs/0805.3662
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3662
https://doi.org/10.1143/PTP.120.509
https://arxiv.org/abs/0806.3727
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3727
https://doi.org/10.1088/1126-6708/2008/12/041
https://arxiv.org/abs/0807.0368
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0368
https://doi.org/10.1088/1126-6708/2008/10/040
https://arxiv.org/abs/0807.2144
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2144
https://doi.org/10.1007/JHEP05(2015)022
https://arxiv.org/abs/1412.6243
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6243
https://doi.org/10.1007/JHEP10(2013)168
https://arxiv.org/abs/1306.4297
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4297
https://doi.org/10.1007/JHEP03(2014)079
https://arxiv.org/abs/1310.8051
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.8051
https://doi.org/10.1007/JHEP08(2015)071
https://arxiv.org/abs/1504.07636
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07636
https://doi.org/10.1007/JHEP09(2015)054
https://arxiv.org/abs/1504.07710
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07710
https://doi.org/10.1007/JHEP03(2016)059
https://arxiv.org/abs/1512.02862
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.02862
https://doi.org/10.1007/JHEP04(2016)132
https://arxiv.org/abs/1601.03846
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.03846


J
H
E
P
1
1
(
2
0
1
7
)
0
8
9

[33] S. Moriyama and T. Nosaka, Orientifold ABJM matrix model: chiral projections and

worldsheet instantons, JHEP 06 (2016) 068 [arXiv:1603.00615] [INSPIRE].

[34] S. Matsuno and S. Moriyama, Giambelli identity in super Chern-Simons matrix model,

J. Math. Phys. 58 (2017) 032301 [arXiv:1603.04124] [INSPIRE].

[35] K. Kiyoshige and S. Moriyama, Dualities in ABJM matrix model from closed string

viewpoint, JHEP 11 (2016) 096 [arXiv:1607.06414] [INSPIRE].

[36] S. Moriyama, S. Nakayama and T. Nosaka, Instanton effects in rank deformed

superconformal Chern-Simons theories from topological strings, JHEP 08 (2017) 003

[arXiv:1704.04358] [INSPIRE].

[37] M.-X. Huang, A. Klemm and M. Poretschkin, Refined stable pair invariants for E-, M - and

[p, q]-strings, JHEP 11 (2013) 112 [arXiv:1308.0619] [INSPIRE].

[38] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional

gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

[39] S. Moriyama and T. Nosaka, Partition functions of superconformal Chern-Simons theories

from Fermi gas approach, JHEP 11 (2014) 164 [arXiv:1407.4268] [INSPIRE].

[40] S.-S. Kim and F. Yagi, 5d En Seiberg-Witten curve via toric-like diagram,

JHEP 06 (2015) 082 [arXiv:1411.7903] [INSPIRE].

[41] Y. Hatsuda, M. Honda and K. Okuyama, Large-N non-perturbative effects in N = 4

superconformal Chern-Simons theories, JHEP 09 (2015) 046 [arXiv:1505.07120] [INSPIRE].

[42] S. Moriyama and T. Nosaka, ABJM membrane instanton from a pole cancellation

mechanism, Phys. Rev. D 92 (2015) 026003 [arXiv:1410.4918] [INSPIRE].

[43] S. Moriyama and T. Suyama, Instanton effects in orientifold ABJM theory,

JHEP 03 (2016) 034 [arXiv:1511.01660] [INSPIRE].

[44] M. Honda, Exact relations between M2-brane theories with and without orientifolds,

JHEP 06 (2016) 123 [arXiv:1512.04335] [INSPIRE].

[45] K. Okuyama, Orientifolding of the ABJ Fermi gas, JHEP 03 (2016) 008

[arXiv:1601.03215] [INSPIRE].

[46] F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal

field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].

[47] M. Honda and S. Moriyama, Instanton effects in orbifold ABJM theory, JHEP 08 (2014) 091

[arXiv:1404.0676] [INSPIRE].

[48] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string

dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

[49] S. Codesido, A. Grassi and M. Mariño, Spectral theory and mirror curves of higher genus,
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