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Summary. In this paper,we prove superconvergence results for the vector variable
when lowest order triangular mixed finite elements of Raviart-Thomas type [17] on
uniform triangulations are used, i.e., that the H(div;Ω)-distance between the approxi-
mate solution and a suitable projection of the real solution is of higher order than the
H(div;Ω)-error. We prove results for both Dirichlet and Neumann boundary condi-
tions. Recently, Duran [9] proved similar results for rectangular mixed finite elements,
and superconvergence along the Gauss-lines for rectangular mixed finite elements was
considered by Douglas, Ewing, Lazarov and Wang in [11], [8] and [18]. The trian-
gular case however needs some extra effort. Using the superconvergence results, a
simple postprocessing of the approximate solution will give an asymptotically exact
a posteriori error estimator for the L2(Ω)-error in the approximation of the vector
variable.

Mathematics Subject Classification (1991): 65N30

1. Introduction

First, we consider the following elliptic problem with Dirichlet boundary conditions,
defined on an open domain Ω ⊂ ❘

2 which can be triangulated uniformly (see Defini-
tion 2.4):

find a function u ∈ H2(Ω) such that:

−div(A∇u) = f in Ω,

u = g on ∂Ω.(1.1)

Here, A is a matrix-valued function on Ω such that there exists a β > 0 such that for
all q ∈ [L2(Ω)]2

(Aq,q) ≥ β‖q‖2 .(1.2)

A(x) is supposed to be symmetric for all x ∈ Ω and the coefficients aij of A to be

Lipschitz continuous. Let f ∈ L2(Ω) and g ∈ H
1
2 (∂Ω).
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An equivalent formulation of (1.1) as a system of first-order equations is given
by:

find functions u ∈ H2(Ω) and p ∈ H(div;Ω) such that:

p = −A∇u in Ω,

div p = f in Ω,

u = g on ∂Ω.(1.3)

In this paper, triangular mixed finite elements of lowest order Raviart-Thomas
type [17] are used to approximate u and p simultaniously. For the approximation ph

of the vector field p we prove superconvergence results when a family of uniform
triangulations of Ω is used, i.e. we prove that the L2(Ω)-distance between ph and a
suitable projection Πhp of p is of higher order than the L2(Ω)-norm of the error p−
ph. A similar result was recently proved by Duran [9] in the case of rectangular mixed
finite elements, making use of the well-known lemma of Bramble and Hilbert [3].
Here, in the triangular case, the Bramble-Hilbert lemma will also be used, however,
it takes extra effort before it can be applied.

Superconvergence has recently been studied intensively, for both conforming and
mixed finite element methods. For conforming finite elements, see Goodsell and
Whiteman for a treatment of linear [12] triangular and quadratic [13], [14] triangular
elements. For mixed elements, see Douglas and Roberts [7], who prove superconver-
gence for the displacement variable on general triangulations. For superconvergence
along the Gauss-lines in rectangular mixed finite element methods, see the papers of
Douglas, Ewing, Lazarov and Wang [11], [8], [18].

The conditions on the triangulations that are used here are quite restrictive; how-
ever, also in conforming finite elements, similar conditions on the triangulations for
obtaining global superconvergence results for the gradient are not unusual, and even
proven necessary by Duran et al. in [10]. And, for example, the triangulations are
exactly of the type that Brezzi et al. [5] use when approximating the semi-conductor
device equations and Kaasschieter [15] in the computation of streamlines for potential
flow problems. It should be stressed that triangular grids, in general, give more flex-
ibility in the approximation process than rectangular grids, especially when it comes
to refining, but in this area still much research needs to be done.

The superconvergence results will be used to obtain a higher order approxima-
tion for p by means of a simple post-processing of ph. As a consequence, a cheap
asymptotically exact a posteriori error estimator for the L2(Ω)-error in ph can be
constructed, using arguments of Ainsworth and Craig [2].

The outline of this paper is as follows. In Sect. 2, we establish some notations,
recall the mixed finite element method with lowest order triangular Raviart-Thomas
elements and collect some well-known results. We mainly follow the notations and
conventions of [17], from whom we also adopt the above mentioned projection op-
erator Πh. Also, the types of triangulations to be used are described. In Sect. 3 we
prove the main theorem on superconvergence of ph to Πhp in the L2(Ω)-sense for
the Dirichlet problem (1.1). In Sect. 4 we will formulate the homogeneous Neumann
problem and show that, in this case, an even better rate of superconvergence holds.
An a posteriori error estimator for the L2(Ω)-error in ph will be considered in Sect. 5.
In Sect. 6 some concluding remarks are made.
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2. Spaces, mixed formulation and projections

2.1. Sobolev spaces

First of all, we consider some of the spaces involved. Denote by Hk(Ω) the usual
Sobolev space of order k, i.e. the space of L2(Ω)-functions v with square-integrable
generalized partial derivatives up to order k; this is a Hilbert space with respect to
the norm

‖v‖k,Ω =





k
∑

j=0

|v|2j,Ω





1
2

,(2.1)

where

|v|j,Ω =





∑

|α|=j

∫

Ω

(Dαv)T(Dαv)dx





1
2

.(2.2)

Further, for non-integer s we can define the intermediate spaces Hs(Ω) with norm
‖ · ‖s,Ω by means of interpolation of Sobolev spaces of integer order. For a thorough
description of this procedure we refer to [16]. As usual, the spaces Hs

0 (Ω) are defined
as the ‖ · ‖s,Ω-completion of C∞

0 (Ω) in Hs(Ω). By H(div;Ω) we denote the L2(Ω)-
functions v with square-integrable weak divergence, which form a Hilbert space when
normed by

‖v‖div;Ω = (‖v‖2
0,Ω + ‖div v‖2

0,Ω)
1
2 .(2.3)

Finally, we define L∞(Ω) as the space of essentially bounded functions on Ω. We
norm it with

‖v‖0,∞,Ω = essup {x ∈ Ω|v(x)}(2.4)

For more details on Sobolev space theory, we recommend Adams [1] and Lions and
Magenes [16].

In the sequel, we will need some results on Sobolev spaces. They are formulated
in the following lemmata. First of all, define Ωh as the subset of points in Ω having
(Euclidian) distance less than h from the boundary:

Ωh = {x ∈ Ω| ∃y ∈ ∂Ω : dist(x, y) ≤ h}.(2.5)

Then we have the following results.

Lemma 2.1. For v in Hs
0 (Ω) ,where 0 ≤ s ≤ 1, we have:

‖v‖0,Ωh
≤ Chs‖v‖s,Ω .(2.6)

Proof. For s = 0, the inequality is obvious. For s = 1, the proof is first given for
v ∈ C∞

0 (Ω) by Taylor-expansion and then by completion for H1
0 (Ω). For 0 < s < 1,

the assertion follows from the interpolation inequality, for which we refer to [16],
Proposition 2.3 pp. 29. ⊓⊔

Lemma 2.2. For v ∈ Hs(Ω), where 0 ≤ s ≤ 1
2
, we have:

‖v‖0,Ωh
≤ Chs‖v‖s,Ω .(2.7)

Proof. For 0 ≤ s ≤ 1
2

it is valid that Hs(Ω) = Hs
0 (Ω) (see [16], Theorem 11.1,

pp. 55). So the statement is a corollary of Lemma 2.1. ⊓⊔

Remark 2.3. Obviously, for v ∈ Hs(Ω) with s > 1
2
, we cannot improve the order of

h in (2.7) as the counter example v = 1 shows.
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2.2. Discretisation, triangulations and a priori estimates

Let (·, ·) be the standard L2(Ω) inner product, and < ·, · > the corresponding one

on H
1
2 (∂Ω). Further, let ν be the outer unit normal to the boundary. Then the weak

formulation of (1.3) to be discretised is:

find u ∈ L2(Ω) and p ∈ H(div;Ω) such that:

(A−1p,q) − (u, div q) = − < g,qTν > for all q ∈ H(div;Ω),(2.8)

(v, div p) = (f, v) for all v ∈ L2(Ω).(2.9)

Here, by A−1(x) we mean (A(x))−1. The discretisation of (2.8) and (2.9) consists of
choosing suitable finite dimensional subspaces Vh and Qh of L2(Ω) and H(div;Ω)
respectively. The discretised problem then runs as follows:

find uh ∈ Vh and ph ∈ Qh such that:

(A−1ph,qh) − (uh, div qh) = − < g,qT
hν > for all qh ∈ Qh,(2.10)

(vh, div ph) = (f, vh) for all vh ∈ Vh .(2.11)

For Vh and Qh we will consider here the lowest order Raviart-Thomas spaces, from
which Vh is the space of piecewise constant functions relative to the triangulation
Th of Ω. As usual, h denotes the meshsize of the triangulation Th. The family of
triangulations to be used in the sequel of this paper will be assumed regular and
uniform:

Definition 2.4. A triangulation Th of Ω is said to be uniform if any two adjacent

triangles of Th form a parallelogram.

Definition 2.5. A family of triangulations (Th)h is said to be regular if the angles of

the triangles are bounded away from 0 and π(−π) when h tends to zero.

For later use, we will introduce some notations. First, choose any triangle K from
the triangulation Th. From the three outer unit vectors normal to the boundary ∂K
of K, select two which are closest to orthogonal and denote them by f1 and f2. This
procedure is in general not unique, we might for example also have come up with
the pair −f2, −f1. Since we will only be interested in the directions of the vectors,
this will appear to be no restriction.

Further, denote a parallelogram consisting of two triangles sharing a side with
normal fi by Nfi , (i = 1, 2). For each i = 1, 2, the domain Ω can be partitioned into
those parallelograms Nfi and some resulting boundary triangles which we denote by
Tfi . For an example of the definitions and notations concerning the triangulation, see
Fig. 1.

The space Qh can as usual be described as functions which are locally affine

transforms of functions in the reference space Q̂, defined on the reference triangle K̂
with corner points (0, 0), (1, 0), (0, 1) as follows:

Q̂ = {q̂|∃a0, a1, a2 ∈ ❘ : q̂ : (x, y)T −→ (a0 + a1x, a2 + a1y)T.

Now, denote by FK an affine transformation of the reference triangle onto K, then:

Qh = {qh ∈ H(div;Ω)|∀K ∈ Th : ∃q̂ ∈ Q̂ : qh|K = q̂ ◦ F
−1

K }(2.12)
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Fig. 1. A uniform triangulation of Ω

Remark 2.6. It is easy to see that for a function qh ∈ Qh , the divergence div
qh ∈ Vh and also that if qh is divergence free, then it is a piecewise constant vector
field. Further, the component of qh normal to a side of a triangle is constant on and
continuous across that side. As a matter of fact, qh is determined uniquely by the
values of those normal components on each side of each triangle in the triangulation
Th of Ω.

With this choice of Vh and Qh, one can prove [4] that the discrete system (2.10),
(2.11) has a unique solution (uh,ph) ∈ Vh × Qh and that the following optimal a
priori error estimates hold [7], [17]:

‖p − ph‖0,Ω ≤ Ch|p|1,Ω ,(2.13)

‖div(p − ph)‖0,Ω ≤ Ch|p|2,Ω .(2.14)

Here and in the sequel, C is a constant independent of h and the functions to which the
assertion applies, such as p in this case, which can have different values in different
formulas.

2.3. Fortin interpolation

Error analysis often can be simplified by using projections of the solution p on the
approximating space Qh. Here, we consider the so called Fortin interpolation operator
Πh which is also used by [17], [7] and [9]. Given a function q ∈ [H1(Ω)]2, it uses
the average of the component normal to the side of each triangle over that side to
define a function Πhq ∈ Qh in a unique ( see Remark 2.6) way:

Πh : [H1(Ω)]2 −→ Qh,

∫

∂Ki

(Πhq − q)Tνi dγ = 0 for all sides ∂Ki of all K ∈ Th.(2.15)

Here, νi is the outer unit normal to the side ∂Ki of K. For projection (2.15) one can
prove [17]:

(div(q −Πhq), vh) = 0 for all vh ∈ Vh,(2.16)

‖q −Πhq‖0,Ω ≤ Ch|q|1,Ω .(2.17)
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We will also consider the L2(Ω)-orthogonal projection Ph on the approximating space
Vh, which is characterized by the property that

(u− Phu , vh) = 0 for all vh ∈ Vh.(2.18)

Standard approximation theory tells us that

‖u− Phu‖0,Ω ≤ Ch|u|1,Ω .(2.19)

Combining (2.16), (2.18) and (2.19) we easily notice that

div Πhq = Phdiv q,(2.20)

‖div(q −Πhq)‖0,Ω ≤ Ch|div q|1,Ω ,(2.21)

from which (2.20) is expressed in the following commuting diagram:

L2(Ω) Vh
✲

Ph

[H1(Ω)]2 Qh
✲Πh

❄

div

❄

div

3. Superconvergence for the Dirichlet problem

In the previous section, it was stated in (2.13) that the L2(Ω)-error in the approxi-
mation ph of the vector field p is of order h. In this section we will prove that the
L2(Ω)-distance between ph and the Fortin-projection Πhp of p is at least of order

h
3
2 , assuming that we use a regular family (Th)h of uniform triangulations of Ω.

First of all, subtracting (2.10) and (2.11) from (2.8) and (2.9) respectively, gives
the error equations:

(A−1(p − ph),qh) = (u− uh, div qh) for all qh ∈ Qh,(3.1)

(div(p − ph), vh) = 0 for all vh ∈ Vh.(3.2)

Combining (3.2) and (2.20), it follows that

div ph = Phdiv p = divΠhp,(3.3)

so that the vector field ph−Πhp is divergence-free, and, as a consequence, a piecewise
constant vectorfield (see Remark 2.6). Substituting this expression for qh in (3.1) gives

(A−1p,ph −Πhp) = (A−1ph,ph −Πhp).(3.4)

By condition (1.2) on A and with equation (3.4) , we find that

‖ph −Πhp‖2
0,Ω ≤ C(A−1(ph −Πhp),ph −Πhp)

= C(A−1(p −Πhp),ph −Πhp).(3.5)

This last expression will be estimated in the superconvergence-theorem 3.2. The fol-
lowing lemma will appear to be useful in the proof. Notice that uptill now, the special
form of the triangulation has not been used.
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Lemma 3.1. Let N be a parallelogram and T1, T2 two triangles such that N = T1∪T2.

Then, for all r ∈ [P 1(N )]2, where P 1(N ) is the space of polynomials of degree 1 in

x and y on N , we have that

∫

N

(r −Πhr) dx dy = 0.

Proof. We may assume that N is centered around the origin and, since r = Πhr
whenever r is a constant, take r ∈ [P 1(N )]2 zero in the origin and thus odd. But
then is Πhr odd as well, with, as a consequence,

∫

T1
(r − Πhr)dx dy = −

∫

T2
(r −

Πhr)dx dy. ⊓⊔

Now, (3.5) leads us to the main result of this section:

Theorem 3.2. Assume that we have a regular family (Th)h of uniform triangulations.

Let the solution u of the Dirichlet problem (1.1) be an element of H3(Ω). Then we

have

‖ph −Πhp‖0,Ω ≤ Ch
3
2 (‖p‖ 3

2
,Ω + h

1
2 |p|1,Ω + h

1
2 |p|2,Ω).(3.6)

(Superconvergence of the vector field approximation to the vector field Fortin-projection)

Proof. First, we define a coordinate transformation F on ❘2 by taking the vectors
f1 and f2 (see Sect. 2.2.) as the new basis, so, the matrix of F−1 has f1 and f2 as
columns. Denote by e1 and e2 the standard basis vectors of ❘2 in respectively the x-
and the y-direction. Then we have:

(A−1(ph −Πhp),p −Πhp) = (F (ph −Πhp) , F−1T

A−1(p −Πhp))

=
∑

K∈Th

∫

K

(F (ph −Πhp))TF−1T

A−1(p −Πhp) dx dy

=

2
∑

i,j=1

I ij(3.7)

where

I ij =
∑

K∈Th

∫

K

eT
iF (ph −Πhp)(eT

i F
−1T

A−1ej)(p −Πhp)Tej dx dy.(3.8)

Now, for simplicity, consider only the sum I 11. Let Ω be partitioned into parallelo-
grams Nf1

and boundary triangles Tf1
, as defined in Sect. 2.2. Denote the centre of a

parallelogram Nf1
or a boundary triangle Tf1

by M , then, by the conditions on A in
Sect. 1 and the normality of the columns of the matrix F−1, we have:

eT
1F

−1T

A−1e1(x) = eT
1F

−1T

A−1e1(M ) + O(h) on Nf1
resp. Tf1

.(3.9)

Furthermore, since eT
1F (ph − Πhp) is the component of ph − Πhp normal to the

shared side of the two triangles forming a parallelogram Nf1
, it is continuous and

thus (see Remark 2.6) constant on Nf1
. So, rewriting the sum I11 as a sum over

parallelograms Nf1
, boundary triangles Tf1

, and lower order terms, we find:
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|I11| ≤
∑

Nf1

|(eT
1F

−1T

A−1e1)(M ) eT
1F (ph −Πhp)

∫

Nf1

(p −Πhp)Te1 dx dy|

+
∑

Tf1

|(eT
1F

−1T

A−1e1)(M )

∫

Tf1

eT
1F (ph −Πhp)(p −Πhp)Te1 dx dy|

+
∑

K∈Th

Ch|

∫

K

eT
1F (ph −Πhp)(p −Πhp)Te1 dx dy|.(3.10)

Now, denote by ∂Ωf1
the union of the boundary triangles Tf1

. In bounding (3.10) we
use the Cauchy-Schwarz inequality and the estimate

|eT
1F (ph −Πhp)| ≤ Ch−1|det(F )|‖ph −Πhp‖0,Nf1

,(3.11)

which results in:

|det(F )|−1|I11| ≤ Ch−1‖(eT
1F

−1T

A−1e1)‖∞‖ph −Πhp‖0,Ω

·





∑

Nf1

(

∫

Nf1

(p −Πhp)Te1 dx dy

)2




1
2

+‖(eT
1F

−1T

A−1e1)‖∞‖ph −Πhp‖0,∂Ωf1
‖p −Πhp‖0,∂Ωf1

+ Ch‖ph −Πhp‖0,Ω‖p −Πhp‖0,Ω .(3.12)

The next step in estimating I11 will be the application of the Bramble-Hilbert lemma
[3] on the linear functional F on [H2(Nf1

)]2 defined by

F (q) =

∫

Nf1

(q −Πhq)Te1 dx dy , q ∈ [H2(Nf1
)]2.(3.13)

For this functional, the Cauchy-Schwarz inequality and (2.17) yield:

|F (q)| ≤ Ch‖q −Πhq‖0,Nf1
≤ Ch2|q|1,Nf1

.(3.14)

Now, since each parallelogram Nf1
is a translate of the parallelogram N of Lemma 3.1,

one finds that [P 1(Nf1
)]2 ⊂ Ker(F ), and a standard application of the Bramble-

Hilbert lemma gives

|F (q)| ≤ Ch3|q|2,Nf1
, for all q ∈ [H2(Nf1

)]2.(3.15)

Combining (3.12), (2.17) and (3.15), we conclude that

|I11| ≤ C|det(F )|‖ph −Πhp‖0,Ω(‖(eT
1F

−1T

A−1e1)‖∞ + 1)

(h2|p|2,Ω + h2|p|1,Ω + h|p|1,∂Ωf1
).(3.16)

Since the family of triangulations was assumed to be regular (see Definition 2.5), we
have that the determinant of F , which is the inverse of the surface of the parallelogram
spanned by f1 and f2, is bounded by a constant independent of h. Now, Lemma 2.2
yields

|p|1,∂Ωf1
≤ |p|1,Ωh

≤ Ch
1
2 ‖p‖ 3

2
,Ω(3.17)

This completes the estimation of |I11|. From the obvious fact that the sums I12, I21

and I22 can be estimated similarly, the proof of the theorem follows from (3.5). ⊓⊔
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Remark 3.3. Following the same lines as above, the result of this theorem can also be
achieved for arbitrary polygonal domains Ω, when a regular family of triangulations
is used which is uniform only on the part of Ω more than a constant times h away
from the boundary.

4. Superconvergence for the Neumann problem

In this section, we will consider the homogeneous Neumann boundary value problem,
i.e., we change the boundary condition of (1.1) into

∇uTν = pTν = 0 on ∂Ω,(4.1)

ν being the outer unit normal to ∂Ω. Notice that this problem is not uniquely solvable,
u can only be determined up to a constant value. The formulations of the weak and
the discrete problem of course differ from those of the Dirichlet problem considered
in the previous sections. In this section, we will give those formulations and prove
better rates of superconvergence than in Sect. 3. To be specific, we will prove that the
L2(Ω)-norm of ph −Πhp is of order h2.

First, define H0(div;Ω) to be the subspace of H(div;Ω) consisting of functions q
for which qTν equals zero on ∂Ω, and Q0h as the space Qh ∩H0(div;Ω). Then the
weak problem is the following:

find u ∈ L2(Ω) and p ∈ H0(div;Ω) such that:

(A−1p,q) − (u, div q) = 0 for all q ∈ H0(div;Ω),(4.2)

(v, div p) = (f, v) for all v ∈ L2(Ω).(4.3)

As a consequence, we will consider the following discrete problem:

find uh ∈ Vh and ph ∈ Q0h such that:

(A−1ph,qh) − (uh, div qh) = 0 for all qh ∈ Q0h,(4.4)

(vh, div ph) = (f, vh) for all vh ∈ Vh.(4.5)

In solving this system in practice, one adds an extra equation in which the coefficient
of one of the components of uh is prescribed to obtain unique solvability of the
resulting matrix-vector system. The a priori error estimates (2.13) and (2.14) are still
valid.

The error equation (3.1) is now only valid for all qh ∈ Q0h, but this is not
a restriction; since both ph and Πhp are elements of Q0h, we can still substitute
ph − Πhp for qh in (3.1) and thus (3.5) still holds. This leads to the following
superconvergence result for the Neumann problem:

Theorem 4.1. Let the solution u of the Neumann problem be an element of H3(Ω).
Assume that we have a regular family of triangulations (Th)h of Ω. Then

‖ph −Πhp‖0,Ω ≤ Ch2(|p|1,Ω + |p|2,Ω)(4.6)
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Proof. We claim that the proof of Theorem 3.2 can still be used, with one essential
improvement: the summation over the boundary triangles ( the second term in formula
(3.10)) equals zero, since the term eT

1F (ph −Πhp) is the component of ph −Πhp
normal to ∂Ω and also a constant on each triangle. The homogeneous Neumann
boundary conditions on ph and p and the definition of the Fortin projection yield that
this normal component equals zero. ⊓⊔

Remark 4.2. When we consider mixed boundary conditions, the weak and the discrete
formulation use spaces HBC(div;Ω) and QhBC instead of H0(div;Ω) and Q0h. The
functions in these spaces have normal components equal to zero only on the part
of ∂Ω on which the Neumann boundary conditions are prescribed. One can easily

conclude that superconvergence of order h
3
2 holds.

5. Post-processing and a posteriori error estimation

In Sect. 4.1 we will construct a post-processing mechanism for functions in Qh, which,
when applied to the Fortin projection Πhq of a function q ∈ [H2(Ω)]2, will improve
its approximation property. Further, we will use the superconvergence results of sec-
tions 3 and 4 to show that this post-processor also improves the order of approximation
in the mixed finite element approximation. As a consequence, in Sect. 5.2, an asymp-
totically exact a posteriori error estimator for this approximation can be constructed.

5.1. Post-processing

First, we consider an arbitrary qh ∈ Qh. Once again, notice the continuity of the
components normal to edges of triangles across those edges, but this time also the,
in general, discontinuity of the components tangential to edges of triangles across
those edges. This discontinuity of tangential components is the main feature of the
post-processing, which defines a function Khqh as follows (see also Fig. 2):

– In the midpoint P of each edge which has a triangle on both sides, take the average
of the values of the approximation on both triangles:
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✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
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✂
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✂
✂
✂
✂
✂
✂
✂

✂
✂
✂
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✂

❅
❅

❅
❅

❅
❅

❅
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❅
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❳❳❳❳❳❳❳❳②q
h
|K2

(P )

P

❆
❆❑
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h

(P )

•

•

•

K

K̃

Nc

P̃

P

Fig. 2. Post-processing a function q
h
∈ Qh
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Khqh(P ) =
1

2
(qh|K1

(P ) + qh|K2
(P )).(5.1)

(Notice that actually we are only postprocessing the tangential components here.)
– If we are dealing with a boundary edge, i.e. one which has only a triangle K on

one side of that edge, then there exists at least one K̃ ∈ Th such that N = K ∪ K̃
is a parallelogram. The straight line through the midpoint P of the boundary edge
and the centre Nc of the parallelogram intersects the boundary of N in another
point P̃ . We will assume that Khqh is already defined at Nc and P̃ of at least one
of the parallelograms N associable to K. Then we choose such a parallelogram
and define the value of Khqh in P by linear extrapolation:

Khqh(P ) = 2Khqh(Nc) − Khqh(P̃ ).(5.2)

– On each triangle, the values of Khqh are now defined by linear inter-(extra-)polation
of the three values in the midpoints of the edges.

Now, apply this post-processing to Πhq, where q ∈ [H2(Ω)]2. This gives rise to
an approximation KhΠhq of q, which is in general not uniquely defined. This will
prove to be no problem, since the approximation properties of all the possible choices
are sufficient for our goals. In the following theorem we will prove that the vector
field KhΠhq is a higher order approximation of q than Πhq itself.

Theorem 5.1. Let q ∈ [H2(Ω)]2, then for KhΠhq we have:

‖q − KhΠhq‖0,Ω ≤ Ch2|q|2,Ω .(5.3)

Proof. First, let r be an element of [P 1(K̃)]2, where K̃ is the union of K and the
triangles sharing a side with K . Then, using the same arguments as in Lemma 3.1
we find that

KhΠhr = r on K , for all r ∈ [P 1(K̃)]2.(5.4)

Now, denote the midpoints of the sides of K by M1,M2,M3 and the corner points
by P1, P2, P3. Then one can easily check that for all q ∈ [H2(Ω)]2, since KhΠhq is
a linear function on K:

‖KhΠhq‖0,∞,K ≤ 3max {‖KhΠhq(M1)‖∞, · · · , ‖KhΠhq(M3)‖∞}

≤ 3 ‖Πhq‖0,∞,K̃ .(5.5)

Since the Fortin projection Πhq is also a linear function on K, it is also valid that:

‖Πhq‖0,∞,K ≤ max {‖Πhq(P1)‖∞, · · · , ‖Πhq(P3)‖∞},(5.6)

and since the angles between the normals of the sides of K are bounded away from
0 and π(−π), we have:

‖Πhq(Pi)‖∞ ≤ C

3
∑

j=1

|ΠhqTνj(Pi)| ≤ C

3
∑

j=1

‖qTνj‖0,∞,∂Kj
≤ C‖q‖0,∞,K .(5.7)

From (5.5), (5.6) and (5.7) we conclude that

‖KhΠhq‖0,∞,K ≤ C‖q‖0,∞,K̃ ,

so that, using (5.4), for all r ∈ [P 1(K̃)]2:
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‖q − KhΠhq‖0,K ≤ Ch‖q − KhΠhq‖0,∞,K = Ch‖(I − KhΠh)(q − r)‖0,∞,K

≤ Ch‖q − r‖0,∞,K̃ .

Interpolation theory in Sobolev spaces (see Ciarlet [6] chapter 3), tells us that

inf {r ∈ [P 1(K̃)]2 : ‖q − r‖0,∞,K̃} ≤ Ch|q|2,K̃ ,

so the conclusion is that

‖q − KhΠhq‖0,K ≤ Ch2|q|2,K̃ .(5.8)

We now obtain the statement by squaring (5.8), summing over all triangles K ∈ Th

and taking the square root. ⊓⊔

Combining the superconvergence results and the statements of the theorem in this
section, it is easy to conclude that the post-processor Kh also improves the order of
approximation of ph:

Corollary 5.2. Assume that we have a regular family (Th)h of uniform triangulations.

Let the solution u of (1.1) be an element of H3(Ω). Then we have for the Dirichlet

problem:

‖p − Khph‖0,Ω ≤ Ch
3
2 (‖p‖ 3

2
,Ω + h

1
2 |p|1,Ω + h

1
2 |p|2,Ω).(5.9)

For the homogeneous Neumann problem we obtain

‖p − Khph‖0,Ω ≤ Ch2(|p|1,Ω + |p|2,Ω).(5.10)

Proof. The triangle inequality

‖p − Khph‖0,Ω ≤ ‖p − KhΠhp‖0,Ω + ‖Kh(Πhp − ph)‖0,Ω ,(5.11)

combined with the boundedness (independent of h) of the operator Kh on Qh and the
application of Theorems 3.2, 4.1 and 5.1 give the assertions. ⊓⊔

5.2. A posteriori error estimation

Assuming that p is not approximated exactly for some triangulation in the family
(Th)h of triangulations of Ω, we have that the error ‖p − ph‖0,Ω is also bounded
from below by a positive constant times h. Using the results of Sect. 4.1, two triangle
inequalities lead to the observation that εp, defined by

εp(h) = ‖ph − Khph‖0,Ω ,(5.12)

is an asymptotically exact [2] a posteriori error estimator for the corresponding error,
i.e., the quotient of the error estimator and the error itself converges to 1 when h
tends to zero. In fact, for the so-called effectivity-index ηp , it is valid that

η p(h) =
εp(h)

‖p − ph‖0,Ω

= 1 + O(h
1
2 ) (h → 0),(5.13)

whenever the Dirichlet problem is under consideration, and

η p(h) =
εp(h)

‖p − ph‖0,Ω

= 1 + O(h) (h → 0),(5.14)

when we deal with the homogeneous Neumann problem.
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6. Concluding remarks

We conclude this article with some remarks with respect to the results. First of all,
from the proof of Theorem 3.2, it is not quite clear whether the order of the bound
proved here is in fact optimal. Numerical experiments could give an indication if it
would pay off to do some further research.

Second, we suspect that, as is the case in similar conforming finite element prob-
lems, perturbations on the uniform grid of the order O(h2) will not damage the
superconvergence seriously. The asymptotic behaviour of the error estimators will
still be the same. However, as in standard finite elements (see [10]), we might loose
the superconvergence (in general) when we use for example criss-cross grids instead
of uniform grids. Here too, numerical experiments could supply evidence for this, and
a proof might follow from analysis of a counter example.

An interesting question is whether the superconvergence holds in some sense
locally. Wheeler and Whiteman [19] prove for standard linear finite elements su-
perconvergence on certain fixed subdomains which are triangulated uniformly. Local
superconvergence might be of use in local error estimation and refinement strategies.

Finally, we notice that the post-processor suggested here can de easily imple-
mented in existing mixed finite element codes; moreover, the computational costs of
the actual error estimations is neglectible compared to the costs of solving the linear
system associated to the discretization.
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