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Abstract

Over the past few years microstructured fibers have shown potential for many practical applications and
permitted significant progress in various domains such as nonlinear optics, medical science or
telecommunications as the fabrication process allows for a great flexibility in the design of these fibers.
In particular, small core microstructured fibers has proven to be the most efficient way for
supercontinuum generation. Supercontinuum is one of the most spectacular outcome of nonlinear optics
as it possesses the properties of a laser combined with an ultra-broad bandwidth spanning more than
two octaves. The thesis provides a comprehensive review of the different physical mechanisms leading
to the generation of these spectra in microstructured fibers.
Dispersion, which reflects the dependence of the refractive index of a material on the frequency of light
plays a crucial role in the pulse propagation in optical fibers or components. A novel technique to
characterize the anomalous dispersion of small core microstructured fibers using short optical pulses is
demonstrated. The method presents several advantages over conventional techniques and relies on the
spectral modulation resulting from the evolution of the input pulse into a soliton wave.
As the demand for capacity of optical networks increases, the requirements for the components
employed in transmission systems becomes more stringent. In particular, the dispersion of fiber Bragg
gratings or thin-film filters commonly employed in the links needs to be accurately evaluated as it may
have a strong impact on the overall performance of the system. A novel method for improving the
accuracy of dispersion measurements, based on the well-established phase-shift technique widely used
in the characterization of optical components, is presented.
The performance of diode lasers can be greatly enhanced with the use of an external cavity
configuration. The wavelength tunability of the diode is increased and its linewidth considerably
reduced. The behavior of the linewidth of a grating cavity laser is both theoretically and experimentally
explored as the oscillation frequency of the laser is varied. Surprisingly, large changes in the linewidth
value are observed, which may have an impact in applications requiring lasers with a stable and narrow
linewidth.
The fabrication of integrated silica-based optical components performing active functionalities is an
exciting prospect for obvious reasons. Poling of silica glass is a very promising technique for the
development of this type of component as it allows for the introduction of an effective second-order
nonlinearity essential for performing active functions. A new technique based on the inscription of
Bragg gratings for measuring the second-order nonlinearity induced by negative thermal poling is
demonstrated.

Keywords: Supercontinuum, microstructured fibers, dispersion measurements, linewidth, external
cavity laser, poling.
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1. Introduction

The history of photonic crystal fibers (PCFs) started as early as in the seventies [1]. However, its impact
remained rather marginal until the nineties when the maturity of the technology enabled the fabrication
of almost perfect structures. The great flexibility in the design of PCFs led to tremendous progress in
various areas of the field of optics, ranging from frequency metrology to medial science and the future
prospects have aroused the interest of many research groups [2-22].
Photonic crystal fibers can be classified in two categories: microstructured fibers (MFs) which guide
light as standard optical fibers [2-4,7,9,10,13,17,21-24] and photonic bandgap fibers (PBFs) [17,25-29]
where the light is confined through the bandgap effect. Microstructured fibers could play an important
role in optical telecommunications [30-35]. Indeed, various optical functions [36-39] ranging from
optical switching [37-39] to wavelength conversion [40-44], soliton squeezing [45,46] and tunable
filters [47-52] can be performed using MFs. In particular, the large nonlinearities of these fibers [53,54]
permit these functions to be achieved with a shorter length than when using conventional fibers.
Microstructured fibers also find applications in laser and amplifier technology [55-72]. Large core, high
numerical aperture and endlessly single-mode MFs can provide high-power delivery [73,74] and
erbium/ytterbium-doped MFs were recently demonstrated to be efficient for constructing high-power
fiber lasers or amplifiers [57,58,70-72]. Poling of MFs has also been achieved and led to an enhanced
second-order susceptibility [75]. Due to their intrinsic very low nonlinearities and in combination with
anomalous dispersion in their transmission band, PBFs allow for high power soliton transmission [76].
Furthermore, the possibility of filling gases into the core of PBFs [77] opens up new prospects for
sensor technology [78,79], harmonic generation, particle guidance [80] and cold atom guiding.
One of the very first applications of MFs has been supercontinuum (SC) generation. Supercontinuum is
a broadband coherent light source [81] that finds numerous applications in the fields of
telecommunication [82-92], optical metrology [93-107], spectroscopy [108-112] and medical imaging
[113-115]. In particular, the ultra-broad spectrum of a supercontinuum has allowed for submicron
resolution in optical coherence tomography [115-117]. In metrology, a direct link between the repetition
rate of a mode-locked laser and optical frequencies has been established and potential accuracy of 10-18

may be achieved in the definition of the second, thus replacing the currently used cesium atom clocks
[94,100-106]. In dense-wavelength-division-multiplexing telecommunication systems, a SC can be
sliced into hundreds of channels yielding transmission bandwidths of the order of a few terahertz
[89,118,119]. A supercontinuum can also be utilized for characterization of fiber-optic components or
can be used in any application where broadband sources are required [120-124]. The first generation of
supercontinuum dates back to 1970, when high power picosecond pulses were focused into a glass
sample [125]. Continua were subsequently generated in various gases and liquids [126-130]. The
development of ultra-fast lasers producing trains of short pulses with a wavelength near the minimum
dispersion wavelength of optical fibers allowed to generate SC in conventional and speciality fibers
[90,131-140]. The use of optical fibers for SC generation presents advantages over that of bulk media.
In particular, the mode can be confined into a small area, thus enhancing the strength of the nonlinear
processes that are responsible for SC formation. Microstructured fibers have allowed to go one step
further in SC generation. Indeed, the possibility of tailoring the dispersion profile of these fibers
combined with the tight confinement of the propagating mode, which enhances drastically the nonlinear
effects, led to the generation of a SC spanning from 400 nm to beyond 1600 nm [141]. Since the first
demonstration of SC generation in MFs in 1999 [142], comprehensive studies have been conducted to
identify the properties and the various processes leading to these ultra-broad spectra in MFs, making
presently SC research one of the hottest topic in the optics field [141,143-180].
Microstructured fibers exhibit a whole range of unique properties. In particular, they can allow for
single-mode guidance from UV to near infrared wavelengths [181] and their zero-dispersion wavelength
may be pushed far into the visible region of the spectrum [182]. As dispersion may have a strong impact
on the use of a particular MF, it is very important to be able to characterize accurately the dispersion
properties of these fibers. Such a task may become difficult or unpractical in the case of small core MFs
using standard dispersion measurement techniques. Indeed, the length of fiber required and the coupling
of light into this type of fiber may prevent the use of conventional techniques, thus calling for the need
of developing new techniques that are particularly suitable for the characterization of MFs.
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Dispersion is one of the major parameters for optical communication systems since it sets the limits of
the networks capacity [183]. Optical components performing the various functions needed for the data
exchange within the network contribute to the total dispersion experienced by the different channels in
dense-wavelength-division-multiplexing systems. As the traffic increases constantly channels spacing
must be decreased and, therefore the effect of the dispersion of the components becomes more dramatic.
For efficient utilization of components and optimization of the system performances, the dispersion
should therefore be assessed as accurately as possible. The resolution of existing methods, however,
may not be sufficient in some cases, and development or modification of existing dispersion
measurement techniques to obtain better accuracy is highly desirable.
The performance of communication systems also strongly depends on the light source employed. Diode
lasers are widely used in optical data transmission [183,184]. However, the rapid fluctuations of their
phase which contribute to the laser lineshape can introduce errors in coherent communication systems.
The inherent broad linewidth of semiconductor lasers, which typically exceeds tens of MHz for a 1 mW
output power, can therefore be detrimental for their use in any application requiring a high degree of
coherence. A simple and very successful means to enhance the performance of diode lasers consists in
adding an external reflector element to form an external cavity laser [185,186]. The optical feedback
thus provided to the diode laser strongly affects its properties [187]. Various external cavity schemes
have been explored since the beginning of the eighties [185,188-190]. External cavity lasers have
recently regained interest as communication systems demands more and more tunability combined with
a narrow linewidth. Using a grating as an external reflector has proven to be an efficient way to extend
the tuning range of diode lasers over tens of nanometers while reducing their linewidth by more than an
order of magnitude [191-195]. The linewidth of external cavity lasers can be as low as a few kHz and
any variations from this value may have an impact on the application where it is used. Consequently,
accurate characterization of the linewidth of this type of laser is crucial.
Several in-line components used in optical telecommunications, such as optical modulators, wavelength
converters or Bragg gratings, are presently made of other materials than silica. To reduce significant
losses and other undesired effects occuring when light is transmitted from silica fibers to other
materials, it is of prime importance to realize all-silica optical links, which calls for the development of
integrated silica-based active components [196]. The operation principle of these components primarily
relies on the second-order nonlinearity of the employed material which is extremely low for silica glass.
To modify the intrinsic properties of the glass and thereby induce a suitable second-order nonlinearity,
poling seems to be a very promising technique and has attracted an increasing interest since the high
second-order nonlinearity achieved in 1991 in bulk silica by thermal poling [197]. Nevertheless, the
physical mechanisms leading to an effective second-order nonlinearity during poling experiments is yet
to be fully clarified and efficient characterization methods which gives insight into the poling effects are
of high interest.
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2. Photonic crystal fibers

The first demonstration of a photonic crystal fiber (PCF) dates back to 1970 [1]. The technology of
PCFs has matured tremendously during the last decade. In particular, precise control of the fiber
drawing process has enabled to produce a great variety of complex structures.

2.1 Modal, dispersive and nonlinear properties

Photonic crystal fibers exhibit some unique features compared to those of standard optical fibers
[2,3,7,9-11,18,20,182,198]. In particular, the introduction of air-holes allows new degrees of freedom to
manipulate the modal, dispersive and nonlinear properties of the fiber. For instance, PCFs can be
designed to guide light in a single transverse mode in the near-UV to near-infrared wavelength range
with variable core sizes [20,181,182,198,199]. Besides, the arrangement and size of air-holes allow for
tailoring of the waveguide dispersion of PCFs. Thus, the zero-dispersion wavelength can be pushed into
the visible region of the optical spectrum [182,200-202]. It is also possible to manufacture PCFs that
exhibit very low dispersion values over a broad wavelength range [203-209].
Furthermore, mechanically robust PCFs can be fabricated with extremely small core down to 1 µm
[182], thus enhancing considerably the nonlinear optical processes along the fiber [20,53]. Large core
single-mode PCFs can also be manufactured for reducing the nonlinear effects [20,33,198,199,210-
212]. Moreover, high amounts of birefringence can be introduced in the core to maintain the
polarization of light traveling along the fiber [213-218]. Propagation losses of PCFs are however an
order of magnitude larger than in conventional optical fibers due various phenomena [219-229].
Presently, this limits their use in practice as a transmission medium.

2.2 Classes of photonic crystal fibers

Photonic crystal fibers can be classified in two categories depending on the nature of the core as is
shown in Fig. 1. Microstructured fibers (MFs) possess a solid core made of materials such as silica
[5,15,18,22] or non-silica glasses [230-232] whereas photonic bandgap fibers (PBFs) exhibit a hollow
core [17,25-27,233] or a core made of a dielectric whose refractive index is lower than that of silica. In
the case of MFs, the air-holes around the core allow for lowering the refractive index of the cladding.
Therefore light can be guided inside the core according to the principle of total internal reflection as in
standard optical fibers [17]. In PBFs, the periodicity of the air-hole lattice enables to trap the light in the
core by a two-dimensional photonic bandgap. Bandgaps result from the multiple interference and
scattering at the Bragg condition [17]. As a consequence, only light with a given wavelength range can
be guided in the hollow or dielectric core. Figure 2 illustrates the guiding principles of these two types
of fiber. Photonic bandgap fibers are beyond the scope of this thesis and only the properties and
applications of microstructured fibers will be discussed in the following paragraphs.

a)
Air

SiO2

b)

Figure 1.  a) Schematic cross-section of a MF. b) Schematic cross-section of a PBF.
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a)

n=1

n=1.45

b)

n=1

n=1

Figure 3.  a) Guidance principle in a MF. b) Guidance principle in a PBF.

2.3 Fabrication of photonic crystal fibers

Photonic crystal fibers are fabricated in a two-stage process [7,20,22,234]. In the first stage, a preform
is formed by stacking capillary tubes and rods made of silica (or whichever glass). This permits a high
level of flexibility to control the index profile of the cladding region. In particular, the positioning
and/or removal of capillary tubes allows customizing the air/silica structure. In the second stage, the
preform is drawn into a very thin fiber using a precision mechanism that feeds it into a hot furnace at a
proper speed. The structure of the preform is maintained during the drawing process through careful
control of the feeding speed and heating temperature. In this way, very complex designs of structure can
be manufactured, e.g., large air-filling fraction [20,235], highly birefringent [213-218], elliptical holes
[236] or triangular core [212] PCFs can be produced. The fibers are then coated with a protective jacket.

Hot furnace ∼∼∼∼ 2000 °°°°C

Figure 3. Capillary tubes and a silica rod are stacked to form a preform which is subsequently drawn into

a thin PCF through a hot furnace.

2.4 Microstructured fibers

The fundamental properties of MFs, i.e, mode guidance, dispersion, and nonlinearities are briefly
reviewed in the next paragraphs.

2.4.1 Modeling

Various parameters can affect drastically the properties of MFs. These parameters include the material
used for the fabrication of the fiber, the size, pitch and shape of air-holes, as well as the number of holes
surrounding the core. A proper choice of parameters allows for designing a particular structure for an
intended application. For this reason, it is essential to be able to model the properties of MFs accurately
for a given set of parameters.
Several attempts have been made to model the properties of MFs [17,22,210,235,237-274]. These
methods include beam propagation [246,251,254,265], effective-index [248,255] and plane-wave
expansion modeling [237,268], localized function [210,235,256,263,275] and multipole expansion
technique [244,258,269-271], finite-difference time domain and finite-difference frequency domain
methods [264,273,274] or finite-element techniques [239,250,257]. All the methods exhibit some
advantages and disadvantages [17]. Yet a fast and efficient technique that can model any arbitrary
structure has to be found. The main features of each technique are summarized in Table 1.
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Table 1. Comparison of the different methods to model MFs. MFD: mode field distribution,

ββββ: propagation constant, and Aeff : effective area.

Method
Modeled

properties

Model

accuracy
Limitations

Computational

effort

Beam propagation MFD Reliable High

Effective-index MFD, β Inaccurate at
longer λ

Pol. analysis
impossible Low

Plane-wave expansion MFD, β, Aeff Fair Assumes infinite
cladding Intensive

Localized function

expansion
MFD, β, Aeff Accurate High

Multipole expansion MFD, β, Aeff Accurate Symmetric
structures

Finite-difference

time domain
MFD, β , Aeff Reliable Summation over

all excited modes Very intensive

Finite-difference

frequency domain
MFD, β , Aeff Reliable Summation over

all excited modes High

2.4.2 Modal properties

As for conventional fibers, the modal properties of MFs can be analyzed using the normalized
frequency parameter V defined as [243,248,255,276,277]

2

cl

2

a nn
a2

V −=
λ
π

,   (1)

where a is the core radius of the fiber, na and ncl the refractive index of the core and cladding
respectively. A conventional fiber guides a single-mode when V<2.405.  It can be seen from Eq. (1) that
when either λ decreases or a increases, V increases and eventually exceeds the critical value for single-
mode guidance. In MFs, the refractive index of the cladding is actually an effective refractive index
resulting from the introduction of air-holes around the core. It depends on the air-filling fraction of the
fiber (defined as the ratio of the hole diameter d to the pitch of the lattice Λ and on the wavelength. The
wavelength dependence of ncl results in a constant V value even at short wavelengths. Choosing a
proper value for the air-filling fraction, this constant value can be smaller than 2.405 over a very broad
wavelength range and the fiber is then endlessly single-mode [2,3,7,10,11,20,181,278]. Single-mode
guidance can be achieved even with a very large core [20,181,198,199,212].
In the short wavelength limit, i.e. when λ is small compared to the characteristic distances of the fiber,
i.e., the hole diameter d and the pitch Λ, the fundamental mode is well-confined in the core. For very
short wavelengths, however, the mode starts leaking to the silica bridges between the air-holes.
When the wavelength is of the order of the characteristics distances, the mode also leaks into the
cladding. Figure 4 shows examples of the spatial intensity pattern of the fundamental mode propagating
at several wavelengths calculated using an eigenmode expansion method [279-281].
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a) b) c)

Figure 4. Contour plot of the fundamental mode propagating in a MF with λλλλ equal to a) 400 nm, b) 800

nm, and c) 1500 nm. The air-filling fraction of the MF is d/ΛΛΛΛ≈≈≈≈0.35.

2.4.3 Dispersion

The strong wavelength dependence of the effective refractive index of the cladding of MFs leads to a
new range of dispersion properties that cannot be achieved with conventional fibers. The dispersion
profile of MFs strongly depends on the air-filling fraction and core size. For instance, increasing the air-
filling fraction and reducing the size of the core allows for a drastic increase of the waveguide
dispersion, thus enabling to push the zero-dispersion wavelength of MFs well below 800 nm [182]. The
dispersion is then anomalous at visible wavelengths and soliton propagation becomes possible for this
range of wavelengths. The zero-dispersion wavelength is primarily determined by the core size of the
fiber and the air-filling fraction of the fiber controls the higher-order dispersion. Altering the size and
pitch of air-holes allows a shift of the zero-dispersion wavelength of the fiber to any value from 500 nm
to beyond 1500 nm. Large air-filling fraction can also produce high anomalous or normal dispersion
values, which can be used for dispersion compensation purposes. Values as high as -2000 ps/nm⋅km
have been reported [202,282,283]. Furthermore, by choosing the appropriate air-hole size and pitch, it is
possible to fabricate MFs that exhibit very low and flat dispersion over a relatively broad wavelength
range [21,203-209]. Figure 5 illustrates different MFs structures along with the corresponding
dispersion profile. The dispersion was calculated by double differentiation of the propagation constant
obtained using an eigenmode expansion method [279,280]. To summarize, a proper choice of size of
air-holes and pitch enables to engineer a great variety of dispersion profiles which cannot be obtained in
conventional fibers.
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a)                               S1

  S2

  S3

b)

Figure 5. a) Examples of MFs structures.

       S1: ΛΛΛΛ=0.85 µµµµm and d=0.3 µµµµm,

       S2: ΛΛΛΛ=0.85 µµµµm and d=0.7 µµµµm,

       S3:   ΛΛΛΛ=2.3 µµµµm and d=0.69 µµµµm.

b) Dispersion profiles corresponding to

  structures S1-3.

2.4.4 Nonlinearities

Nonlinear effects in optical fibers are inversely proportional to the area of the propagating mode inside
the fiber [284]. As is the case with the dispersion profile, nonlinearities of MFs can be tailored by
varying the size of the core [9,20,53]. Large core MFs allows a single-mode to propagate with a large
area. This mode consequently experiences very low nonlinearities. On the other hand, it is possible to
produce very small core MFs and therefore enhance the nonlinear optical processes. Fibers with a core
diameter ranging from 1 to 50 µm have been demonstrated. Contrary to conventional optical fibers,
MFs offer the possibility of scaling of the nonlinearities experienced by the propagating mode [20]. The
confinement of the propagating mode inside the core of the fiber depends on the wavelength of the
light. For wavelengths much shorter than the core diameter, the mode is well confined into the core.
When the wavelength is of the order of the core diameter, the mode tends to leak outside the first ring of
air-holes, thus increasing the effective area of the propagating mode [53,285-288]. The wavelength-
dependence of the area of the propagating mode translates into a wavelength-dependence of the strength
of the nonlinearities. Figure 6 shows the dependence of the effective mode area on the wavelength for a
1 µm core MF calculated using a plane wave technique.
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Figure 6. Effective mode area as a function of wavelength for a 1 µµµµm core MF. ΛΛΛΛ=1.22 µµµµm.
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3. Supercontinuum generation in microstructured fibers

3.1 Introduction to supercontinuum

The optical spectrum of a laser pulse train consists of many spectral peaks separated by the repetition
rate of the laser. The frequency of the peaks are related to the repetition rate of the pulse train by

roff m ωωω ⋅+= ,   (2)

where ωr is the repetition rate of the laser, ωoff is an offset frequency and m an integer number. In a
simple picture, when intense pulses interact with a cubic nonlinear medium, new frequency peaks
appear in the optical spectrum of the pulses. The frequencies of these new peaks correspond to the
various mixing products of the input frequency peaks

kjiijk ωωωω −+= ,   (3)

where ωijk is the frequency of the new peak and ωi, ωj and ωk correspond to the frequency of the ith, jth

and kth peak already present in the spectrum, respectively. Therefore, the cascaded nonlinear processes
broaden the optical spectrum of the pump pulses while preserving its comb-like structure [289]. Broad
coherent spectra, extending over tens of nanometers and resulting from the broadening of the spectrum
of optical pulses in a nonlinear medium, are commonly referred to as supercontinua (SC). Broad
incoherent spectra resulting from nonlinear interaction of CW waves in a nonlinear medium are also
sometimes referred to as SC [149]. However, such continua are beyond the scope of this thesis and are
not discussed here.
Continua were first generated by focusing high power ps pulses into glass samples [125]. The use of
various gases (H2O, D2O, ethylene glycol…) [126-128,290,291] and liquids (water,...) [129,130,292] as
a nonlinear medium was subsequently demonstrated. The development of tunable mode-locked lasers
emitting short pulses led naturally to the use of optical fibers as the nonlinear medium. Indeed, in
optical fibers, light can be confined into a very small area, which increases the strength of the nonlinear
processes and results in much lower powers needed for SC generation. Several special fiber designs
have thereafter been proposed to enhance the bandwidth of SC [90,121,131-133,135-137,139,140].
Table 2 summarizes the history and characteristics of SC generation in various nonlinear media.

Table 2. History of SC generation. MMF: multimode fiber, DSF: dispersion-shifted fiber.

Year
Nonlinear

medium
Laser type

Pulse

width

Pulse intensity/

Peak power

SC -20 dB

bandwidth
Ref.

1970 Borosilicate Nd:Glass 5 ps 1 GW/cm2 300 nm [125]

1977 Water YAlG:Nd 30 ps 45 MW 600 nm [292]

1983 Ethylene glycol Rh6G 80 fs 3 GW 130 nm [291]

1987 MMF Nd:YAG 25 ps 1.5 GW/cm2 60 nm [293]

1995 DSF Er3+ fiber laser 1 ps 1.2 kW 300 nm [121]

1999 MF Ti:Sapphire 100 fs 8 kW 1200 nm [141]

Due to their unique range of properties, microstructured fibers have allowed one step further in SC
generation and SC spanning from 400 nm to beyond 1600 nm have been demonstrated (see Table 2).
The possibility of tailoring the dispersion profile of MFs opens new prospects for controlling the
properties of SC.  The first demonstration of SC generation in MFs dates back to 1999 [141] and, since
then, the various processes leading to these ultra-broad spectra in MFs have been the subject of
extensive research [21,141,143-148,151,153-155,160,162,163,166-168,172,178,180,294-297]. It was
found that the mechanisms leading to SC generation depends on both the parameters of the input pulses
(temporal width, peak power) and the parameters of the MF (dispersion profile, effective modal area,
birefringence) [294]. These mechanisms include self-phase modulation (SPM), cross-phase modulation
(XPM), four-wave mixing (FWM) and stimulated Raman scattering (SRS). Figure 7a illustrates the far-
field intensity pattern of a SC generated in a MF using 100 fs pulses with a wavelength of 740 nm.
Figure 7b shows the pattern observed when this bright white light is dispersed by a grating which
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spatially separates the various frequency components present in the optical spectrum. All the visible
frequencies of the spectrum from near UV to red are observed.

a) b)

Figure 7. a)  Far-field intensity pattern of the SC

generated in the MF described in I-II.

b)  Pattern observed when the SC light is

dispersed  by a grating.

3.2 Nonlinear effects in optical fibers

An electromagnetic field propagating in a medium induces a polarization of the electric dipoles. The
evolution of the electromagnetic field in the medium can be described by a propagation equation
derived from the general wave equation [284]
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where E is the electric field, P the induced polarization, µo the vacuum permeability and c the speed of
light in vacuum. For intense radiation such as laser pulses, the response of the medium becomes
nonlinear and the induced polarization consists of a linear and a nonlinear part. In the scalar
approximation, the linear and nonlinear induced polarization are related to the electromagnetic field as
[284]

( )EP 1

0L χε= ,   (5)
( )∑

≥

=
2j

jj

0NL EP χε ,   (6)

where ε0 is the vacuum permittivity and χ 
(j) is the jth order susceptibility of the medium.

The inversion symmetry of silica glass at the molecular level results in negligible even-order
susceptibilities [284]. Moreover, susceptibilities of order higher than 3 are not significant for silica
glass. Therefore, the relevant nonlinear effects in optical fibers are induced by χ 

(3). Optical nonlinear
processes can be divided in two categories. Elastic processes correspond to photon-photon interactions
and no energy exchange occurs between the electric field and the medium. Such effects include self-
phase modulation [284,298] , cross-phase modulation [284], four-wave mixing [284] and third-
harmonic generation [299], the two latter requiring phase-matching to be efficient [284,299]. The
phase-matching condition for third harmonic generation is more stringent and is seldom satisfied in
fibers. This process is not discussed in the following. Inelastic processes correspond to photon-phonon
interactions, which leads to energy exchange between the electric field and the nonlinear medium. Such
effects include Raman and Brillouin scattering [284]. Stimulated Brillouin scattering is negligible for
short pulses and is not considered here.
Treating the nonlinear part of the induced polarization as a perturbation in Eq. (4), and assuming that
the electric field is of the form

( )Tzi 0eT,zAT,zE
ωβ −= )()( ,   (7)

where β is the propagation constant of the propagating mode at the center frequency of the field ω0, one
can derive the well-known nonlinear Schrödinger equation (NSE). The function A(z,T) is commonly
referred to as the slowly varying envelope of the electric field. The NSE models accurately the
propagation of light along optical fibers for pulses as short as 30 fs [300]. In a frame of reference
moving at the group velocity of the pulse, the NSE can be written as [284]
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where α is the fiber loss and βk are the coefficients of the Taylor-series expansion of the propagation
constant β around ω0. The nonlinear coefficient γ of the fiber accounts for the intensity dependence of
the refractive index. The response function of the nonlinearity is defined as R(T) = (1-fR)δ(T) + fRhR(T),
with fR being the value of the fractional contribution of the delayed response hR and taken to be 0.18 for
silica fibers [300,301]. The second term on the right-hand side of Eq. (8) accounts for the dispersion of
the nonlinear coefficient.

- Self-phase modulation

Self-phase modulation originates from the intensity-dependence of the refractive index of silica [298]
2

2L Annn += ,   (9)

where nL is the linear part of the refractive index, |A|
2 is the optical intensity and n2 is the nonlinear-

index coefficient related to χ 
(3) as [284]

( ))( 3

L

2 Re
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with Re standing for the real part and the optical field being assumed to be linearly polarized. A typical
value of n2 for silica material is 3.2×10-20 m2/W [298]. Self-phase modulation refers to the self-induced
nonlinear phase shift that an optical pulse experiences as it propagates along the fiber
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where L is the length of the fiber. Due to its time-dependence, this nonlinear phase-shift translates into
broadening of the optical spectrum as the pulse travels inside the fiber. The temporal shape of the pulse
remains unaffected. A useful quantity is the so-called nonlinear length LNL that corresponds to the
effective propagation distance at which the maximum phase-shift is equal to 1. It is defined as

p

NL
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L

γ
= , (12)

where Pp is the peak power of the optical pulse and γ the nonlinear coefficient related to n2 as [284]

eff

2

cA

n ω
γ = , (13)

with Aeff being the effective area of the propagating mode inside the fiber and ω the carrier frequency of
the optical field. The nonlinear coefficient γ represents the strength of nonlinear effects. Small core MFs
exhibit nonlinear effects an order of magnitude higher than conventional fibers.

- Cross-phase modulation

When two optical fields with different wavelengths co-propagate in a nonlinear medium, the refractive
index seen by one of the fields not only depends on its own intensity but also on the intensity of the
other field [302]. Consequently, the optical field with a center wavelength λi experiences a nonlinear
phase-shift induced by the co-propagating optical field at wavelength λj such that [284]
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where |Aj|
2 represents the intensity of the co-propagating field and L is the interaction length between

the two fields. This nonlinear phase-shift is commonly referred to as cross-phase modulation and
requires the optical fields to overlap temporally. Equation (14) shows that XPM is twice as effective as
SPM.
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- Four-wave mixing

Four-wave mixing is a nonlinear recombination process of photons of different energies through the
third-order susceptibility χ 

(3): two pump photons at frequencies ω1 and ω2 are annihilated with the
simultaneous creation of two new photons at frequencies ω3 and ω4 [284,299]

4321 ωωωω +=+ . (15)

The conservation of momentum results in a phase-matching condition to be fulfilled for the process to
be efficient [284,299]
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where nj, γj, and Ppj are the linear refractive index, nonlinear coefficient of silica, and peak power of the
optical field at the frequency ωj. Here, L is the fiber length.
A special case referred to as degenerate FWM occurs for ω1 = ω2 = ωp. The new generated photons are
called Stokes and anti-Stokes photons. This case is of practical interest because when only an intense
pump wave propagates along the fiber, Stokes and anti-Stokes waves build up from noise and are
subsequently amplified through FWM. The frequency of the generated Stokes and anti-Stokes waves
are such that the energy conservation described by Eq. (15) is fulfilled. In terms of propagation
constant, the phase-matching condition for degenerate FWM can be expressed as
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where ωp and ωs represent the frequency of the pump and Stokes waves, respectively. Here, Pp is the
peak power of the pump wave.

- Stimulated Raman scattering

Stimulated Raman scattering is a photon-phonon interaction. The energy from an intense pump beam is
shifted to lower frequencies (Stokes waves) through scattering from vibrational modes of the material
molecules [303]. Shifting of energy to higher frequencies (anti-Stokes waves) can also occur but is less
efficient

stasp2 ωωω +→ , (18)

with ωp, ωas and ωst being the frequency of the pump, anti-Stokes, and Stokes photons, respectively.
Stimulated Raman scattering yields gain for a probe wave co-propagating with a pump wave and whose
wavelength is located within the Raman gain bandwidth. The normalized Raman gain spectrum of silica
is shown in Fig. 8 as a function of frequency difference between the pump and probe waves [304]. The
Raman gain of MFs is comparable to that of silica fibers [54]. The gain bandwidth is 40 THz with a
peak located at 13.2 THz from the pump frequency.
In the time domain, SRS can be thought as the delayed nonlinear response of the material. In silica, this
delayed response can be approximated by [300]
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where τ1 and τ2 are the relaxation parameters taken to be 12.2 fs and 32 fs, respectively .
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Figure 8. Normalized Raman gain of silica.

- Soliton propagation, soliton decay and soliton self-frequency shift

Neglecting the higher-order terms and attenuation, and using convenient transformations, Eq. (8)
reduces to [284]
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where sgn refers to the sign function and N is defined as
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with LNL being the nonlinear length and LD the dispersion length defined as
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where T0 is the temporal width of the pulse related to the full-width at half maximum TFWHM by
T0=TFWHM /1.76. A special case corresponds to negative values of β2, i.e., when the dispersion is
anomalous. In general, Eq. (20) can be solved by the inverse scattering method
[305]. The solutions define a particular class of waves known as solitons [306-308]. Among the
various types of solitons, a special role is played by solitary waves whose initial symmetric amplitude
can be mathematically represented by [307,309]
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The integer value closest to N is referred to as the soliton order. The case N=1 corresponds to a
fundamental soliton, i.e., a state in which the effects of SPM and dispersion are in balance and allows
for the wave to maintain its shape as it propagates. The cases N≥2 corresponds to higher-order solitons.
Such waves follow a periodic evolution during propagation with shape recovering at multiples of the
soliton period defined as π /2⋅LD [284].
Higher-order solitons actually consist of N fundamental solitons, whose relative peak power and
temporal width are given by [309,310]
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where k refers to the kth index of the constituent. The fundamental constituents travel together due to the
degeneracy of their group-velocities [309]. Higher-order solitons periodically change their shape and
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spectrum while propagating along the fiber due to interference between the different constituents. Only
the degeneracy of the group-velocities binds the constituents of a higher-order soliton together. A small
perturbation affecting their relative group-velocities will lead to their subsequent separation. Such
process is often referred to as soliton decay or soliton breakup [309,311]. These perturbations include
higher-order dispersion, the self-steepening effect and stimulated Raman scattering.
For a soliton whose temporal width is smaller than 100 fs, the bandwidth of its optical spectrum is 10
THz and, consequently, the spectrum overlaps with the Raman gain. In that case, SRS transfers
continuously energy from the blue part of the pulse spectrum to the red part of the pulse spectrum. This
energy transfer results in a shift of the center frequency of the soliton towards the infrared as the soliton
propagates along the fiber. This process is commonly referred to as the soliton self-frequency shift
(SSFS) [312]. The magnitude of the Raman-induced SSFS can be approximated by [313]
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where T0 is the temporal width of the soliton and D is the value of the dispersion at the wavelength λ0.
Here, L is the fiber length and h(T0) represents the overlap integral of the soliton and Raman gain
spectra [313]
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where R(Ω) denotes the Raman gain spectrum and Ω the frequency shift from the soliton center
frequency. As the soliton propagates along the fiber, its amplitude decreases due to the various loss
mechanisms. To counteract this effect, the soliton broadens, which results in slowing-down the
frequency-shift rate. Also, variations of dispersion with wavelength and self-steepening contribute to
this slowing-down. The soliton eventually reaches a state where its optical spectrum does not overlap
with the Raman gain and its center frequency does not shift any further.

- Self-steepening

Self-steepening (SS) results from the dispersion of the third-order susceptibility, i.e., the red frequency
components experience a lower nonlinearity than blue frequency components. In the time domain, SS
can be thought as the intensity dependence of the group velocity: the peak of the pulse moves at a
slower velocity than the wings which induces the trailing edge of the pulse to become steeper as the
pulse propagates [284,314]. In combination with SPM, self-steepening results in a more pronounced
broadening of the blue frequency components compared to the red ones. The process of SSFS is
substantially reduced by SS since the nonlinearity decreases as the center wavelength of the soliton
shifts towards the red.

- Nonlinear phase-matched radiation

The bandwidth of femtosecond solitons exceeds several THz and the variation of dispersion across the
soliton bandwidth must be taken into account in the propagation equation [284]
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The terms k>2 can be treated as a perturbation for the soliton-like solution of Eq. (20). This perturbation
makes the solution of Eq. (28) very unstable. In particular, linear waves having the same wave-vector as
the soliton can co-exist with the soliton [315-317]. Provided the soliton spectrum overlaps with the
frequency of this resonant wave, energy transfer between the linear and solitary waves is possible [315].
The amplification of the linear wave manifests itself in the optical spectrum as the appearance of a
sharp spectral peak in the normal dispersion region of the fiber. The amplitude of the linear wave is
proportional to the overlap between the soliton and the linear wave spectra [315]. The frequency of the
linear wave ω R is determined by the phase-matching condition [166,167,294,315]
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where φs and φr represent the phase of the soliton and resonant wave expressed in a frame moving at the
group velocity of the soliton β1(ωs). Here, PPS is the peak power of the soliton. Expanding β in Taylor-
series around ωs, this phase-matching condition can be rewritten as
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As the center frequency of the soliton is tuned away from the zero-dispersion wavelength of the fiber
deeper into the anomalous dispersion region, the frequency of the resonant wave correspondingly shifts
away from the zero-dispersion wavelength deeper into the normal dispersion region of the fiber.
Furthermore, the spectral overlap reduces and the amplitude of the resonant wave decreases. The center
frequency of the resonant wave resulting from the perturbation of a soliton propagating along a MF can
be calculated by solving Eq. (30). Figure 9 illustrates the phase-matching condition desribed by Eq. (30)
for solitons with a center wavelength located at 700 nm and 900 nm. The dispersion profile of the fiber
used for the calculation ressembles that of the MF utilized in the experiments performed in publications
I and II.

Figure 9. Phase-matching condition (see Eq. 30) for a resonant wave (dashed arrows) resulting from the

perturbation of a soliton (solid arrows) with a center wavelength located at  700 nm (blue line)

and 900 nm (green line). Inset: dispersion profile of the fiber used for the calculation. PPS=5 kW,

γγγγ700nm≈≈≈≈200 W
-1⋅⋅⋅⋅km

-1
, γγγγ900nm≈≈≈≈150 W

-1⋅⋅⋅⋅km
-1

.

3.3 Supercontinuum generation in microstructured fibers using fs pulses

Supercontinuum is the result of the interplay between the nonlinear effects described in the previous
paragraph. Efficient SC generation requires the wavelength of the pump pulses to be in the vicinity of
the zero-dispersion wavelength (λZD) of the fiber since a high dispersion value tends to limit the
magnitude of the nonlinear processes. Small core MFs typically exhibit λZD in the range 600-1000 nm.
This makes a mode-locked Ti:Sapphire laser a natural candidate for SC generation. Indeed, this type of
laser produces intense femtosecond pulse trains at repetition rates varying from tens of MHz to one
GHz with a wavelength tunable from 700 to 900 nm. It is also possible to manufacture MFs with λZD in
the near infrared region and, consequently, SC can be generated using other suitable laser sources such
as ytterbium or erbium-doped fiber lasers.
The physics of SC generation in MFs using femtosecond pump pulses strongly depends on the relative
detuning between the pump wavelength and the zero-dispersion of the fiber [I,167,171]. In particular,
different mechanisms are observed depending on whether the pump wavelength is located in the
anomalous or normal dispersion region of the fiber [I]. In the following, both cases are reviewed.
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- Anomalous pumping

To clarify the role played by each nonlinear effect, Eq. (8) is solved in the Fourier domain using a
standard split-step algorithm with the exact value of the propagation constant. This ensures the validity
of the simulation for bandwidth exceeding several hundreds of nanometers [300]. The temporal width
of the pump pulses is chosen to be 100 fs with a center wavelength at 750 nm. Figure 10 shows the
dispersion profile of the MF used in the simulations and which is close to that of the fiber used in the
experiments performed in the publications I-III. The MF has a core diameter of 1.5 µm yielding γ ≈150
W-1⋅km-1 at λ=750 nm and exhibits λZD at 675 nm.

Figure 10. Dispersion of a MF with λλλλZD=675 nm.

Figure 11 illustrates the spectrum of the pulses at different fiber lengths when a) only the dispersion is
included in the NSE, b) when the full propagation constant is implemented, c) when SRS is also added
and d) when the SS is taken into account. When only the dispersion is included in the NSE, the pulse
corresponds to a higher-order soliton and evolves periodically into a multi-peak structure along the MF.
In the presence of higher-order dispersion (see Fig. 11b), the central part of the spectrum initially
broadens in the first centimeters of the MF and does not spread any more with further propagation. The
most noteworthy feature is the appearance of blue anti-Stokes frequency components in the spectrum
[166,171,178,294]. Once they have been generated, these components are not affected by further
propagation inside the MF. Adding the Raman term in the equation gives results qualitatively in better
agreement with experimental observations, i.e., a strong spreading of the pulse spectrum towards the
infrared. The inclusion of the self-steepening term results in an increased magnitude of the anti-Stokes
components and reduces the spreading of the spectrum towards the infrared. New anti-Stokes
components also appear in the spectrum for longer propagation lengths.
The onset of the supercontinuum formation can be explained as follows: the input pulse corresponding
to a N 

th order soliton is compressed in the first few centimeters of the fiber due to SPM, as can be seen
from Fig. 12a which shows the temporal evolution of the pulse with all the terms included in the NSE
(i.e., corresponding to the spectra of Fig. 11d). The perturbation of this N 

th order soliton by SRS and
higher-order dispersion leads to the breaking up of the N 

th order soliton into multiple fundamental
solitons whose amplitudes and widths are given by Eqs. (24) and (25) [166,167,294]. The splitting of
the input pulse into multiple solitons is clearly observed in Fig. 12b-c. The red part of the spectra of the
multiple solitons overlap with the Raman gain spectrum while their blue part overlaps with the resonant
linear waves. As a consequence, the resonant waves are amplified and emerge as anti-Stokes
components while the red components get amplified by SRS, which shifts the center frequency of the
solitons further to the red. The multiple solitons having different widths, they experience different
frequency shifts and appear in the spectrum as distinct Stokes peaks as is seen in Fig. 11c-d. Since the
solitons experience different frequency shifts, they correspondingly experience different group delays
and thus appear in the time trace as distinct pulses, the soliton experiencing the largest frequency shift
being the originally narrowest soliton and corresponding to the most delayed pulse in Fig. 12c. The
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magnitude of the frequency shifts is proportional to the fiber length (see Eq. (26)). Consequently, the
longer the fiber, the more the spectrum spreads towards the infrared [I,177,311]. As they propagate
along the MF, the various solitons experience losses and dispersion, which results in their temporal
broadening. Therefore, their spectrum eventually does not overlap any more with the Raman gain
spectrum and the frequency shift ceases. Furthermore, the SS reduces the strength of the nonlinearities
as the solitons shifts their center frequency, which results in the decrease of the magnitude of the SSFS
with propagation [I,157,318].

Figure 11. Simulation of the spectrum at the output of the MF after 2, 10, and 50 cm: a) only ββββ2, b) full ββββ,

c) full ββββ + SRS, and d) full ββββ +  +  +  + SRS + SS. The dashed lines represent the spectrum of the input

pulses. Pp=3 kW (Pav=26 mW) , TFWHM=100 fs and λλλλp=750 nm.

Figure 12. Simulated temporal profile of the pulse after a) 2 cm, b) 10 cm, and c) 50 cm.  The dashed curve

in Fig. 12a represents the input pulse.

More insight can be gained by plotting the spectrogram of the pulse as it propagates along the MF.
Figure 13 presents the spectrograms calculated using the full NSE, i.e., corresponding to Figs. 11d and
12. The white solid line represents the group delay of the fiber for the corresponding length of
propagation. From Fig. 13a it can be seen that the pulse is first compressed. The pulse subsequently
splits into four solitons  accompanied by the generation of resonant waves. The trajectory of the solitons
originally coincide with the group delay of the fiber. However, as they experience the SSFS their
trajectory tends to deviate from the group delay of the fiber. This is due to SRS which shifts their center
frequency. The resonant waves follow the group delay of the fiber and temporally broaden as they
propagate inside the MF. This fact shows evidence of the linear nature of these waves. It is interesting
to notice that the resonant wave is originally lagging behind the soliton that generated it. This phase
difference is due to the nonlinear induced phase-shift experience by the soliton. With further
propagation the center frequency of the soliton is shifted and the soliton is therefore temporally delayed
whereas the center frequency of the linear wave remains constant. The linear wave catches up the
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soliton and overtakes it. As the linear wave sweeps through the soliton, an additional anti-Stokes
frequency component is generated (see Fig. 13c and 11d). This additional anti-Stokes components
results from the XPM induced by the soliton on the resonant wave. This phenomenon can only occur
when the soliton and resonant wave overlap in the time domain. The resulting anti-Stokes component is
coupled with the soliton via XPM and shifts its center frequency as the soliton experiences the SSFS:
they form a pair (see Fig. 13c-d). It is this XPM-coupling that is responsible for the blue broadening of
the spectrum with further propagation. If the fiber is long enough the resonant wave generated by the
first soliton will also sweep through the second soliton and generate an additional anti-Stokes
component. Therefore multiple XPM interactions due to the SSFS can occur between the solitons and
the resonant waves leading to a significant extension of the SC to the blue.

a) b)

c) d)

Figure 13. Simulated spectrogram of the pulses after a) 2 cm, b) 10 cm, c) 25 cm, and d) 50 cm of

propagation inside the MF. The white line represents the group delay of the fiber. The scale is

in dB units. Pp=3 kW (Pav=26 mW), TFWHM=100 fs and λλλλp=750 nm. RW: resonant wave, XPM-

IW: cross-phase modulation induced wave.

Effect of increasing the pump power

An increase of the input pump power results in an enhanced N-value. The number of split fundamental
solitons therefore increases and more Stokes peaks are observed in the spectrum. Furthermore, the
temporal width of the fundamental solitons is reduced (see Eq. (25)) and the magnitude of the SSFS is
consequently enhanced. The overlap between the solitons and the resonant waves is also larger which
results in the increase of the magnitude of the anti-Stokes components. The XPM induced anti-Stokes
components shifts also further to the blue since the solitons shifts further to the red. This can be
observed in Fig. 14 which illustrates the effect of increasing the input pump power. Further increase in

Solitons

RW

XPM-IW
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the input power eventually leads to a flat spectrum due to the high number of fundamental solitons, with
a gap located around λZD [II]. This sequence of events was experimentally confirmed as is shown in Fig.
15 [I]. The gap results from the phase-matching condition (see Eqs. (29) and (30)) required for the
generation of the resonant wave, the nearest anti-Stokes components from λZD resulting from the soliton
with lowest amplitude.

Figure 14. Simulated spectrum of the pulses after 50 cm of propagation inside the MF with an input peak

power of a) 3 kW (Pav=26 mW) and b) 4.5 kW (Pav=38 mW). TFWHM=100 fs and λλλλp=750 nm. RW:

resonant wave, XPM-IW: cross-phase modulation induced wave. The dashed curves represent

the spectrum of the input pulses.

Figure 15. Experimentally recorded spectra of pulses after 500 cm of propagation inside a MF (see Fig. 10

for the dispersion profile) for an average input power of a) 16 mW, b) 32 mW, c) 45 mW, and d)

55 mW. λλλλp=804 nm and TFWHM=100 fs. The dashed curve represents the spectrum of the input

pulses.

Effect of varying the pulse width

Keeping the energy constant while increasing the pulse width results in increasing the number of Stokes
peaks and a reduced bandwidth for the generated SC as is illustrated in Fig. 16. Indeed, the N-value

increases proportionally to 0T leading to the splitting of the input pulse into an increased number of

fundamental solitons. These solitons have, nevertheless, broader temporal widths, which results in a
decrease of the magnitude of the SSFS. This also means that the overlap between the spectra of the
solitons and the resonant wave is reduced and, consequently, the magnitude of the anti-Stokes



20

components is decreased as is clearly observed in Fig. 16. At high input power values, the SC generated
using broader pulses is flatter and exhibit the same bandwidth as the SC generated using narrower
pulses due to a higher number of fundamental solitons [II]. The SSFS ceases beyond 1400 nm because
of very high OH absorption losses around this wavelength, therefore limiting the bandwidth of the SC
generated using narrower pulses [II].

Figure 16. Simulated spectrum of the pulses after 50 cm of propagation inside the MF with a temporal

width of a) 100 fs and Pp=3 kW (Pav=26 mW) b) 200 fs and Pp=3 kW (Pav=26 mW). λλλλp=750 nm

and λλλλZD=675 nm. The dashed curves represent the spectrum of the input pulses.

Effect of detuning the pump wavelength

When the pump wavelength is tuned closer to λZD the N-value increases and so does the number of
Stokes peaks observed in the spectrum at the output of the MF as is shown in Fig. 17. The wavelengths
of the phase-matched resonant waves lie closer to λZD leading to a reduction of the gap observed in the
spectrum [I,II]. The overlap between the solitons and the resonant waves is also increased and,
therefore, the magnitude of the anti-Stokes components is enhanced. Initially the solitons lose a lot of
energy due to the large overlap with the linear waves, thus resulting in a decrease of the magnitude of
the SSFS. The bandwidth of the SC is reduced though the SC is flatter, as was observed experimentally
(see Fig. 18) [II].

Figure 17. Simulated spectrum of the pulses after 50 cm of propagation inside the MF with a pump

wavelength of a) 700 nm and b) 750 nm. Pp=3 kW (Pav=26 mW) and TFWHM=100 fs.  λλλλZD=675 nm.

The dashed curves represent the spectrum of the input pulses.
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Figure 18. Experimentally recorded spectra of the pulses after 5 m of propagation inside a MF (see Fig. 10

for the dispersion profile) with a pump wavelength located at a) 722 nm and b) 804 nm. Pav=55

mW and TFWHM=100 fs.

Limitations of the bandwidth

The bandwidth of the SC generated in MFs is limited by several factors. On the long wavelength side
the Raman-shifted solitons suffer from very high losses when their center wavelength reaches 1400 nm
because of the strong water absorption peak at this wavelength [I]. The magnitude of the OH losses is
enanced for reduced core diameter and, therefore, may strongly affects the SSFS. Indeed, the losses lead
to a subsequent large broadening of the temporal width of the solitons which prevents further SSFS.
Figure 19 shows the effect of OH losses on the magnitude of the SSFS in a 1-m long small core MF. A
plateau is observed when the input power is high enough so that the solitons are able to shift up to 1400
nm. Increasing the input power does not lead to any further shift. To overcome this limit it is necessary
to use a very short piece of MF. However, in this case, the input power must be substancially increased
to obtain the same bandwidth as in a longer fiber. When the wavelength of the light is of the order of
the size of the pitch of the MF, the light is not well confined inside the core any more thus increasing
considerably the leakage losses. Such losses strongly contributes to limiting the bandwidth of the SC on
the long wavelength side when using small core MFs.

Figure 19. Simulated wavelength of the most Raman-shifted soliton as a function of average pump power.

The magnitude of the OH absorption peak is taken to be 10 dB⋅⋅⋅⋅m-1
.
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On the short wavelength side, the bandwidth of the SC is limited by the high UV-losses and by the
leakage of the propagating mode at these wavelengths, i.e., when the wavelength is much smaller than
the core, the light tends to escape in the silica bridges between the holes surrounding the core of the
fiber. For MF with a high air-filling fraction the leakage losses are, howver, not so severe and the main
limitation comes from the dispersion curve which limits the restrain the phase-matching condition for
the resonant waves to around 400 nm.

- Normal pumping

When the pump wavelength is located in the normal dispersion region of the fiber, the mechanism
leading to SC generation differs from the case of anomalous pumping [171]. Indeed, solitons are not
able to propagate in the normal dispersion region. The formation of the continuum results mainly from
SPM and SRS. Figures 20 and 21 illustrate the simulated spectrum and the corresponding time trace of
the SC generated along a 1 m-long MF with λZD located at around 950 nm. The spectrum of the pulse
broadens due to SPM. As the pulse propagates along the MF, it experiences temporal broadening due to
the normal dispersion (see Fig. 21). Consequently, the peak power of the pulse decreases thereby
stopping the spectral broadening.

Figure 20. Simulated spectrum at the output of a MF after a) 2 cm, b) 10 cm, and c) 100 cm. λλλλp=750 nm,

TFWHM=200 fs and Pp=6 kW (Pav=102 mW). The dashed curve represents the spectrum of the

input pulses.

Figure 21. Simulated temporal profile of the pulse corresponding to Fig. 20 after a) 2 cm, b) 10 cm, and c)

100 cm. The dashed line represents the input pulse.

Effect of increasing the pump power

As a direct consequence of SPM, the spectral broadening increases with input peak power. Figure 22
shows the experimental spectrum obtained by launching 200 fs pulses into a MF having λZD located at
around 950 nm [I]. The pump wavelength was set to lie deep inside the normal dispersion region of the
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fiber at 756 nm. The dispersion profile of the fiber is plotted as an inset in Fig. 22 and is similar to the
one used for the simulations presented in Figs. 20 and 21.

Figure 22. Experimentally recorded spectra of pulses after propagation inside a MF for average powers of

a) 40 mW and b) 100 mW. λλλλp=756 nm and TFWHM=200 fs. The dashed curve represents the

spectrum of the input pulses. Inset: dispersion of the fiber. L=14 m.

Effect of varying the pulse width

Keeping the average power constant and increasing the pulse width results in a decrease of the peak
power. Therefore, the SPM broadening is less pronounced than in the case of shorter pulses [I].

Effect of detuning the pump wavelength

When the pump wavelength is tuned closer to λZD, the spectral evolution, which is illustrated in Fig. 23,
is initially similar to the case of pumping far from λZD except for the fact that the dispersion value is
smaller and the broadening caused by SMP is therefore enhanced. For high enough input power, the
SPM induced frequencies extend in the vicinity of λZD, acting as efficient seeds for FWM process
[167,319]. The new frequencies generated by FWM appear beyond λZD, in the anomalous dispersion
region of the MF [167,319].

Figure 23. a) Experimental and b) simulated spectrum of pulses after 100 cm of propagation in a MF with

λλλλZD=950 nm. λλλλp=860 nm, TFWHM=130 fs, and Pav=120 mW. The dashed curve represents the

spectrum of the input pulses.
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To emphasize the role of FWM when the spectrum extends to the vicinity of λZD, it is interesting to plot
the phase-matched Stokes and anti-Stokes wavelengths as a function of potential pump wavelength
components already present in the spectrum. From Fig. 24 it can be seen that FWM can expand the
spectrum of the SC far into the infrared.

Figure 24. Calculated phase-matched wavelengths as a function of pump wavelength through degenerate

FWM. The blue solid, dashed and dotted lines correspond to a pump peak power of 1, 0.5, and

0.1 kW respectively. The green solid line is calculated neglecting the nonlinear induced phase-

shift (i.e. with Pp=0 kW). The dispersion profile of the MF corresponds to that of Fig. 22.

The wave packet transferred to the anomalous dispersion region of the MF subsequently forms bound
states. The formation of solitons becomes possible and is accompanied by the process of soliton self-
frequency shift that expands the continuum further into the infrared [I].  This sequence of events is
conveniently observed in the simulated spectrograms of the pulses plotted in Fig. 25. The bandwidth of
the SC is again mainly limited by the high losses due to OH absorption around 1400 nm.
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a) b)

c) d)

Figure 25. Simulated spectrogram of the pulses after a) 2 cm, b) 10 cm, c) 25 cm, and d) 100 cm of

propagation inside the MF (see Fig. 22 for the dispersion profile). The white line represents the

group delay of the fiber. The scale is in dB units. Pp=8 kW (Pav=136 mW), TFWHM=200 fs and

λλλλp=850 nm.

3.4 Supercontinuum generation using ps and ns pulses

Supercontinuum can also be generated in MFs using ps and ns pulses [144,145,147,148,153,174]. In
that case, the peak power of the pulses is much lower and SPM spectral broadening is negligible. The
mechanism leading to SC generation relies on SRS and FWM [144,145,153]. Due to the relatively low
peak power of the pulses, SC generation requires several meters of MF.
Figure 26 illustrates the simulated spectrum of 20 ps pulses at the output of a 3 m-long MF. Noise-
seeded SRS generates a pair of Stokes and anti-Stokes bands in the spectrum which are coupled through
parametric FWM [144]. This coupling is much stronger than in conventional fibers due to the high
nonlinearity of the MF. This pair can serve as an efficient seed for further parametric amplification,
which results in the appearance of multiple side bands in the spectrum. This process is particularly
efficient when the pump wavelength is located around λZD because the phase-matching condition for
degenerate FWM to occur is then easily fulfilled. The fact that the pulse is ps-broad allows for the pump
and side bands to overlap over few meters. Consequently, energy transfers continuously from the pump
to the side bands which grow as the pulse propagates along the MF. The different frequency
components eventually walk off after few meters of propagation and the spectral broadening ceases.
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Cross-phase modulation broadens the side bands which subsequently merge, resulting in a smooth
spectrum [144].

Figure 26. Simulated spectrum of SC generated in a MF with λλλλZD=950 nm (see Fig. 22 for the dispersion

profile) after a) 1.5 m, b) 2.1 m, and c) 3 m. TFWHM=20 ps pulses, λλλλp=1200 nm, and Pp=400 W.

Supercontinuum generation using ns pulses has also been demonstrated using frequency-doubled
Nd:YAG laser operating at 532 nm [153,174] or seeded Ytterbium amplifier at 1064 nm [147,148]. In
the case of ns pulses, cascaded Raman scattering is mostly responsible for the generation of the
continuum, i.e., multiple lines separated by 13.2 THz are amplified through SRS [153,174]. For this
reason, the spectrum mainly extends towards the infrared. If the pump wavelength is located in the
vicinity of λZD FWM can contribute to the extension of the SC to the blue wavelengths [153,174]. At
high enough power all the different Raman lines broaden due to XPM and subsequently merge leading
to a smooth spectrum. Since the peak power of ns pulses is typically below the kW level, several meters
of MFs are necessary to form the continuum.

3.5 Enhancement of supercontinuum generation

- Use of a highly birefringent MF

The flexibility in the design of MF allows for producing fibers with very high birefringence [213,214].
The use of highly birefringent MFs is particularly interesting in the context of SC generation because it
not only enable to obtain all the frequency components of the SC in a single state of polarization but
also introduces an extra degree of freedom for generating the SC by tuning the polarization state of the
input pulses to match either of the principal axes of polarization (PAPs) of the MF [II].
Pulses with a state of polarization matching the direction of one of the PAPs of a highly birefringent
MF maintain their polarization as they propagate along the fiber. This property can be exploited to
generate SC with all the wavelength components exhibiting the same state of polarization [II]. Polarized
continua can be essential for spectroscopic applications.
Furthermore, the preserved state of polarization enhances the various nonlinear processes inside the
MF, which means that less input power is required to generate comparable SC than in non-polarization
maintaining fibers.
The direction of the fast/slow axis corresponds to the narrowest/largest dimension of the core of the
MF. Consequently, the two PAPs exhibit different λZD, λZD of the fast axis being located at a lower
wavelength compared to that of the slow axis. For a pump wavelength located in the anomalous
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dispersion region of a highly birefringent MF, the bandwidth of the SC is maximum when the direction
of the polarization of the input light is set to match that of the fast axis. Indeed, the relative detuning
between the wavelength of the pump pulses and λZD is larger when the polarization of the input pulses
matches the direction of the fast axis. On the blue side, the wavelength of the resonant waves is
therefore shorter than in the case of pumping on the slow axis. On the red side, the multiple solitons
experience a larger frequency shift on the fast axis. Pumping on the fast axis also results in an
enhancement of the magnitude of the gap between the Stokes and anti-Stokes frequency components.
Pumping on the slow axis reduces the magnitude of the gap at the expense of the generated bandwidth.
Tuning the polarization of the input pulse at 45° between the directions of the PAPs leads to the
generation of two distinct continua with half of the total input power and different characteristics. This
is because the walk-off length is very short for highly birefringent MFs (of the order of few millimeters
for 100 fs pulses) and, consequently, orthogonally polarized pulses do not interact with each other after
this distance and the SC are generated independently of each other on each PAP. These features are in
agreement with the experiments performed using a highly birefringent MF as is illustrated in Fig. 27
[II].

Figure 27. Experimental SC generated in a highly birefringent MF for an input polarization a) parallel to

the slow PAP, b) at 45°°°° between the PAPs, and c) parallel to the fast PAP. λλλλp=730 nm,

TFWHM=200 fs, and Pav=60 mW.

- Higher-order mode phase-matching

Small core MFs with a large air-filling fraction exhibit a large index difference seen by the fundamental
mode well confined into the core and higher-order modes that extends into the cladding region. It is
therefore difficult to couple light into a higher-order mode in small core MFs [320]. However,
increasing slightly the size of the core can allow for higher-order mode propagation provided the
launching conditions are adequate. It is then possible to generate supercontinua that are partly divided
between fundamental and higher-order modes [110,159,321-323]. Varying the angle of incidence
between the laser beam and the MF can excite various forms of higher-order modes such as two-sided
lobes or doughnut-like as is illustrated in Fig. 28.



28

Figure 28. Visible far field patterns of SC generated in a multimode MF.

The coupling between the fundamental and higher-order modes allows for FWM interactions between
the frequency components of various modes, which results in an extension of the continuum to the
shorter wavelength side. Figure 29 shows the SC generated in two MFs which exhibit similar
characteristics except for a slightly different core size. Extra high frequency components appear in the
spectrum of the SC generated in the multimode MF. It has recently been demonstrated that UV light can
be generated in this way [156,173].

Figure 29. Experimental SC generated in the a) fundamental mode of a MF and b) both fundamental and

higher-order modes. HOM: higher-order mode wavelengths components. λλλλp=820 nm,

TFWHM=200 fs, and Pav=150 mW. For both MFs λλλλZD of the fundamental mode is located at

around 950 nm.

- Introduction of a second λZD

The limitation of the SC bandwidth on the long wavelength side results from the saturation of the SSFS
due to the dispersion and various losses experienced by the solitons as they travel along the MF. One
way to extend further the bandwidth of the SC towards the infrared is to introduce a second λZD around
the wavelength at which the SSFS ceases [168,324]. This can be easily achieved by a proper choice of
the air-holes size and pitch of the lattice. When the center wavelengths of the solitons have shifted to
the vicinity of this second λZD, the spectrum of these solitons overlap with that of the resonant wave
located in the second normal dispersion region of the MF. The resonant wave is subsequently amplified
in the same manner that the resonant wave located in the first normal dispersion region of the MF. New
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frequency components appear beyond the second λZD, thus extending further the SC as is shown in Fig.
30.

Figure 30. Experimental spectrum generated in a 1.1–µµµµm core MF with two λλλλZD. RW: resonant wave.

λλλλp=813 nm, TFWHM=200 fs, and Pav=200 mW.

The use of MF with an ultra-flattened dispersion profile or MF made of highly nonlinear material such
as extruded SF6 glass allows for the generation of very broad SC using less input power and/or shorter
fiber lengths [231]. This permits to overcome the saturation of the SSFS and extend the SC further to
the infrared.
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4. Novel optical measurement techniques

In general, light waves with different wavelengths travel at different speeds inside materials. The
dependence of the speed of light on its wavelength is commonly referred to as dispersion. Dispersion is
one of the most important parameter of optical fibers and components as it may strongly affect the
performances of communication systems and fiber-optic nonlinear devices.

4.1 Dispersion of optical fibers and components

The various frequency components of an optical pulse travel inside a material of refractive index n with
the phase velocity defined as
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n

c
v =  ,    (31)

where c represents the speed of light in vacuum. The velocity at which the energy of the optical pulse
travels along a fiber or inside a component is referred to as the group velocity and it is defined as [284]
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where β  is the propagation constant of the electromagnetic wave and the subscripts M and W refers to
the material and waveguide dispersion, respectively. The sum of the material and waveguide dispersion
constitutes the total dispersion. The quantity β1 is called the group delay. In terms of wavelength Eq.
(32) can be rewritten as [284]
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Material dispersion

The refractive index of a material depends on the wavelength of the electromagnetic wave interacting
with the material. This dependence is referred to as the material dispersion and it can be represented
using the Sellmeier approximation [284,325,326]
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where Bk is the magnitude of the kth resonance of the material located at wavelength λk. Equation (31)
includes all the resonances of the material that are of interest for a given wavelength range. For silica
fibers, the refractive index is well approximated using the following values for Bk and λk:
B1=0.6961663, B2=0.4079426, B3=0.8974794 and λ1=0.0684043 µm, λ2=0.1162414 µm and
λ3=09.896161µm [325]. The wavelength dependence of the refractive index of fused-silica is illustrated
in Fig. 31.
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Figure 31. Refractive index n of silica as a function of wavelength.

Waveguide dispersion

Waveguide dispersion occurs due to the dependence of the light confinement on its frequency as it is
guided along a waveguide (e.g., optical fibers). At higher frequencies, the mode propagating along the
fiber is well confined in the core so that most of the energy travels inside the core. This results in an
increase of the group velocity. Waveguide dispersion depends on the core diameter of the waveguide
and the core-cladding refractive index difference of the waveguide.

Total dispersion

Both waveguide and material dispersion contribute to the group velocity dispersion of the fiber. The
parameter β2 represents the group velocity dispersion also referred to as the second-order dispersion and
it is connected to the dispersion parameter D as [284]
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The wavelength at which β2 or D is equal to 0 is referred to as the zero-dispersion wavelength. The
wavelength region for which β2>0 (<0) is commonly referred to as the normal (anomalous) dispersion
region. In the normal dispersion region higher frequency (blue wavelengths) components travel at a
slower speed than lower frequency (red wavelengths) components. The opposite occurs in the
anomalous dispersion region.
Whereas material dispersion is intrinsic to the material used to fabricate the waveguide or fiber and can
not be changed, waveguide dispersion can be varied by modifying the design parameters of the
waveguide or fiber, thus allowing tailoring of the total dispersion. For instance, by reducing the core
diameter of conventional single-mode fibers down to 4 µm and using a core-cladding refractive index
difference larger than 4×10-3, it is possible to shift the zero-dispersion wavelength of the fiber from the
1.3 µm to the 1.55 µm region. Using multiple cladding designs it is also possible to manufacture fibers
that exhibit a flat dispersion over the 1.3-1.6 µm wavelength range.  Figure 32a illustrates the calculated
material (solid line) and waveguide (dashed line) of a conventional single-mode optical fiber. Examples
of the total dispersion of conventional single-mode and dispersion-shifted fibers are shown in Fig. 32b.
The curves presented in Fig. 32 were calculated by solving the eigenvalues of the wave equation [284]
and incorporating the material dispersion in the form of the Sellmaier equation (see Eq. (34)).
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Figure 32. Dispersion parameter as a function of wavelength. a) The solid/dashed line represent the

material/waveguide dispersion of a conventional single-mode fiber. b) Total dispersion of a

conventional single-mode fiber (SMF) and a dispersion-shifted fiber (DSF).

Dispersion of optical components

The response of optical components such as filters can be modeled as
)()()( ωφωω Cj

CC eRR = ,    (36)

where |RC (ω )| and φC (ω ) are the modulus and phase of the response of the component. The phase
response of optical components results from multiple reflections or from wavelength dependent
gain/loss inside the component [327]. Thus, as light passes through the component, it experiences a
frequency-dependent group delay τc defined as

ω
ωφ

ωτ
d

d C
c

)(
)( −= .    (37)

The wavelength-dependence of the time delay induces dispersion which is related to the phase response
as
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4.2 Dispersion measurement techniques

Dispersion is responsible for temporal changes of an optical pulse traveling through a fiber or a
component. For instance, transform limited pulses will broadened as they travel along a fiber whereas
depending on the sign of the dispersion, non-transform limited pulses will be temporally broadened or
compressed. Furthermore, when the strength of the nonlinearity of the fiber is not negligible, the
spectral and temporal behavior of the pulse is different whether the center wavelength of the pulse is
located in the anomalous or normal dispersion region of the fiber. Also, dispersion plays a critical role
in supercontinuum generation in MFs. Therefore, it is important to characterize accurately the
dispersive properties of these fibers. In addition, various optical components such as fiber Bragg
gratings (FBGs) or thin-film filters are employed in fiber-optic communication systems. For
optimization of these systems, precise knowledge of the dispersion of the components is necessary. For
these reasons, it is of prime importance to develop measurement techniques that can accurately
characterize the dispersion values of optical fibers and components.
Various techniques have been developed to measure the dispersion of optical fibers and components.
They include pulse delay [328], phase measurement [329-332] and interferometric methods [330,333-
335]. All these techniques are based on the fact that light waves with different wavelengths
simultaneously launched into an optical fiber or component exit from it at a different time or with a
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different phase. The measurement of the group delay or phase as a function of wavelength permits
calculating the dispersion parameter by differentiation of the measured quantity.

Pulse delay technique

The pulse delay technique is mainly used to measure the dispersion of optical fibers. It measures the
difference in arrival time of short light pulses traveling along the fiber as a function of wavelength
[328,330,331]. The group delay of the fiber can be subsequently fitted with a multiple order polynomial
and differentiated to obtain the dispersion. The technique has the disadvantage of requiring long fiber
lengths so that the difference in arrival time is large enough to be detected. Typical fiber lengths are of
the order of hundreds meters.

Phase-shift technique

The phase-shift technique allows for the measurement of the group delay as a function of wavelength
[329-332]. The intensity of the output light of a CW tunable laser is sinusoidally modulated, which
produces side bands around the carrier frequency in the spectral domain. As light passes through the
device under test, the sidebands experience a phase-shift that is proportional to the group delay of the
device. The resolution of the method depends on the sensitivity of the phase measurement and on the
frequency of the sinusoidal modulation applied [336-338].

Interferometric technique

Interferometric methods make use of the short coherence time of partially coherent light and allow for
very precise dispersion measurements [330,333-335]. The experimental setup consists of a Mach-
Zehnder (MZ) or Michelson type interferometer. The light of a broadband source is divided between the
two arms of the interferometer of which one is the reference path and the other one contains the device
to be tested. The output light from the two arms is then recombined and the interference fringes are
detected as the length of the optical path in the reference arm is changed. The phase response of the
device is subsequently obtained by Fourier transformation of the interferogram and curve fitting
[330,333]. The optical path length of the reference arm of the interferometer must be nearly equal to
that of the arm containing the device under test. In practice, this limits the length of the device that can
be measured. In addition, free-space interferometers are inherently extremely sensitive on the
environmental conditions such as vibrations or temperature changes, which may affect the
measurements results.
Examples of experimental setup of the aforementioned methods are presented in Fig. 33. Their main
characteristics are summarized in Table 3.
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Figure 33. Example of experimental setup for a) time of flight, b) phase-shift, and c) interferometric

techniques. FL: fiber laser, DUT: device under test, TL: tunable laser, MZM: Mach-Zehnder

modulator, and PC: polarization controller.

Table 3. Characteristics of the most commonly used dispersion measurement techniques. GD: group delay.

Technique Light source
GD

resolution

Typical fiber

length

Sensitivity to the

environment

Time of flight TL, Multi-λ FL 20 ps 100 m low

Phase-shift TL 1 ps 10 m low

Interferometric Halogen lamp, LED 0.1 ps 0.1 m high

Another dispersion technique relies on the measurement of the amplitude response of a component. If
the component fulfills the principle of causality [339,340], its phase response is directly connected to its
amplitude response through Hilbert transformation [339]. The dispersion is subsequently obtained by
double-differentiation of the phase response of the component. However, several optical components
exhibit some rather complex phase response which can not be directly retrieved from their amplitude
response. Mode-field diameter measurement technique or interferometric-pulse delay hybrid method
have also been developed [330,341].

4.3 Measurement of anomalous dispersion in microstructured fibers

using spectral modulation

Dispersion measurements of MFs can be difficult to perform using standard techniques. In particular,
many applications employing MFs require short lengths of fiber to be utilized and, consequently, it is
important to be able to characterize the dispersive properties of short fiber samples which can be
problematic using pulse delay or phase-shift techniques. Furthermore, in the case of small core MFs,
efficient coupling to the MF from low-coherent white-light may be difficult. Also, all the dispersion
measurement techniques actually measure the group delay or phase response of the fiber and the
dispersion is subsequently calculated by differentiation, which requires the group delay to be measured
over a given wavelength interval and tends to amplify the noise of the measurements. Direct

a)

b)

c)

DUT
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measurement of the dispersion values of relatively short pieces of MFs can be performed by taking
advantage of the interplay between dispersive and nonlinear effects [III].

Spectral modulation of short optical pulses

For pulses whose bandwidth does not exceed a few nanometers, Eq. (20) models accurately their
propagation along optical fibers. If the time-dependent amplitude of the pulse launched into the fiber is
so that A(T )=N sech(T/T0) with N=1, the pulse corresponds to a fundamental soliton which propagates
undistorted [284]. Nevertheless, the parameters of the input pulse seldom match the requirements for
the pulse to be a perfect fundamental soliton and in general N=1±ε. An optical pulse whose time-
dependent amplitude is of the form (1+ε)sech(T/T0) evolves into the asymptotic solution of the NSE,
i.e., a fundamental soliton whose amplitude is equal to (1+2ε)sech[(1+2ε)T/T0] [284,342]. The energy
difference between the input pulse and the asymptotic soliton is equal to 2T0ε 2 and during the reshaping
process, the excess of energy of the input pulse compared to that of the asymptotic fundamental soliton
is shed away as a dispersive wave [342]. Such phenomenon occurs for ε ∈[-1/2,1/2]. The spectrum of
the total field AT (ω) after propagating inside the fiber is given by [342]

)()()( ωωω DST AAA += ,    (39)

with AS and AD being the spectral amplitude of the asymptotic soliton and dispersive field, respectively.
It can be shown theoretically than the spectral amplitudes of the asymptotic soliton and dispersive field
are given by [342]
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where ω0 is the carrier frequency of the input pulse, L the fiber length and φ (ω) a phase term defined by
[342]
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Here, β2 represents the group velocity dispersion of the fiber. The phase difference φ (ω) between the
two coherent fields depends on both frequency and distance of propagation. The interference between
the emerging soliton and the dispersive field results in the modulation of the optical spectrum [342].
The amplitude spectrum of the asymptotic soliton AS (ω) determines the spectral envelope of the total
field. Comparison between the theoretical model and the simulation using the NSE is presented in Fig.
34 for several values of ε. The agreement is improved for smaller values of ε. Varying the input peak
power affects the characteristics of the spectral oscillations. In particular, as the peak power is
increased, the value of ε increases and the spectral envelope of the spectrum broadens. Moreover, the
amplitude of the oscillations reduces for higher |ε | values.
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Figure 34. Simulated spectrum at the output of a 2 m-long fiber. λλλλ0=2ππππc/ωωωω0=800 nm, T0=60 fs, D=100

ps/nm⋅⋅⋅⋅km, γγγγ=100 W
-1⋅⋅⋅⋅km

-1
.  From top to bottom: εεεε=0.3, 0.1, -0.1, -0.3. The dark blue lines are

obtained by solving Eq. (20) and the dark green lines correspond to the computed spectral

intensity using Eq. (39).  For clarity an arbitrary offset has been added to each curve.

Figure 35a-c illustrates the simulated spectrum of 100 fs (FWHM) pulses whose initial amplitude is of
the form (1+ε)sech(T/T0) with ε being equal to 0.2 after propagation along 0.5, 2 and 5 m of MF. The
amplitude and period of the oscillations decrease as the propagation length increases. The time-
dependent amplitude of the pulse after 0.25 m of propagation is plotted in Fig. 35d. The
superimposition of the soliton and dispersive field is clearly observed. The dispersive field broadens as
the pulse propagates further while the soliton remains nearly unchanged.

Figure 35. Simulated spectrum and corresponding temporal profile of 100 fs pulses after propagating a)

0.5, b) 2, and c) 5 m inside a MF obtained by solving the NSE. λλλλ0=2ππππc/ωωωω0=800 nm, D=100

ps/nm⋅⋅⋅⋅km, γγγγ=100 W
-1⋅⋅⋅⋅km

-1
. For clarity an arbitrary offset has been added to each curve. d)

Time-dependent amplitude of the pulse after 0.25 m of propagation.

From Eq. (42) it can be seen that the phase difference between the two interfering fields depends on the
dispersion parameter β2. By writing that the phase difference in the spectrum between two consecutive
maxima or minima is equal to 2π and omitting the tan

-1 terms in the calculation, the dispersion can be
approximated to the first order as [III]
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where ω0 is the center frequency of the spectrum and ω2 and ω1 represent the frequency of the first and
second maxima. Note that Eq. (43) does not depend either on the input pulse width T0 or the ε value.
The spectral modulation effect due to the input pulse reshaping into a fundamental soliton can therefore
be exploited for direct dispersion measurement of MFs [III]. Since solitons cannot propagate in the
normal dispersion regime, the method is intrinsically limited to the anomalous dispersion region of the
fiber. A schematic layout of the experimental setup for dispersion measurement using this technique is
shown in Fig. 36.

I λλλλ/2 VA

OSATi:Sapphire

Figure 36. Experimental setup for dispersion measurement using the spectral modulation effect. I:

isolator, λλλλ/2: half-wave plate, VA: variable aperture, and OSA: optical spectrum analyzer.

The dispersion measurement procedure is as follows. Short optical pulses from a Ti:Sapphire laser are
launched into the MF and the input power is gradually increased until oscillations are observed in the
spectrum recorded at the output of the fiber. The dispersion is then calculated using Eq. (43). Tuning
the wavelength of the pulses launched into the fiber allows for the measurement of the dispersion
profile of the fiber as a function of wavelength [III]. Examples of dispersion measurement performed
for two different types of MF are illustrated in Fig. 37. A typical experimental spectrum recorded at the
output of the fiber is plotted as an inset in Fig. 37.

Figure 37. Dispersion profile measured using the spectral modulation technique for a) a highly

birefringent MF and b) a small core MF. Inset: Typical experimental spectrum recorded at the

output of the MF. Microscope image of c) the highly birefringent and d) the small core MF.

The measurement accuracy of the method is limited due to the omission of the tan
-1 terms in the

dispersion calculation [III]. It can be evaluated in a two-step process. The exact values of ω1 and ω2 are
calculated numerically from Eq. (42) as a function of D and subsequently plugged into Eq. (43). The
relative measurement error is then defined as (Da-D)/D where Da represents the approximated
dispersion value from Eq. (43). The relative measurement error is illustrated in Fig. 38 as a function of ε
and L/LD with LD being the dispersion length defined by Eq. (22). The error calculation was performed
only in the case of a good fringes visibility, i.e., when clear maxima and minima can be distinguished in
the spectrum. This criteria must be fulfilled in practice to avoid any ambiguity in the location of the
maxima. The measurement error is within a 10% limit depending on the value of ε and the ratio of the
fiber length to the dispersion length. Even though the measurement error exhibit a rather complex
pattern, it decreases as ε or the ratio L/LD increases. To improve the accuracy, it is therefore preferable
to perform the measurements with shorter pulses and/or longer fibers.

c)

d)

MF
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Figure 38. Plot of the measurement error of the spectral modulation technique as a function of εεεε and L/LD.

4.4 Novel method to improve the measurement accuracy of

the phase-shift technique

Measurement principle of the phase-shift technique

The phase-shift technique is based on the measurement of the phase-shift experienced by the sidebands
of a sinusoidally modulated signal at angular frequency ωm as it passes through the component to be
characterized [329]. Assuming that the phase varies linearly in the interval [-ωm,ωm] around the carrier
frequency ω of the optical signal, the intensity of the signal detected by the photodetector can be written
as [329]

[ ])()( mmm0D tcosm1ItI τωω ++= .    (44)

where m is the modulation index and τm the measured group delay of the component. The measurement
of the phase difference between the reference path and the path containing the component (see Fig. 33b)
gives direct access to the group delay of the component
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)( = ,    (45)

where ∆φE (ω ) is the electrical phase difference measured between the two paths at the angular carrier
frequency ω. It can be seen from Eq. (45) that the resolution of the group delay measurement is
enhanced when employing higher modulation frequencies. The group delay measurements are accurate
for components whose group delay varies slowly with wavelength. This is the case, e.g., of optical
fibers. However, components such as fiber Bragg gratings or thin-film filters may exhibit fast variations
of the group delay with wavelength [343] and are more difficult to characterize using the phase-shift
technique. In particular, the assumption of linear phase variation in the [-ωm,ωm] interval may not be
valid and the group delay measurements not accurate [IV]. Attempts have been made to modify the
phase-shift technique in order to improve the accuracy of group delay measurement [344].

Instrument function of the phase-shift technique

The assumption of linear phase variation in the [-ωm,ωm] interval is equivalent to assuming that the
group delay of the component is constant over the angular frequency interval  [-ωm,ωm]. Therefore, the
instrument function of the phase-shift technique is simply a rectangular function whose width is equal
to 2ωm and the measured group delay is the result of the true group delay of the component convoluted
by the instrument function [IV]
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where τc and τm represent the true and measured group delay of the component at the frequency ω,
respectively. The ∗ operator denotes the convolution and rect is the rectangular function. From Eq. (46),
it can be seen that increasing the modulation frequency results in an increase of the measurement error
[IV]. The effects of the instrument function on group delay measurements can be conveniently analyzed
in the Fourier domain in which Eq. (46) can be rewritten as

u)()()( m
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c
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m sincuu ωττ ⋅= ,    (47)

where ~ denotes the Fourier transform and u is a Fourier variable. The Fourier components of the true
group delay are attenuated, sign-reversed or vanished, depending on their location with respect to the
modulation frequency fm =ωm/2π as is illustrated in Fig. 39 [IV].

Figure 39. Effect of the instrument function of the phase-shift technique on the Fourier components of the

true group delay of the device under test. The arrows indicates the location of the main Fourier

component of the grating as the modulation frequency applied is changed.

In particular, Fourier components located beyond 2/ωm will experience an attenuation of more than

50%. Moreover, the amplitude of every Fourier component ∈ 








mm

k2
,

2

ω
π

ω
π1)-k(

with k being an

integer will be reversed. Experimental confirmation of these effects is presented in Fig. 40a. In this
figure, the group delay of a 20 cm long dispersion compensating fiber Bragg grating measured as a
function of frequency using the phase-shift technique is shown for fm equal to a) 250 MHz, b) 500 MHz,
and c) 1 GHz. The variation of the group delay is periodic with the main period of the ripples
approximately equal to 1.9 GHz. The Fourier spectrum of the group delay therefore consists of a peak
whose location with respect to ωm is marked in Fig. 39 as an arrow. For fm equal to 250 MHz, the
amplitude of the measured group delay is slightly attenuated by the instrument function. When the
modulation frequency is increased to 500 MHz, the attenuation rises to 40 %. Using fm=1 GHz results in
an attenuation of 95 % and reverses the sign of the group delay amplitude.
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a) b)

Figure 40.  a) Effect of the modulation frequency

  used in the phase-technique on the

  experimentally measured amplitude

  of the group delay of a fiber Bragg

  grating. For clarity an arbitrary

  offset has been added to each curve.

b) True (blue solid line), measured (dotted line) and

reconstructed (green solid line) group delay for a

fiber Bragg grating.

The derivation of the instrument function of the phase-shift technique is not only important for
analyzing its effects on the measurement results but also because it allows for improving the accuracy
of the measurements by post-processing of the data [IV]. Indeed, from Eqs. (46) and (47), the true
group delay of the component can be restored by performing a deconvolution of the measured group
delay by the instrument function [IV]
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where FT 
-1 represents the inverse Fourier transform. However, the deconvolution operation has

undesirable effects on the data: division by zero for some particular values of u and amplification of the
Fourier component with highest frequencies, these latter components arising from the noise of the
measurements. To avoid such effects, the zero-points of the sinc function must be removed and a low-
pass filter can be applied in the Fourier domain before performing the deconvolution operation. Based
on the same principle, a variant of this method was recently developed and consists of performing two
sets of group delay measurements utilizing different modulation frequency, which allows avoiding the
division by zero in the post-processing of the data [345].
An example of post-data processing for improvement of the measurement accuracy are illustrated in
Fig. 40b. The group delay of the fiber Bragg grating previously described was measured using fm=1
GHz (dotted line in Fig. 40b). The data were subsequently processed according to the procedure
described above. The reconstructed group delay is marked as a green line in Fig. 40b. For comparison,
the group delay measured with a modulation frequency of 250 MHz is also plotted as a blue solid line.
Due to the low value of fm in that case, this latter measurement can be considered to very close to the
true group delay of the grating. The reconstructed group delay from the 1 GHz fm-value is in good
agreement with the measurements performed employing a 250 MHz modulation frequency.
The technique can be applied to any arbitrary group delay and allows for improving the accuracy of the
measurements when high modulation frequency are used for a better timing resolution.
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4.5 Linewidth of external cavity lasers

4.5.1 Linewidth of semiconductor lasers

Laser linewidth

The random phase variations of the optical field results in the finite linewidth of lasers [346]. The
linewidth is inversely proportional to the coherence time of the laser defined as the time period over
which a phase shift occurs on average [184,346-348]. The phase fluctuations are due to two different
types of noise: intrinsic and extrensic. The extrensic noise results from current fluctuations, temperature
variations and vibrations in the laser system. It yields a Gaussian lineshape [349] which, in the case of
semiconductor lasers, is small compared to the linewidth resulting from the intrinsic noise [349]. The
intrinsic noise arises from the spontaneous emission of photons caused by the random hole-electron
recombination in the semiconductor material [350]. Assuming white intrinsic noise and neglecting the
amplitude variations, the electric field at the output of the laser can be written as [347,348]

[ ])()( tt2j

0
0eEtE

φπν += , (49)

where ν0 is the center frequency of the field. The time-varying phase term φ (t) accounts for the random
phase of the spontaneously emitted photons and it has a Gaussian statistical distribution [347]. The
lineshape of the laser obtained from the Fourier transform of the autocorrelation of the electric field is
therefore Lorenztian with a full-width at half maximum ∆νL given by the well-known Schalow-Townes
formula [195,351-354]
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where η is the spontaneous emission coefficient (of the order of 2.5 for semiconductor materials [355]),
Pom the power of the oscillating mode, h Planck's constant and ∆νc represents the linewidth of the cavity
mode. The latter is defined as [356]
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with nd and αm being the refractive index and the modal loss coefficient of the semiconductor material.
Here, r1 and r2 are the amplitude reflectivities of the mirrors forming the cavity of length Ld.
In semiconductor materials, the variation of the photon number due to spontaneous emission causes
intensity fluctuations which in turn induce changes in the carrier density, thus affecting the gain. This
process referred to as relaxation oscillation causes variations of the refractive index seen by the optical
field, thereby inducing an extra delayed phase change [348,354,357]. This intensity-phase noise
coupling results in an enhancement of the linewidth by a factor (1+αL 2 ) where αL designates the
linewidth-enhancement factor defined as [348,354,357]

)(

)(

nIm

nRe

dN/dg

dN/dn

c c

c

L ∆

∆ω
α =⋅−=  .    (52)

Here, n is the refractive index of the semiconductor material, g is the gain per unit length and Nc is the
carrier density. The value of αL depends on the semiconductor material and several parameters such as
the structure and length of the laser cavity [357,358]. Typical α-values for semiconductor materials
varies from 2 to 9 [357].
Furthermore, in addition to the power-dependent linewidth, a power-independent linewidth ∆νS

resulting from the shot noise sets the ultimate limit for the value of the laser linewidth [359-363]. The
shot noise stems from the statistical fluctuations of the carrier population and varies as 1/f with f being
the frequency in the power spectrum. Furthermore, in the same way as the spontaneous emission affects
the carrier population and brodens the linewidth, the statistical fluctuations of the shot noise leads to an
extra-brodening of the linewidthof the form α 

2κ∆νL with κ being the ratio of the shot noise fluctuations
to the carrier population fluctuations. Hence, the total linewidth of a semiconductor diode laser is given
by [359,364]
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The various noise terms present in the laser system and their respective contribution to the linewidth are
displayed in Fig. 42.
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Figure 42. Noise mechanisms and their contribution to the linewidth.

4.5.2 Linewidth measurement techniques

Several techniques have been developed to measure the linewidth of lasers. They include the use of
grating spectrometers or spectrum analyzers [365], Fabry-Pérot resonators (FP), coherent detection
techniques [331] and self-homodyne/heterodyne interferometers [366-368].

Optical spectrum analyzer or grating spectrometer

The different frequency components of the laser line are diffracted at different angles by a grating. The
spectrum of the laser light is then obtained by rotating the grating. The resolution depends mostly on the
grating parameters and is usually limited to 1.25 GHz.

Fabry-Pérot interferometer

The transmission peaks of a FP interferometer are used to select the frequency components of the laser
line. The linewidth of the laser can be measured by monitoring the intensity at the output of the
interferometer as a function of the mirror spacing. The resolution of the technique depends on the
finesse of the FP interferometer.

Coherent discrimination

The phase fluctuations of the optical field are converted into intensity fluctuations using a Michelson,
MZ or FP type interferometer [331]. A time delay longer than the coherence length of the laser to be
characterized is introduced in one arm of the interferometer. The interferometer is biased at the
quadrature point by inserting a phase modulator in of its arms so that the frequency fluctuations of the
laser are linearly proportional to the variations of the photocurrent detected [331]. Exact knowledge of
the time delay and careful preliminary calibration of the linear conversion are required. The linewidth
of the laser is then extracted from the RF spectrum of the photocurrent.

Self-heterodyne/homodyne techniques

The measurement principle is the same as for the coherent discrimination technique. However, the
linewidth value is directly obtained from the spectrum of the beat signal displayed on an RF spectrum
analyzer. In the case of self-heterodyne method, an acousto-optic modulator is placed in one arm of the
MZ interferometer [367]. This shifts the beat signal at the frequency of the acousto-optic modulator and
prevents the dependence of the power spectrum on the mean phase difference between the two arms of
the interferometer. In the delayed self-homodyne technique, the two interfering fields share the same
center frequencies, which causes the interference signal to strongly depend on the exact mean phase
difference between the two arms of the interferometer [368]. To overcome this problem a modified
delayed self-homodyne technique has been developed [369,370]. It includes a phase modulator inserted
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in one arm of the interferometer to average out the mean phase dependence. Moreover, a microwave
mixer is placed after the photodetector in order to shift the beat signal from 0 Hz to remove the noise
contribution caused by the electrical spectrum analyzer itself. The modified delayed self-homodyne
technique offers technical advantages since it does not require the use of an acousto-optic frequency
shifter and therefore lower amplification of the beat signal is needed [370]. A typical experimental
arrangement for a self-heterodyne/homodyne measurement of a laser linewidth is shown in Fig. 43.

AOM

PC

fAOM
PM

RFSALaser

LO

Delay

I

Figure 43. Schematic layout of a self-homodyne (dark blue), self-heterodyne (light blue), and modified self-

homodyne (green) linewidth measurement setup. I: isolator, AOM: acousto-optic modulator,

PM: phase modulator, PC: polarization controller, LO: local oscillator, and RFSA: RF

spectrum analyzer.

The RF power spectrum recorded at the output of the MZ interferometer depends on the relative
magnitude of the coherence time (τcoh=1/∆ν) of the laser to be characterized and the delay line
employed [367,368]. In particular, for a delay line much longer than the coherence time of the laser, the
RF power spectrum is similar to the case of the beat signal obtained from two independent identical
lasers [368].  Assuming a Lorentzian lineshape, the linewidth of the laser is equal to twice the linewidth
of the measured RF power spectrum [368]. In the case of a delay line of the order of τcoh, the two
interfering fields are partially correlated which complicates the interpretation of the RF power spectrum
thereby yielding the necessity of a fit by a theoretical function [367,368,371]. Nevertheless, it has been
shown that the use of a short delay line effectively filters out the 1/f noise component of the laser
linewidth and gives access to the pure Lorentzian linewidth [349,369,370] resulting from the white
noise which is the parameter of interest for coherent communication systems [349,354,372,373].
Table 4 presents the main characteristics of the different linewidth measurement techniques.

Table 4. Characteristics of various linewidth measurement techniques.

Technique Resolution Setup Disadvantages

Grating 1.25 GHZ complex

FP ~ MHz simple

Coherent

discrimination
1 kHz complex calibration

Self-heterodyne 1 kHz simple
frequency jitter, signal

amplification
Self-homodyne 1 kHz simple frequency jitter

4.5.3 External cavity lasers

Wavelength tuning of diode lasers can be accomplished through the use of external cavity
configurations [184,185,374]. The external cavity can be formed for instance between the front facet of
the diode laser and an extra reflective elements that provides optical feedback to the diode laser. Due to
their specific characteristics (e.g., broad wavelength tunability and narrow linewidth) external cavity
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lasers (ECLs) find numerous applications in high-precision spectroscopy, optical metrology or optical
telecommunications [184,185]. Various reflective elements have been used for providing the feedback.
These include mirrors [186,187,375-378], gratings [185,193,195,373,379-383], electro-optic
birefringent filters [384,385], acousto-optic filters [386,387] or liquid crystal arrays [388] as the
wavelength selective element. The characteristics of several ECLs with different configurations and
tuning elements are summarized in Table 5.

Table 5. Examples of ECLs. LCA: liquid crystal array, EO: electro-optic, AO: acousto-optic.

Tuning element Tunability λλλλ-center ∆ν∆ν∆ν∆ν Pout Ref.

Mirror 10 nm 1370 nm [378]

Grating 244 nm 1570 nm 5 mW [379]

LCA 11 nm 670 nm <30 MHz [388]

EO filter 7 nm 1552 nm 60 kHz 0.4 mW [385]

AO filter 83 nm 1300 nm <10 MHz <1mW [387]

Principle of operation and modeling of ECLs

Optical feedback strongly affects the dynamic and spectral properties of semiconductor diode lasers
[185,187,195,354,389-392]. In particular, the injection of optical feedback allows control the tuning
properties of the laser and a reducion of its linewidth [195,354,390,391,393-396]. The operation
principle of an external cavity laser can be conveniently analyzed by replacing the amplitude
reflectivity r2 of the front facet of the diode laser with a frequency-dependent effective reflectivity
defined as [397-399]
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where τe=c/(2Le) is the round-trip time of photons inside the external cavity. Here, r3 represents the
amplitude reflectivity of the feedback element. The effective reflictivity model enables analyze the
operation characteristics of the laser in a similar way as a Fabry-Pérot laser. In particular, the steady
state oscillation condition as well as the dynamical properties can be conveniently investigated using
the well established rate equations. Note that the effective reflectivity model is accurate since it includes
exaclty all the multiple reflections in the external cavity and should, consequently, be valid
independently of the feedback level. In general, a numerical treatment of the rate equations modified to
account for the effect of optical feedback is necessary to correctly model the transient behavior of the
laser and especially the presence of multiple satellite peaks in the optical spectrum of the laser steming
from the relaxation oscillation. In the following, the analysis is restricted to the stady state operation of
the external cavity laser and its corresponding linewidth.
The steady state oscillation condition imposes the electric field to retain its amplitude and phase after
one cavity round-trip [184,346,395,400]

1err dLj2

eff1 =βω)( ,    (55)

where r1 is the amplitude reflectivity of the rear facet of the diode laser, Ld the length of the solitary
diode laser cavity and β the propagation constant of the electric field. The propagation constant is a
complex number that includes both the phase and amplitude changes inside the cavity [184]
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with g(ω) and αm being the frequency-dependent semiconductor gain and modal losses. Here, Γ
designates the confinement factor which represents the fraction of the power effectively traveling inside
the active region of the semiconductor material [184,346]. The oscillation frequency of the ECL is then
obtained by combining Eqs. (55) and (56). Taking into account the dependence of the refractive index
on the frequency (see Eq. 52), the oscillation frequency of the ECL is determined by [191,395,400]



45




























+−=

2

eff

Leff

d

qo
r

r
lnrarg

1 )(
))((

ω
αω

τ
ωω ,    (57)

where τd=c/(2ndLd) is the round-trip time of photons inside the solitary diode laser cavity and
ωqo=2πq/τd is the oscillation frequency of the diode laser in the absence of optical feedback, i.e., when
r3=0. Here, q is an integer number that represents the longitudinal oscillating mode. It is determined by
the relative detuning between the modes of the solitary diode laser cavity and the peak of the gain
medium. It can be seen from Eq. (57) that the addition of an external cavity to the solitary diode laser
results in the shift of its oscillation frequency. The frequency dependence of the effective reflectivity
produces a modulation of the cavity losses. Any change in the strength or phase of the optical feedback
will affect the relative detuning between the compound cavity losses and semiconductor gain curves
thereby allowing for tuning the oscillation frequency of the ECL to a different external cavity mode [V].
In general, the oscillating external cavity mode is determined by the condition of minimum threshold
gain [390,393,395,401].
The phase of the optical feedback can be varied by changing the length of the external cavity [390,402]
whereas the strength of the optical feedback can be varied by the use of a dispersive reflective element
such as a grating [191,395]. The use of a grating as a reflective element is advantageous since it
provides additional wavelength selectivity through its dispersion profile. In particular, a rotation of the
grating permits the tuning of the reflected frequency and, consequently, of the lasing frequency of the
ECL [191,195,400,403]. The operation principles of an AlGaAs solitary diode laser and an AlGaAs

grating cavity laser are illustrated in Fig. 44.
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 Figure 44. a) Operation principle of a solitary

diode laser. SDL: solitary diode

laser.

     b) Operation principle of a grating cavity laser.

As the grating orientation is changed, the oscillation frequency hops between the different external
cavity modes leading to discrete tuning [V]. The frequency range over which the ECL can be tuned
discretely before returning to its original oscillation frequency depends on the ratio of the internal to
external cavity lengths [346]. Figure 45 shows the simulated oscillation frequency of an AlGaAs grating
cavity laser as a function of the rotation angle of the grating θ. The grating is assumed to have a
Gaussian frequency-dependent reflectivity profile [400]. The parameters of the ECL and the
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characteristics of the grating are summarized in Table 6 [V, VI]. The step-like fine structure is due to
the mode-hopping between the different external cavity modes.

Figure 45.   Illustration of the frequency tuning of a

AlGaAs grating cavity laser by rotation

of the grating.

Table 6. Parameters corresponding to the ECL of

Fig. 45. ∆∆∆∆fG represents the spectral width

of the dispersion of the grating reflectivity

(FWHM).  SDL: solitary diode laser.

Continuous tuning can be achieved through simultaneous translation and rotation of the grating so that
the reflected frequency from the grating and the location of the external cavity modes shift
simultaneously [404-406]. The tunability of ECLs is ultimately limited by the width of the gain of the
semiconductor material which typically exceeds several tens of nanometers.

4.5.4 Fine structure linewidth variations of external cavity lasers

Linewidth of ECLs

The dynamic behavior of ECLs strongly depends on the strength and phase of the optical feedback. Five
distinct regimes of operation with different properties have been identified and are commonly referred
to as regimes I-V [389,394,407,408]. In particular, the linewidth of ECLs follows a different behavior
depending on which regime the ECL operates. In the following, the discussion is restricted to the case
where the ECL operates in regime V for which stable single-mode operation and broad tuning range can
be achieved. This type of regime corresponds in practice to a fraction of optical feedback greater than
10%.
The spontaneous emission rate η of a semiconductor laser corresponds to the number of photons
spontaneously emitted into an oscillating mode per unit time [346]. In the presence of optical feedback,
the mode spacing of the compound cavity laser and, therefore η, is inversely proportional to the
external cavity length Le. Besides, the photon lifetime increases with the length of the external cavity.
This results in an increase of the photon number at a given output power. As a direct consequence of
Eq. (50), these two facts yield a reduction of the linewidth proportional to 1/Le

2.  An exact mathematical
description of the linewidth reduction phenomenon in ECLs can be obtained from the definition of the
chirp reduction factor F which links the change in the oscillation frequency dω0 of the solitary diode
laser per unit change in the ECL oscillating frequency dω [391,395,400,409]
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The phase noise of the solitary diode laser is then reduced by the same quantity [354,390,400,409],
which leads to the following relationship between the linewidth of the diode laser with and without
optical feedback [354,400,409-411]
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where ∆νECL and ∆νSDL represent the linewidth of the solitary diode laser and ECL, respectively. From
Eq. (57) it can be seen that the linewidth reduction depends on the strength and phase of the optical
feedback as well as on the α-factor of the semiconductor material. A typical order of magnitude for the

SDL Grating cavity

r1=0.97 r3=0.5
r2=0.22 ∆fG=100 GHz
Ld=400 µm Le=12 cm
nd=3.65
αm=20 cm-1
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linewidth of a diode laser with 1 mW output power is 100 MHz. The addition of an external cavity
allows for a reducion of the linewidth to the kHz level.

Linewidth variations in a grating cavity laser

Due to the dependence of the chirp reduction factor on the oscillation frequency of the grating cavity
laser, the linewidth is affected when tuning the orientation of the grating. In particular, as the grating
position is changed, the oscillation frequency of the laser is tuned through several external cavity modes
[412,413]. Consequently, the linewidth variations follow pseudo-periodic variations whose period is
determined by the external cavity modes spacing [V]. The amplitude variations of the linewidth within
one external cavity mode depend on the strength of the feedback at that particular oscillation frequency
[V]. Experimental measurements of linewidth variations within one external cavity mode of an AlGaAs

grating cavity laser using the modified self-homodyne technique are presented in Fig. 46a. These
variations have been observed by slightly changing the grating orientation [VI]. The characteristics of
the ECL correspond to the ones used for the simulation of Fig. 45 and are shown in Table 6. The
measurements were performed using an experimental setup similar to the one depicted in Fig. 43 and
with a delay shorter than the coherence time of the ECL to access the pure Lorentzian component of the
laser linewidth. A typical experimental RF spectrum recorded at the output of the MZ interferometer is
shown in Fig. 46b. The spectrum consists of a dc peak sitting on the top of a Lorentzian envelope with
delayed-dependent oscillations on the wings [369]
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where f is frequency, βr the amplitude ratio between the interfering fields, and ∆νECL the Lorentzian
linewidth of the ECL (FWHM). The scaling factor B in the AC-part of the spectrum accounts for the
limited bandwidth of the measurement system. Here, τdelay is the delay introduced by the fiber placed in
the delay arm of the MZ interferometer.

Figure 46. a) Linewidth variations within external

cavity modes measured as a function

of lasing frequency detuning by

rotating the grating.

b) Typical RF power spectrum recorded employing

the modified self-homodyne delayed technique.

The linewidth value is extracted from the RF spectrum using a least-square fitting procedure with the
linewidth as the fitting parameter [370].  Mode hopping between several external modes is clearly seen.
The linewidth variations within one external mode can be as high as 100 kHz [VI], which can be
detrimental for applications requiring a fixed narrow linewidth.

a) b)
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4.6 Thermal poling of planar waveguides

Silica is by essence an amorphous material and possesses a centrosymmetric structure which implies
that its second-order susceptibility χ 

(2) is extremely low [196,414]. The second-order susceptibility is
responsible for phenomena such as second harmonic generation (SHG), sum/difference frequency
generation, electro-optic effect or optical rectification [299]. These effects find applications in optical
telecommunications (e.g., for the fabrication of wavelength converters or modulators) and in optical
memory systems (e.g., CDs, DVDs, holographic storage). The prospect of using silica as a nonlinear
material for active functionalities has been the subject of extensive research for obvious reasons such as
cost, transparency, and monolithic integration with other silica-based components. Poling has proven to
be a promising way to induce a χ 

(2)-type nonlinearity in silica materials and has recently received
considerable attention [197,415-418]. The poling technique consists in heating or illuminating with a
UV radiation a material while applying to it a strong electric field [419]. These two types of poling are
commonly referred to as thermal and UV poling, respectively [197,419-421]. Optical poling by
launching simultaneously a fundamental light wave and its second-harmonic into the material has also
been demonstrated [422]. Even though the magnitude of the poling-induced χ 

(2)
eff are barely high

enough for the generation of new optical components, it is important to develop characterization
techniques for gaining physical insight into the poling process which is, to date, not fully understood.

4.6.1 Types of poling

In the following, the different poling techniques for silica glasses are briefly reviewed.

Optical poling

The co-propagation of fundamental and second harmonic waves allows for recording a periodic dc
electric field inside an optical fiber [284,422-425]. The periodicity of the dc field fulfills the
requirement for SHG enhancement through quasi-phase matching when the fiber is subsequently
pumped by an intense pump radiation. The recording of the dc field can be considerably accelerated if
the fiber is pre-exposed to blue, green or UV light [426-428]. More than 10% conversion efficiency
from the pump to the second harmonic have been reported, mainly due to the rather long interaction
length between the fundamental and second-harmonic along the fiber.

UV poling

The sample is simultaneously subjected to an intense electric field and illuminated with a UV radiation
[419,429]. Typical UV light sources used for poling experiments include ArF [430,431] and KrF

[432,433] excimer lasers. This type of poling can be performed both in fibers and bulk silica media.
This technique presents the advantage of an improved spatial resolution, which could be proven to be
useful for creating periodically poled structures.

Thermal poling

The silica device is heated up to several hundred degrees with simultaneous application of an electric
field [75,197,418,420,434-444]. This type of poling can be performed with bulk silica
[418,420,440,445], waveguides [444] or fibers [75,416,421,443,446,447]. The glass is subsequently
cooled down to room temperature while maintaining the applied voltage. The value of the induced χ 

(2)
eff

strongly depends on the heating temperature and on the poling time [415,448,449]. Second-order
nonlinearity induced by thermal poling seems to be the most reproducible and stable. Nevertheless,
thermal poling has the disadvantage of poor spatial resolution when realized in air. Poling in vacuum
permits improving the resolution and enables the fabrication of periodically poled structures [450,451].
Furthermore, it has been shown that the magnitude and physical origin of the induced second-order
susceptibility vary whether the voltage is positive or negative [452]. In particular, using positive voltage
allows for an increase of the magnitude of χ 

(2)
eff possibly due to the injection of cations from the

electrodes to the poled device. The presence of these cations results in higher losses and a wavelength
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dependence of χ 
(2)

eff [452]. Employing negative voltage permits reducing considerably the risk of
electrical breakdown [452]. Figure 47 illustrates the different poling techniques and Table 7
summarizes some of the important results achieved in poling experiments [197,421,422].

HV

λλλλ

λλλλ/2

Silica device

HV

UV

Table 7.  Examples of poling experiments. SHGeff: second

harmonic generation efficiency.

Figure 47. Different poling methods

a) optical, b) UV-assisted

and c) thermal. HV: high

voltage.

4.6.2 Physical aspects of thermal poling

The polarization of a dielectric medium subjected to an intense external electric field can be expressed
as [326]
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The corresponding change in the material refractive index is given by [326]
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where Eapp is the applied external field, n denotes the refractive index of the material and r and s

designate the linear electro-optic (LEO) and quadratic electro-optic (QEO) coefficients, respectively.
The LEO and QEO are related to the second-order and third-order susceptibilities by [326]

4

2

n
2r

)(χ
= ,    (63)

and        
4

3

n
3s

)(χ
= .    (64)

In centrosymmetric materials χ 
(2) and therefore r are null. When such a material is poled, an intense

internal electric field Edc is recorded inside the material and Eq. (62) can be rewritten as
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Therefore, Edc induces an effective LEO coefficient through the third-order susceptibility of the material
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The physical mechanism leading to the generation of an internal electric field inside the poled material
has not been clarified yet. Attempts have been made to understand the physical phenomena

a)

b)

c)

Poling

technique
Device Parameter

SHGeff

or χχχχ    
(2)

eff

Optical fiber
λ=1064 nm

Pav∼300 mW
∼5%

UV-assisted fiber
λUV=193 nm
HV=800 V

11.6 pm/V

Thermal fused silica
T∼ 300 °C
HV=3-5 kV

1 pm/V
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[419,442,447,453-456]. In particular, two models have been proposed to describe the poling effects but
neither of them can fully explain the experimental observations. Both models are illustrated in Fig 48.

a)

Thermal

Poling
Anode

Cathode

Anode

Cathode

EDC

SiO 2

b)

Anode

Cathode

EDC

Anode

Cathode

Thermal

Poling

SiO 2

Figure 48. Physical interpretation of thermal poling a) oriented dipole model and b) space-charge

separation model.

Oriented dipole model

As the material is subjected to heat, the molecular dipoles align themselves with the applied electric
field. When the material is cooled down with the external electric field still applied, the orientation  of
the dipoles freezes, which results in reordering of the material. Thus the symmetry of the glass is broken
and an effective χ 

(2) is created. According to this model the third-order susceptibility χ 
(3) of the poled

glass should also be affected [419,453,455].

Space-charge separation model

The mobile ions, e.g. Na
+ from the glass itself or Ag

+ from the electrode, migrate towards the cathode
as the material is subjected to heat and high voltage. As a consequence, the region of the material under
the anode is depleted of these mobile ions and it becomes negatively charged while the cathode is
positively charged. The location of the ions is maintained while cooling, yielding a built-in internal
electric field. This internal electric field is then responsible for an effective χ 

(2) through interaction with
the third-order susceptibility of the material [419,453].

4.6.3 Measurement techniques of the poling-induced χ 
(2)

eff

Characterization of the poled region of the sample can provide useful information for a better
understanding of the physics of poling. It can be accomplished using second harmonic imaging, etching
or ion mass spectroscopy. The measurements of the induced χ 

(2)
eff can be performed using several

techniques such as interferometry, second harmonic generation, ion mass spectroscopy [457], current
measurements [458] or inscription of a Bragg grating prior to poling.

Interferometric method

The poled device is placed in one arm of a MZ interferometer and its refractive index is modulated by
applying a sinusoidal voltage [455]. The phase difference between the two arms of the interferometer is
directly proportional to the LEO which can be subsequently extracted from the intensity variations at
the output of the interferometer.
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Second harmonic generation

The effective second-order susceptibility of poled glass allows for second harmonic generation. This
phenomenon can be exploited for measuring the χ 

(2)
eff value since the power of the second harmonic

wave is directly proportional to χ 
(2)

eff.

Inscription of a Bragg grating

The wavelength of the peak reflection of a Bragg grating is proportional to the refractive index of the
grating. This effect can be efficiently used for the determination of χ 

(2)
eff induced by poling a glass

sample [VII]. When an external electric field is applied to the poled sample, the refractive index
changes, which in turn affects the wavelength of the peak reflection of the Bragg grating

n0∆λλ∆ = ,    (67)

with λ0 being the wavelength in vacuum of the grating reflection peak and ∆λ and ∆n the change in the
wavelength of the reflection peak and refractive index, respectively. Assuming that the space-charge
separation model is valid and inserting Eq. (65) into Eq. (67) yields a relationship of parabolic-type
between the change of the wavelength of the peak reflection of the grating and the applied external
electric field Eapp after the glass has been poled
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Consequently, writing a Bragg grating into a silica-based device such as a waveguide prior to poling
enables to measure the effective second-order susceptibility induced by the poling. The Bragg grating
can be written onto the waveguide by illumination with UV light through a phase-mask. After poling,
the change in the wavelength of the peak reflection of the grating is recorded with an optical spectrum
analyzer as it is subjected to a strong external electric field. A least square method fitting procedure
employing a second-order polynomial is subsequently utilized to extract χ 

(2)
eff. Note that the last term of

Eq. (68) solely depends on the third-order susceptibility since χ 
(2)

eff /Edc =3χ 
(3). This allows for

monitoring any change in the third-order susceptibility that would stem from the poling experiment.  A
typical experimental setup for χ 

(2)
eff measurements using this technique is depicted in Fig. 49.

HV

Broadband

light source
OSA

PC

Figure 49. Experimental setup for measurement of χ χ χ χ (2)
eff using the Bragg grating inscription technique.

PC: polarization controller, HV: high voltage and OSA: optical spectrum analyzer.

4.6.4 Experimental measurement of the negative poling-induced
         χ 

(2)
eff  in germanium-doped silica waveguides

The novel technique of Bragg grating inscription for measurement of the LEO induced by thermal
poling of planar slab waveguides was successfully demonstrated [VII]. The method also permits the
measurement of the internal electric field Edc and the third-order susceptibility χ 

(3) [VII].

Fabrication of the waveguides and inscription of the grating

The slab waveguides were fabricated by growing three layers of glass on top of a silicon wafer. The two
cladding layers (top and bottom) consist of pure silica. The bottom layer was produced by thermal
oxidation while the core and top layers were made by plasma-enhanced chemical vapor deposition. The
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core of the waveguides was doped with germanium and nitrogen. The samples were subsequently
annealed during two hours at 800 °C and loaded with deuterium for increasing the photosensitivity of
the core. A patterned aluminum mask was then deposited on top of the samples which were exposed to
UV light from a KrF laser for modifying the refractive index profile of the core layer and thus
producing waveguides. Figure 50 summarizes the different steps of the fabrication process of the slab
waveguides.

Ge:SiON

SiO2

SiO2

Si wafer

SiO2

Ge:SiON core

Si wafer

Thermal

oxydation

PECVD

+

Ge/N

PECVD

Annealing @ 800 °°°°C
+

D2

+

Al

5.5 µµµµm

4 µµµµm

500 µµµµm

2.5 µµµµm

UVPhosporic

acid

waveguide

7 µµµµm
Mask

Figure 50. Fabrication of the slab waveguides. The refractive indices of the core and cladding layers are

equal to 1.493 and 1.458, respectively.

Subsequently, Bragg gratings were written in the waveguides using a phase-mask and exposure to the
UV light of the KrF laser. Finally, the samples were annealed two times at 375 °C for 1.5 h.

 Poling and characterization of the linear electro-optic coefficient

Thermal poling of the waveguides was performed by heating the samples to 375 °C and simultaneously
applying a 2 kV negative voltage. In order to apply the high voltage, a thin silver electrode was attached
to the top of the waveguides using a conductive silver paint while the Si wafer was grounded. The
poling time was set to about 30 minutes.
The change in the wavelength of the maximum reflection peak of the grating was monitored as a
function of an external voltage applied to the sample before and after poling. Following the procedure
described above, the poling-induced LEO could be measured for both transverse electric (TE) and
transverse magnetic polarizations. A typical experimental spectrum recorded with the OSA and the
variations of the grating peak reflection wavelength are displayed in Figure 51. A value of χ 

(2)
eff =0.06

pm/V was measured for the TE polarization which corresponds to an effective value of ∼0.02 pm/V for
the LEO. The magnitude of the LEO is almost high enough for practical applications such as EO-
modulation [436]. Furthermore, the third-order nonlinearity was found to be unaffected by the poling
process, which could partly confirm the validity of the space-charge separation model.
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a) b)

Figure 51. a) Transmission spectrum of the

waveguides after inscription

of the Bragg grating.

b)  Wavelength of the reflection peak of the grating

as a function of applied voltage before (squares)

and after (triangles) thermal poling. The solid

lines represent a quadratic fit.
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5. Summary

The recent development of photonic crystal fibers has opened up new prospects in the field of optical
science. Microstructured fibers constitute one particular class of photonic crystal fibers that guide light
in the same way as conventional optical fibers. This type of fiber offers a great flexibility in the design
of the properties of the guided mode. In particular, the unique dispersion characteristics of small core
MF in combination with their enhanced nonlinearities have enabled efficient generation of ultra-broad
supercontinua spanning from near UV to near infrared wavelengths. In this thesis, the physics of
supercontinuum generation in MFs has been investigated in details for a wide variety of the pump pulse
parameters such as wavelength, power and width. A comprehensive analysis of the relative
contributions of the various nonlinear processes was also provided. The mechanisms leading to SC
generation in MFs was shown to be different depending on whether the pump wavelength is located in
the anomalous or normal dispersion region of the fiber. Several ways for controlling and extending
further the bandwidth of SC were also proposed. In particular, it was demonstrated that employing
highly birefringent microstructured fibers provides several advantages for supercontinuum generation:
less power required, control of the polarization of the SC and wavelength tunability.
As dispersion properties play a crucial role in the applications of MFs, for instance in spectroscopy or
telecommunications, a simple technique for measuring the anomalous dispersion of microstructured
fibers was demonstrated. The technique is based on the modulation of the spectrum of a short laser
pulse resulting from its reshaping into a soliton wave along the fiber. The dispersion of the fiber is
directly related to the period of the spectral oscillations, and is, to the first order, independent of the
power and temporal width of the input pulse. The measurement accuracy was estimated to be around
10%.
The phase-shift technique is one of the most commonly used techniques for measuring the group delay
of optical components. However, the accuracy of this technique may be limited in the case of
components for which the group delay varies strongly with wavelength.  A new method based on the
standard phase-shift technique that improves the accuracy of group delay measurement was presented.
It allows access to the actual value of the group delay of the component by performing a deconvolution
of the measured data with the instrument function of the phase-shift technique. Considerable
improvement of the accuracy may be achieved, especially, when high modulation frequencies are
employed in order to obtain good timing resolution. Furthermore, the method is applicable to the
measurement of any arbitrary group delay profile.
The injection of optical feedback from a distant reflective element to solitary diode lasers can greatly
enhance their performance. For instance, their wavelength tunability may be substantially increased and
their linewidth reduced by more than an order of magnitude through the use of an external cavity
configuration. In this work, the effects of optical feedback on the linewidth and tunability of a GaAlAs
grating-cavity laser operating at 780 nm were studied. The analysis provided evidence of the linewidth
dependence on the relative detuning between the grating dispersion curve and the oscillating external
cavity mode. Furthermore, this dependence was experimentally measured employing the modified self-
homodyne technique. Linewidth variations by as much as 150 kHz within one external cavity mode
were observed when rotating the grating. Such variations can be minimized if the rotation of the grating
is coupled to a translation in a very accurate fashion. However, accurate coupling is difficult to achieve
in practice and the experiments performed show that a small mismatch may result in a substantial
variation of the laser linewidth.
The development of silica-based active components for optical telecommunications is of high interest
since it would allow for the reduction of loss and a better transparency of the networks. Poling of glass
is one promising way for enhancing the intrinsically very low second-order susceptibility of silica.
Inscription of Bragg gratings was demonstrated to be an efficient method for measuring the second-
order susceptibility induced by thermal poling of doped-silica planar waveguides. The method is based
on the change of refractive index of the material induced by poling. The technique also provides better
understanding of the poling mechanisms.
In conclusion, the dissertation presented studies on supercontinuum generation in the newly developed
microstructured fibers. These studies lay the basis for generating SC with flexibility in the center
wavelength and bandwidth utilizing this type of fiber and future design of microstructured fibers
intended for SC generation.  Besides, several novel optical measurement techniques were successfully
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demonstrated. These include the characteriztion of the dispersion properties of optical components,
linewidth of external cavity lasers and poling-induced second-order nonlinearity.
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List of acronyms and symbols

AO Acousto-optic
DSF Dispersion-shifted fiber
DUT Device under test
ECL External cavity laser
EO Electro-optic
FBG Fiber Bragg grating
FL Fiber laser
FP Fabry-Pérot
FWM Four-wave mixing
GD Group delay
HOM Higher-order mode
HV High voltage
I Isolator
LCA Liquid crystal array
LEO Linear electro-optic coefficient
LO Local oscillator
MF Microstructured fiber
MFD Mode field diameter
MMF Multimode fiber
MZ Mach-Zehnder
NSE Nonlinear Schrödinger equation
OSA Optical spectrum analyzer
PAP Principal axis of polarization
PBF Photonic bandgap fiber
PC Polarization controller
PCF Photonic crystal fiber
QEO Quadratic electro-optic coefficient
RFSA RF spectrum analyzer
RW Resonant wave
SC Supercontinuum
SDL Solitary diode laser
SHG Second harmonic generation
SPM Self-phase modulation
SRS Stimulated Raman scattering
SS Self-steepening
SSFS Soliton self-frequency shift
TE Transverse electric
TL Tunable laser
VA Variable aperture
XPM Cross-phase modulation
XPM-IW Cross-phase modulation induced wave

a core diameter
c speed of light in vacuum
d hole diameter
fr fractional contribution of the delayed response
fAOM frequency of acousto-optic modulator
g gain of the semiconductor
h Planck's constant
hR delayed response of the fiber
m modulation index
n refractive index
na core refractive index
ncl cladding refractive index
nd semiconductor refractive index
nL linear part of the refractive index
n2 nonlinear part of the refractive index
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r linear electro-optic coefficient
reff effective reflectivity
r1 rear facet laser reflectivity
r2 front facet laser reflectivity
r3 external element reflectivity
s quadratic electro-optic coefficient
z distance

A slowly-varying envelope of the electric field
AD spectral amplitude of the dispersive field
AS spectral amplitude of the soliton
AT total field amplitude
Aeff effective area
B scaling factor
Bk magnitude of the kth resonance
D dispersion
Da approximated dispersion value
E electric field
Eapp applied electric field
Edc frozen electric field
F chirp reduction factor
ID intensity of the detected signal
L fiber length
Ld solitary diode laser cavity length
Le external cavity length
LD dispersion length
LNL nonlinear fiber length
N soliton order
P polarization
Pom power of the oscillating mode
Pp peak power
Pav average power
Pk peak power of the kth soliton
R nonlinear response of fiber
RC response of optical component
TFWHM temporal full-width at half maximum
Tk width of the kth soliton
T0 temporal width
V normalized frequency parameter
Vapp applied voltage

α fiber loss
αL linewidth-enhancement factor
αm modal loss coefficient
βk k

th order dispersion
βr amplitude ratio between the interfering fields
β1 group delay
β2 second-order dispersion
ε deviation-value from fundamental soliton
η spontaneous emission coefficient
λp pump wavelength
λFWM wavelength generated through four-wave-mixing
λZD zero-dispersion wavelength
β propagation constant
γ nonlinear coefficient
ε0 vacuum permittivity
λ wavelength
µ0 vacuum permeability
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νg group velocity
νφ phase velocity
ν0 center frequency of the field
τc group delay of optical component
τcoh coherence time of the laser
τdelay delay
τm measured group delay
τ1,τ2 relaxation parameters
φC phase response of optical component
φNL

SPM SPM-induced phase-shift
φNL

XPM XPM-induced phase-shift
φR phase of resonant wave
φS phase of soliton
χ(j)

j
th order susceptibility

χ(2)
2

nd order susceptibility
χ(2)

eff effective second-order susceptibility
χ(3)

3
rd order susceptibility

ω angular frequency
ωas anti-Stokes frequency
ωm angular modulation frequency
ωoff offset frequency
ωp pump frequency
ωqo oscillation frequency of the qth longitudinal mode without optical feedback
ωr repetition rate
ωst Stokes frequency
ωS center angular frequency of the soliton
ωR center angular frequency of the resonant wave
∆f frequency difference
∆fG grating full width at half maximum reflectivity
∆ν linewidth
∆νc linewidth of the cavity mode
∆νECL linewidth of the external cavity laser
∆νL Schalow-Townes linewidth
∆νS linewidth resulting from the shot noise
∆νSDL linewidth of the solitary diode laser
∆φE electrical phase difference
Γ confinement factor
Λ pitch of the lattice
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Abstract of publications

[I] “Spectral broadening of femtosecond pulses into continuum radiation in microstructured

fibers”, Opt. Express 10, 1083-1098 (2002).

The influence of pump wavelength relative to the zero-dispersion wavelength for supercontinuum
generation in microstructured fibers is investigated. Different nonlinear mechanisms are observed
depending on whether the pump is located in the normal or anomalous dispersion region of the
fiber. Raman scattering is found to play a crucial role in the process. The experimentally observed
phenomena are explained and confirmed with a numerical model.

[II] “Supercontinuum generation in a highly birefringent microstructured fiber”, Appl. Phys.

Lett. 82, 2197-2199 (2003).

Supercontinuum generation in a highly birefringent microstructured fiber is presented. It is
shown that the use of a highly birefringent fiber offers clear advantages for continuum
generation. In particular, the polarization is preserved along the fiber for all the spectral
components. Furthermore, the different dispersion characteristics of the two principal axes of
polarization of the fiber provide a convenient way for tuning the properties of the generated
continuum. Generation of an ultra-broadband continuum extending from 400 nm to 1750 nm is
demonstrated.

[III] “Measurement of anomalous dispersion in microstructured fibers using spectral

modulation”, Opt. Express, submitted.

A novel technique to measure the anomalous dispersion of small core microstructured fibers
using short optical pulses is presented. The method relies on the spectral modulation resulting
from the evolution of the input pulse into soliton. The technique allows for a direct measurement
of the dispersion at the desired wavelength within a 10% accuracy.

[IV] “New method to improve the accuracy of group-delay measurements using the phase-shift

technique”, Opt. Commun. 204, 119-126 (2002).

A new method for improving the accuracy of the phase-shift technique for group delay
measurement is demonstrated. The method allows for accurate reconstruction of the actual group
delay when a high modulation frequency is employed for a better timing resolution. A
deconvolution with the instrument function of the phase-shift technique is performed on the
measured data. Illustration of the method are presented for a fiber Bragg grating and narrow-band
thin-film filter.

[V] “Analysis of the linewidth of a grating-feedback GaAlAs laser”, IEEE J. Quantum Electron.

36, 1193-1198 (2000).

The tuning properties of a GaAlAs external grating cavity laser are investigated. In particular, the
relative detuning between the modes of the external cavity and that of the solitary diode laser are
shown to strongly affect the linewidth of the laser. A realistic coupled-cavity model, which
incorporates the frequency-dependent reflection from the grating, is used to explain the linewidth
variations within one external cavity mode.

[VI] “Measurements of linewidth variations within external cavity modes of a grating-cavity

laser”, Opt. Commun. 203, 295-300 (2002).

Linewidth variations within an external cavity mode of a grating-cavity laser are measured with
high accuracy using the modified self-homodyne technique with a short delay line. The linewidth
is found to change by a factor of five from 30 kHz to more than 150 kHz when the laser is tuned
over a single external-cavity mode. A simple model based on a linear relationship between the
chirp reduction factor and the frequency tuning of the laser is used to describe the results.
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[VII] “Strength and symmetry of the third-order nonlinearity during poling of glass

waveguides”, IEEE Photonics Technol. Lett. 14,1294-1296 (2002).

A novel technique for measuring the second-order susceptibility induced by thermal poling in
planar waveguides is presented. The method is based on the change of the wavelength reflection
peak of Bragg gratings written in the waveguides prior to poling.
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