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1 Introduction

Topological strings have been defined perturbatively, but it is certainly interesting to ask

whether one can find a non-perturbative definition for them. In a strong sense topological

strings, which capture the BPS content of the deformations of the superconformal theories,
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compute relevant amplitudes for supersymmetric partition functions of superconformal

theories. Thus one idea is to reverse the statement and define non-perturbative topological

strings using supersymmetric partition functions.

The relation between topological string partition functions and superconformal index

for N = 1 5d theories has been explored in [1, 2]. The aim of this paper is to extend this

relation in two directions: given the relation between superconformal partition functions

and topological strings we come up with both a definition of non-perturbative topological

strings on the one hand, and also a proposal for how to use topological strings to com-

pute certain supersymmetric partition functions. In particular, we focus on the partition

function of N = 1 superconformal theories in 5d on S5 and superconformal N = (2, 0)

and N = (1, 0) theories in 6d on S5 × S1. The perturbative parts of the superconformal

partition functions were computed for certain gauge theories on S5 [3–7], and using this

ingredient and the condition that the BPS content captured by topological strings behaves

as the fundamental degrees of freedom of the theory, an idea advanced in [2], we propose

not only a way to compute the full answer for superconformal partition functions on S5,

but also a non-perturbative definition for topological strings. Moreover by viewing 6d (2, 0)

and (1, 0) superconformal theories compactified on S1 as a supersymmetric system in 5d,

we are able to also compute the superconformal index for a large class of (2, 0) (and in

particular N coincident M5 branes) and (1, 0) theories in 6 dimensions.

The highly non-trivial aspect of this proposal is that the full non-perturbative aspect of

the topological partition function enters because we have coupling constants of topological

strings inverted. In particular, roughly speaking the proposal for the non-perturbative

topological string partition function Znp takes the form (which will be made more precise

later in the paper)1

Znp(ti,mj , τ1, τ2) =
Ztop(ti,mj ; τ1, τ2)

Ztop(ti/τ1,mj/τ1;−1/τ1, τ2/τ1) · Ztop(ti/τ2,mj/τ2; τ1/τ2,−1/τ2)

where ti,mj are normalizable and non-normalizable Kahler classes, and τ1, τ2 are the two

couplings of the refined topological strings. Of course to define exactly what this means we

have to be more precise and we use the BPS degeneracies captured by topological strings

to give a precise meaning to Znp. Furthermore, the superconformal partition function on

S5 is written in terms of this composite non-perturbative Z by

ZS5(mj ; τ1, τ2) =

∫
dti Znp(ti,mj ; τ1, τ2)

where mj are interpreted as mass parameters and τ1, τ2 can be viewed as squashing pa-

rameters for S5. The relevant 5d theories we consider can be viewed as compactification of

M-theory on singular loci of Calabi-Yau manifolds where some 4-cycles have shrunk [8–12].

For a subset of these, which geometrically engineer a gauge theory [13], Ztop can be iden-

tified with the 5d gauge theory partition function [14], with τi = εi. We can also consider

6d superconformal theories: there are two classes of them, with (2, 0) or (1, 0) supersym-

metry. A large class of these theories can be obtained as F-theory on elliptic 3-folds (in

1By analytic continuation this can also be written in the form Znp = Ztop · Ztop · Ztop.
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the case of (2, 0) it corresponds to a constant elliptic fiber). Compactifying these theories

on a circle down to 5 dimensions leads to dual descriptions involving M-theory on elliptic

Calabi-Yau threefolds. Upon further compactification on S5, we can use the resulting non-

perturbative topological string on elliptic Calabi-Yau threefold to compute the partition

function on S5. This leads to the partition function of the 6d theory on S1 × S5, i.e. it

leads to the computation of the 6d superconformal index, where mj correspond to fugac-

ities for flavor symmetry and τ1,2 correspond to parameters of supersymmetric rotations

on S5. Moreover one of the fugacities mi corresponds to the Kahler class τ of the elliptic

fiber. This will correspond to the extra parameter in the superconformal (1, 0) theory.

For the (2, 0) theory the superconformal index depends on 4 parameters. In this case the

corresponding topological theory computes the partition function of N = 2∗ gauge theory

in 5 dimensions and the mass and coupling constant of the gauge theory correspond to the

two additional parameters of the (2, 0) 6d index (see [5] for a related discussion). Thus, we

are able to compute the superconformal index for N = (2, 0) systems in 6 dimensions.

We can also consider Lagrangian defects of topological strings. These lead to 3d

theories living on the non-compact part of the M5 brane wrapping the Lagrangians. Upon

compactification on S3 these can also be viewed as a non-perturbative completion of the

open topological string, which has already been considered in [15–18], In particular the

structure for the open string part has the form

Zopen
np (. . . ) =

Zopen(ti,mj , xk; τ)

Zopen(ti/τ,mj/τ, xk/τ ;−1/τ)
,

where the ti,mi are closed string parameters and xk label open string moduli. The corre-

sponding partition function on S3 is given by

ZS3 =

∫
dxk Z

open
np (ti,mj , xk; τ).

The organization of this paper is as follows: in section 2 we review the relation between

open topological strings and the S3 partition function of M5 branes wrapping Lagrangians

in CY. In section 3 we study the partition function of the N = 1 superconformal theories in

5 dimensions. In section 4 we propose a non-perturbative definition of topological strings

which can be used for the computation of these amplitudes. In section 5, we offer a possible

explanation of our results from M-theory. In section 6 we discuss the connection with 6d

superconformal indices and in particular compute the superconformal index for coincident

M5 branes. In section 7 we present our conclusions. Some more technical aspects of the

paper are presented in appendices A,B and C.

2 SCFT on squashed S3 and open topological strings

One of the common themes that have emerged in the study of superconformal theories in

various dimensions is the important role played by the BPS states that arise when one

moves away from the superconformal fixed point (see [2] and references therein).

In particular it was shown in [2] that the superconformal index in diverse dimensions

is deeply related to BPS spectrum and this data can be used to fully compute the index
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in N = 2 theories in d = 3 and N = 1 theories in d = 5. These correspond to partition

functions on S2 × S1 and S4 × S1 respectively. Here we are interested in computing the

partition functions of these theories on S3 and S5, respectively. To this end, it is instructive

to review the case of N = 2 superconformal theories on the squashed three-sphere S3
b . This

class of theories is particularly simple, since away from the superconformal point only a

finite number of BPS particles appear, which are in one-to-one correspondence with the

electrically charged fields of the SCFT. The full partition function for these theories has

been computed exactly [19, 20] and indeed we will see that it can be reinterpreted in terms

of contributions coming from the BPS particles (as occurs in a similar context in [15–17]).

We can write the squashed three-sphere geometry in terms of variables (z1, z2) ∈ C2 as

ω2
1|z1|2 + ω2

2|z2|2 = 1.

For ω1 6= ω2, the SO(4) isometry group of S3 gets broken to U(1)×U(1). The ratio of the

equivariant parameters for the two rotations is τ = b2 = ω1/ω2.

We now recall the partition function for superconformal gauge theories on the squashed

three-sphere, whose gauge and matter content are provided respectively by vector and

chiral multiplets. Away from the superconformal point, many of these theories can be

constructed from M-theory as the worldvolume theories of M5-branes wrapping S3
b times a

Lagrangian submanifold of an appropriately chosen Calabi-Yau threefold X. The geometry

of X determines the BPS content of the theory, and the superconformal theory is recovered

in the IR (shrinking the size of the Lagrangian to zero).

Let g be the Lie algebra of the gauge group G, and h its Cartan subalgebra. Let

hi, i = 1, . . . , rank(G) be a basis for h. We denote a generic element of h by φ =
∑
φihi,

and for an arbitrary weight ν of g we write φν = 〈ν, φ〉. By localization, the computation of

the partition function of the SCFT reduces to an integral over h, with contributions from

one-loop determinants for the chiral and vector multiplets:

ZS3
b

=

∫
dφ

∏
β∈∆+

φ2
β · Z0(φ) · Z1−loop

vect (φ) · Z1−loop
chiral (φ), (2.1)

where ∆+ is the set of positive roots of G. The classical action can contain Chern-Simons

and FI terms, and produces a factor of

Z0(φ) = e−
πi
2
kiφ

2
i+2πiξiφi , (2.2)

where ki is the CS level and ξi ∈ R is the FI-term. For abelian factors we can also have

additional off-diagonal CS interactions as well as mixed CS terms with flavors symmetries.

If we include matter fields in a (not necessarily irreducible) representation R of the

gauge group G, for each weight in R we obtain a chiral multiplet. The one-loop contribution

to the partition function is

Z1−loop
chiral (φ) =

∏
µ∈R

∏
j,k≥0

(j + 1/2)ω1 + (k + 1/2)ω2 + iφµ
(j − 1/2)ω1 + (k − 1/2)ω2 − iφµ

=
∏
µ∈R

S−1
2 (iφµ + (ω1 + ω2)/2|ω1, ω2) , (2.3)
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where the double sine function S2(z|ω1, ω2) is defined in appendix A.1. The vector mul-

tiplet, on the other hand, contributes a factor of (taking into account the shift in spin

s = 1/2)

Z1−loop
vect (φ) =

∏
β∈∆

1

iφβ

∏
j,k≥0

jω1 + kω2 + iφβ
(j + 1)ω1 + (k + 1)ω2 − iφβ

=
∏
β∈∆

1

iφβ
S2(iφβ + ω1 + ω2|ω1, ω2), (2.4)

where by ∆ we mean the set of roots of G. Note that for a spin s field we get a shift of(
1

2
+ s,

1

2
+ s

)
· (ω1, ω2).

Putting all the pieces together, the partition function is

ZS3
b

=

∫
dφ e−

iπkφiφi
2

+2πiξiφi
∏
β∈∆

S2(iφβ+ω1 +ω2|ω1, ω2)
∏
µ∈R

S−1
2 (iφµ+(ω1 +ω2)/2|ω1, ω2).

Thus to each multiplet α corresponds a factor of S2(zα|ω1, ω2)±1, where the argument of the

double sine function depends on the data attached to the multiplet. Note that for the vector

multiplet the
∏
β∈∆ S2(iφβ + ω1 + ω2|ω1, ω2) is equal to a q-deformed Vandermonde. The

double sine has simple modular transformation under the S transformation of SL(2,Z).

Indeed, when τ = ω1/ω2 ∈ H the double sine function can be written in the following

suggestive form (A.11):

S2(zα + (ω1 + ω2)/2|ω1, ω2)

= exp

(
πi

2
B2,2(zα + (ω1 + ω2)/2|ω1, ω2)

) ∏∞
j=0(1− eζα+πi+2πi(j+1/2)τ))∏∞
j=0(1− eζ̂α+πi+2πi(j+1/2)τ̂ )

= e
πi
2τ

(ζα/2πi)2−πi24 (τ+1/τ)

∏∞
j=0(1− eζα+πi+2πi(j+1/2)τ))∏∞
j=0(1− eζ̂α+πi+2πi(j+1/2)τ̂ )

,

= e
πi
2τ

(ζα/2πi)2−πi24 (τ+1/τ)

∏∞
j=0(1 + eζαqj+1/2)∏∞
j=0(1 + eζ̂α q̂j+1/2)

, (2.5)

where we have defined ζα = 2πizα/ω2, ζ̂α = ζα/τ , τ̂ = −1/τ , and q = exp(2πiτ) and

q̂ = exp(−2πi/τ). The exponential prefactors come from the (2, 2) multiple Bernoulli

polynomial (A.8),

B2,2(zα|ω1, ω2) =
z2
α

ω1ω2
− ω1 + ω2

ω1ω2
zα +

ω2
1 + ω2

2 + 3ω1ω2

6ω1ω2
.

Under an S modular transformation that takes τ → τ̂ and ζα → ζ̂α,

S2(zα + (ω1 + ω2)/2|ω1, ω2)→ S2(zα + (ω1 + ω2)/2|ω1, ω2)−1.

On the other hand, the double sine function does not transform into itself under the T

transformation τ → τ + 1, so we cannot complete this to a full SL(2,Z) action.
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We would now like to clarify the relation with BPS states and open topological string

theory. For this purpose, it is convenient to strip away the prefactors from the double sine

function and define

S2(z|ω1, ω2) = exp

(
−πi

2
B2,2(z|ω1, ω2)

)
S2(z|ω1, ω2). (2.6)

Using the building block of the double sine function we can write down the contribution

of particles of charges ni, nj under U(1) gauge factors and flavor factors respectively with

central terms (xi,mj) (before gauging) and spins s:

S2

(
(nixi + njmj) +

(
1

2
+ s

)
(ω1 + ω2)|ω1, ω2

)−(−1)2s

Thus we would get for many particles a partition function of the form:

Z = eQ(xi,mj) ·
∏
a

S2

(
(nai xi + najmj) +

(
1

2
+ sa

)
(ω1 + ω2)|ω1, ω2

)−(−1)2sa

where we have included the prefactor (involving the exponential of the quadratic form)

which is added at the end depending on the FI terms and the CS levels (see [21] for a

thorough discussion of these terms). To obtain the final partition function we have to

integrate over the scalars in the U(1) vector multiplets leading to

ZS3 =

∫
dxiZ(xi,mj , τ).

In the next section we discuss how this can be presented in the context of 3d theories

living on M5 branes wrapped on special Lagrangian 3-cycles, using open topological string

amplitudes.

2.1 Topological string reformulation

We now use topological strings to reformulate this partition function (see also [17]). It is

known that open topological strings captures the BPS content of M5 branes wrapped on

special Lagrangian cycles of Calabi-Yau threefold [22]. For simplicity we will focus on the

unrefined case here (but will extend the discussion to the refined case when considering

the closed string sector). Consider M-theory compactification on a Calabi-Yau threefold,

and consider a number of M5 branes wrapping some special Lagrangian cycles. Then M2

branes ending on M5 branes constitute the BPS states of the theory. The partition function

of topological strings captures this. In particular we have (up to quadratic exponential

prefactor):2

Zopen
top =

∏
a

∞∏
k=0

(1− qk+sa+ 1
2 e2πinai xi+2πinajmj )Nni,nj,sa (−1)2sa+1

2We are always free to rescale the arguments of the double sine function z, ω1, ω2 by a common factor.

When comparing to topological strings, we choose a gauge where ω2 = 1.
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For our purposes it is more convenient to define a slightly shifted version of the topological

string amplitude given by

Z̃open
top =

∏
a

∞∏
k=0

(1− (−1)2sa+1qk+sa+ 1
2 e2πinai xi+2πinajmj )Nni,nj,sa (−1)2sa+1

= Zopen
top (τ + 1),

where q = exp(2πiτ) and Nni,nj ,sa denote the number of BPS states with the corresponding

charges as spin. We will drop the tilde in the rest of the paper as we will be mainly

discussing this shifted version. The unshifted version can be recovered by shifting the τ

back.

We now simply ask what would the partition function of this theory be if we were to

put it on the squashed S3? Even though we have no a priori Lagrangian description of this

theory we will assume, as in [2], that the BPS states can be treated as elementary degrees

of freedom. Using the fact that double sine computes the corresponding term we would

thus naturally get

Z = eQ(xi,mi) ·
∏

ni,nj ,sa

S2

(
(nai xi + najmj) +

(
1

2
+ sa

)
(ω1 + ω2)|ω1, ω2

)Nni,nj,s(−1)2sa+1

,

where we have included the prefactor involving the quadratic classical term Q of the topo-

logical string. Using the product representation of the double sine function and the form

of Zopen
top we can rewrite this entirely in terms of the topological string partition function as

Zopen
np =

Zopen
top (xi,mj ; τ)

Zopen
top (xi/τ,mj/τ ;−1/τ)

and we can view this as a non-perturbative definition of topological string. Then the

partition function on squashed S3 is given by

ZS3 =

∫
dx eQ(xi,mi) · Zopen

np =

∫
dxi e

Q(xi,mi) ·
Zopen

top (xi,mj ; τ)

Zopen
top (xi/τ,mj/τ ;−1/τ)

where by definition what we mean by Ztop at −1/τ is the product expression we have

given. Notice that the factor of (−1)s in the expansion, which for even s does not seem to

affect the perturbative Ztop, will be relevant under the τ → −1/τ , which we include in the

definition of Ztop at −1/τ .

As we have seen, when Im τ > 0,

Zopen
np (. . . ; τ) = Zopen

top (. . . |τ)/Zopen
top (. . . ;−1/τ);

similarly for Im τ < 0,

Zopen
np (. . . ; τ) = Zopen

top (. . . |1/τ)/Zopen
top (. . . ;−τ).

But in fact the proposed non-perturbative completion of the open topological string is

also valid for τ ∈ R+, i.e. at |q| = 1, even though the perturbative topological string is

ill-defined there.
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3 Five dimensional superconformal theories

We saw in the last section that knowing the properties of BPS states of the theory on the

squashed three-sphere away from the superconformal fixed point is sufficient to compute

the partition function of the SCFT. We now shift our focus to superconformal theories on

S5 which can be obtained from the compactification of M-theory on a Calabi-Yau threefold.

Assuming that in this case too the BPS states account for all the degrees of freedom of the

SCFT, we can introduce squashing parameters for S5 and propose an exact answer for the

partition function (equation (3.4)), which includes all gauge theory instanton contributions.

To this end all we need to know is the contribution of each individual BPS particle to the

partition function and take the product of them over all BPS states, as if they are non-

interacting fundamental degrees of freedom. Thus the main thing we need to do is to do a

computation of the partition function on squashed S5 for a single BPS particle.

Such a computation has been carried out in [3, 4] for certain BPS particles which

appear as the perturbative part of the partition function of N = 1 superconformal field

theory on S5 with non-abelian gauge group and matter in an arbitrary representation R.

We review this result and propose a generalization of it to particles of arbitrary spin. This

is also important to us for another reason: as in the 3d case, even if the gauge theory

is non-abelian, the computations can be entirely recast in terms of an integral over the

abelian Coulomb branch parameters, where the non-abelian aspects are reflected by the

existence of additional BPS states in the computation. This allows us to formulate our

final result in term of an integral over the Coulomb branch.

In the perturbative computation, the path integral localizes on the Cartan subgroup

of the gauge group, and the hyper and vector multiplets, which correspond respectively to

the matter and gauge content of the theory, contribute the following one-loop determinants

evaluated on the localization locus:

Z1−loop
hyper (φ) =

∏
µ∈R

∏
t

(t− iφµ + 3/2)−t
2/2−3/2t−1 ,

where µ are the weights in the representation and φ is an element of the Cartan, and

Z1−loop
vect (φ) =

∏
β∈∆+

∏
t 6=0

[(t+ iφβ)(t− iφβ)]t
2/2+3t/2+1,

where ∆+ denotes the positive roots of the gauge group.

In appendix B we show that these expressions can be recast in terms of triple sine

functions [23–26] as

Z1−loop
hyper (φ) =

∏
µ∈R

S−1
3 (iφµ + 3/2|1, 1, 1) (3.1)

and

Z1−loop
vect (φ) =

∏
β∈∆+

(iφβ)−2
∏
β∈∆+

S3(iφβ |1, 1, 1)S3(iφβ + 3|1, 1, 1), (3.2)

– 8 –
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up to a prefactor which can be reabsorbed into the cubic prepotential. The triple sine

function is defined as a regularized infinite product over three indices:

S3(z|ω1, ω2, ω3) ∼
∞∏

n1,n2,n3=0

(n1ω1 +n2ω2 +n3ω3 +z)((n1 +1)ω1 +(n2 +1)ω2 +(n3 +1)ω3−z)

(the precise definition and several important properties of this function are collected in ap-

pendix A.1). From this expression it is clear that the one-loop determinants for the theory

on S5 are evaluated at a very degenerate choice of parameters for the triple sine. In the

theory on S3 an interesting deformation was obtained by introducing squashing parameters

ω1,2, and the one-loop determinants were found to be built out of factors of S2(z|ω1, ω2).

In our current setup, it is also very natural to move away from this limit and consider

an analogous deformation by three parameters ω1,2,3. That is, we conjecture that one can

formulate a deformation of the theory on squashed S5, which can be embedded in C3 as

ω2
1|z1|2 + ω2

2|z2|2 + ω2
3|z3|2 = 1,

and that each occurrence of S3(z|1, 1, 1) gets replaced by S3(z|ω1, ω2, ω3). The SO(6) isom-

etry of S5 gets broken to U(1)(1)×U(1)(2)×U(1)(3), where U(1)(i) corresponds to rotation

of the zi-plane. The ratio of the equivariant parameters for U(1)(i) and U(1)(j) is given by

ωi/ωj .

The hyper and vector multiplet one-loop determinants become

Z1−loop
hyper (φ) =

∏
µ∈R

S−1
3 (iφµ + ω1/2 + ω2/2 + ω3/2|ω1, ω2, ω3),

and

Z1−loop
vect (φ) =

∏
β∈∆+

(iφβ)−2
∏
β∈∆+

S3(iφβ |ω1, ω2, ω3)S3(iφβ + ω1 + ω2 + ω3|ω1, ω2, ω3).

Putting all these contributions together, the perturbative contribution to the partition

function (choosing units where the radius of S5 = 1) is

Zpert
S5 =

∫
Cartan

dφ

( ∏
β∈∆+

φ2
β

)
Z0(φ)Z1−loop

hyper (φ)Z1−loop
vect (φ) (3.3)

=

∫
Cartan

Z0(φ)
∏
β∈∆+

S3(iφβ |ω1, ω2, ω3)S3(iφβ + ω1 + ω2 + ω3|ω1, ω2, ω3) ·

×
∏
µ∈R

S−1
3 (iφµ + ω1/2 + ω2/2 + ω3/2|ω1, ω2, ω3),

where

Z0(φ) = exp

[
1

ω1ω2ω3

(
i

4π3

g2
YM

Trφ2 +
ik

24π2
Trφ3

)]
,

which comes from the tree level Lagrangian (where we have included the effect of ωi be-

ing turned on). Notice that this term is the exponential of a cubic polynomial Z0 =
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exp[C(φ, 1/g2
YM )] where C captures the cubic content of the prepotential term, where we

view 1/g2
YM as a scalar in an ungauged vector multiplet.

Just as in the 3d case the non-abelian measure factors have disappeared and we can

interpret the integrand as the contribution of the electric BPS states in an abelian theory,

as we go away from the conformal fixed point on the Coulomb branch. However, unlike

in the 3d case, here there are more BPS states than those captured by the perturbative

content of the theory. In fact, the five-dimensional theory will have an infinite number

of BPS states, including ones which carry instanton charge. Our proposal is that the full

partition function on squashed S5 is simply given by the contribution over all BPS states

and not just the electric ones. In other words, we propose:

ZS5 =

∫
dφ Z0(φ)

∏
α∈BPS

Zα(zα|ω1, ω2, ω3), (3.4)

where each Zα is a contribution from a BPS particle written in terms of triple sine function

(and its generalization), and Z0(φ) = eC(φ,m) is the effective semi-classical contribution and

is a polynomial of degree 3 in φ and m. By Zα we mean the determinant contributions

coming from the individual BPS states with the exponential prefactor stripped off (see the

next section for more details). This proposal fits naturally with the computation in [3–5]

where the main missing ingredient was the contribution of instantons to the partition func-

tion. Here we are proposing that the BPS content of the theory, which includes instanton

charged states, completes the computation.

In the case where the superconformal theory comes from a Calabi-Yau threefold, C

can be related to the classical properties of the CY and captures the classical prepotential

term, as well as genus 1 corrections which are linear in φ and m. In the unrefined case C

is simply given by

C(φ,m) =
1

6λ2

∫
CY

J ∧ J ∧ J +
1

24

(
1

λ2
− 1

)∫
CY

J ∧ c2,

where J(φ,m) denotes the Kahler form on the CY which is parameterized by φ,m and c2

is the second Chern class of the CY where the genus 0 piece can be read off from [27, 28]

and the genus 1 piece from [29]. In the refined case where τ1 + τ2 6= 0 this becomes3

C(φ,m) =
1

6τ1τ2

∫
CY

J ∧ J ∧ J − 1

24

(
τ1

τ2
+
τ2

τ1
+

1

τ1τ2
+ 3

)∫
CY

J ∧ c2.

We will choose normalizations where the Kahler class is given by 2πiT . In this normaliza-

tion we can write this as

C(T ) = −2πi

(
CT 3

6τ1τ2
− c2 · T

24

(
τ1

τ2
+
τ2

τ1
+

1

τ1τ2
+ 3

))
where

CT 3 = CijkT
iT jT k, c2 · T = ci2T

i,

3We have used the unrefined case together with SL(3,Z) invariance of the classical prepotential, up to

sign, to predict this structure. One should be able to derive this directly from the definition of the refined

topological string [30].
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and Cijk denotes the triple intersection and ci2 the second Chern class in this basis. In

the next section we show how topological strings capture this partition function elegantly,

leading on the one hand to the full partition function for N = (1, 0) theories obtained

by compactification of M-theory on toric CY threefold, and on the other hand to a non-

perturbative definition of topological string.

4 Non-perturbative topological strings and the partition function on S5

Consider M-theory on Calabi-Yau threefolds. It is known that topological strings capture

the BPS content of M2 branes wrapped over 2-cycles of the Calabi-Yau [31, 32]. Further-

more, in the case of toric threefolds (which lead to N = (1, 0) theories of interest to us

here) we can consider a refinement of the BPS counting [33]. The relation between the

topological string partition function and BPS state counting is given by

Ztop =
∏

s1,s2,ki,lj

∞∏
m,n=0

(1− qm+s1+ 1
2 tn−s2+ 1

2 e2πi(tiki+mj lj))
(−1)2s1Ns1,s2,ki,lj

Note that we have stripped off the classical terms, and below when we restore the

classical pieces we will make it clear. Here q = exp(2πiτ1), t = exp(−2πiτ2) are the coupling

constants of the refined topological string, the Ns1,s2,ki,lj are the BPS degeneracies, where

(ki, lj) denotes the gauge and flavor charges of the BPS states and is an element of H2 of the

CY where the M2 brane wraps to give rise to BPS state. Here ki corresponds to charges of

normalizable Kahler classes ti, and flavor charge lj corresponds to non-normalizable Kahler

classes mj . The si give the (s1, s2) = (J12, J34) content of the SO(4) rotation group in 5

dimensions. Namely, viewing SO(4) = SU(2)L × SU(2)R each BPS state is given by

IL ⊗ (jl, jr)

where

IL =

[(
1

2
, 0

)
+ 2(0, 0)

]
and the si just capture the spin content (not including the IL factor):

−jl ≤
s1 − s2

2
≤ jl, −jr ≤

s1 + s2

2
≤ jr

It will be useful for us to slightly change the definition of topological strings (as in the open

sector discussed in the 3d context) by shifting4 one of the couplings by 1:

Z̃top =
∏

s1,s2,ki,lj

∞∏
m,n=0

(1− (−1)2s1+1qm+s1+ 1
2 tn−s2+ 1

2 e2πi(tiki+mj lj))
(−1)2s1Ns1,s2,ki,lj

= Ztop(ti,mj ; τ1 + 1, τ2)

4We can shift either τ1 or τ2 since 2s1 = 2s2 mod 1. Note that this shift is equivalent to insertion of

(−1)F and will be explained in section 5.
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Since we will be mainly dealing with this object we will be calling it Ztop and drop the

tilde. Of course one can recover the usual definition of topological string by shifting back

the coupling by 1.

In order to connect this to the partition function on S5 we need to know how each

field contributes to the partition function. Consider a field with spins (s1, s2) (coming as

part of a BPS multiplet). Then we already know that when (s1, s2) = 0 the contribution

is given by a shifted triple sine function:

S−1
3

(
z +

(
1

2
,

1

2
,

1

2

)
· (ω1, ω2, ω3)

∣∣ω1, ω2, ω3

)
Moreover for a vector multiplet (0, 1/2) which has (s1, s2) = (±1

2 ,±
1
2) we get

S3

(
z +

[(
1

2
,
1

2
,
1

2

)
±
(

1

2
,

1

2
,

1

2

)]
· (ω1, ω2, ω3)

∣∣ω1, ω2, ω3

)
Now comes the main point. The connection to non-perturbative topological strings

come to life thanks to a remarkable formula (equation (A.12)) for the triple sine function:

exp

(
−πi

6
B3,3(z+∆|ω1,ω2,ω3)

)
S−1

3 (z+∆|ω1,ω2,ω3)

=

∏∞
j,k=0(1+e2πiT+2πi(j+1/2)τ1−2πi(k+1/2)τ2)∏∞

j,k=0(1+e2πiT̂+2πi(j+1/2)τ̂1−2πi(k+1/2)τ̂2) ·
∏∞
j,k=0(1+e2πiT̃+2πi(j+1/2)τ̃1−2πi(k+1/2)τ̃2)

=

∏∞
j,k=0(1+e2πiT qj+1/2tk+1/2)∏∞

j,k=0(1+e2πiT̂ q̂j+1/2t̂k+1/2) ·
∏∞
j,k=0(1+e2πiT̃ q̃j+1/2t̃k+1/2)

, (4.1)

where we have shifted the argument of the triple sine by the universal term ∆ = (ω1 +

ω2 + ω3)/2, and we set T = z/ω3, τ1 = ω1/ω3, τ2 = ω2/ω3, and also

(T̂ , τ̂1, τ̂2) = (T/τ1,−1/τ1, τ2/τ1),

(T̃ , τ̃1, τ̃2) = (T/τ2, τ1/τ2,−1/τ2).

Furthermore, q = exp(2πiτ1) and t = exp(−2πiτ2) and similarly for the other variables.

Each infinite product in this expression is convergent when Im τ1 > 0 > Im τ2, but similar

convergent expressions can be obtained in other regions (see appendix A.1). The expression

for the triple sine function also includes an exponential prefactor which comes from the

(3,3) multiple Bernoulli polynomial (A.9) with shifted argument,

−πi
6
B3,3(z + (ω1 + ω2 + ω3)/2|ω1, ω2, ω3) =

1

ω1ω2ω3

[
−πi

6
z3 +

πi

24
(ω2

1 + ω2
2 + ω2

3)z

]
= −iπ

[
T 3

6

1

τ1τ2
− T

24

1 + τ2
1 + τ2

2

τ1τ2

]
.

Taking z = z0 = kiti + ljmj for the hypermultiplets and z = z0 ± (ω1 + ω2 + ω3)/2 for

the vector multiplets and choosing the gauge ω3 = 1, one finds that the numerator in (4.1)

gives precisely the contributions of the hyper and vector multiplets to the topological string
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partition function! Similarly when s1 = s2 = s and z = z0 + s(ω1 +ω2 +ω3) the right hand

side of (4.1) becomes ∏∞
j,k=0(1− (−1)2s+1e2πiz0qj+s+1/2tk−s+1/2)∏∞

j,k=0(1− (−1)2s+1e2πiz0/τ1 q̂j−s+1/2t̂k−s+1/2) ·
∏∞
j,k=0(1− (−1)2s+1e2πiz0/τ2 q̃j+s+1/2t̃k+s+1/2)

.

The numerator in this expression also captures the contribution to the topological string

partition function of a BPS states with spin (s, s). It is thus natural to propose that the

triple sine function also gives the determinant for spin (s, s) states.

This triple product structure involving topological string contributions has a simple

generalization for arbitrary spin (s1, s2):

Cs1,s2(z0|τ1, τ2)−1≡ ∏∞
j,k=0(1−(−1)2s1+1e2πiz0qj+s1+1/2tk−s2+1/2)∏∞

j,k=0(1−(−1)2s1+1e2πiz0/τ1 q̂j−s1+1/2t̂k−s2+1/2)·
∏∞
j,k=0(1−(−1)2s1+1e2πiz0/τ2 q̃j+s1+1/2t̃k+s2+1/2)

.

which we propose to be giving the determinant contribution for spin (s1, s2) states. Note

that for s1 6= s2 this differs from the triple sine function. Taking the product over all the

BPS states, which we need to do according to our proposal for the computation of the

partition function over S5, we obtain

Z(ti,mj ; τ1, τ2) = Z0 ·
∏

s1,s2,ki,lj

Cs1,s2(z0|τ1, τ2)
(−1)2s1+1Ns1,s2,ki,lj ,

where in the above, in addition to the product over the BPS states, we have included the

cubic prefactor Z0 = exp(C(ti,mj ; τ1, τ2)). We can rewrite this expression as follows:

Z(ti,mj ; τ1, τ2) = Z0 ·
Z3(ti,mj ; τ1, τ2)

Z1(ti,mj ; τ1, τ2) · Z2(ti,mj ; τ1, τ2)
. (4.2)

The numerator is precisely the topological string partition function,

Z3(ti,mj ; τ1, τ2) = Ztop(ti,mj ; τ1, τ2),

and we can also relate the two factors in the denominator to the topological string partition

function:

Z1(ti,mj ; τ1, τ2) =
∏

s1,s2,ki,lj

∞∏
j,k=0

(1− (−1)2s1+1e2πiz0/τ1 q̂j−s1+1/2t̂k−s2+1/2)
(−1)2s1Ns1,s2,ki,lj

= Z ′top(ti/τ1,mj/τ2;−1/τ1, τ2/τ1)

and

Z2(ti,mj ; τ1, τ2) =
∏

s1,s2,ki,lj

∞∏
j,k=0

(1− (−1)2s1+1e2πiz0/τ2 q̃j+s1+1/2t̃k+s2+1/2)
(−1)2s1Ns1,s2,ki,lj

= Z ′top(ti/τ2,mj/τ2; τ1/τ2,−1/τ2).
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Figure 1. P1 × P1 geometry corresponding to SU(2) theory on the squashed five-sphere. The

non-perturbative topological string computed from this geometry is to be integrated over a.

The prime signifies that these two factors of the topological string have SU(2)L and SU(2)R
exchanged, which is equivalent to replacing (s1, s2) with (−s1, s2) (or equivalently (s1,−s2))

for each BPS state. In fact, not worrying about regions of convergence, we can use the

identity
∞∏
p=0

(1−Xe2πipγ) =

∞∏
p=0

(1−Xe−2πi(p+1)γ)−1

to rewrite the product of BPS contributions simply as the product of three factors of the

topological string partition function:

Ztop(ti,mj ; τ1, τ2) · Ztop(ti/τ1,mj/τ1; 1/τ1, τ2/τ1) · Ztop(ti/τ2,mj/τ2; τ1/τ2, 1/τ2).

Equation (4.2) can be viewed as defining a non-perturbative completion of topological

string, in the sense that the two additional factors are non-perturbative, as they involve at

least one τi → −1/τi. At the end of this section we will explain the analytic properties of

Z as a function of τi. Just to complete our discussion, in order to compute the S5 partition

function we simply have to integrate this over the directions in ti:

ZS5 =

∫
ti

dtiZ(ti,mj ; τ1, τ2).

4.1 Contribution of the massless vector multiplet

The massless vector multiplets also make a contribution to the partition function. These

contributions do not depend on the moduli but depend on the squashing parameters.

Therefore they can be brought out of the integrals over the Coulomb branch. These terms

are given in the topological string context by powers of the MacMahon function. If we

have U(1)r gauge theory this leads, as discussed in [2], to

(M(q, t)M(t, q))r/2
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where

M(t, q) =

∞∏
i,j=1

(1− qitj−1)−1

If we use our prescription to compute the contribution of this factor to the partition function

we get a factor of(
S3(1 + τ1 + τ2|1, τ1, τ2) · S3(0|1, τ1, τ2)

)r/2
= S3(0|1, τ1, τ2)r.

This has a zero for each U(1) reflecting the fact that we have to delete the zero mode

associated to the Coulomb branch parameters and instead integrate over it, which is part of

the prescription. This is equivalent to replacing S3 with its derivative S′3 evaluated at 0. In

other words, the contributions for the massless vector multiplet to the partition function is

S′3(0|1, τ1, τ2)r
r∏
i=1

dTi.

4.2 An example: SU(2) gauge theory

Here we present one example of how the computation is done. The case we focus on is

a toric 3-fold that engineers SU(2) gauge theory coming from the O(−2,−2) → P1 × P1

geometry. We consider the partition function of this theory on the squashed five-sphere.

As discussed, we predict the full partition function to be

ZSU(2) =

∫
a∈iR

da
eC(a,1/g2YM ) · ZSU(2)(Qb, Qf , τ1, τ2)

Z ′SU(2)(Q
1/τ1
b , Q

1/τ1
f ,−1/τ1, τ2/τ1) · Z ′SU(2)(Q

1/τ2
b , Q

1/τ2
f , τ1/τ2,−1/τ2)

,

where Qf = ea, Qb = ea+1/g2YM , and ZSU(2)(Qb, Qf , τ1, τ2) is the refined topological string

partition function for the P1 × P1 geometry of figure 1, which was obtained in [34] (which

is the same as Nekrasov’s partition function for the 5d SU(2) theory [14] with εi = τi):

ZSU(2)(Qb, Qf , τ1, τ2) : = [M(q, t)M(t, q)]1/2

·
∑
ν1,ν2

(−Qb)|ν1|+|ν2|Zν1,ν2(t, q,Qf ) fν1,ν2(q, t)Zν2,ν1(q, t,Qf ),

where

q = exp(2πiτ1), t = exp(−2πiτ2),

fν1,ν2(q, t) = (−1)|ν1|
(
t

q

) ||νt1||2−|ν1|
2

q−
κ(ν1)

2 (−1)|ν2|
(
q

t

) ||νt2||2−|ν2|
2

t−
κ(ν2)

2 ,

and

Zν1,ν2(t, q,Qf ) = q
||ν1||

2

2
+
||νt2||

2

2 Z̃ν1(t, q)Z̃νt2(t, q)
∏
i,j

(
1−Qf ti−1−ν2,j qj−ν1,i

)−1
,

where

Z̃ν(t, q) =
∏
s∈ν

(1− ta(s)+1q`(s))−1
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and

M(t, q) =

∞∏
i,j=1

(1− qitj−1)−1.

The classical piece C(a, 1
g2YM

) is given by

C

(
a,

1

g2
YM

)
= − 2πi

τ1τ2

(
a2

2g2
YM

+
a3

6

)
+

2πi

24

(
−2a+

4

g2
YM

)(
τ1

τ2
+
τ2

τ1
+

1

τ1τ2
+ 3

)
.

The partition function involves sums over Young diagrams. We use the following notation:

νt is the transpose of ν; |ν| denotes the number of boxes in ν; νi is the number of boxes in

the i-th column of ν; ||ν||2 =
∑

i ν
2
i ; for a box s = (i, j) in the i-th column and l-th row of

ν, a(s) = νtj − i and `(s) = νi − j; and, lastly, κ(ν) = 2
∑

s∈ν(j − i). Recall that we need

to shift τ1 → τ1 + 1 in these formulas to obtain the ZSU(2) appearing in the integrand.

4.3 Analytic properties of Z

The triple sine function (as discussed in appendix A.1) is defined only when all three ωi
are in the same half plane. If this is satisfied, the triple sine function is well defined

and is an entire function which has zeroes at a lattice of points corresponding to niti +

kjmj = (n1 + 1
2)τ1 + (n2 + 1

2)τ2 + (n3 + 1
2) (see appendix A.1). Similarly the function

Cs1,s2(niti + kjmj |τ1, τ2) has zeros and poles at values of niti + kjmj which can be read

off from equation (C.6). It is natural to also expect that Cs1,s2 is well-defined only when

all three ωi are in the same half plane. The non-perturbative topological string partition

function is made up of an infinite product of such functions which we conjecture to exist.

5 A possible derivation from M-theory

In this section we propose an explanation for the triple product structure that arises when

one introduces squashing parameters for S5. We start by recalling in more detail the

M-theory setup that computes the topological string partition function. We pick a non-

compact toric Calabi-Yau threefold X, and take the remaining five-dimensional space to

be the Taub-NUT space TN times the M-theory circle S1. We express Taub-NUT space

in terms of complex variables (z1, z2) and introduce a twist: as we go around S1, we rotate

(z1, z2)→ (e2πiτ1z1, e
2πiτ2z2) (and do a compensating twist on X to keep it supersymmet-

ric). We denote this twisted space by (TN × S1)τ1,τ2 . Then it is known that [30]

Ztop(X, τ1, τ2) = ZM−theory(X × TN × S1)τ1,τ2 .

The M-theory partition function counts the number of M2-branes wrapping cycles in X,

which project to points in Taub-NUT space. When the equivariant parameters are turned

on, the particles are concentrated around the origin z1 = z2 = 0.

We can also consider the open string sector of topological strings, which corresponds to

adding M5 branes wrapping a Lagrangian submanifold L ⊂ X and the Melvin cigar (MC)

subspace of (TN ×S1)τ1,τ2 , which has the geometry of S1×Cτ1 . Here S1 is the M-theory

circle, and Cτ1 is the plane in TN with rotation parameter τ1 (but we could as well have
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Figure 2. Squashed S3 viewed as a torus fibered over the interval. At the ends of the interval

one of the two circles degenerates. On the left half of the geometry, as one goes around the red

(dashed) circle, the second circle is twisted by 2πiτ . In gluing the left and right halves, one must

interchange the two circles of T 2. On the right half, in going around the blue circle the red circle

gets twisted by −2πi/τ .

chosen our M5-branes to fill Cτ2). In topological string theory, wrapping an M5 brane on

K = MC ×L translates to placing a τ1-brane on L [22] (see [15, 35] for a discussion of the

refined case). The problem of counting worldsheet instantons ending on L translates to

counting the states of a gas of M2-branes which wrap two-cycles of X with boundary on L;

the M2 branes project to points on the Melvin cigar. Turning on equivariant parameters

again forces these particles to be concentrated at the tip of the cigar, which is located at

z1 = z2 = 0. Then the M5 brane partition function in this setup is the same as the open

topological string partition function:

ZM5(X × (TN × S1)τ1,τ2 ,K) = Zopen(~t, ~x, τ2; τ1),

where ~t and ~x denote, respectively, the closed and open string moduli corresponding to X

and L. In other words, the open topological string theory computes the partition function

of the 3d theory obtained by wrapping an M5 brane on L in the background of MC. Note

that for fixed |z| 6= 0 on C, the MC has a torus structure, where one circle corresponds to

the phase in the z-plane and the other is the circle in the fiber. Moreover the twisting of

the MC as we go around the S1 suggests that changing τ changes the complex structure

of this torus and it is natural to view this torus as having complex structure τ .

To obtain the partition function of the resulting theory on squashed S3 we take a

second copy of the Melvin cigar, which we denote by M̂C, and glue it to the first one along

the common boundary (as was suggested in the topological string context in [15, 16] and

discussed in detail in [17]). This operation can be visualized most clearly by regarding

the squashed S3 as a torus fibration over the interval, as in figure 2, and the T 2 is the

one we have discussed away from the tips of MC and M̂C. Each Melvin cigar fills out

a solid torus, and we glue the two after performing an S modular transformation which
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Figure 3. Squashed S5 as a T 3 fibration over a triangle: the cube, whose opposite faces are

identified, represents the torus. At the edges of the triangles the torus collapses to a T 2; at the

vertices it collapses to S1. At each vertex we also display the correctly normalized equivariant

parameters corresponding to the three circles.

interchanges the two circles in M̂C. The only subtlety is that we need to ensure that the

two cigars are twisted in a compatible way. In particular the complex structure parameter

as seen from the viewpoint of one tip is different from that of the other end. This forces

us to rescale the rotation parameter for M̂C to

τ̂1 = −1/τ1.

Moreover the topological string has opposite orientation on the M̂C suggesting complex

conjugation of the topological string amplitude, which is equivalent to inversion of Z.

The partition on S3
b then is just the product of the topological string factors on the two

hemispheres,5

ZS3 =
Zopen

top (~t, ~x, τ1)

Zopen
top (~t/τ1, ~x/τ1,−1/τ1)

.

The main lesson we extract from the open string case is that for generic choices of the rota-

tion parameters the topological string (or, equivalently, M-theory) computation localizes at

the fixed points of the equivariant action on C2. In discussing aspects of closed strings we

will have to recall that when we have a more complicated geometry made of patches which

look like C2
τa,τb
×S1, we would expect by localization to get a contribution of Ztop from each

patch. The main new ingredient is to find the identification of τ1, τ2 between the patches.

5Here we are ignoring the τ2 dependence which we discuss later in the context of closed strings.
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With this picture in mind, we wish to study the partition function on S5. We view

S5 as a circle fibration over CP2. Moreover CP2 itself can be viewed as consisting of a

T2 over a triangle, as is familiar in the context of toric geometries (see e.g. [36]). Thus we

can think about the squashed five-sphere as a S1 × S1 × S1 = T 3 fibration over a triangle,

where each circle in the fiber gets rotated by a different parameter τi (see figure 3). In the

interior of the triangle all three circles have finite size, but along the edges one of them

shrinks to zero size, and the vertices are the points where two of the circles degenerate.

We find it convenient to label by vi the vertex where the i-th circle of the fiber does not

degenerate. We also denote by eij the edge that connects vi and vj . It is easy to convince

oneself that the neighborhood of vi looks like S1
i × Cj × Ck, where i 6= j 6= k and each

circle in the fiber corresponds to a different factor in the geometry. So from each vertex

we expect a contribution of Zclosed
top .6 To figure out the appropriate parametrization at each

vertex, one can start by setting the equivariant parameters to be (τ1, τ2, 1) at v3, so that

we get a factor of Zclosed
top (~t, τ1, τ2). We can reach the two other vertices by moving along

the edges e31 and e32. At v1 the role of the M-theory circle is played by the first circle,

so for the gluing along the edge to be consistent we are required to rescale the equivariant

parameters by 1/τ1. This gives us a factor of Zclosed
top (~t/τ1, 1/τ1, τ2/τ1). Similarly we learn

that v2 contributes a factor of Zclosed
top (~t/τ2, τ1/τ2, 1/τ2). Collecting the contributions from

the three vertices, we find that M-theory on squashed S5 computes

Z∆
closed = Zclosed

top (~t, τ1, τ2) · Zclosed
top (~t/τ1, 1/τ1, τ2/τ1) · Zclosed

top (~t/τ2, τ1/τ2, 1/τ2).

As explained in section 4, we can rewrite this expression in convergent form as

Z∆
closed =

Zclosed
top (~t, τ1, τ2)

Z
′ closed
top (~t/τ1,−1/τ1, τ2/τ1) · Z ′ closed

top (~t/τ2, τ1/τ2,−1/τ2)
,

where the factors in the denominator are to be computed with the SU(2)L and SU(2)R
spins exchanged.

The non-perturbative open topological string fits very nicely in this picture: the fiber

over an edge eij consists of two non-degenerate circles S1
i and S1

j , which play inverted roles

at the two vertices. This means that over each edge we have a squashed S3, so we can get

an open sector by wrapping an M5-brane around it and around a Lagrangian submanifold

in X. If we do this for the e13 edge we get a contribution of

Ze13open = Zopen(~t, ~x, τ1, τ2)/Zopen(~t/τ1, ~x/τ1,−1/τ1, τ2/τ1).

If we were to choose the e23 edge, we would obtain

Ze23open = Zopen(~t, ~x, τ1, τ2)/Zopen(~t/τ2, ~x/τ2, τ1/τ2,−1/τ2).

To make this into a rigorous derivation for arbitrary toric Calabi-Yau, we would need

to have a way to compactify the full M-theory on S5, which will necessarily involve some

6Up to the factor of (−1)F because the corresponding S1 in this case is shrinkable inside S5 and gives

a different spin structure compared to the usual case where S1 is not contractible. This explains the origin

of the shift τ1 → τ1 + 1 in the previous sections.
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unconventional fields being turned on (similar to what was found in the 4d case [37]). It is

natural to conjecture, given what we are finding, that such a setup should be consistent, at

least in the case of non-compact Calabi-Yau’s. In the subset of cases where the CY engineers

a gauge theory, where Ztop is identified with the Nekrasov partition function, it should be

possible to rigorously derive this result from the localization arguments in the path-integral.

6 Superconformal indices in 6 dimensions

It is natural to ask whether the techniques we have introduced can be used to compute

superconformal indices in 6 dimensions. This is natural because this involves computations

of the amplitudes on S5 × S1. Moreover, compactification on S1 leads to a 5 dimensional

theory, of the type we have studied. Also, as in the lower dimensional case studied (such as

S1×S4) turning on the fugacities and supersymmetric rotations of the S5 should correspond

to introducing squashing parameters for S5.

In this section we show how this can be done. The generic case of interest is super-

conformal theories with N = (1, 0) supersymmetry. A special case of these are the (2, 0)

theories. We will discuss each one in turn.

6.1 N = (1, 0) superconformal index

Interacting superconformal theories with N = (1, 0) supersymmetry are believed to ex-

ist. There are various constructions for them, including small E8 instantons of heterotic

strings [38], 5 branes probing ADE singularities [39] and F-theory constructions on elliptic

threefolds with vanishing two-cycles in the base [8, 40].

The R-symmetry for this case is Sp(2). Let R denote its Cartan. The superconformal

index in this case can be defined as follows [41]:

I1,0 = Tr(−1)FqJ12−R1 qJ34−R2 qJ56−RMFi
i

where Jij denote the rotation generators of SO(6) acting on S5, and Fi are charges associ-

ated to flavor symmetries (where we have only kept the terms which appear non-trivially in

the partition function). The choice of the parameters q1,q2 is motivated from connection

with the rotations in 4d, already discussed in the context of 5d theories.

The basic idea, similar to relating the 4d index to 3d partition functions [42–44], is

to connect the 6d index to our 5d setup by compactifying this theory on S1. The only

subtlety is to identify the charges as well as the relation of the parameters in the lower

dimensional theory with the higher dimensional theory. In the context of compactification

of the 6d theory on a circle, we would need to enumerate the resulting 5d BPS states

(including winding of 6d BPS strings around the S1) and simply apply the formalism we

have developed to this 5d theory. Here the 5d theory will have a tower of BPS states with

a specific structure due to the fact that it is coming as a KK reduction from a one higher

dimensional theory. If this theory is dual to M-theory on a CY then from the perspective

of this 5d theory we can enumerate all BPS states using topological strings. Then using

the three combinations of them and integrating over the scalars in the gauge multiplets

yields the partition function on S5, thus effectively computing the index of the 6d theory.
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Note that from the perspective of the 5d BPS counting, the KK momentum should

appear as a special flavor symmetry. In the context of F-theory on elliptic CY and its

duality with M-theory upon compactification on S1 (as we will review below), this will turn

out to be the winding number over an elliptic fiber. We will denote the Kahler class of the

elliptic fiber by τ and define q = exp(2πiτ), where τ is the Kahler modulus of the elliptic

fiber (the reason for this terminology will become clear later). Let Mi = exp(2πimi), where

mi denote the non-dynamical fields (coming from non-normalizable Kahler moduli). The

question is what is the relation between the 5d parameters q, q1, q2,mi with the parameters

appearing in the 6d index q,q1,q2,mi? A similar situation was studied in the relation

between superconformal index in 4d and the partition function in 3d [42–44]. In that case

the squashing parameter are rescaled by a factor of R, the radius of the circle. We propose

a similar relation in this case. Using the fact that the Kahler class of the elliptic fiber in

F-theory is related to R by

2πiτ =
1

R

we are led to

(τ, τ1, τ2,mj)6d =

(
−1

τ
, τ1/τ, τ2/τ,mj/τ

)
5d

In computing the partition function on squashed S5 we need to integrate over the

dynamical fields. Let ti denote the scalars associated to the resulting gauge fields in 5d

coming from 6d tensor multiplets, which are normalizable (corresponding to normalizable

Kahler moduli of the CY). Then we obtain the formula

I(1,0)(mj/τ ;−1/τ, τ1/τ, τ2/τ) =

∫
dti

Ztop(ti,mj ; τ, τ1, τ2)

Z ′top( tiτ1 ,
mj
τ1

; ττ1 ,
−1
τ1
, τ2τ1 ) · Z ′top( tiτ2 ,

mj
τ2

; ττ2 ,
τ1
τ2
, −1
τ2

)
.

This naturally follows from our formalism. It is a general proposal regardless of whether or

not we have a topological string realization of the theory: the Ztop factor simply denotes

the BPS partition function. However the question is how to compute the BPS partition

function. If we can relate it to an actual topological string then we have techniques for

its computation; the most convenient one for this purpose is the F-theory construction,

because of the duality between F-theory compactified on S1 and M-theory on the same

space [45]. Thus in 5 dimensions we obtain the theory involving M-theory on an elliptic 3-

fold. Luckily topological strings on elliptic 3-folds have very nice properties and have been

studied extensively [46–51]. The relation between 6d and 5d theories via F-theory/M-

theory duality has also been studied in [52].

As an example, consider the superconformal theory associated with a small E8 instan-

ton. In the F-theory setup, this corresponds to F-theory with vanishing P1 in the base

of F-theory [8, 40]. After compactification on S1, this gives an elliptic 3-fold containing
1
2K3 (obtained by the elliptic fibration over the P1). This theory has 10 Kahler classes:

one elliptic fiber class τ , the base tb and eight mass parameters mi (to be identified with

the Cartan of E8). τ corresponds to momentum and tb corresponds to the winding of the

6d tensionless string along the circle [50]. The unrefined topological string for this theory
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was studied in [46–48, 50]. To obtain the index for this theory we have to integrate over

the tb. Similarly a large class of (1, 0) theories can be obtained by considering F-theory

where the base contains more blow ups on C2 (see [53, 54] for a recent discussion related

to this). This would entail blowing up a multiple of times, each corresponding to a Kahler

parameter ti, which we will have to integrate over in computing the index (the correspond-

ing U(1) vector multiplet in 5d arises from the 6d tensor multiplet in the same multiplet

as the blow up parameter ti). A subset of such blowups are the toric ones. These are

in one-to-one correspondence with 2d Young diagrams [55]. Elliptic threefolds over these

spaces, in the limit of blowing down all the 2-cycles, should correspond to a (1, 0) conformal

theory. The case of a Young diagram with a single row with k entries corresponds to k

small E8 instantons. It would be interesting to study this large class of (1, 0) theories given

by a Young diagram. In particular it should be interesting to compute the corresponding

refined topological strings for this background. The topological string partition functions

for this class of theories seem to enjoy the following perturbative modular property under

the inversion of the Kahler class of the elliptic fiber [47–49, 51]:

Ztop(ti,mj/τ ;−1/τ, τ1/τ, τ2/τ) = Ztop(ti,mj ; τ, τ1, τ2).

Note the asymmetric role in the modular transformation for the dynamical fields ti versus

the non-dynamical fields mj which correspond to flavor symmetries.7 In the context of our

non-perturbative completion, as we will see later in the context of the theory of M5 branes,

this relation receives additional non-perturbative factors. This turns out to be rather

important for simplifying the computation of the 6d index as we will discuss in section 6.5.

More generally we can consider instead of C2 the An−1 orbifold as the base of F-theory.

If we do not add any further blow ups, this gives the An−1, (2, 0) theory, which we discuss

in the next section (the above modular property turns out to be important later when we

compute, in our formalism, the index of an M5 brane). If in addition we also blow up the

points in the base we get among the various possibilities the small E8 instantons in the

An−1 geometry, as (1, 0) superconformal theories of the type studied in [39].

6.2 Superconformal Index for N = (2, 0) theories

N = (2, 0) theories occupy a unique place in all superconformal theories: they enjoy

the most allowed supersymmetries in the highest possible dimension for superconformal

theories. They are labeled by ADE and correspond to type IIB in the presence of ADE

singularity. The An−1 type is dual to n coincident M5 branes.

The superconformal group in this case has Sp(4) R-symmetry. Let R1 and R2 denote

the two Cartans of Sp(4) in an orthogonal basis, where we view R2 as the additional

symmetry compared to the (1, 0) theory. Then the superconformal index can be viewed as

an extension of the I1,0 by introducing the additional flavor symmetry R2 −R1:

I(2,0) = Tr(−1)FqJ12−R1
1 qJ34−R1

2 qJ56−R1QR2−R1
m

7To get this modular transformation, ti should be suitably defined by shifting the blow up parameters

with a multiple of elliptic fiber [49].
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The same reasoning as in the case of (1, 0) superconformal theories leads to the following

picture. The 5d theory we obtain by compactifying the (2, 0) theory is an ADE Yang-Mills

theory with 16 supercharges. Turning on the fugacity Qm corresponds to turning on a

mass m for the adjoint field, where Qm = e2πim (for the identification of this with R2−R1

generator of R-symmetry see [56]). In other words we can view the resulting theory as

N = 2∗ theory in 5d. Let Ztop(ti, ; τ, τ1, τ2,m) capture the BPS partition function for this

5d theory where ti denotes the Cartan of ADE. This partition function can be explicitly

evaluated for the An−1 case using the instanton calculus [14, 57] or the refined topological

string [34] on the periodic toric geometry [33]. The D and E should be in principle possible,

either using geometric engineering or instanton calculus for N = 2∗.

Then to compute the index we have

IADE
(2,0) (−1/τ , τ1/τ, τ2/τ,m/τ) =

∫
dti

Ztop(ti; τ1, τ2, τ,m)

Z ′top( tiτ1 ; −1
τ1
, τ2τ1 ,

τ
τ1
, mτ1 ) · Z ′top( tiτ2 ; τ1τ2 ,

−1
τ2
, ττ2 ,

m
τ2

)
,

where we have taken into account the relation between the 5d parameters and 6d parame-

ters. In order to gain insight into the mechanics of this computation we show how it works

for the simplest case, namely a single M5 brane, which corresponds to A0 theory and re-

cover the result of [41]. This lends support to our general proposal and more specifically

to the identification of the squashing parameters and Kahler classes with the parameters

appearing in the 6d superconformal index. The case of A0 theory is particularly simple

because we have no integrals to perform. In that case the non-perturbative Z we obtain

is exactly the same as the perturbative one! This ends up being related to the modularity

of the topological string partition function on elliptic threefolds. Moreover we discuss the

possibility that this may be the general story for all (1, 0) and (2, 0) theories in section 6.5.

We also show the setup for the computation for the higher An−1 theories in the refined

topological vertex formalism. We also give the expression for the index for the A1 case in

the unrefined setup as an integral over three factors of topological string amplitudes.

6.3 Index for a single M5 brane

As discussed above the case for single M5 brane corresponds to studying topological strings

for N = 2∗ U(1) theory in 5 dimensions. This corresponds to a periodic toric geometry,

where we compactify the base of the toric plane along one direction, obtaining a cylinder.

The corresponding toric diagram for this theory was introduced in [33] and extends the 4d

construction of these theories in [58] to 5d. The case of U(1) is shown in figure 4. The

class corresponding to the circle identification of the toric base is q (corresponding to the

elliptic fiber). The class corresponding to the mass parameter m, which we denoted by Qm
is also shown in the figure. The refined topological vertex formalism applied to this case

involves introducing the two vertices and summing over the two internal line edges with

arbitrary representations, where the smaller edge is weighted by Qnm where n is the number

of boxes in the Young diagram of the representation on that edge. Similarly the longer

edge is weighted with (qQ−1
m )k where k is the number of boxes in the Young diagram of the

representation on that edge. The topological string partition function for this theory was
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Figure 4. Toric diagram for the geometry that engineers the N = 2∗ U(1) theory in five dimensions.

The toric plane is compactified to a cylinder, and the horizontal edges are identified with each other.

worked out in [59] (see also [60]) and the result is given by8 (after shifting τi → τi + 1):

ZU(1) =

∞∏
k=0

(∏∞
i,j=0(1 +Q−1

m qk+1q
i+1/2
1 q

−(j+1/2)
2 )

∏∞
i,j=0(1 +Qmq

kq
i+1/2
1 q

−(j+1/2)
2 )∏∞

i,j=0(1− qk+1qi1q
−j
2 )

∏∞
i,j=0(1− qkqi+1

1 q
−(j+1)
2 )

)
,

where Qm = e2πim, q = e2πiτ , q1 = e2πiτ1 , and q2 = e2πiτ2 , and we have included one factor

of MacMahon function which is somewhat ambiguous in the computation of the refined

topological string. The refined topological string captures the Kahler moduli dependence

of the amplitudes and does not fix the terms purely depending only on q1, q2. In fact we will

need to multiply the above expression by 1/η(q1) for reasons that we will explain below,

where η(q1) is the Dedekind eta-function.

The spectrum of this theory consists of a tower of hyper multiplets of mass 2πi(m+kτ)

(one for each integer k) and a tower of tensor multiplets with mass 2πikτ . This is as

expected, because the reduction of a single M5 brane on a circle leads exactly to such

a multiplet, where 2πiτ is identified with 1/R, with R the radius of the circle taking us

from 6 to 5 dimensions. It is important to rewrite the above partition function in a more

symmetric way: let us redefine Qm by

Qm → Qmq
1/2

Then the partition function is totally symmetric in (q, q1, q2), if we in addition include a

factor of 1/η(q1) which is ambiguous for the refined topological vertex. To see this, we

8We thank A. Iqbal for a very helpful explanation of this result and its modular properties.
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have to rewrite everything in terms of positive powers of q2:

ZU(1) =
1

η(q1)

∞∏
i,j,k=0

(
(1 +Q−1

m qk+1/2q
i+1/2
1 q

−(j+1/2)
2 )(1 +Qmq

k+1/2q
i+1/2
1 q

−(j+1/2)
2 )

(1− qk+1qi1q
−j
2 )(1− qkqi+1

1 q
−(j+1)
2 )

)

=
1

η(q1)

∞∏
i,j,k=0

(
(1− qk+1qi1q

j+1
2 )(1− qkqi+1

1 qj2)

(1 +Q−1
m qk+1/2q

i+1/2
1 q

j+1/2
2 )(1 +Qmqk+1/2q

i+1/2
1 q

j+1/2
2 )

)

=
1

η(q)η(q1)η(q2)

∞∏
i,j,k=0

(
(1− qk+1qi+1

1 qj+1
2 )(1− qkqi1q

j
2)

(1 +Q−1
m qk+1/2q

i+1/2
1 q

j+1/2
2 )(1 +Qmqk+1/2q

i+1/2
1 q

j+1/2
2 )

)
,

where we delete the i = j = k = 0 terms for the second term in the numerator. The

manifest permutation symmetry between q, q1, q2 is expected from the fact that in the 6d

they become the parameters associated to the three rotation planes. Note also that the

way we have rewritten the numerator corresponds to the fact that a tensor multiplet in

5d is dual to the vector multiplet. This accounts for the form of the numerator which

now gives a tower of vector multiplets. In dualizing from tensor multiplets to vectors we

lose the zero modes associated to modes of the tensor multiplets which corresponds to

rotations in only one of the three planes (where Bii has a mode only in the zi direction).

This accounts for the three η’s in the denominator. The reduction of the fields of the (2,0)

theory to five dimensions has also been studied in detail in [61]. The partition function

can be written elegantly in terms of double elliptic gamma functions (see appendix A.2 for

a brief discussion of some of their properties):

G2(z|a, b, c) =

∞∏
i,j,k=0

(1− ZAiBjCk)(1− Z−1Ai+1Bj+1Ck+1),

where (Z;A,B,C) = exp(2πi(z; a, b, c)). We have

ZU(1) =
1

η(q)η(q1)η(q2)
· G′2(0|τ, τ1, τ2)

G2(m+ 1
2 + τ+τ1+τ2

2 |τ, τ1, τ2)
. (6.1)

where we are deleting the zero mode of G2(0) as noted before. To construct the partition

function of this theory on S5 we simply have to consider the above topological string

partition function and take three copies of it for the modes of the vector multiplet and the

hypermultiplet on the S5. Dropping for now the factors of η, we get:

G′2(0|τ,τ1,τ2)

G2(m− 1
2

+
τ+τ1+τ2

2
|τ,τ1,τ2)

G′2(0|τ/τ1,−1/τ1,τ2/τ1)

G2((m− 1
2

+
τ+τ1+τ2

2
)/τ1|τ/τ1,−1/τ1,τ2/τ1)

· G′2(0|τ/τ2,τ1/τ2,−1/τ2)

G2((m− 1
2

+
τ+τ1+τ2

2
)/τ2|τ/τ2,τ1/τ2,−1/τ2)

.

The non-perturbative contributions to the partition function of an arbitrary 5d theory can

a priori be quite complicated, but, in fact, here we find that they cancel out! This is

because elliptic gamma functions satisfy a beautiful modular property [26]:

G2(z|τ0, τ1, τ2) = exp

(
πi

12
B44(z|τ0, τ1, τ2, 1)

)
G2

(
z

τ0

∣∣∣∣− 1

τ0
,
τ1

τ0
,
τ2

τ0

)
·G2

(
z

τ1

∣∣∣∣τ0

τ1
,− 1

τ1
,
τ2

τ1

)
·G2

(
z

τ2

∣∣∣∣τ0

τ2
,
τ1

τ2
,− 1

τ2

)
. (6.2)
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Using this, the expression above simplifies to9

G′2(0| − 1/τ, τ1/τ, τ2/τ)

G2((m/τ + 1/2(1 + (τ1 + τ2 − 1)/τ)| − 1/τ, τ1/τ, τ2/τ)
.

It is remarkable that taking the three copies of the five-dimensional partition function led

to an answer which is perturbative in τ1, τ2, and we offer an explanation of it below.

Likewise, the contributions from the η factors simplify. From η(τ1)η(τ2) we get, up to

prefactor:

η(τ1)η(τ2)→ η(τ1)η(τ2)

η(−1/τ1)η(−1/τ2)η(τ1/τ2)η(τ2/τ1)
= 1.

From η(τ) we get

η(τ)

η(τ/τ1)η(τ/τ2)
= η(−1/τ)η(−τ1/τ)η(−τ2/τ) = η(−1/τ)η(τ1/τ)η(τ2/τ).

We thus end up with

ZnpU(1) =
1

η(−1/τ)η(τ1/τ)η(τ2/τ)

G′2(0| − 1/τ, τ1/τ, τ2/τ)

G2(mτ + 1
2 + τ1+τ2−1

2τ | − 1/τ, τ1/τ, τ2/τ)
(6.3)

A glance at equations (6.1) and (6.3) reveals that the only difference between the pertur-

bative answer and the full non-perturbative result is a rescaling of

(m, τ, τ1, τ2)→ (m/τ,−1/τ, τ1/τ, τ2/τ),

which is the correct map between the 5d and 6d parameters, as discussed above. We now

offer an explanation of the fact that the non-perturbative completion of the Ztop resulted

in the same function in modular transformed variables. As discussed before (and which

can be verified explicitly for this example), we expect a pertubative modularity of the

topological string partition functions of elliptic Calabi-Yau threefold of the form:

Ztop(mi, τ, τ1, τ2) = Ztop(mi/τ,−1/τ, τ1/τ, τ2/τ).

Instead what we have found in this example is that

Ztop(m,τ,τ1, τ2)

Ztop(m/τ1, τ/τ1,−1/τ1, τ2/τ1)·Ztop(m/τ2, τ/τ2, τ1/τ2,−1/τ2)
=Ztop(m/τ,−1/τ,τ1/τ,τ2/τ).

Note that the additional terms in the denominator are non-perturbative in the topological

string coupling constants and thus can be viewed as a non-perturbative completion of the

modularity of topological strings. We will comment on the implication of this for possible

simplification for the general computation of the index of all 6d theories in section 6.5.

9In the following manipulations we do not keep track of the cubic and quartic prefactors which arise as

a result of modular transformations. It would be interesting to understand these factors in greater detail.
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The same result could also have been derived from the relation between the triple sine

and elliptic gamma functions (equation (A.14)), which we also report here:

G2(z|ω) = exp

(
2πi

4!
B4,4(z|(ω,−1))

)
·
∞∏
k=0

S3(z + k + 1|ω)S3(z − k|ω)

exp
(
πi
3! (B3,3(z + k + 1|ω)−B3,3(z − k|ω))

) .
Let us now denote e−2πi/τ , e2πim/τ , e2πiτ1/τ and e2πiτ2/τ respectively by q,qm,q1,q2. Then,

using equation (A.17), we can write

G2(0| − 1/τ, τ1/τ, τ2/τ) = exp

(
−
∑
n

1

n

1 + qn1qn1qn2
(1− qn)(1− qn1 )(1− qn2 )

)
and

G2

(
m

τ
+

1 + τ1/τ + τ2/τ − 1/τ

2

∣∣∣∣− 1

τ
,
τ1

τ
,
τ2

τ

)−1

= exp

(∑
n

1

n

(qq1q2)n/2((−qm)n + (−qm)−n)

(1− qn)(1− qn1 )(1− qn2 )

)
.

Likewise,

1

η(−1/τ)
= exp

( ∞∑
k=1

∞∑
n=1

q2πink

n

)
= exp

(∑
n

1

n

qn

1− qn

)
,

and similarly for η(τ1) and η(τ2). Writing

ZnpU(1) = exp

(∑
n

I(qnm,q
n,qn1 ,q

n
2 )

n

)
,

we get

I =
q

1− q
+

q1

1− q1
+

q2

1− q2
+

√
qq1q2(−qm − q−1

m )− 1− qq1q2

(1− q)(1− q1)(1− q2)

=

√
qq1q2(−qm − q−1

m ) + qq1q2 − qq1 − qq2 − q1q2

(1− q)(1− q1)(1− q2)
− 1.

Deleting the zero mode of G2(0) correspond to deleting the −1 in the above expression.

The resulting expression matches exactly with the result of [41],

I =
x6(z1/2 + z−1/2) + x12 − x8(y2 + 1/y1 + y1/y2)

(1− x4y1)(1− x4/y2)(1− x4y2/y1)
,

provided that we identify

x4y2/y1 = q, x4/y2 = q2, x4y1 = q1, −z1/2 = qm,

which is in accord with the transformation of the basis used in that paper compared to

ours in writing the index.
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Figure 5. The periodic toric geometry for the A1 case. For An−1 case we get n horizontal lines.

The ti are the Coulomb branch parameters and m corresponds to the mass of the adjoint in the

N = 2∗ theory.

6.4 Multiple M5 branes

Similarly we can consider multiple M5 branes. This was studied in [33] in the unrefined

topological string formalism (where q1q2 = 1) which can easily be generalized to the refined

one (which was not developed at the time). For N M5-branes the toric geometry will involve

N parallel lines wrapping the periodic direction of the toric base. See figure 5 for the case

with N = 2. The topological string will depend on one mass parameter m, on the periodic

size τ , and on N − 1 moduli ti which correspond to relative separation of the horizontal

lines. These are the parameters that we need to integrate over in evaluating the 6d index.

It would be interesting to perform this computation in detail. This involves gluing 2N

vertices of the refined topological vertex, and a sum over 3N Young diagrams attached to

the internal edges, just as in the unrefined case (where τ1 +τ2 = 0) studied in detail in [33].

In that case, the answer for topological string partition function is given by

Ztop = M(q)
∞∏
k=0

(
(1−Qmqk+1)2 (1−QFQ−1

m qk+1)(1−QFQm)(1−QF qk+1)−2
)k+1

·
∑
ν1,ν2

{
(QQm)|ν1|+|ν2|

∏
p=1,2

(i,j)∈νp

(1−Qmqh(i,j))(1−Q−1
m qh(i,j))

(1− qh(i,j))2

·
∏
k

(
(1−QFQ−1

m qk)(1−QFQmqk)
(1−QF qk)2

)Ck(ν1,νt2)
}
,
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where M(q) is the MacMahon function, q = e2πiτ1 , Q = e2πiτ , QF = e2πia, and Qm = e2πim,

where we have denoted e2πiτ by Q instead of q since q parametrizes the unrefined topological

string coupling constant. Also, h(i, j) = νi − i + νtj − j + 1 is the hook length for a box

(i, j) ∈ ν, and Ck(ν1, ν2) can be computed from

∑
k

Ck(ν1, ν2)qk =
(q − 1)2

q
fν1fν2 + fν1 + fν2 ,

where fν(q) =
∑

(i,j)∈ν q
j−i. This can be extended to the refined computation which we

denote by Ztop(τ, a,m; τ1, τ2), from which we would compute the full index by doing the

integral over the a variable for the Znp.

6.5 Ztop = Znp in 6d?

As we have seen in the context of computation of the superconformal index for a single M5

brane, the non-perturbative completion of Ztop yields again Ztop with modular transformed

variables. This raises the question whether this is always true, namely:10

Znp(ti,mj , τ, τ1, τ2) = Ztop(ti/τ,mj/τ,−1/τ, τ1/τ, τ2/τ)?

However, as already discussed, we expect from the perturbative modularity of Ztop a rela-

tion of almost this form, namely

Ztop(ti,mj , τ, τ1, τ2) = Ztop(ti,mj/τ,−1/τ, τ1/τ, τ2/τ)

∣∣∣∣
pert.

This is almost of the naive form we expected, except that ti, the dynamical variables which

we need to integrate over, are not transformed under τ → −1/τ . This strongly suggests

that the non-perturbative completion of the above equation is simply

Znp(ti,mj , τ, τ1, τ2) = Ztop(ti,mj/τ,−1/τ, τ1/τ, τ2/τ).

This would be consistent with the fact that the BPS states of the elliptic 3-fold should

organize according to a tower of KK modes and for each such tower the identity 6.2 would

transform the answer back to the original form except in the modular transformed variables.

This would give a dramatic simplification for the computation for the 6d case. Namely we

would get (taking into account the change of parameters from 5d to 6d):

I6d(mj , τ, τ1, τ2) =

∫
dti Ztop(ti,mj , τ, τ1, τ2)

where Ztop is the same as the 5d gauge theory partition function (including the cubic

prefactor). We are currently investigating this theory [62].

10We would like to thank D. Jafferis for discussions on this point.
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6.6 Superconformal index for N = 1, 2 in d = 4

Similarly in the above context we can consider the open string sectors. These will support

4d field theories in the following way: consider again F-theory on elliptic 3-folds and

consider (p, q) 5-branes of IIB wrapped around the Lagrangian 2-cycles of the base. This

of course needs to be compatible with the elliptic fibration structure of F-theory as the

5-branes transform under SL(2,Z). This leads to an N = 1, d = 4 theory living on the

uncompactified directions of the 5-brane. To the best of our knowledge these theories have

not been studied before. It would be interesting to investigate this class of theories.

Upon further compactification on a circle, where we wrap one of the directions of

the brane on the circle, this will correspond to a 3d theory living on its world volume.

By the duality between F-theory and M-theory, this corresponds to M5 branes wrapping

Lagrangian cycles of the resulting 3-fold, which we can compactifiy on the S3 and compute

the partition function, as already discussed for the open string sector. The corresponding

index in the 4d theory is given by

Tr(−1)FqJ12−r1 qJ34−rMFi
i

where q can be identified with the modular transformed elliptic fiber parameter of the

3-fold and q1 corresponds to the direction in which we have placed the brane and Fi
correspond to extra symmetries one may have (associated to non-integrated Kahler classes

and positions of the brane).

Similarly if the elliptic fibration of F-theory is constant the same construction will lead

to an N = 2 theory. Here we will have one extra flavor symmetry (the analog of the mass

in the N = 2∗ theory discussed before) which will play the role of the additional parameter

t that one can add to the index in the context of N = 2 theories in d = 4 [63]:

Tr(−1)FqJ12−r1 qJ34−rtR−rMFi
i

It would be interesting to study these and explore connections with the computations

already done in the literature (see [64] and references therein for examples of such compu-

tations).

7 Conclusion

We have provided evidence that the partition function of superconformal theories on S5

and on S5 × S1 can be computed using closed topological strings. Similarly the partition

function on S3 and S3 × S1 associated to the open string theories can be computed in an

analogous manner. These computations involve in the closed string case an SL(3,Z) action

involved in inverting the coupling constants of the refined topological string, and in the

open string case an SL(2,Z) transformation. We used the connection with the partition

function computation to define what this inversion precisely means and the regions of

convergence of topological string coupling constant.

These results complement that in [2] which shows how one can use topological strings to

compute associated partition functions on S4×S1 for closed topological strings and S2×S1

– 30 –



J
H
E
P
1
0
(
2
0
1
8
)
0
5
1

for open ones, which does not involve the inversion of the string coupling constant. Thus al-

together we have a unified picture where the partition functions of a large class of supercon-

formal theories which can be engineered in dimensions 6, 5, 4, and 3 associated to Calabi-

Yau threefolds or Lagrangians in them can be computed using topological string data. This

leads to computation of all supersymmetric partition functions in these dimensions on Sd

and Sd−1×S1 for the ones that can be geometrically engineered, using topological strings.11

The ideas in these papers suggest that the BPS states in a supersymmetric theory

(with enough supersymmetry) go a long way in defining the superconformal fixed points

they come from. It would be very interesting to see whether this can be made into a

systematic method for defining the full superconformal theory.

Note added. After the completion of this paper a number of other papers appeared [66–

68] which have some overlap with the current work. In particular, [66] obtains triple

sine functions for partition functions on squashed S5. Also, the authors of [67] obtain a

triple product structure for the partition function for the special cases where the 5d CFT

corresponds to gauge theories; the expressions they obtain are similar to ours. They also

study the partition function for M5 branes using the 5d gauge theory, in agreement with

the results of this paper.
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A Multiple sine and multiple elliptic gamma hierarchies

A.1 Multiple sine hierarchy

In this appendix we provide the definition and relevant properties of the multiple sine and

multiple elliptic gamma functions [23–26]. We begin by defining the multiple zeta functions

ζr(z, s|ω) =
∞∑

n1,...,nr=0

(~n · ω + z)−s,

for z ∈ C and Re s > r. We adopt the notation ω = (ω1, . . . , ωr) and ~n · ω = n1ω1 + · · ·+
nrωr. We require that all ωi ∈ C lie within the same half of the complex plane. By analytic

continuation the domain of definition of multiple zeta functions can be extended to s ∈ C.

Multiple gamma functions are defined as

Γr(z|ω) = exp

(
∂

∂s
ζr(s, z|ω)

∣∣∣∣
s=0

)
,

which we can view as a regularized infinite product,

Γr(z|ω) ∼
∞∏

n1,...,nr=0

(~n · ω + z)−1.

Finally, the multiple sine is defined as

Sr(z|ω) = Γr(z|ω)−1Γr(|ω| − z|ω)(−1)r , (A.1)

where |ω| = ω1 + · · · + ωr. Multiple sine functions can also be written as regularized

products,

Sr(z|ω) ∼
∞∏

n1,...,nr=0

(~n · ω + |ω| − z)(~n · ω + z)(−1)r+1
, (A.2)

and enjoy a number of remarkable properties:

• Analyticity: for r odd the multiple sine is an entire function in z, with zeros at

z = ~n · ω (n1, . . . , nr ≥ 1),

coming from Γr(z|ω)−1, as well as zeros at

z = ~n · ω (n1, . . . , nr ≤ 0),

coming from Γr(|ω|−z|ω)−1. For even r, the multiple sine is meromorphic with zeros

for (n1, . . . , nr ≥ 1) and poles for (n1, . . . , nr ≤ 0);

• Difference equation:

Sr(x+ ωi|ω) = Sr−1(x|ω(i))−1Sr(x), (A.3)

where ω(i) = (ω1, . . . , ωi−1, ωi+1, . . . , ωr);
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• Symmetries: Sr(z, ω) is invariant under permutations of the parameters ωi. It also

enjoys a reflection property:

Sr(z|ω) = Sr(|ω| − z|ω)(−1)r+1
; (A.4)

• Rescaling invariance:

Sr(cz|cω) = Sr(z|ω), (A.5)

for any c ∈ C;

• Integral representation: in [26] it was shown that, when all Re ωj > 0 and 0 <

Re z < Re |ω|, multiple sine functions can be expressed in terms of contour integrals.

In particular, the double and triple sine functions have the following representation:

S2(z|ω1,ω2) = exp

(
πi

2
B2,2(z|ω)+

∫
R+i0

d`

`

ez`

(eω1`−1)(eω2`−1)

)
, (A.6)

S3(z|ω1,ω2,ω3) = exp

(
−πi

6
B3,3(z|ω)−

∫
R+i0

d`

`

ez`

(eω1`−1)(eω2`−1)(eω3`−1)

)
, (A.7)

where

B2,2(z|ω1, ω2) =
z2

ω1ω2
− ω1 + ω2

ω1ω2
z +

ω2
1 + ω2

2 + 3ω1ω2

6ω1ω2
, (A.8)

B3,3(z|ω1, ω2, ω3) =
z3

ω1ω2ω3
− 3

2

ω1 + ω2 + ω3

ω1ω2ω3
z2

+
ω2

1 + ω2
2 + ω2

3 + 3(ω1ω2 + ω1ω3 + ω2ω3)

2ω1ω2ω3
z

− (ω1 + ω2 + ω3)(ω1ω2 + ω1ω3 + ω2ω3)

4ω1ω2ω3
(A.9)

are members of the family of multiple Bernoulli polynomials, which are defined as

follows:
∞∑
n=0

Br,n(z|ω)
tn

n!
=

trezt∏r
j=1(eωjt − 1)

. (A.10)

• Factorization: when Im ω1/ω2 > 0, the double sine function can be written as the

following infinite product [26]:

S2(z|ω1, ω2) = exp

(
πi

2
B2,2(z|ω1, ω2)

)
·
∏∞
j=0(1− e2πi(z/ω2+jω1/ω2))∏∞

j=0(1− e2πi(z/ω1−(j+1)ω2/ω1))
. (A.11)

Similarly, when Im ω1/ω2 > 0, Im ω1/ω3 > 0, and Im ω3/ω2 > 0, the triple sine

factorizes as

S3(z|ω1, ω2, ω3) (A.12)

= exp

(
−πi

6
B3,3(z|ω1, ω2, ω3)

)
·
∏∞
j,k=0(1− e2πi(z/ω2+jω1/ω2+kω3/ω2))

∏∞
j,k=0(1− e2πi(z/ω1−(j+1)ω3/ω1−(k+1)ω2/ω1))∏∞

j,k=0(1− e2πi(z/ω3+jω1/ω3−(k+1)ω2/ω3))
.
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Similar expressions can be obtained for other regions by using the invariance of the

triple sine function under exchange of ω1, ω2, ω3.

A.2 Multiple elliptic gamma hierarchy

When ωj ∈ H, j = 0, . . . , r, the r-th multiple elliptic gamma function is defined as

Gr(z|ω) =

∞∏
j0,...,jr=0

(1− e2πi(z+j0ω0+···+jrωr))(−1)r · (1− e2πi(|ω|−z+j0ω0+···+jrωr)). (A.13)

One can extend the definition to ωj ∈ C− R by repeated use of

∞∏
p=0

(1−Xe2πipωj ) =

∞∏
p=0

(1−Xe−2πi(p+1)ωj )−1.

The multiple elliptic gamma function is related to the multiple sine function by the following

identity, (which was proved in [26] if Im ωj > 0 for all j, and 0 < Im z < Im |ω|):

Gr(z|ω) = exp

(
2πi

(r + 2)!
Br+2,r+2(z|(ω,−1))

)
·
∞∏
k=0

Sr+1(z + k + 1|ω)(−1)rSr+1(z − k|ω)(−1)r

exp
(

πi
(r+1)!(Br+1,r+1(z + k + 1|ω)−Br+1,r+1(z − k|ω))

) . (A.14)

These functions have nice modular properties [26]. For example, if Im τi 6= 0 and Im τi/τj 6=
0,

G2(z|τ0, τ1, τ2) = exp

(
πi

12
B44(z|τ0, τ1, τ2, 1)

)
G2

(
z

τ0

∣∣∣∣− 1

τ0
,
τ1

τ0
,
τ2

τ0

)
·G2

(
z

τ1

∣∣∣∣τ0

τ1
,− 1

τ1
,
τ2

τ1

)
·G2

(
z

τ2

∣∣∣∣τ0

τ2
,
τ1

τ2
,− 1

τ2

)
. (A.15)

Similar formulas exist for r 6= 2. Multiple elliptic gamma functions also satisfy recursion

relations, including

Gr(z + 1|τ0, . . . , τr) = Gr(z|τ0, . . . , τr),

and

Gr(z + τi|τ0, . . . , τr) = 1/Gr(z|τ0, . . . , τi−1,−τi, τi+1, . . . , τr).

Furthermore, the infinite product representation of the multiple elliptic gamma function

can written in the form of a plethystic exponential. The first factor of equation (A.13) can

be written as

exp

(−1)r
∞∑

j0,...,jr=0

log(1− e2πi(z+j0ω0+···+jrωr))


= exp

(−1)r+1
∞∑

j0,...,jr=0

∞∑
n=1

e2πin(z+j0ω0+···+jrωr)

n

 .
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Resumming the geometric series corresponding to j0, . . . , jr, we get

exp

(
(−1)r+1

∞∑
n=1

Ir(q
n
z |qn0 , . . . , qnr )

n

)
, (A.16)

where we defined qi = e2πiωi for i = 0, . . . , r, qz = e2πiz, and

Ir(qz|q0, . . . , qr) =
qz∏r

i=0(1− qi)
.

The other infinite product in equation (A.13) contributes a similar term, and we find that

Gr(z|ω) = exp

( ∞∑
n=1

(−1)r+1Ir(q
n
z |qn0 , . . . , qnr )− Ir(q−nz ·

∏r
j=0 q

n
j |qn0 , . . . , qnr )

n

)
. (A.17)

Multiple elliptic gamma functions enjoy a number of other notable properties; we refer the

reader to [26] for further details.

B Triple sine formulas for hyper and vector multiplets

In this appendix we recast the one-loop hyper and vector multiplet contributions to the 5d

partition function on unsquashed S5 as computed in [4] in terms of triple sine functions.

B.1 Hypermultiplets

We wish to show that the one-loop partition function

Zhyper =
∏
µ∈R

∏
t

(t+ 3/2− iφµ)−(1+ 3
2
t+ 1

2
t2) ,

for a hypermultiplet in the representation R of the gauge group, whose weights we denote

by µ, is equal to ∏
µ

S3(iφµ + 3/2|1, 1, 1)−1.

From the definition of triple sine, we have

S3(z|1, 1, 1) =
∏

n1,n2,n3≥0

(n1 + n2 + n3 + z)(n1 + n2 + n3 + 3− z),

which can be expressed as a sum over a single integer

S3(z|1, 1, 1) =
∏
t≥0

[(t+ z)(t+ 3− z)]t
2/2+3t/2+1.

For each weight in the representation we have

S3(iφµ + 3/2|1, 1, 1) =
∏
t≥0

(t+ 3/2 + iφµ)t
2/2+3t/2+1(t+ 3/2− iφµ)t

2/2+3t/2+1.
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By taking t→ −t in the first factor, we can rewrite it as∏
t≤0

(−t+ 3/2 + iφµ)t
2/2−3t/2+1 =

∏
t≤−3

(−t− 3/2 + iφµ)(t+3)2/2−3t/2+1)

=
∏
t≤−3

(t+ 3/2− iφµ)(t2/2+3t/2+1),

up to a numerical phase. Here and in the following we will be cavalier about such numerical

factors. Putting everything together, we have

S3(iφµ + 3/2|1, 1, 1) =
∏
t≥0

(t+ 3/2− iφµ)t
2/2+3t/2+1

∏
t≤−3

(t+ 3/2− iφµ)(t2/2+3t/2+1)

=
∏
t∈Z

t 6={−1,−2}

(t+ 3/2− iφµ)t
2/2+3t/2+1

Notice that when t = {−1,−2} the exponent t2/2 + 3t/2 + 1 vanishes. So in fact we can

write

S3(iφµ + 3/2|1, 1, 1) =
∏
t∈Z

(t+ 3/2− iφµ)t
2/2+3t/2+1, (B.1)

and indeed we find that

Zhyper =
∏
µ

S3(iφµ + 3/2|1, 1, 1)−1.

B.2 Vector multiplets

We wish to show that the one-loop contribution from the vector multiplets,∏
β>0

(iφβ)2

× Zvect =
∏
β>0

(iφβ)2
∏
t 6=0

(t2 − (iφβ)2)t
2/2+3t/2+1


=
∏
β>0

∏
t∈Z

[(t+ iφβ)(t− iφβ)]t
2/2+3t/2+1

is equal to ∏
β>0

S3(iφβ |1, 1, 1)S3(3 + iφβ |1, 1, 1).

To see this we simply shift iφβ by 3
2 in (B.1) to get

S3(iφβ + 3|1, 1, 1) =
∏
t∈Z

(t− iφβ)t
2/2+3t/2+1.

To get the other half of the answer we use

S3(iφβ |1, 1, 1) = S3(−iφβ + 3|1, 1, 1) =
∏
t∈Z

(t+ iφβ)t
2/2+3t/2+1,

so that indeed∏
β>0

S3(iφβ |1, 1, 1)S3(iφβ + 3|1, 1, 1) =
∏
β>0

∏
t∈Z

(t2 − (iφβ)2)t
2/2+3t/2+1.
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C Zeros and poles of Cs1,s2(z|τ1, τ2)

In the main text we defined the following generalization to the triple sine function:

Cs1,s2(z|τ1, τ2) =

∏∞
j,k=0(1− (−1)2s1+1e2πiz/τ1 q̂j−s1+1/2t̂k−s2+1/2)∏∞
j,k=0(1− (−1)2s1+1e2πizqj+s1+1/2tk−s2+1/2)

·
∏∞
j,k=0(1− (−1)2s1+1e2πiz/τ2 q̃j+s1+1/2t̃k+s2+1/2)∏∞
j,k=0(1− (−1)2s1+1e2πizqj+s1+1/2tk−s2+1/2)

. (C.1)

We would like to express this in a form analogous to the definition of the triple sine function,

equation (A.2). Assuming that this function has similar analytic properties to the triple

sine function, we can read off the zeros αi and poles βj of this function from its definition

and express it as a regularized infinite product,

Cs1,s2(z|τ1, τ2) ∼
∏
i(z − αi)∏
j(z − βj)

,

which is valid up to an exponential prefactor. In particular, from the denominator of (C.1)

we get

∞∏
j,k=0

(1− (−1)2s1+1e2πizqj+s1+1/2tk−s2+1/2)

∼
∞∏

j,k=0

∞∏
p=−∞

(z + τ1(j + s1 + 1/2)− τ2(k − s2 + 1/2) + p+ s1 + 1/2)

=

∞∏
j,k=0

∞∏
p=−∞

(ξ + τ1j − τ2(k + 1) + p), (C.2)

where

ξ = z + τ1(s1 + 1/2) + τ2(s2 + 1/2) + (s1 + 1/2)).

Similarly, the numerator or (C.1) contributes a factor of

∞∏
j,k=0

(1− (−1)2s1+1e2πiz/τ1 q̂j−s1+1/2t̂k−s2+1/2)

∼
∞∏

j,k=0

∞∏
p=−∞

(z + τ1(p+ s1 + 1/2)− τ2(k − s2 + 1/2)− (j − s1 + 1/2))

=

∞∏
j,k=0

∞∏
p=−∞

(ξ + τ1p− τ2(k + 1)− (j + 1)), (C.3)
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as well as a factor of

∞∏
j,k=0

(1− (−1)2s1+1e2πiz/τ2 q̃j+s1+1/2t̃k+s2+1/2)

∼
∞∏

j,k=0

∞∏
p=−∞

(z + τ1(j + s1 + 1/2) + τ2(p+ s1 + 1/2) + k + s2 + 1/2)

=
∞∏

j,k=0

∞∏
p=−∞

(z + τ1(j + s2 + 1/2) + τ2(p+ s2 + 1/2) + k + s2 + 1/2)

=
∞∏

j,k=0

∞∏
p=−∞

(ξ + τ1j + τ2p+ k − s1 + s2) = Fs1,s2 ·
∞∏

j,k=0

∞∏
p=−∞

(ξ + τ1j + τ2p+ k), (C.4)

where in going from the second to the third line we used the fact that s1 = s2 mod 1, and

in the last line

Fs1,s2 =


1 if s1 = s2∏∞
j=0

∏∞
p=−∞

∏s1−s2
l=1 (ξ + τ1j + τ2p− l) if s1 > s2∏∞

j=0

∏∞
p=−∞

∏0
l=s1−s2+1(ξ + τ1j + τ2p− l)−1 if s1 < s2

.

Dividing equation (C.3) by (C.2) gives∏∞
j,k,p=0(ξ − τ1(p+ 1)− τ2(k + 1)− (j + 1))∏∞

j,k,p=0(ξ + τ1j − τ2(k + 1) + p)
; (C.5)

further multiplying by factor (C.4) gives

Cs1,s2(z|τ1, τ2) ∼ Fs1,s2 ·
∞∏

m,n,p=0

(ξ+τ1m+τ2p+n)(ξ−τ1(p+1)−τ2(n+1)−(m+1)); (C.6)

in other words,

Cs1,s2(z|τ1, τ2) ∼ S3(ξ|1, τ1, τ2) · Fs1,s2 .
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