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Superconvergence and Reduced Integration
in the Finite Element Method

By Milos Zlamal

Abstract. The finite elements considered in this paper are those of the Serendipity
family of curved isoparametric elements. There is given a detailed analysis of a super-
convergence phenomenon for the gradient of approximate solutions to second order
elliptic boundary value problems. An approach is proposed how to use the supercon-

vergence in practical computations.

1. Introduction. Among finite elements the curved isoparametric elements of
the Serendipity family (see Zienkiewicz [8]) are mostly used in the finite element codes
prepared for engineering computations. It has been observed (see, e.g., Veryard [7],
Irons and Razzaque [5], Barlow [1]) that applying quadratic members of this family
a considerable improvement in accuracy of stresses is achieved if a reduced numerical
integration—Gauss’ 2 x 2 or 2 x 2 x 2 product formulas—is used and the stresses are
computed at Gaussian points, i.e. at points of these formulas. Here we want to analyze
and justify this phenomenon. The results proved in the paper constitute a substantial
extension of earlier results of the author [9].

We consider first the Dirichlet problem in two dimensions for a selfadjoint second
order elliptic equation with variable coefficients as a model problem. We assume that
the finite element partitions of the given domain are 2-strongly regular (see definition
in the next section). In Section 4 we prove superconvergence of the gradient of
the approximate solution at ‘Gaussian points if Gauss’ 2 x 2 formula for the
two-dimensional cube C,: ~1 < §, < 1,7 = 1, 2, is applied. Numerical results
(Section 6) indicate convincingly that superconvergence does not set in if the con-
dition (2.8) about finite elements is not satisfied. Under a further assumption on finite
elements the superconvergence is proved if there is applied any symmetric formula of
the type (2.16) with positive coefficients which integrates exactly all polynomials from
0(3) on C, or any formula (2.16) which integrates exactly all polynomials from A4)
on C, (I';(k) and Q(k) denote the classes of polynomials of degree k and of degree k in
each variable, respectively). This result shows that the superconvergence phenomenon
is not closely connected with the reduced integration. However, Gauss’ 2 x 2 formula
has the smallest number of points among the above-mentioned formulas.

The theorem on superconvergence is true in three dimensions under the condition
that the partitions are 3-strongly regular. In the last section there are introduced
numerical results and an approach is proposed how to use the superconvergence in prac-
tical computations.
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664 MILOS ZLAMAL

2. Preliminaries. Let  be a bounded domain with a sufficiently smooth boundary
I". We consider the Dirichlet problem
Lu=f(x) Vx€Q, ulp =0,
2
0 au |

ij=1

2.1

here x = (x;, x,). Let us remark at this point that we could add a term aou with a, >0
in the definition (2.1) of the operator Lu. All that follows applies equally well to this
case, with a straightforward supplementary analysis. To (2.1) there is associated the bi-
linear functional

2
u o
2.2) a(u, v) = fﬂ i,iz=1 aj 3, dx, dx.
We assume that the coefficients are defined on  and that
2 2
(23) g x) = afx), 3 a;(DEE > ¢y _21 £} Vx€Q, ¢, = const > 0.
ij=1 i=
Hence a(u, v) is Hy(52)-elliptic.
The weak solution of the problem (2.1) is a function u EH})(Q) which satisfies

2.4) au,v) =(f,v)g o VYVE H;(Q).
We are using the usual notation for the Sobolev spaces:
H™Q) = {u€L*(Q),D*uc L>(Q) Vial<m}, m=0,1,...,
Hy(Q) = {u € H'(Q), ul, = 0}.
The norm in H™(Q) is denoted by || *1l,, o, and defined by
e,y o = 3 > IID"‘ulliz(mg /2,

lal<m

the inner product in H™(§2) is denoted by (-, *)m,q- Often we shall use the seminorm

%
(tlyn = ;1 z ”Da“”i%mg
al=m
(we set luly o = llully o).
To construct the finite element space ¥}, in which the approximate solution will
lie let us “cover” 2 by in general curved quadrilateral quadratic elements of the
Serendipity family. Denote by P'the class of incomplete cubic polynomials of the form

(2.5) @y + ok, + gk, F okl foagh b, il FoagblE, +oagk b,

Evidently,
(2.6) A2)c P C OQ).
Let Ny(%,, &) (=1, ..., 8) be polynomials introduced in Zienkiewicz 8, p. 109].

Then 2}3:1 vV (¢, £,) is the only polynomial from P assuming the given values y;
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THE FINITE ELEMENT METHOD 665

at the nodes of the two-dimensional cube C,: ~1<§, <1,-1<§, <1, ie. at the
vertices and at the midpoints of the sides of C,. This polynomial is a quadratic poly-
nomial in each variable determined on every side of C, uniquely by its values at nodes
of this side.
Now consider eight points (nodes) a; (j =1, ..., 8) with coordinates (o, xé)
and the mapping
8

8
@7 x =xit )= 2 NEh) X=X 8) = X NG b).
i= =
If (2.7) maps the cube C, one-to-one on a closed domain e lying in the (x4, x;)-plane,
we call e a quadratic quadrilateral element (curved or straight which depends on the
choice of the nodes a]-).

We “cover” Q by such elements, and we suppose that every “partition” of by
these elements is a 2-strongly regular partition. By a k-strongly regular partition we
understand a partition with the following properties:

(a) for every element the mapping (2.7) is a C*¥*! diffeomorphism (in particular,
(2.7) is invertible).

(b) to every element e there is associated a positive parameter 4,, and the map-
ping (2.7) is such that on e
(2.8) IDex¢| <A, lal<k+1,i=1,2,

1]
(2.9) ' hk <|J,) <c,h;
here J (%, &,) is the Jacobian of (2.7) and C,, ¢, are positive constants independent
of h, as well as of the chosen partition. If & is defined by

h = max h,,
e

then the constants C,., ¢, are independent of A, too.

We will consider a family of 2-strongly regular partitions of £ such that h — 0.
We denote by £, the interior of the union of all elements of the given partition (in
general , # Q); T, is its boundary.

Remark 1. The definition of a k-strongly regular partition is similar to the defini-
tion of a k-regular family of elements by Ciarlet and Raviart [4]. The main difference
is that, instead of their requirement (2.17") (p. 427), we ask (2.8). This is evidently a
much stronger condition, and every domain § cannot be covered by such elements.
However, numerical results (see Section 6) indicate convincingly that (2.8) with k = 2
is a necessary condition for superconvergence introduced later. In the following £ is
supposed to be such that there exists a family of 2-strongly regular partitions with
h— 0.

Remark 2. The following simple condition is sufficient for a partition to satisfy
(2.8) and (2.9) for A sufficiently small: to each element e of the partition there exists
a parallelogram e’ with sides h,and k,, h, >k, (i.e., we denote the larger side by 4,),
with angle w, and with nodes 4} (the nodes corresponding to the midpoints of sides of
C, must be midpoints of the sides of ¢') such that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




666 MILOS ZLAMAL

ke
(2.10) o620 0<wy<w, <=,
2.11) pla;, a;.) < C2h§+l’ 1<i<8,

where p(a;, a:.) is the distance of a; and a:. and w,, ¢4, C, are positive constants inde-
pendent of h,, and the given partition, i.e. independent of &, too. To prove it, write

= 28 'fN + 28 (x’ - x’)N (x, xJ are coordinates of a) The map-
pmg x; = 2 —1 X{ N(El, £,) (( = 1, 2) is a mapping which maps C, on the paral-
lelogram e’ and mldpomts on the midpoints of sides. Therefore, it is bilinear and we
easily compute that axe /0%; are constant and bounded by |axe'/ag | <%h, and |J, |

= Y%hk, sin w,. Hence, ID“x“’I %h, if lal = 1, D°x{ =0, if |a| =2 and

(c3/4)sm wohg Il < Y%h?%. From (2.11) it easily follows that (2.8) and (2.9) are
true for h, sufficiently small.

Let us remark that the condition (b) is not as strong as (2.10) and (2.11) which
effectively eliminate curved edges. E.g., consider a closed domain £ which is a map of
a closed rectangle R and the corresponding mapping x; = ¢s;,8,),i=1,2,is such
that g; € C3(R) and 3(y,, ¢,)/d(s,, s;) # 0 on R. We construct a mesh on { in the
following simple way: Its nodes are maps of nodes of a rectangular mesh of R. Con-
sider a rectangular element of R and denote by h,, k., the lengths of its sides, h, being
always the length of the larger one, and by s1 , s2, the coordinates of its center. Let ¢
be the element of & which corresponds to this rectangular element. Then one can
easily express the functions x{ from (2.7) and their Jacobian as follows (we may assume
that R has sides parallel to coordinate axes):

8 y 0 L0 )

. 99 (s} » 53) 1 wl(sl’ s2
X=X x[NiE,, b)) = 0, ) + 3k, e as, htzh T h
Pr

azwx(sl’ S2) ., 1 ‘P,(p 2) az%(sl’ sz)

1,2 1,2
+=h 1 4 h k,——— 122 + = k 2
87 a¢2 €€ 9s,0s, 87 as?
+r¢,8), D= Oh2) forlal >0
(Wl H] ‘002) 3
TelEr, £2) = g hefe 0(s1585) | 1=57.8,=5" "ot

Let us now assume that the rectangular mesh of R is chosen in such a way that k./h,
2 ¢4 > 0 where ¢, is a positive constant independent of h, and the given mesh. Then
the condition (b) is evidently satisfied for k = 2. An example of the mapping x; =
9;(s,, 5,): polar coordinates.

Remark 3. The sign of J, changes if the local ordering of nodes is taken in the
opposite direction. Therefore, we may and we will assume that for every e

(2.12) Je(§,, £) >0 VEEC,.
The functions v from the finite element space ¥}, are defined piecewise:

8
(213) v(xl’ x2) = ﬁ[gi(xl’ x2)’ E;(xla x2)] ’ 5(51, 22) = Z l),']Vj(sl, Ez)

j=1
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THE FINITE ELEMENT METHOD 667

Here &, = £7(x,, x,) is the inverse mapping to (2.7), and v; are values of v at nodes of
the element e. For the complete definition of V), it remains to ask v|rh = 0 which is
equivalent to the requirement that the values of v at nodes lying on I are equal to zero.
Evidently,

(2.14) V, CC,), V, CHy).

To define the approximate solution of the problem (2.4) we proceed in a similar
way as in [4]. We extend the solution u € H*(2) and the coefficients a; €H 3
according to Calderon’s extension theorem (see Necas [6, p. 80]) to R? and denote

these extensions by % and a,], respectively. We also extend f as follows:

2
f=— o_(~ du 2
-2 (ol ere
Denote by 2(w,v) the bilinear functional [ nhzi,].:l lTi}(BW/axi)(av/axi)dx. Due to
le‘h =0 we get for any v € Vh by Green’s theorem E(lz U) = (f v)o,ﬂh' For sim-

plicity of writing we will leave out the sign ~ and write

o, v) = (/i V.0, VVE Wy,

_Qu dv
a(u, v) = f Z ;o= dx
Qp 121 7 0x; 0x;
This will not cause any confusion in the estimates carried out later. All constants will

depend on | llg, Q, and || f ll,, a, . The first norm is bounded, according to Calderon’s
theorem, by llull, . Evidently, also | f ll,, a, is bounded by this norm. By (2.3) the

matrix A = {q; }2] , is uniformly positive deﬁmte for x € Q,, and h sufficiently
small if the extensions of the coefficients are continuous. Hence, under this condition

(2.15)

2
(23" Y e;(0EE >, }: g VxEQ,,

ij=1
where ¢, is a positive constant independent on A.

We could define the approximate solution u,, as that function from ¥, which
satisfies a(u,, v) = (£, ”)o,nh v € V,. However, in general the values of a(w, v) and
A ”)o,nh for v, w € ¥, cannot be computed exactly. Numerical integration is the
usual and only practical way out. To this end let us consider quadrature formulas
I(y) for the cube C, of the form

(2.16) I(p) = ; A,40,)-

We make the assumption that the points Q, of the formula belong to the interior of
C, or are nodes of C,. Then expressing a(w, v) as a sum of integrals over the elements
e, transforming these integrals by means of (2.7) in integrals over C, and using (2.16),
we get the approximate value a,(w, v) of a(w, v):

(2.17) a,(w,v) =3 3 A,J,Q,) Z ,,(Q (Q )a—x(Q)

i,j=1
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668 MILO§ ZLAMAL

Here the following notation (in agreement with the notation in (2.13)) is used for any
function g defined on &,

§(El > 22) = g[xi(él, 22), x;(zp 22)] .
Similarly,

(2.18) fulv) = ; ; A4,7,(0,)1(0,)¥Q,)

is the approximate value of (f, v)o,nh~ Our assumption concerning the points Q,
guarantees that, at least for A sufficiently small, we do not need for the computation of
a,(w, v) and £, (v) values of data at other points than at points from Q. Now the ap-
proximate solution u,, € V,, is defined by

2.19) a,(u,, v) = f,(0) YvEV,.

It is clear from the remark made above that u, does not depend on extensions of the
coefficients @;; and the right-hand side f of the equation (2.1). In general, it is not true
that u, exists and is unique. We will consider the cases that I(y) is Gauss’ product
formula 2 x 2 or any symmetric formula with positive coefficients which integrates
exactly all polynomials from ((3) (Gauss’ 2 x 2 is a special case of such formulas
having the smallest number of points) or any formula which integrates exactly all poly-
nomials from P(4). The existence and uniqueness of u,, will follow from Lemma 3.6.

3. Some Lemmas. In what follows we denote by C a generic positive constant
not necessarily the same in any two places which does not depend on &, 2 and on
some functions. It will be clear from the context of which functions the constant is
independent.

LemMA 3.1.  We have for any b € P

(3.1) I0l,c, <ClBlic,, 0<i<j<3(Ibly,c, =Nllo,c,),
(3.2) mcazXID“ﬁI < Cidlgyc,, ol <3.

Proof. To prove (3.1) forj = 1 it is sufficient to realize that Ilﬁll%,,cz is a posi-
tive definite quadratic form of the coefficients o (Gj=1,...,8) and lﬁlf’c2 isa
bounded quadratic form of these coefficients. Applying (3.1) with j = 1 to partial
derivatives of & we get (3.1) for j = 2, 3. (3.2) follows from equivalence of all norms

of finite dimensional spaces.
LemMa 32. Let g € H'(Q,),0<i<3. Then

(3.3) 8,0, < Che gl

Proof. We transform the integral lfg‘lzc2 by means of the inverse mapping of the
mapping (2.7). (3.3) follows from (2.8) and (2.9) (the Jacobian Je‘1 of the inverse
mapping is bounded by c,h_?).

Often, we shall make use of the Bramble-Hilbert lemma (see [2] and [3]) on
linear functionals. In fact, this lemma will be applied for the domain C, only.
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THE FINITE ELEMENT METHOD 669

LEMMA 3.3 (SPECIAL CASE OF THE BRAMBLE-HILBERT LEMMA). Let the linear
functional L(¢) be bounded on H** 1(C2), IL(o)| < Mgl .. Cy and let it vanish for
g E f’(k). Then there exists a constant C independent on ¢ such that

(34 L@ < CMlplyyy 0, Vo EHI(C,).

0'022

Lemma 3.3 allows us to estimate the interpolation error for a given function. The
interpolate ¢, of a function p defined on C, is the polynomial Ele ‘piNi(El’ £,),
where y; are the values of ¢ at the nodes of C,. The interpolate g, of a function g de-
fined on 2, is the function from ¥, which assumes the same values at all nodes of the
given partition as the function g.

LEMMA 34. If ¢ € H3(C,), then

If L(yp) vanishes for ¢ € Q(k), then

ak+1 ak+1

1%
asl{-&-l

¥
az§+l

lo.c,

(3.5 |L(p)l < CM3

(36) ||80 —‘p1"]"C2 <C!¢|3’C2, j= 0, .o, 3.

Proof. We get (3.6) if we apply Lemma 3.3 to the functional L(y) =
=y, w i,Cy and afterwards we set ¢ — ¢, for w.

We shall need estimates of the error functional E(p) = [ C, odt — I(). Such
estimates follow immediately from (3.5) and (3.4).

LEMMA 3.5. Let I(p) be a formula which integrates exactly all polynomials from

Q(3). Then
a4‘p a4
(3.7) 1)l < cl| =2 ¢ z .
aEl 0,C, aéz 0.C,
If I(p) integrates exactly all polynomials from 13(4), then
(3.8) IE@)i < Clolg ¢, -

The following is the main lemma from which, among other things, existence and
uniqueness of the approximate solution u, follows.

LEMMA 3.6. Let I(p) be any symmetric formula with positive coefficients which
integrates exactly all polynomials from Q(3) or any formula which integrates exactly all
polynomials from 13(4). Let the coefficients a; satisfy (2.3') and let them be bounded
and in the latter case be Lipschitz continuous on S, Finally, let the finite element
partitions be 1-strongly regular (in fact, it is sufficient that (2.8) be true for |a|l < 1 and
lod < 2, respectively). Then |vl, = {a,(v, v)}'/2 is @ norm on V,, equivalent uniformly
with respect to h to the norm vl q . ie. there exists a constant c, independent of h
such that

(3.9) cg ' vly g, SIvly Scglvly g, YUEV,

Remark 4. Among formulas satisfying the assumptions of Lemma 3.6 Gauss’
2 x 2 formula has the smallest number of points.
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670 MILOS ZLAMAL

Proof. (a) Let I(p) be a symmetric formula with positive coefficients which
integrates exactly all polynomials from Q(3). Denote by I*(y) the special case of
Gauss’ 2 x 2 formula. Denote by + the value y = I(E‘}) = I(E;) and by « the value
a = (45/16) (4/5 — ). As I*(E}) = I*(£}) = 4/9, we easily find that if & # 1, the
formula

1) = 72— ) = oI *(0)]

integrates exactly all polynomials from P(4). Hence

(3.10) I(p) = aI*(p) + (1 ~ )I°(y).

If = 1, then I(§) = I*(¢}) (i = 1, 2), and E'(p) = I(¢) — I*(yp) satisfies (3.8). We
have

(.11 I(p) = I*(p) + E'(9).

Now consider the function ¢ = (30/9%, 2+ (80/322)2 where 5EP. Asy €
P(4) it follows from (3.10) and (3.11), respectively, that I(y) = of*(y) +
a- a)fc Vvdt. As v is of the form (2.5), fc Ydg must be of the form zTAz where

z=(a,,.. as) and A is a symmetric 7 x 7 matrix. Further, we compute easily
') = zTAz - (16/45)(0:7 + a?); hence

) = 2742 - a(a7 + as) = ( ——ga) 274z +ga[ T4z ——(C!7 +a8)]
A direct computatlon gives
2
TAz——(a7 +°‘8)_4 0‘2 +§ Q0 +g a8> +4 (a3 +3 30, +ga7)

16 16

3 +llas0
As v is always positive, & must be smaller than 9/4; and setting ¢ = 1 — 4/9 > 0, we

have

— 7 ({22 V? (aa )2> _ e R,

1 === ) v+ >c dt = c|vl Vi€ P.
(.12 1) ((3£1> o)) > )., vaE=clite,
This inequality will be used to prove the first part of Lemma 3.6.

(b) From (2.3"), (2.12), (2.17) (the coefficients A, are positive) we get

o e s [E) - (E)])

If A, is the vector (55/ax1, 5B/ax2)T and A, the vector (30/9%,, 30/3g,)T, we
have A, = DA, where D = {9x£/3%,} 2, i=1- From (2.8) it follows [ID||*> < Ch2. If we
compute D! and take into account (2.9), we get ID~ 112 < Ch_; 2. Now for any
nonsingular matrix M the matrix M7M is positive definite and Ag' M TMA =
1M~ I=2 1A 12, Therefore,

a \2
J, [<§_v> + <ﬂ> ] =T I8, = J,AT (D~ 1)TD~ 1A, > J,IDI~2)IA,I12
x, dx,

> CIAP = Cy;
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THE FINITE ELEMENT METHOD 671

and with respect to (3.13) and (3.12), a,, (v, v) > ¢,CZ (V) > czelaﬁ,cz
On the other hand, ||A, 11> = ATDTDA, > D=1 ~2A,11* > ChZI|A, I1?; hence

|6|3,02>Ch§fe1;‘[<(,;’—x”1-> (a >]d x>cf [( ) <aa;2>]dx,

ie. Iiilf,c2 = CIvlf’e VD € P, and the final estimate is a,(v, v) >C'Eelvlf’e = CIva’Qh
(c) Let I(y) integrate exactly all polynomials from P(4). Consider first the sum

- vav
Se J”z; 'axax

(the values of this sum at Q, appear in (2.17)). We have
oY 9Y —INT R =
(3.14) S, = A{BA, = ”zl by ag, 2% B=J, (D HTAD™!

(K is the matrix {a,}2,_ ). Elementary computations give the following expressions
ijiij=1 p gl g p
for the coefficients of the symmetric matrix B:

- axt\’ ox; x5 axs \ .
by, =Je 3%, all—zg'gg;an-'— EN ay2(>

9x5 9x; ax§ ox5  9x5 oxi\_ ax§ 0xf |
b =J—1 v —‘—5 e +— = 12 Y _—-a22 >
12 = e )T o, Y11 T\ o, 0%, | 0, 0%, ot OF,

axg \? xS oxt ax§\?
=J! 2) by, - 22 =28y, o ) ol
by =Je 3%, ST S, ag, "2 3, ) "2

Let us denote by § any of the factors appearing at any of the coefficients @ a;; on the
right-hand sides of (3 15). We shall need later the following estimate of 8:

(3.15)

—

(3.16) ID*gl < ChY!, =0

(to prove (3.16) differentiate the identity J,J ! = 1 and prove by induction Dot =
O(h;2*12l); (3.16) follows by Leibniz rule). At this time we use (3.16) with |a] < 1.
Lipschitz continuity of a;; and (3.16) with o] < 1 give b= bg. + O(h,) where b?j means
the value of bil- at the center (0, 0). Therefore

2
_ 0 av av — [H012
S, = ATBA, + O(r)IA* = ,-,-z=:1 biiag, g T Ot )01 ¢, = by}j=1-

As (3D/0%,) (35/0%,) € P(4), we get

2 AJ.(Q) Z (Q) (Q)
r ’y]—
2, 9uQ,) 25(Q,)
= Z ”z:l if ag ag} + 0, )IU|

o av av
= dt + OCh )Ivl
c, ”_ b 3t 3 ¢
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672 MILOS ZLAMAL

Further, A?BAE > clJeAg'(D‘l)TD‘IAE (because B = Je(D‘l)TAD‘l and A satisfies
(2.3")). We have proved before that J eAg(D_l)TD_IAE = CIIAEIIZ. Therefore,

5\2 | /.90 \2 3D 2
ATBOA >c[(ﬂ> + ——)] d b0 80 00 4 5 o
¢ ¢ agl 352 " sz UZ— Y aé af £ 19 I

Consequently, for & sufficiently small,

2
3.0 =% T 4,9.0) 2 2,0) (Q) ( g,

ij=1
>C i, =C L, =Cllfq, .
e e

(d) We have

0 0
a,(v,v) = Z Z A, Z bu(Q ) U(Q ) I;(EQ 2
j

r ij=1

As B and 4;; are bounded, so are bounded the coefficients b;;. Hence, from (3.2) and
(3.3) we easily get a,(v, v) < Czeh“,[’;’,c2 < C'”'f,nh-

4. Superconvergence Theorems. First,the integration by Gauss’ 2 x 2 formula
is considered. Besides the special notation I*(y), for this formula we will use the sign
* for other quantities as, e.g., for u}, af(v, v), f(v), | * |5, E*, QF. The rate of con-
vergence will not be expressed by means of the norm | +[};, because it depends on the
coefficients a;; of the operator Lu. We consider the norm | - |5 associated to the oper-
ator Lu = - Au and this norm is denoted by || * |I,,. Hence, (A;" are equal to 1)

4 ™ 2 o Y i
ol = %): > Je(Q:)[<a%’l<Q;")> + <§—,‘C’2(Q;")> ]% ,

e (N3 V3
o-(e2.5)

The norm | - ||, is on V}, equivalent uniformly with respect to A to the norm IuIl Q.
A2y

(4.1)

(4.2) cx vy q, <, < Seglvly g, VVEV,

Ciarlet and Raviart proved (see [4, p. 462]) the following estimate for the dis-
cretization error u — u, where u is the solution of (2.4) and u,, the solution of (2.19):

lu = uylly q, < Ch?

(they consider 9 degrees of freedom elements; however the bound can be proved in the
same way for 8 degrees of freedom elements considered here). We can say that in the
sense of L,-norm average error of the gradient is of the order O(h%). We shall prove
that flu — u}ll,, < Ch3, and this is the reason that we speak about superconvergence.
In fact, let us denote by N the number of all Gaussian points and by E(P) the error
of the gradient,
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. 2 gk Y2
E(P)=.[<a(u a;T)(P )> +< d(u _ :h)(P)>2] |

2

We have

Q, = dx = J dt < Ch*N,;
meas h ;fe X gfcz e G

therefore, Ny = Ch~2, C > 0. By the Cauchy inequality we prove under the additional
assumption A,/h =2 C>0 Ve
NG Y E@) < Cllu—=uzll,.
PEG

Hence, it follows that the arithmetic mean of errors of the gradient at Gaussian points
is O(h3).

THEOREM 4.1. Let the finite element partitions of Q2 be 2-strongly regular. Fur-
ther, assume the boundary T to be sufficiently smooth,

(4.3) u €HYQ), a;EH*Q), fEH3Q),

and the operator Lu to be uniformly elliptic. Finally, let the quadrature formula (2.16)
be Gauss’ 2 x 2 product formula. Then there exists a constant C independent on h

(it is of the form Cillully o + Gl f||3,Q where C, and C, do not depend both on h
and u and f) such that

(4.4) llu —ugll, < Ch.

Proof. (a) Subtracting (2.19) from (2.15), we get

(4.5) ap(u —up,v) = Sp() ~Ryi(u,v) VvEV,,

where

(4.6) Ry(u, v) = a(u, v) - af(u,v), SF@)=(f v)o,q, ~fn®)-
Further,

4.7 af(u;—uf,v) =Sy©) - Ri(u,v) —af(u—u,v) Yv€EV,

(u; is the interpolate of u). We prove later that

(4.8) laf(u — up, IS CRW,y g,
(4.9) IRy (u, v)l < Ch3|v|1’9h YvEV,.
(4.10) 1Sy )l < Ch3|v|1,nh

From these inequalities, (4.7) and (3.9) it follows that

(4.11) laf(u; — uf, V) SCR3}IE VveEV,.
Setting v = u; —u} € V,, we obtain

(4.12) luy = ul ¥ < Ch3.
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Consequently, lu — ufl¥ <lu — uyl} + luy —ufi} <lu—ugl} + Ch®. We also prove
(4.13) lu—ulk <chd.

The last two inequalities give

(4.14) lu~ufly <cm’.

Now from (4.1), (2.17) (with 4, =1, 0, = Q*, r=1, , 4) and (2.3") it follows
for any function g piecewise differentiable in 2, that

(4.15) g, <Clglf,

which together with (4.14) proves the theorem.
(b) We prove (4.8) and (4.13). We express a; (w, v), where v € ¥, and w is any
function such that af(w, v) is defined, as follows (see (3.14)):
¢ 2 20}) 3(Q))
f

e r=1ij=1

The coefficients b,; are bounded (it follows from (3.15) and (3.16) with |a| = 0).
Hence by (3.2),
2 0(Q}) 86(Q;) Y101\ £T (00 Nl R
—_— —| < C =) + 91, ¢,

*
'.'jz:l bx](Qr) aE, agl aéz

and

aEHY | (aaeh)\ ]
(4.16) |a;:(w,v)l<C§lf>ln,c Z [< 3k, ) <a£2 ) '

=

We estimate the functional L(u) = 3&(Q))/d%, where & = & — @i, It is bounded
on H*(C,), it vanishes for & € P because i, = @ in this case. If #i = £3, then i, = £,
and 3&/0g, = 0. If 4 = £3, then fi; = £, and 3(Q¥)/9t, = (382 - D, =373 = 0.
Hence L(iZ) vanishes for & € P(3) and, according to the Bramble-Hilbert lemma,
lex(@))/0g, | < C|ﬁ|4,cz; in the same way we get [3&(Q))/0%,| < C|ﬁ|4,c2. From
(4.16), (2.9) and (3.3) we obtain

* A~ A 3 3
Iah(u - u,, U)I < C; lul4,C2Iv|l,C2 < Cg:he“ulh,elvll,e < Ch "ul|4’ﬂh|v|l’nh

The proof of (4.13) is similar.
(¢) To prove (4.9) express a(u, v) as follows:

.17 wo=F [ ¥ sa,08 g
e fcz ij=1 T ox; ox;
With respect to definition of the error functional E*(y) we get
2 O™,
~ Ou _0u
(4.18) ACIOEDY E*(i'jL:l Te By, ax,.>'

We estimate E*(J,4, 1(5?4/3)61)(55/3)61)). We have
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J izj[a_fi o | 3D 353] 0x; a0 0% ap
e %, ox, 0, dx,) 0F, 9%, Of, 9%,

so that

/ 5 x5 o 0x4 3 ap
ato) E*{sa B ) pu(O% . bu 80 _pa(%%2, w89 ).
(@19) EX\ e 35" o, 38, “11ox, ot ) ~F \3g, “11ox, o
To estimate the first term in (4.19) consider the functional L(0) = E *(039/0%,) —
H(o) Vo € H3(C,) where

2 2
- 1 1 0%o(l, Ez) o°i(1, Ez) d
H(o) 3] o o £
(4.20)
o 3%a(-1, &) 323(‘1,22)615 2
-[—1 1A 3t; 7

Ifo=1,%, &, £2, £ £,, then from § € P (ie.,  is of the form (2.5)) and from (3.7)

(which is satisfied by E*(y)) it follows E*(cd9/0¢,) = 0. Also H(o) = 0, hence L(0)

= 0. If 0 = §2, then an easy calculation gives E*(030/3%,) = (16/45) ag = H(0) (ag

is the last coefficient in (2.5)), thus L(¢) = 0 for 0 € P(2). Further, from the explicit

form of L(0),

(0
0,

it follows by (3.2), the Sobolev lemma, the inequality fa c,? 2ds < ngpll .Cy vy €

Hl(Cz) and by (3.1) that |L(o)i < C|v|1 c, loll5, c, Hence the Bramble- Hllbert lemma

o= [, o5 o dt - rg 0(@7) —5z— - HO).

gives
4.21) IL(o)l < Clols ¢, 181, ¢,
Therefore,
x5 . su av ~
* i1 5 bt v 2. Qu
ZE <a£2 11 0x, 9%, > <C;|°|3,02|UI1,02 + ;H(o) , a=_32_a11 57;

However, the last sum in the above inequality is equal to zero. In this sum they ap-
pear either integrals over element sides which lie on I'y; and, as vl, = 0, we have

325 (x1, 52)/ag§ = 0. Or they appear couples of integrals over a common side of two
adjacent elements taken in opposite directions with integrands which are the same. The
functions @, , du/dx, as well as v assume namely the same values on such side (they are
continuous on £2,,); also x§ assume the same values on such side because these are qua-
dratic polynomials in one variable determined uniquely by values at the three nodes of
that side. So (3%0/0£2) (2%0/0¢3) assume the same values on such side. We have come
to the bound

€

ox = aa
; (322 ' ax, o,

(4.22)

<CY lo v , oG6=-4a .
= ;l |3’C2| Il’cz agz 11 axl
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The other term in (4.19) can be estimated in the same way. In this case we set
1 1 0%0(,, 1) %%, 1) 1 d%o(k,—1) 3%0(%,,— 1)
H(o) = 45 J 2 LT —f 2 2 d
- -1 9% 0f; -1 k1 0%y
We find out that foro = 1,&,,§,, £, &, , E% both E*(008/9%,) and H{o) vanish. For o =
Ef we get E*(o 90/3%,) = H(0) = (16/45)a,. The remaining arguments are the same
and lead again to the bound (4.22) where now ¢ = (3x5/0%,)ad, @/axl.
We must estimate |°|3,C2- Take o = (0x5/0%,)d, lﬁ/ax, and express 51\4/ax1 by

1

rule of differentiation of composite functions. We find out that o is a linear combina-
tion of 4, ,0i1/9%, and &, ,0li/d%, with coefficients whose generic notation § was
introduced before and which satisfy (3.16). So set 0 = fd,,0i/3%;. Asu € HY )
and the mapping (2.7) satisfies (2.8), we have by Sobolev’s lemma (applied to Q° D S_Ih)
maxg, D%l < Chully g for lel < 2. Further, from a, € H3(%) it follows a, | €
C'(Q,) and maxc ID*(Bd,)l < Ch!®! for |l < 1 (B satisfies (3.16)). Therefore,
(using (3.16) and (3.3))

~ Ol
lﬁaua_gi'

o S Cih\Bdyyly o, +h21BE; |y ¢ Ny o, + Clhlaly o, + laly ¢}
2

a5 315 2|5 ~
SCllaylo,e, +heldiyli o, +helayly e, + helay, |3,c2}"““4,nh
+ Clhlily ¢, + litly ¢}
< Ch} {lla, iz ellully, g, + Hully o).

The same bound is true for 6 = (9x5/9%,)a, 15&/ax1. Consequently,

sy 5 _ou v
gE <Jea“ 9x, ax1>

<C TR llay,lly lully o, + lully  Hvly
e

< Ch3”u”4,gh|l)|1 NP
In the same way we can estimate the other terms in the first sum of (4.18). Thus,
(4.9) is proved (see a remark following the equation (2.15)).
(d) We prove (4.10) for any formula with properties introduced in Lemma 3.6.
Let us first observe that estimating each term of the functional E(¢¥) (we use (3.2) and
Sobolev’s lemma) we obtain |[E(aD)| < C“ﬂlo,02”0||2,c2~ Ifo€ 13(1), then by (3.7) or
(3.8) and by (2.6) E(o0) = 0. Therefore, by the Bramble-Hilbert lemma

(4.23) IE(@D)| < Clol, ¢ llillg,c, Vo€ H%(C,), YD EP.

For 0 € H3(C,) we get a better estimate. We have E(a8) = E([o — o719) +
E(0;0). By (4.23) and (3.6) the bound of the first term is

([0 = 01| < Clo = o7l ¢ I0llg ¢, < Cloly ¢ 1Dl c. -

Further, by (3.7) or (3.8) and by (2.6), (3.1)

E(0,0)| < Cllogly ¢, Bl3 ¢, +loyl3,c 181, ¢, 3 or |E(o )l < C|01|2,02|ﬁ|2,02,
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thus in both cases

IE(o) < Cllo = oyl ¢, + loly ¢, }Bly o, < Clol, ¢ bl ¢ -
Hence,
(4.24) |ED)| < Clol, ¢, 18ly ¢, + Cloly ¢, Wllgc, Vo€ H3(C,), Vo €P.

Now we must come back to the original notation: f is the extension of f defined
onR2by f=- zgizla(:zjaﬁ/ax,.)/ax,.. We express S;,(v) as follows:

S,) = X' EJ,f ) + Y "E(J, fo).
e (4
In the first sum the summation is taken over the boundary elements, in the second one
over the inner elements (if 4 is sufficiently small, the inner elements belong to 2; hence
we may write £ in the second sum).
Let us use (4.23) with 0 = Jef As DJ, =O(hL°‘|+2)(it follows from (2.8)), we
easily get

~
~

T fly e

e, SCHT o +HAF, o + K2 Flo.c,} < CHAF,

and

YA D)

e

t 307 A
<C Z he”f"2,e"v"0,c2'
e

For the boundary elements Friedrichs’ inequality gives {{Bll, c, < Civl, c, (0 vanishes
on one side of C,). Therefore

Y B0, 75

e

’ 3 ~ ~
< c; el flly 1ol o < CHfl, o, 10, g,
3 ~
< Ch ”u"4,ﬂhlvll,ﬂh < Ch3"u”4,glv|1,nh-

For the inner elements we use (4.24) with ¢ = J, f: and we easily get

3" BUJ,fD)

3
< RISl gloly g,
e

Thus,
ISWOI < CHllully g, + 1113 01 Wy o, VO EV,,
Sp@) = (£, v)o,a, ~ fu@)-

Remark 5. Relaxing one assumption of the theorem, changing namely the con-
dition of 2-strong regularity into 1-strong regularity, one can prove in the same way that

(4.25)

lu=uply ona, <CH.

(2.8) is satisfied for |al < 2 if instead of (2.11) we require p(a;, a;) < C,h2 (see Re-
mark 2).

Theorem 4.2 introduced below shows that the superconvergence phenomenon is
not closely connected with Gauss’ 2 x 2 formula. For Theorem 4.2 we need that the
finite element partitions, besides being 2-strongly regular, are such that
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axf ax _ ax::’1 é)x]‘:’l o
(4.26) Jp — 2%, az2 -7 %, o, |<Ch bi=L2,
for any two adjacent elements e, el.

Remark 6. Condition (4.26) is of different nature than conditions (2.8) and (2.9)
because it does not concern single elements. If (4.26) is satisfied and the coefficients
a;; are Lipschitz continuous, then the difference of values of the coefficient b, (see
(3.15)) on adjacent elements is O(h). We give a sufficient condition that (4.26) be ful-
filled. It is similar to conditions given in Remark 2.

We ask again (2.10) and instead of (2.11) a weaker condition
(4.27) pla,a)< C,h2, 1<i<8.

However, we add a third condition. Let us denote by a, and §, the angles which
make the sides @' a'2 and 4’ a;, respectively, with the x, -axis (if a suitable notation is
used then |8, — a,| = w,). The condition reads

(4.28) oy~ (| SCsh, 1B, =B,,1 < Csh

for any two adjacent elements e, el.

The proof that this condition is sufficient is simple: For the parallelogram e’ corre-
sponding to the element e one computes

axe' _1, ax 1 ax"' 1 axe'
%, =5k oS @, 3, =3 k, cos 8, 3, h sin @, %,

=1 k sin §,.

Hence, J,» = %hk, sin w, and, for instance,

r ’
. dxi 9x§ cosa, cosf,
J =
. -
of, 90&, sin w,

From (4.27) and k,/h, 2 C; we easily get
, 0x§ ax, cos a, cos 8,
TR T emw, 00
From (2.10) and (4.28) it follows (4.26) fori =j = 1.

THEOREM 4.2. Let the quadrature formula (2.16) be either a symmetric formula
with positive coefficients which integrates exactly all polynomials from Q(3) ora
formula which integrates exactly all polynomials from P(4). Let the finite element
partitions, besides being 2-strongly regular, satisfy (4.26), and let the remaining assump-
tions of Theorem 4.1 be fulfilled. Then there exists a constant C independent of h
(it is of the form C,llully g + C,|fll; o) such that

(4.29) Nlu = uy,ll, < Ch3.

Proof. (a) Distinguish two cases: I(y) is of the form (3.10) where I°(y) integrates
exactly all polynomials from P(4) or I(p) itself has this property. The other possibility
is included in the preceding one because I(p) is again of the form (3.10) with a = 0.
The second case is that I(y) is of the form (3.11) where E'(yp) satisfies (3.8). Con-
sider the first case. Then
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a,( V) = (f,v)g,q, ~ eRi(, v) = (1 -~ WRRM, V) VVEV,,
(4.30)
R (w, v) = a(w, v) - ad(w, v)

and a,? (w, v) is the approximate value of a(w, v) computed by means of the formula
I°(p) (or I(p) if a = 0). Hence, subtracting (2.19), we get

ap(u —uy, v) = 8§,(v) — R, v) — (1 - a)Rg(u, V) YvEV,,
where S, (v) is defined in (4.25). Adding a,(u; — u, v) to both sides, we easily obtain

ay, (uy — uy, V) = S, (V) — aRA(, v) + aal(u; — u, v) ~ (1 ~ R (u,, v)
(431)
+ (1 -a)a(u; —u,v) YvEV,.

Suppose that we prove

(4.32) IRp(uy, V)l < CRvl; o, YVEV
(4.33) la(u = uy, V)| < Ch3lv|l’nh YV EV,.

Then putting v = u; — uy,in (4.31) we get, by (4.25), (4.9), (4.8), (4.32), (4.33) and (3.9)
(4.34) lup = uhll,ﬂh <cr.
Consequently, by (4.15), (4.13), (4.34) and (4.2)

Nt = vyl < Nl = uplly, + Ny = wplly, < CH® + cqluy —uply o < CR3.

(b) To prove (4.32) we express a(u;, v) as follows:

a(up, v) = Zf Z b,] 82 32 dE

Cy ij=1
(by; are the coefficients (3.15)). Hence,
(4.35) RY(up, v) = X E°< 2 bym ag>
[:4 i,j=1
here E%(y) is the error functional associated to I°(y) and satisfying (3.8). The coef-

ficients b are linear combinations of terms of the form Bam »» Where g satisfies (3.16).
So it is sufﬁc1ent to prove

ol 5
ofgs 1 OV
E (ﬁamn 3%, asl_>

and (4.32) follows immediately.
Set 0 = pa,, ,0u,/d¢;. We have

E0< g;) E0<[o—a,] >+E°<,a£>

We estimate the first term by means of (4.23):

< Ch2lully lvl;
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E°<[o—a,] 3, >

Now we use (3.8) and get

ov
E° <o —>
)i 2%

Thus |E%(0 89/3%)| < Cloly ¢, b, ¢, Further, from (3.16), (3.2) and a,,,, € cl(Q,)

< CIU - 01'2,C2|6|1,02 < CIOI3,C2|6|1,02'

< Clogly o l3 o. SC{lo—ogly ¢ + loly ¢}l ¢
1'3,c,Vs,c, .Cy .Cy 2

< C"UI3’C2 |6l1 ,02 .

it follows
ou, oily iy .
i, — <C {8+ h,|8 = + [n i, o + lagl, o 1d,,l
Ba,,, 3, 3., ; 3, 3., e Bagi 2., (e 1'1,¢, 1'2,c,11%mnl2,c,

+la i
I III’C2IamnI3,C2
314 218 ~
<Clrlagl o, +helitfly o F helifls ¢

~ ~ 2 ~

+ he[he|ulll,02 + Iullz,C2] Iamn|2,e + helulll,czlamnls,e}'
We use the bound
il c, <My =l o, +lalc, <Clly ¢, +12l;c 1,

J =1, 2,3, and the fact that, due to (4.3),u € Cz(ﬁh), and we get the final bound

aﬁl a"
0fps 1 0OV
£ <ﬁa"'" % as,.>

(¢) The main problem is to prove (4.33). We have

= ISR 1)
aw, =3 fc,,,_ i'%g g, %

< Ch3 lully ol -

(again w = u — u;). We must estimate the terms | c, b3/ 3t; )(aa/az )di. We may
restrict ourselves to two cases: i=j=1,i=1,j=2. Cons:der first f c,b b,,(0&/08)) +
(a0/9%,)dt. From (3.16) and a; € Cl(ﬂh) it follows b;; = b° + O(h ), where bO de-
notes again the value of b,; at the center. Hence
& W 0 [:1a) av 9w dv
b, m—5—dt=b + O(h - dt.
Jo, b o e, = 2R o, 3 ettt ], 0I5 S
As |‘3I1,02 < Clm3,cz’ the second term is bounded by Chelﬁllczliill’c2 <
Chgllull_,,,elvll,e. To estimate the first term consider the functional L(&i) =
S, (86o/0%,)(80/3%,)dg. It vanishes for & € P Ifdi=g, then & = ¢} - &,, 00/,
= 0 and L vanishes. If u = E:‘l’, then 3&/9%, = 2((3/2)£2 - ), i.e. 9&/0¢, is a multiple
of the Legendre polynomial P,(,); and as d0/d%, is a linear polynomial of £, and
integration with respect to &, is done over the interval (~1, 1), L vanishes, too. The
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Bramble-Hilbert lemma implies |L(#)| < CIuI4 c, o1, C, h3|Iu||4 elVl; . Hence,

b, 39 8D
chz, b 3¢, at, %

Now let us consider the integral

LA 1] s} & U
Jo, oy, g, =00 L3, agzd“f Ohe) 3¢, o, %

<C T h3luly olvly o < CH3Nuly g, 105 0, -
e

The second term and the sum of these terms are bounded as above. To estimate the
first term we introduce the functional

L@ = | gf; 2 d~ H@),

(4.36)
o fpr 3%, 1) a0, 1) (1 3%, — 1) 3Kk, — 1)
= — - d .
® 5”—1 3 3%, %) -t ag o, .

If il €P, then & = 0 and L(@) = 0. If & = £3, then 3@/d%, = 0 and L(y) = 0. If
il = £3, then fcz(acs/azl)(aa/agz)ds = (16/15)a, = H(u) and L(i%) = 0. The
Bramble-Hilbert lemma implies |L(&)| < CI’;I4,c2|6|1,c2 < Chg||ull4,elv|l,e. Thus,

9% ab 3
p° =2 =L dg|<C D Rl vty , +
'; 12 fcz azl asz E ; e 4,e'Y1 e

< Chllully o, Wl 0, + lz bS, H(@)|.
e

In the sum X,b9,H(i) they appear either integrals over element sides which lie on | P
and because vlrh = 0, thus 9d(¢,, + 1)/3¢, = O, these integrals vanish. Or they ap-
pear couples of integrals over a common side of two adjacent elements taken in opposite
directions with integrands which are the same (w and v are continuous on §,, hence
they assume the same values on each side). The factors b?z need not be the same;
however, their difference is O(h) according to Remark 6. Therefore, (we use again the
inequality [, ¢, o2ds < C|I¢|If’cz) by (3.2), (3.1) and (3.6)

2Ot , 1) Az, 1
‘-‘-’(521 ) U(El )dE
aSI afl

1

3 H(&)I<Ch2 fl
e 12 = e -1

W 3
(D> [252 o,

<Chy hzuu||3,e|v|1,e < Ch3uu||3,nh|v|,,ﬂh;
e

SChy ""-’us,czh"l,c2 < Chz:luls,c2|”|1,c2
e e

and the proof of (4.33) is finished.
(d) Let us consider the second case of I(y), namely I(y) is of the form (3.11). Then
a,(w, v) = aji(w, v) + R}(w, v), where
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(437) Ryow =5 £ (Z ﬂﬂ)

im0k 9%

We have g, (1, v) = (£, v)°»9h —a(u, v) +a,(u, v) = (£, v)o,nh —R}(u, v) + Ri(u, v),
and we easily get

(4.38)  a,(u; — up, v) = S, (V) — K¥u, v) + RL(uy, v) + af(u; —u, v) Yv€EV,.
If we show that
(4.39) IR ) S CHy o YV EV,

then using the arguments of part (a) of the proof we come to (4.29). The proof of
(4.39) is the same as that of (4.32) because R} (u;, v) and Rg(ul, v) have the same
form (see (4.35) and (4.37)) and E ! (¢) has the same property as E°(y), namely it satis-
fies (3.8).

5. Superconvergence in Three Dimensions. A three-dimensional isoparametric qua-
dratic element of the Serpendipity family has 20 nodes corresponding to 20 nodes of the
three-dimensional cube Cy: =1 < §; < 1,i =1, 2, 3. The nodes of C; are vertices of
C; and midpoints of sides. The space P consists of incomplete quartic polynomials of
the form

o, tays, tagk tak;t “553 tagk § taskiEy 0‘853 + gk, &5
(5.1 + alofg + “11521,52 + "‘125?53 + al3£1£§ + °‘14515§ + “155353
+ a16£2£§ ta,EE 8t “185%5253 + 0‘19515353 + a,05, 6,63
P satisfies again (2.6). The functions Ni(%,, §,, £;) can be found in [8, p. 121]. The

definition of a k-strongly regular partition is the same as in two dimensions with one
exception: instead of (2.9) we have to require

(5.2) e;'hd <\, <c,hd.

With exception of these changes the definition of V), is the same as before. The
definition of u} is af(uf, v) = fy(v) Vv € V,,, where

8 3
apw,v) = 20 3 1) X 3y ax (Q*) (Q*)

e r=1 ij=1
8" N
(53) frw) =2 X 1@HF@HNE),
e r=1
Q,,=<+_£ E] L)
r-\" 3’3’7 3/

The same superconvergence theorem as in two dimensions is true with one change
concerning the assumptions. We have to assume that the partitions are 3-strongly
regular. The reason is the following: in two dimensions the derivatives D*x{ of 2-
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strongly partitions are bounded by h'e‘"I not only for |a| < 3 but for all a because x{
are cubic polynomials. We need this fact to prove (3.16). In three dimensions x{ are
quartic polynomials, so we have to assume the 3-strong regularity. The proof of the
theorem is similar to the proof of Theorem 4.1, and we leave it out.

6. Numerical Results and Application of Superconvergence in Practical Computations.
The following problem was solved:*

p —)Au = =2y + 54xy — 12xp? + 16y% — 14y% — 4x3 — 12x + 16x2 — 42x%y in Q,
1
ulp =0, Q: 0<x<1,0<y<]1.

The exact solution is u(x, ¥) = x(1 — x)p(1 — y)(1 + 2x + 7y). We used partitions
consisting of square elements with vertices {(ih, ih)}%-=o, M=hr"1, h=1/4,1/5, 1/6,
1/7,1/8 and Gauss’ 2 x 2 formula. The norm |lu — upll, is denoted by Eg and is

equal in this case to

.

_ ) A —u)P\ (o - u)P)\ )%
62 E;= 3NGI PEZG [<_____ax > +<_—-—-——ay >]$ .

Here N = 4h~? is the number of Gaussian points. Also, the gradient at vertices of
square elements was computed (the unique values of the gradient were won by averag-
ing); and, as a measure of the error, the number

—u* 2 _ u* 2 %
o el g [0 o)

pev

is taken. The set ¥ consists of all vertices of square elements with exception of the
vertices of 2. Table 1 shows on one hand the big difference between the magnitudes
of E; and E, and the superconvergence at Gaussian points; on the other hand it shows
that E,, goes to zero just as fast as A2, i.e. h_2EV — const > 0.

TABLE 1
h Eg x 103 E, x 103 h=3Eg h=2E,
% 9.0 41 0.57 0.65
% 42 25 0.52 0.64
% 22 18 0.49 0.63
% 1.3 13 0.46 0.63
% 0.85 10 0.43 0.63

*The author is indebted to M. Kovafikova who carried out all computations on the computer
DATASAAB D21.
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Gauss” 3 x 3 formula and éebyEev’s product formula with nine points were also
applied. The values E; and E}, differ less than 0.2% from values given in Table 1 (let
us emphasize that whatever formula is applied, the set G is the set of maps of points
QF (r=1,...,4)of Gauss’ 2 x 2 formula).

The problem (6.1) was solved by curved elements not satisfying (2.8). The square
elements were distorted into curved ones in that the midpoints of two sides of each
element were moved in the x-direction and y-direction, respectively. The length of
these displacements was always the same: % h%. Such elements do not satisfy (2.8) as
°x¢/a¢, 3¢2 and 93x% /32 0, are in absolute value equal to %#%. The number E is
not equal to llu — ull,; however, it is an equivalent norm; in addition Ealllu —upll,
=1 4+ O(h). Table 2 indicates convincingly that Eg = ch?, ¢ >0, i.e. there is no
superconvergence. Nevertheless, E; is still substantially smaller than £, .

TABLE 2
h Eg x 102 h~2E, E, x 10
1
! 44 0.70 15
1 3.1 076 5.7
5
1 23 0.83 5.9
. . . .
1 2.0 097 39
7
1 13 0.80 34
1 . . .

Gauss’ 3 x 3 formula gives values of E, which differ less than 4% from values given in
Table 2.

In general, if we compute the gradient at Gaussian points we always can expect much
more accurate values than at vertices. If a greater part of the elements differ little from
parallelepipeds we reach even a greater improvement of accuracy. The question is what
integration formula to choose. Theorems 4.1 and 5.1 and Remark 5 show that very-
often Gauss’ 2 x 2 or 2 x 2 x 2 formula can be sufficient. However, Gauss’ 3 x 3
or 3 x 3 x 3 formula guarantees that, both in case of superconvergence as well as in
case that superconvergence does not set in (see [4, pp. 462—463]), we retain the highest
order of accuracy which is possible.

The usual requirement of users of finite element codes is to get the values of gradient
at vertices of elements. These values must be interpolated from values at Gaussian
points. If there is no superconvergence, i.e. the rate of convergence in the ||+ [l,-norm
is O(h?) and not better, then interpolation from four Gaussian points on each element
by a linear isoparametric shape function is sufficient. Evidently, such interpolation
would make worse the accuracy won in case of superconvergence. Therefore, a better
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FIGURE 1

way is to use the quadratic isoparametric shape function. We choose eight Gaussian
points al.(xf ,x}),j=1,..., 8 (see Figure 1). The interpolation of the partial deriva-
tives du,/dx; at the point @y = (x9, x3) is done by the formula

8 auh(xj,xé
hTL T2 00 20y
N E)

i=1

The coordinates E‘l’, Eg are computed by solving the system of two nonlinear equations
x,‘-’ = Ei=l xi’ Ni(gl, £,), i=1,2, by Newton’s method. As the initial guess, we
choose the point (0, 0). The convergence is very fast, and it is entirely sufficient to
stop after three iterations.
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