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Superconvergence and Reduced Integration
in the Finite Element Method

By Milos Zlámal

Abstract.   The finite elements considered in this paper are those of the Serendipity

family of curved isoparametric elements.   There is given a detailed analysis of a super-

convergence phenomenon for the gradient of approximate solutions to second order

elliptic boundary value problems.   An approach is proposed how to use the supercon-

vergence in practical computations.

1.  Introduction.  Among finite elements the curved isoparametric elements of
the Serendipity family (see Zienkiewicz [8]) are mostly used in the finite element codes
prepared for engineering computations.  It has been observed (see, e.g., Veryard [7],
Irons and Razzaque [5], Barlow [1]) that applying quadratic members of this family
a considerable improvement in accuracy of stresses is achieved if a reduced numerical
integration—Gauss' 2x2 or 2x2x2 product formulas—is used and the stresses are
computed at Gaussian points, i.e. at points of these formulas.   Here we want to analyze
and justify this phenomenon.  The results proved in the paper constitute a substantial
extension of earlier results of the author [9].

We consider first the Dirichlet problem in two dimensions for a selfadjoint second
order elliptic equation with variable coefficients as a model problem.  We assume that
the finite element partitions of the given domain are 2-strongly regular (see definition
in the next section).    In Section 4 we prove superconvergence of the gradient of
the approximate solution at Gaussian points  if Gauss' 2x2 formula for the
two-dimensional cube C2: -1 < %i < 1, i = 1, 2, is applied.   Numerical results
(Section 6) indicate convincingly that superconvergence does not set in if the con-
dition (2.8) about finite elements is not satisfied.  Under a further assumption on finite
elements the superconvergence is proved if there is applied any symmetric formula of
the type (2.16) with positive coefficients which integrates exactly all polynomials from
0(3) on C2 or any formula (2.16) which integrates exactly all polynomials from P\4)
on C2 iPik) and Qik) denote the classes of polynomials of degree k and of degree k in
each variable, respectively).  This result shows that the superconvergence phenomenon
is not closely connected with the reduced integration.  However, Gauss' 2x2 formula
has the smallest number of points among the above-mentioned formulas.

The theorem on superconvergence is true in three dimensions under the condition
that the partitions are 3-strongly regular.  In the last section there are introduced
numerical results and an approach is proposed how to use the superconvergence in prac-
tical computations.
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664 MILOS ZLAMAL

2. Preliminaries. Let Q, be a bounded domain with a sufficiently smooth boundary
T. We consider the Dirichlet problem

Lu = fix)   yxEtl,    «|r = 0,
(2.1)

Lu-à^b^i
here x = ixx, x2). Let us remark at this point that we could add a term a0u with a0 > 0
in the definition (2.1) of the operator Lu. All that follows applies equally well to this
case, with a straightforward supplementary analysis. To (2.1) there is associated the bi-
linear functional

(2.2) aiu, v)= f    £   an U dx.
Jn />/=1      °*i oxj

We assume that the coefficients are defined on Í2 and that

(2.3) a(]{x) = ajt(x),     £   «„(*)?,*, > <à £ %    V* G "' ci = const > °-
/,/= i i-1

Hence a(w, u) is //¿(i2)-elliptic.
The weak solution of the problem (2.1) is a function u £//¿(í2) which satisfies

(2-4) aiu,v) = if,v)0>n   VvEH'iSl).

We are using the usual notation for the Sobolev spaces:

HmiO)= [u E L2(£l), LPu E ¿2(Í2) Vl«l < m},      m = 0, 1, . . . ,

#¿(£2) = {ií6r/'(íí), u\T = 0}.
The norm in Hm(Çl) is denoted by II • ||m a and defined by

MU.O-J  L  "^"Çato)''
(laKm

the inner product in Hm(Sl) is denoted by (•, •)    n. Often we shall use the seminorm

</2

l«U.n = i   Z   II^IIÍa(n:„)

(we set |u|0>n = ||«||0>n).
To construct the finite element space Vn in which the approximate solution will

Ue let us "cover" Í2 by in general curved quadrilateral quadratic elements of the
Serendipity family.   Denote by P the class of incomplete cubic polynomials of the form

(2.5)        a, + cx2%x + a3£2 + a4|2 + a5^2 + a^2 + an%\\2 + a¿x?2.

Evidently,

(2-6) P\2)CPC ß(2).

Let Nji%x, £2) (/ = 1, . . . , 8) be polynomials introduced in Zienkiewicz [8, p. 109].
Then 2?, v-N-(^x, £2) is the only polynomial from P assuming the given values u
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THE FINITE ELEMENT METHOD 665

at the nodes of the two-dimensional cube C2:  -l<|j<l,-l<Ç2<l, i.e. at the
vertices and at the midpoints of the sides of C2. This polynomial is a quadratic poly-
nomial in each variable determined on every side of C2 uniquely by its values at nodes
of this side.

Now consider eight points (nodes) a;- (/ = 1, . . . , 8) with coordinates (x[, x'2)
and the mapping

Q g

(2.7) xx = xexitx, $2) s ¿ x[Nßx, *2),      x2 = x\(%x, %2) = Z ANjiti ' h)-
/=i /=i

If (2.7) maps the cube C2 one-to-one on a closed domain e lying in the (*j, jc2)-plane,
we call e a quadratic quadrilateral element (curved or straight which depends on the
choice of the nodes a A.

We "cover" Í2 by such elements, and we suppose that every "partition" of Í2 by
these elements is a 2-strongly regular partition.  By a A:-strongly regular partition we
understand a partition with the following properties:

(a) for every element the mapping (2.7) is a Ck+ x diffeomorphism (in particular,
(2.7) is invertible).

(b) to every element e there is associated a positive parameter he, and the map-
ping (2.7) is such that on e

(2-8) \Daxf\<C1h\?1,      |a|<Jt + l,i = l,2,
(2.9) c2xh2<\Je\<c2h2e;

here Je(%x, %2) is the Jacobian of (2.7) and Cx, c2 are positive constants independent
of he as well as of the chosen partition.  If h is defined by

h = max he,
e

then the constants Cx, c2 are independent of h, too.
We will consider a family of 2-strongly regular partitions of Í2 such that h —* 0.

We denote by Sln the interior of the union of all elements of the given partition (in
general £ln =£ £2);  rh is its boundary.

Remark 1.  The definition of a fc-strongly regular partition is similar to the defini-
tion of a fc-regular family of elements by Ciarlet and Raviart [4].  The main difference
is that, instead of their requirement (2.17') (p. 427), we ask (2.8).  This is evidently a
much stronger condition, and every domain Í2 cannot be covered by such elements.
However, numerical results (see Section 6) indicate convincingly that (2.8) with k = 2
is a necessary condition for superconvergence introduced later.   In the following Í2 is
supposed to be such that there exists a family of 2-strongly regular partitions with
h-+0.

Remark 2.  The following simple condition is sufficient for a partition to satisfy
(2.8) and (2.9) for h sufficiently small: to each element e of the partition there exists
a parallelogram e with sides he and ke, he > ke (i.e., we denote the larger side by he),
with angle coe and with nodes a\ (the nodes corresponding to the midpoints of sides of
C2 must be midpoints of the sides of e) such that
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666 MILOä ZLÁMAL

K
(2.10) ]7~>c3>0>      0<co0<coe<7T-w0,

e

(2-H) p(ai,a'i)<C2hke + x,      Ki<8,

where p(a¡, a'¡) is the distance of a,, and a\ and co0, c3, C2 are positive constants inde-
pendent of he, and the given partition, i.e. independent of h, too.  To prove it, write
x\ = SjLjJc/jV}   + 2?=1C¿ - x'i)Nj ix'(,x'Í are coordinates of a¡).    The map-
ping x¡ = S?=1 x'/Nßx, %2) (i = 1, 2) is a mapping which maps C2 on the paral-
lelogram e   and midpoints on the midpoints of sides.  Therefore, it is bilinear and we
easily compute that dxe¿ /ô%, are constant and bounded by \bxf/b^\ < 1âhe and \Je<\
= 1Aheke sin ue.  Hence, \EPxf'\ < Vihe if |a| - 1, EPxf = 0, if |a| > 2 and
(c3/4)sin u0h2e < |/e.| < %A*.  From (2.11) it easily follows that (2.8) and (2.9) are
true for he sufficiently small.

Let us remark that the condition (b) is not as strong as (2.10) and (2.11) which
effectively eliminate curved edges.   E.g., consider a closed domain Í2 which is a map of
a closed rectangle R and the corresponding mappingxt = <p¡(sx, s2), i = 1, 2, is such
that ip¡ E C3(R) and d(ipx, ip2)/b(sx, s2) i= 0 on R.   We construct a mesh on £2 in the
following simple way:   Its nodes are maps of nodes of a rectangular mesh of R.  Con-
sider a rectangular element of R and denote by he, ke, the lengths of its sides, he being
always the length of the larger one, and by s°, s2, the coordinates of its center.  Let e
be the element of £2 which corresponds to this rectangular element. Then one can
easily express the functions xe¡ from (2.7) and their Jacobian as follows (we may assume
that R has sides parallel to coordinate axes):

/= 1 12

+
1    ay.?, 4)       i       aV»?,»S) x    ^1.4) 2
8«e , *l+4Äe*e        ai   a, M2+8*e -2 *2as2     •*■»■-•-«    dsxds2   -1"   « e     a^

+ rfd1,|A      Dar¡ = 0(h3e)    for |ct| > 0.

_ , 9(^i» l2 )
^i.y-íMíj^,,^ + 0(*¿).

o    _ osx=sx,s2=s2

Let us now assume that the rectangular mesh of R is chosen in such a way that kjhe
> c3> 0 where c3 is a positive constant independent of he and the given mesh.  Then
the condition (b) is evidently satisfied for k = 2.  An example of the mapping x¡ =
<p¡(sx, s2):  polar coordinates.

Remark 3. The sign of Je changes if the local ordering of nodes is taken in the
opposite direction.  Therefore, we may and we will assume that for every e

(2.12) Je(ïx,Ç2)>Q   \/%EC2.
The functions v from the finite element space Vn are defined piecewise:

(2.13) v(xx,x2) = m\ixx,x2), ?2ixx,x2)],      v\%x, g2) = ¿ VfNfa, ç3).
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THE FINITE ELEMENT METHOD 667

Here %¡ = £?(xj, x2) is the inverse mapping to (2.7), and v- are values of u at nodes of
the element e.  For the complete definition of Vh it remains to ask u|r   = 0 which is
equivalent to the requirement that the values of v at nodes lying on T are equal to zero.
Evidently,

(2.14) Vh C C(ñ„),      Vh C //¿(£2„).

To define the approximate solution of the problem (2.4) we proceed in a similar
way as in [4]. We extend the solution u E #4(£2) and the coefficients a¡- E #3(£2)
according to Calderon's extension theorem (see Necas [6, p. 80] ) to R2 and denote
these extensions by u and 'ai-, respectively.  We also extend /as follows:

Denote by a"(w,i)) the bilinear functional fn 22=1 a¡jidw/dx¡)idvldXj)dx. Due to

v\r = 0 we get for any v E Vh by Green's theorem o'C«, v) = if, i>)0 n . For sim-

plicity of writing we will leave out the sign ~ and write

aiu, v) = (/, u)oi2ft   VvEVh,

(2.15) 2
/     \      f       v du  du   ,a("'ü) = L .Z/''~aÄdx

iíh i,l=l '       1

This will not cause any confusion in the estimates carried out later.  All constants will
depend on \\u ||4 n  and || f\\2 n  .  The first norm is bounded, according to Calderón s

theorem, by ||m||4í2.  Evidently, also ll/ll2n   is bounded by this norm.  By (2.3) the
matrix A = {a1y}l2-_1 is uniformly positive definite for x E Í2ft and h sufficiently
small if the extensions of the coefficients are continuous.  Hence, under this condition

(2-3') ¿   aijix)^]>cx ¿ %2 V*e£2„,
>■,/-1 '-1

where cx is a positive constant independent on h.
We could define the approximate solution uh as that function from Vn which

satisfies a(un, v) = (f, v)0 n    v E Vh.   However, in general the values of a(w, v) and

if' u)o si   f°r v> w e ^h cannot De computed exactly.  Numerical integration is the

usual and only practical way out.  To this end let us consider quadrature formulas
I(y) for the cube C2 of the form

(2.16) m=Y,AMQr)-

We make the assumption that the points Qr of the formula belong to the interior of
C2 or are nodes of C2.  Then expressing a(w, v) as a sum of integrals over the elements
e, transforming these integrals by means of (2.7) in integrals over C2 and using (2.16),
we get the approximate value ah(w, v) of a(w, v):

(2.17) S>,^ZEVÄ) Z MöÄßÄßr).
e     r /,/=! OJCi oxj
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Here the following notation (in agreement with the notation in (2.13)) is used for any
function g defined on ilh :

AÈi,Èa) = *[*ïtti.*a).*îtti.*a)1-
Similarly,

(2.18) AC") = ZI ArJe(Qr)f(Qr)v(Qr)
er

is the approximate value of (f, v)0 n .  Our assumption concerning the points Qr
guarantees that, at least for h sufficiently small, we do not need for the computation of
ah(w, v) and fh(v) values of data at other points than at points from £2.  Now the ap-
proximate solution uh E Vh is defined by

(2.19) ahiuh, v) = fhiv)   WvEVh.

It is clear from the remark made above that un does not depend on extensions of the
coefficients a¡- and the right-hand side / of the equation (2.1). In general, it is not true
that uh exists and is unique.  We will consider the cases that 7(i¿>) is Gauss' product
formula 2 x 2 or any symmetric formula with positive coefficients which integrates
exactly all polynomials from Q(3) (Gauss' 2 x 2 is a special case of such formulas
having the smallest number of points) or any formula which integrates exactly all poly-
nomials from P(4).  The existence and uniqueness of uh will follow from Lemma 3.6.

3.  Some Lemmas.  In what follows we denote by C a generic positive constant
not necessarily the same in any two places which does not depend on he, h and on
some functions.  It will be clear from the context of which functions the constant is
independent.

Lemma 3.1.    We have for any v EP

(3.1) |S|/(c2 < CIDI,.c2,      0</</< 3 (|0|o>C2 = \\v\\0,c2),

(3.2) max|Z)a0|<C|Û||a|c ,     |a| < 3.
C2 '   2

Proof.   To prove (3.1) for; = 1 it is sufficient to realize that \\v\\q c   is a posi-

tive definite quadratic form of the coefficients a- (/ = 1, . . . , 8) and |û|2 c   is a

bounded quadratic form of these coefficients.   Applying (3.1) with/ = 1 to partial
derivatives of v we get (3.1) for/' = 2, 3.  (3.2) follows from equivalence of all norms
of finite dimensional spaces.

Lemma 3.2.   Let g E #'(£2 A 0 < i" < 3.  Then

(3.3) l*li,Ca<^-1ll«llu.

Proof.   We transform the integral \g\2c   by means of the inverse mapping of the

mapping (2.7).  (3.3) follows from (2.8) and (2.9) (the Jacobian J~x of the inverse
mapping is bounded by c2h~2).

Often, we shall make use of the Bramble-Hilbert lemma (see [2] and [3]) on
linear functionals.   In fact, this lemma will be applied for the domain C2 only.
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Lemma 3.3 (special case of the Bramble-Hilbert lemma). Let the linear
functional L(<p) be bounded on Hk+x(C2), \L(y)\ < AilMlk+, c , and let it vanish for
tp E P(k).  Then there exists a constant C independent on \p such that

(3.4)

If L(y) vanishes for y E Q(k), then

\Liv)\<CMW\k+UCi    V<pEHk+x(C2).

(3.5) I¿(>)| < CM'
\k+l.

3SÎfc+i \o,c
+

\k+l.

a?2fc+1 0,C-,

Lemma 3.3 allows us to estimate the interpolation error for a given function.  The
interpolate <pj of a function <p defined on C2 is the polynomial 2?=1 q¡Nf£x, %2),
where <p. are the values of ip at the nodes of C2.  The interpolate g, of a function g de-
fined on £2h is the function from Vh which assumes the same values at all nodes of the
given partition as the function g.

Lemma 3.4.   If<pE H3(C2), then

(3.6) ll*-*Ac, <CM3tC.      i = 0,...,3.

Proof.    We get (3.6) if we apply Lemma 3.3 to the functional L(*p) =
ip - tpj, w)j c , and afterwards we set <p - ¡p¡ for w.

We shall need estimates of the error functional E(y) = fc  yd% - I(y).  Such
estimates follow immediately from (3.5) and (3.4).

Lemma 3.5. Let lip) be a formula which integrates exactly all polynomials from
0(3).  Then

(3.7) TOI < c d4v

K o,c,
94^

a? P,C„

If lip) integrates exactly all polynomials from ?(4), then

(3.8) \Eip)\<C\<p\5tc2.

The following is the main lemma from which, among other things, existence and
uniqueness of the approximate solution un follows.

Lemma 3.6.   Let lip) be any symmetric formula with positive coefficients which
integrates exactly all polynomials from Q(3) or any formula which integrates exactly all
polynomials from Pi4).  Let the coefficients a¡- satisfy (2.3') and let them be bounded
and in the latter case be Lipschitz continuous on £2ft.  Finally, let the finite element
partitions be 1-strongly regular (in fact, it is sufficient that (2.8) be true for \a\ < 1 and
\a\ < 2, respectively).  Then \v\h = [ah(v, v)}V2 is a norm on Vh equivalent uniformly
with respect to h to the norm \v\xn  , i.e. there exists a constant c4 independent of h
such that

(3.9) C41|wlI,nA<lwlh<c4|u|1>„      WvEVh.

Remark 4.  Among formulas satisfying the assumptions of Lemma 3.6 Gauss'
2x2 formula has the smallest number of points.
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Proof,  (a)  Let I(tp) be a symmetric formula with positive coefficients which
integrates exactly all polynomials from ß(3).   Denote by I*(¡p) the special case of
Gauss' 2x2 formula.  Denote by y the value y = I(%\) = I(%\) and by a the value
a = (45/16) (4/5 - y).  As 7*(£4) = /*(£4) = 4/9, we easily find that if a * 1, the
formula

n*) = Y77z:m-oirm
integrates exactly all polynomials from P(4).  Hence

(3.10) Ky) = ai*^) + (l - a)I°(<p).

If a = 1, then /(£?) - /*(#) (/ - 1, 2), and Ex(<p) = lip) - I*(ip) satisfies (3.8).  We
have
(3.11) iQp) = /*r» + Exip).

Now consider the function i// = (30/a?,)2 + (3û/3£2)2, where vEP.   As \¡j E
P(4) it follows from (3.10) and (3.11), respectively, that I(\p) = o/*(i//) +
(1 - a)fc   i>d%. As v is of the form (2.5), fc   \yd% must be of the form zr^4z where

z = (a2, . . . , a8)T and A is a symmetric 7x7 matrix.   Further, we compute easily
I*(\p) = z7^z - (16/45)(a2 + a2); hence

/(*) = zTAz -i|a(a2 + a2) = (l -| a) z^z + | a [zr^z -f(a2 +a2)] .

A direct computation gives

zTAz-\(a2 +«2) = 4(a2 + § a2a8 +|a2) + 4 (a2 + | a3a7 +|a2)

.16     2  _l 8     2    i    16 „2 ^» aT a4     3 as + T  6

As y is always positive, a must be smaller than 9/4; and setting c = 1 - 4a/9 > 0, we
have

(3.12) W-/((f)2+(f)2)>4C2^^|í5|^2    VOgA
This inequality will be used to prove the first part of Lemma 3.6.

(b)  From (2.3'), (2.12), (2.17) (the coefficients Ar are positive) we get

If Ax is the vector (dv/dxx, dv/dx2)T and A^ the vector (30/31,, dv/di2)T, we
have Aj = DA,,, where D = {ojcJ/oÇ,}*^,.  From (2.8) it follows ||I>||2 < Ch\.  If we
compute D~x and take into account (2.9), we get IID_1|I2 < Ch~2.  Now for any
nonsingular matrix M the matrix MTM is positive definite and ATMTMA^ >
||A/-1||_2IIAell2.  Therefore,

J>\ß[)2 + (a^)2] =Je^x\\2=Je^iD-1fD-1Ai>Je\\D\r2\\A,\\2

> C||Af||2 = W;
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and with respect to (3.13) and (3.12), ahiv, v) > CjCS^i//) > CEe\v\2x>c .
On the other hand, ||A?||2 = ATDTDAX > ||£T^I^IIAJ2 > C/j2||Ax||2; hence

v\\c   >i,c2 *M(£H£)>KRM£J]*
i.e. |0|2C   > C\v\\e VvEP, and the final estimate is ah(v, v)>CLe\v\2Xe = C\v\2xa .

(c)  Let I((p) integrate exactly all polynomials from P(4).  Consider first the sum

c - T   v  2   au o_vSe-Je    Z    a,7ä^ä7
/,/=! axi   oxj

(the values of this sum at Qr appear in (2.17)). We have

(3.14) Se = A[5Af =  ¿   b, §-§,      B = JeiD~xfAD-x

(A is the matrix {âf/}2/=1).  Elementary computations give the following expressions
for the coefficients of the symmetric matrix B:

oxe2V ^ dxex   bx\ ^ tox\x'
bii=Je1)\K-Js"-2n2--0T2äl2 + \K a 22

(3.15) A        A  94 3*5.   J*A !l+il ^a   _il 9^iâ
V=^  j-3¡; -3Ï7fln+lv3?1   3|2+3?1   b%2)ax2    a?!   3£2

Let us denote by ß any of the factors appearing at any of the coefficients a¡.- on the
right-hand sides of (3.15).  We shall need later the following estimate of ß:

(3.16) \Daß\<Ch[a\       |Q|>0

(to prove (3.16) differentiate the identity JeJ7x = 1 and prove by induction D^J'1 =
0(hJ2 + M); (3.16) follows by Leibniz rule).  At this time we use (3.16) with |a| < 1.
Lipschitz continuity of a« and (3.16) with |a| < 1 give b¡- = b^ + OQie) where bf- means
the value of b„ at the center (0, 0).  Therefore

Se = A^% + 0(he)\\A,\\2 =t   &?/#-#+ Oihe)\vW,c2>      B° = m,j=r-
i,j— 1 *i /

As (3û/3£f) (30/3Ç,) e P(4), we get

Z^e(ß,)   E    WaT(Ör)#(ßr)

^       2     n3«3(ßr) ao(ßr)

Jc2i,j=i    '°Zi°Çj 2
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Further, ATBA^ > clJeAr(D-1)TD-lAi (because B = /e(Z)_1)7'ÂZ>_1 and A satisfies
(2.3')).  We have proved before that JeA^(D~x)r£r' AH > C||AÇ||2. Therefore,

Consequently, for /t sufficiently small,

3d z-^, a 3u*»(»> »)=ZZ Ve(ß,)    £    W ^-(ßr)^(ßr)

>C£|D|2      >C£|<e = C|u|2      .
e ¿ e "

(d) We have

_ 2 3&(ßr)  3D(ör)«*(». x» = LLArZ  bti(Qr)~^ -2£L.
e     r i,j= i °Ç| °Ç/

As ß and â« are bounded, so are bounded the coefficients bu.   Hence, from (3.2) and
(3.3) we easily get ah(v, v) < CEe|0|?>c   < C\v\2xn  .

4.  Superconvergence Theorems.  First, the integration by Gauss' 2x2 formula
is considered.  Besides the special notation I*ip), for this formula we will use the sign
* for other quantities as, e.g., for t/JJ, a£(u, v), f^iv), I • IJJ, E*, Q*.  The rate of con-
vergence will not be expressed by means of the norm | • |£, because it depends on the
coefficients fly of the operator Lu.   We consider the norm | • |£ associated to the oper-
ator Lu = - Au and this norm is denoted by || • \\h.  Hence, iA* are equal to 1)

(4.1)
Ç £ W)[(^<e?)) + (gps,

h
The norm || • \\h is on Vh equivalent uniformly with respect to h to the norm |u|j n

(4-2) c4lMi,nn<Mh<cMi,nh   V^Fft.

Ciarlet and Raviart proved (see [4, p. 462]) the following estimate for the dis-
cretization error u - uh where u is the solution of (2.4) and uh the solution of (2.19):

II«-«Jit,«,, <CA2

(they consider 9 degrees of freedom elements; however the bound can be proved in the
same way for 8 degrees of freedom elements considered here).  We can say that  in the
sense of L2-norm average error of the gradient is of the order OQi2).  We shall prove
that ||m - u%\\h < C7i3, and this is the reason that we speak about superconvergence.
In fact, let us denote by NG the number of all Gaussian points and by ¿T(.P) the error
of the gradient,
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We have

meas £2h = £  f dx = £  f    /edÇ < C7i2A/G;
e   Je e   JC2

therefore, A^j > Ch~2, C> 0. By the Cauchy inequality we prove under the additional
assumption hjh > C> 0 Ve

ivë1 z £<F)<cn«-«jiu.
P6G

Hence, it follows that the arithmetic mean of errors of the gradient at Gaussian points
is OQi3).

Theorem 4.1.  Let the finite element partitions of £2 be 2-strongly regular.  Fur-
ther, assume the boundary V to be sufficiently smooth,

(4.3) «€//4(£2),   ai/EH3i£l),   /€//3(£2),

and the operator Lu to be uniformly elliptic.  Finally, let the quadrature formula (2.16)
be Gauss' 2x2 product formula.   Then there exists a constant C independent on h
iit is of the form Cx\\u\\ASl + C2\\f\\3n where Cx and C2 do not depend both on h
and u and f) such that

(4.4) \\u - u%\\h < Ch3.

Proof,   (a)  Subtracting (2.19) from (2.15), we get

(4.5) a^iu - u*, v) = S*iv) - R*(u, v)   \/vEVn,

where

(4.6) R*(u, v) = a(u, v) - «*(«, „),      S*iv) = (f u)0 ^ - f*(v).

Further,

(4.7) a*(Ul - u*, v) = S*iv) - R*{u, v) - a*iu - uv v)   \/v E Vh

ÍUj is the interpolate of u). We prove later that

(4.8) l«Ä(« - «/, ü)l<CA3M1>nÄ

(4.9) \R*iu,v)\<Ch3\v\Xtn VvEVh.*h

(4.10) |S»|<CA3|u|lfn;i

From these inequalities, (4.7) and (3.9) it follows that

(4-U) l«Ä("/-"Ä,w)l<CA3|ü|)J   VvEVn.
Setting v = Uj - u% E Vh, we obtain

(4-!2) \uj-u*\*<Ch3.
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Consequently, \u - w£|£ < \u - u^ + \u¡ - ufâ <\u - Uj\^ + Ch3.  We also prove

(4.13) l"-"/ß <CA3.

The last two inequalities give

(4.14) \u-"h\*h <Ch3-

Now from (4.1), (2.17) (with Ar = 1, Qr = Qf, r = 1, . . . , 4) and (2.3') it follows
for any function g piecewise differentiable in £2ft that

(4.15) H/jH^CI/jljf,
which together with (4.14) proves the theorem.

(b) We prove (4.8) and (4.13).  We express ajJ(co, v), where v E Vh and co is any
function such that a£(co, v) is defined, as follows (see (3.14)):

4      2 3co(ßr*)  30(ßr*)

e    r=l   i,/=l z> V

The coefficients 6« are bounded (it follows from (3.15) and (3.16) with |a| = 0).
Hence by (3.2),

,.5,4»(e?)-«r ir <clbîT/ + UrjJ w'-c»
and

*  r/a<^Y   /a£(ß?)yr/2
(4.16)        «(«.»KCÇWa^L   [^-51^-J   +\-9iT7 J    '

We estimate the functional Z,(û) = oùiQ^)/o^x where û = u - ur   It is bounded
on H*(C2), it vanishes for û E P because u¡ = û in this case.   If û = £3, then û, = |2
and où/b%x =0.  If w = gf, then fi, = É, and 3co(0*)/3|, = (3£2 - 1)E =±N/^/3 = 0.
Hence Liu) vanishes for û E P(3) and, according to the Bramble-Hilbert lemma,
\o£ÁQ*)/o>é,x\ < C|«|4C ; in the same way we get |3cô(Q*)/3£2| < C|û|4>c .  From
(4.16), (2.9) and (3.3) we obtain

\a*(u - Uj, v)\ <C£|2|4(C \v\uc   < C£A3||u||4;e|u|1>e < CA3||u||4>„  M1>nji
e 2 e

The proof of (4.13) is similar.
(c) To prove (4.9) express a(«, v) as follows:

e        c2  './=! ' I

With respect to definition of the error functional E*ip) we get

(4.18) R*hiu,v) = ZE*(j:  V<;|ll
e \/,/=l ' '/

We estimate E*iJeâx xidu/dxx)idv/dxx)).  We have
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j .£ = r[~_3l -ÜI+J6   ̂ Ll = ̂ LiD__!fl _3L
ebxx       ±b%x   bxx     b%2   ôxx\     b%2  3?!     b%x   o%2<

so that

■ /   ~ a«   3u *ßlf, M. j& M^-flf4 191 F*\ I n      -^-  -zz-    - F*\_-n    SO-  -2>L    _ /?*        L  Î       au      °v( 9)  VVu ^i **J~ W n^i »«J   Ui •"9^i »s
To estimate the first term in (4.19) consider the functional Lia) = E*(odv/d%x) -
Hia) Va 6 H3(C2) where

Hia) ±
45

(4.20)
Iti    32a(l,|2) b2vil,H2)

3?
d\2

/:,

r    32a(-l,y 320(-l,?2)

3^2 o%\
d%2

If a = 1, |j, |2, £2, \x%2, then from ö EP (i.e., 0 is of the form (2.5)) and from (3.7)
(which is satisfied by E*ip)) it follows E*(odv/d%x) = 0.  Also H(a) = 0, hence L(a)
= 0.  If a = %\, then an easy calculation gives E*(odv/d%x) = (16/45) a8 = H(o) (a8
is the last coefficient in (2.5)), thus L(a) = 0 for a E P(2).  Further, from the explicit
form of L(a),

it follows by (3.2), the Sobolev lemma, the inequality /3C <p2ds < CjMI2 c  y<¿> E
HX(C2) and by (3.1) that |Z,(a)| < C|0|1C ||a||3 c .   Hence, the Bramble-Hilbert lemma
gives

(4.21)
Therefore,

\L(a)\ < C\o\3,C2lull,C2-

du   30
11 3*, a?! C2>l3,cJBIi.c, + 2>(o) a =

3^ bu
3*2""3V

However, the last sum in the above inequality is equal to zero.   In this sum they ap-
pear either integrals over element sides which lie on Vh; and, as v\v   = 0, we have
320(±1, £2)/3£2 = 0.  Or they appear couples of integrals over a common side of two
adjacent elements taken in opposite directions with integrands which are the same. The
functions axxbufbxx as well as v assume namely the same values on such side (they are
continuous on £2 A' also x2 assume the same values on such side because these are qua-
dratic polynomials in one variable determined uniquely by values at the three nodes of

to the bound
that side.  So (32a/3£2)(32t)/3ä;2) assume the same values on such side. We have come

(4.22) Ze *\^z    3" ac
bt2xx bxxb%x

< C£|o|
34. 3m

3,C,'«"1,C, a?"11 3*.
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The other term in (4.19) can be estimated in the same way.  In this case we set

We find out that for a = 1, %x, %2, %x %2 , £2 both E*(obv/b%2) and H(a) vanish. For o =
£j we get E*(a 3û/3£2) = H(a) = (16/45)a7. The remaining arguments are the same
and lead again to the bound (4.22) where now a = (bx2/d^1)alldu/bxl.

We must estimate |a|3 c .  Take o = ibxe2/b%2)àxxbu/bxx and express bu/bxx by
rule of differentiation of composite functions. We find out that a is a linear combina-
tion of âxxbû/b%x andândû/d£2 with coefficients whose generic notation ß was
introduced before and which satisfy (3.16).   So set a = ßaxxbu/b%i.  As u E//4(£2)
and the mapping (2.7) satisfies (2.8), we have by Sobolev's lemma (applied to £2° D £2h)
maxc |Daw| < CAj.Œ|||K||4>n for |a| < 2.   Further, from al, E H3^) it follows ax, E

Cx(flh) and maxc \Da(ßäxx)\ < CA^a| for \a\ < 1 (ß satisfies (3.16)).  Therefore,

(using (3.16) and (3.3))

„~      bû
ßaxx~bj; 3c  <C{he\ßaxx\3>C2 +A2|ßa11|2iC2}||«||4ir2ft + c{Ae|U|3C2 + |Û|4C,2}

<C{A4||fl11||0)C2 +A3|fln|liC2 +A2|fln|2iC2 +AeliI1l3,c2}ll"ll4.nh

+ C{Ae|5|3>C2 + |«|4>C2}

<CA3{||fl11||3(e||W||4;íi/i + ||W||4)A

The same bound is true for a = (bxe2/b%x)âx xbu/bxx.  Consequently,

3«     bv
ZE*[Je2xx bxx   bxx e

CZA3{||flll||3>e||«||4in|i + ||«||4te}|ü|1>e

<CA3||«||4>nfcM1)n>|.
In the same way we can estimate the other terms in the first sum of (4.18).  Thus,
(4.9) is proved (see a remark following the equation (2.15)).

(d)  We prove (4.10) for any formula with properties introduced in Lemma 3.6.
Let us first observe that estimating each term of the functional E(av) (we use (3.2) and
Sobolev's lemma) we obtain |£"(aû)| < C||û||0iC ||a||2C .  If a E P(l), then by (3.7) or

(3.8) and by (2.6) Eiov) = 0.  Therefore, by the Bramble-Hilbert lemma

(4.23) |£(aO)|<C|a|2;C2l|D||0iC2    \/o EH2iC2),\/v EP.

For a E H3iC2) we get a better estimate.  We have E(av) = E([a - a¡]v) +
E(ojV).  By (4.23) and (3.6) the bound of the first term is

\E([o - 0,10)1 < C|o - a/|2;C2HO||0iC2<C|a|3>C2l|D||0jC2.

Further, by (3.7) or (3.8) and by (2.6), (3.1)

\E(ojV)\ < C{\oj\2>c \v\3iC   + |o>|3>c |S|2fC }    or    \E(ojb)\ < C\Oj\2>c |D|2C ,
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thus in both cases

\Eiojo)\<C{\o-ai\2tC2 + Wa,<?a}l«1>Ca<C|o|a,cal3llica-

Hence,

(4.24)   |JS(aö)l<C|a|2>C2IO|1>C2+C|al3iC2ltß||0>C2   \/a EH3iC2),Wv EP.

Now we must come back to the original notation: / is the extension of/defined
on/?2 by/= - 22/= ,3(3^3«¡bxj)/bxi. We express Shiv) as follows:

Sh(») = £' We?® + T'EiJjv).
e e

In the first sum the summation is taken over the boundary elements, in the second one
over the inner elements (if A is sufficiently small, the inner elements belong to £2; hence
we may write / in the second sum).

Let us use (4.23) with a = jj.   As DaJe =0(A^l+2)(it follows from (2.8)), we
easily get

|/e/|2;C2 <C{A2|/|2C2 +A3|/|1>C2 +A4||/||0iC2} <CA3||/||2!

and

£'W») <CZ'A3||/||2)e||Û||0iC

For the boundary elements Friedrichs' inequality gives ||D||0 c   < C|0|, c   (v vanishes
on one side of C2).  Therefore

T.'E(JJv)  <C£'A3ll/íl2)elu|1)e<CA3||/Í|2íí  lui, n
e e '    h        '    h

<Ch3\\u\\An^\x>nh<Ch3\\u\\,M\v\XMh.

For the inner elements we use (4.24) with a = Jef, and we easily get

£" E(Jefv) <CA3||/H3jii|„|

Thus,

(4.25)
\Sh(v)\ <CA3[N|4iiîft + ||/||3>n] \v\XtSlh   \/vEVh,

S„(v) = (f,v)0^h-fh(v).

Remark 5.  Relaxing one assumption of the theorem, changing namely the con-
dition of 2-strong regularity into 1-strong regularity, one can prove in the same way that

ll«-«?lli,nnn,<CA2.

(2.8) is satisfied for |a| < 2 if instead of (2.11) we require p(flf, a'¡) < C2A2 (see Re-
mark 2).

Theorem 4.2 introduced below shows that the superconvergence phenomenon is
not closely connected with Gauss' 2x2 formula. For Theorem 4.2 we need that the
finite element partitions, besides being 2-strongly regular, are such that
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(4.26)
J<      b%x    b%2 ex   b%x       3?2 <Ch,      i,/=l,2,

for any two adjacent elements e, ex.
Remark 6.  Condition (4.26) is of different nature than conditions (2.8) and (2.9)

because it does not concern single elements.  If (4.26) is satisfied and the coefficients
flf. are Lipschitz continuous, then the difference of values of the coefficient bx2 (see
(3.15)) on adjacent elements is 0(A).  We give a sufficient condition that (4.26) be ful-
filled.  It is similar to conditions given in Remark 2.

We ask again (2.10) and instead of (2.11) a weaker condition

(4.27) p(ai,a'i)<C2h2e,       Ki<8.

However, we add a third condition.  Let us denote by ae and ße the angles which
make the sides flj«2 and a',fl4, respectively, with the JCj-axis (if a suitable notation is
used then \ße - ae\ = coc).  The condition reads

(4.28) \ae - aglI < C3A,      \ße -figí\< C3h

for any two adjacent elements e, ex.
The proof that this condition is sufficient is simple:   For the parallelogram e corre-

sponding to the element e one computes

bxx       , bxx       . bx2      x bx2      ,
"3¡7 = 2^COS^'  "ol7=2^COS^'  Ü7 = 2^sina-   -b!2-=2kesinße-

Hence, Je< = lAhJce sin coe and, for instance,

bxe.    bxe. cos a  cos ße fe

a|j     3^2 sin coe

From (4.27) and kjhe > C3 we easily get

bx\   bx\     cos ae cos ße
+ Oihe).b%x    3?2 sin coe e

From (2.10) and (4.28) it follows (4.26) for i = / = 1.
Theorem 4.2. Let the quadrature formula (2.16) be either a symmetric formula

with positive coefficients which integrates exactly all polynomials from 0(3) or a
formula which integrates exactly all polynomials from P(4).  Let the finite element
partitions, besides being 2-strongly regular, satisfy (4.26), and let the remaining assump-
tions of Theorem 4.1 be fulfilled.   Then there exists a constant C independent of h
iit is of the form C^lwl^ n + C2\\f\\3a) such that

(4-29) \\u-un\\h<Ch3.

Proof,   (a)  Distinguish two cases:  lip) is of the form (3.10) where I°i<p) integrates
exactly all polynomials from P(4) or lip) itself has this property.  The other possibility
is included in the preceding one because lip) is again of the form (3.10) with a = 0.
The second case is that lip) is of the form (3.11) where Exip) satisfies (3.8). Con-
sider the first case.  Then
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ah(u, v) = (f, v)0tSïh - aRZ(u, v) - (1 - a)R°h(u, v)   \/vE Vh,
(4.30)

R°hiw, v) = aiw, v) -a°hiw, v)

and fljj (w, u) is the approximate value of aiw, v) computed by means of the formula
I°(ip) (or lip) if a = 0).  Hence, subtracting (2.19), we get

ah(u -uh,v) = Sh(v) - aR*(u, v) - (1 - a)R°(u, v)   VvEVh,

where Sh(v) is defined in (4.25).  Adding «/,(«/ - u, v) to both sides, we easily obtain

ahiui -«*.»)" shiv) - o^hi"' v) + aahiui -u,v)-il- a^liuj, v)
(4.31)

+ (1 - a)aiu, - u, v)   yvEVh.

Suppose that we prove

(4.32) \R°niuI,v)\<Ch3\v\x^h   \/vEVn,

(4-33) \aiu-Ul,v)\<Ch3\v\Xtilh   \/vEVh.

Then putting v = Uj - uhin (4.31) we get, by (4.25), (4.9), (4.8), (4.32), (4.33) and (3.9)

(4.34) l«/-«*lf.oft<C*S-

Consequently, by (4.15), (4.13), (4.34) and (4.2)

II" - «fcllfc < II" - "A + 11"/ - "A < CA3 + cA\uj - uh\xilh < CA3

(b)  To prove (4.32) we express fl(«7, u) as follows:

3«/ bv
.4-. °'7l■2

2 bUr     %**
<u»v)=? 42 J?, b«w, 4-d%

(bit are the coefficients (3.15)).  Hence,

(4.35) ^■■^*\£M*fbUr

here E°ip) is the error functional associated to I°ip) and satisfying (3.8).  The coef-
ficients b{- are linear combinations of terms of the form ßamn, where ß satisfies (3.16).
So it is sufficient to prove

„a      dUi   bv CA3IMI3>li,„

and (4.32) follows immediately.
Set a = i3am„3«//3?¿. We have

„JS-i-j. {[,-.,!#) + £•(., f
We estimate the first term by means of (4.23):
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°-°']M;-<C\a-aj\2tCJ«li,c, <C\o\3tC \v\uc .

Now we use (3.8) and get

E,o( je\1 V*V <C|(Tfl3>C2l6|3iC2 <C{|a-a/|3fC2 + H3,c2}l8li,c2

<Cla|3>C2IO|1>C2.

Thus \E°ia 30/3^)1 < C|a|3C |5|1>c .  Further, from (3.16), (3.2) and amn E Cx(Slh)
it follows

dû,
&*«!£, <c

3,C,

3«i
3Í7 + K

3,C,

3îîj
3E 2,C.

+   [*el"/ll.C, +  lfi/la,C,]lámiil2,C,

+ l«/l,  c   Ifl       Ii i.c2l</m„l3 c2

CiAll«,!!^   +A2|Û/|2)C+Ae|û/|3>c

+ Äe[Ael"/ll,C2 + l"/l2,C2]lamJ2,e +/lel"/ll,C2lamnl3,e}
We use the bound

l"/l/,c2 < I"/ - "l/,c2 + l"l/,c2 < c{l"l3,c2 + lûl/,c2>>

/ = 1, 2, 3,  and the fact that, due to (4.3), u E C2(£2A and we get the final bound

„-     ^   bv_
E   \Pamn at.  at. <CA3IMI4>|1>e.3?,-  b%,

(c)  The main problem is to prove (4.33).  We have

e    J^2 hl=l €'      V

(again u = u - u¡).  We must estimate the terms fc b¡Abíü¡b%¡)ibv/b%^d%.  We may
restrict ourselves to two cases: i = j = 1,/ = 1,/ = 2. Consider first fc bxxibû/b%x) •
ibvlb%x)d$.  From (3.16) and atj E Cxifln) it follows bt¡ = A?. + Oihe), where bff de-
notes again the value of b¡- at the center.  Hence

^,3?i atr a?i 3?i

<As IcjIj c   < C|«|3 c , the second term is bounded by Che\ü\3C \v\xc
Ch3\\u\\3 e\v\x e.  To estimate the first term consider the functional Liu) =

fc ibùlb%x)ibv/b%x)d%. It vanishes for « E P.   If û = %\, then Q> = %\-%2, bZ/bÇx
= 0 and L vanishes.   If « = %\, then btb/b^x = 2((3/2)£2 - #), i.e. 3c5/3^j is a multiple
of the Legendre polynomial P2i%x); and as 3û/3£ j is a linear polynomial of %x and
integration with respect to %x is done over the interval (-1, 1>, L vanishes, too.  The
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Bramble-Hubert lemma implies |Z,(«)| < C|2|4 c |û|ic   < CA3||u||4je|u|le.  Hence,

£  f      Z   b»W*tdÍ   <CXh>KeMl,e<Ch*\\U\\4tSl   |ll|li0   .
-2  '=

Now let us consider the integral

3co    30   ,y _ , o     f    ¿¿j  _30_
2"123?1   3?2d?_612 Jc2"

f     a     «¿ -2ÎL wt - aO     f     3co    dv   ,,. ,   f     .-,,  -, 3oj    du   ...ic2 b" 3?1   b%2 * - ^ L 3?7 3i7^ + L **•> W,W2d%

The second term and the sum of these terms are bounded as above.  To estimate the
first term we introduce the functional

Jc2 3?, aç2

(4.36)

üÖD-iV J-,,    fi  a'^pi) 30(^,1)
3?î 3li

rf*i "/_,
i a2cxç1,-i)as(€1,-i)

¿Z 3?,
d*i

If u G i>, then û = 0 and Liu) = 0.  If û = £3, then dû/3^  - 0 and L(«) = 0.  If
u = %\, then fc ibQ>/b%x)ibï/b$2)dï, = (16/15)0, - //"(£) and L(û) = 0.  The
Bramble-Hilbert lemma implies |I(û)l < C|«|4C |û|1>c   < Ch3\\u\\4e\v\x>e. Thus,

2>?2 r 3co   3D
c23£i   3?2

dj <C£Ae3||U||4>e|u|1)e +
e

<Ch3\M\¿Xtrlh\v\XtClh   +

L fc?2^(»)

2>?2#(û)

In the sum z7ieb°x2Hiu) they appear either integrals over element sides which lie on Yh;
and because v\v   = 0, thus 30(1,, ± l)/3£, = 0, these integrals vanish.  Or they ap-

1 h l '

pear couples of integrals over a common side of two adjacent elements taken in opposite
directions with integrands which are the same (o> and v are continuous on £2ft, hence
they assume the same values on each side).  The factors b°x2 need not be the same;
however, their difference is OQî) according to Remark 6.  Therefore, (we use again the
inequality fac <p2ds < CÏMI2>C ) by (3.2), (3.1) and (3.6)

Zb°X2HiÛ)\<ChZ
i    b2ùi%x,l)  bv\%x,l)L

<ca£ ia2ô) SS
a?í b%x

3*1

1.C-)

*i
*ti

cA£iioiii3)C2iai1>C2<cA£iûi3>C2iûi1>C2

< Ch £ A>||3>l1>e < CA3||«||3)nftMli2/i;

and the proof of (4.33) is finished.
(d)  Let us consider the second case of lip), namely lip) is of the form (3.11).  Then

ahiw, v) = a*iw, v) + Rniw, v), where
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(4.37) 8>») = Ç£,(i/*ff)-
We have ahiu, v) = if, u)0 ¿^ - fl(u, v) + ahiu, v) = if, v)0>Ilft ~ Rfiu, v) + Rxhiu, v),
and we easily get

(4.38) ahiuj -un,v) = Shiv) - ^(u, v) + Rxhiuj, v) + aftuj - u, v)   VvEVh.

If we show that

(4.39) l*Ä(«/, u)|<CA3M1>i2/i    VvEV„,

then using the arguments of part (a) of the proof we come to (4.29).  The proof of
(4.39) is the same as that of (4.32) because RniuT, v) and R°iUj, v) have the same
form (see (4.35) and (4.37)) andExip) has the same property as E°ip), namely it satis-
fies (3.8).

5.  Superconvergence in Three Dimensions.  A three-dimensional isoparametric qua-
dratic element of the Serpendipity family has 20 nodes corresponding to 20 nodes of the
three-dimensional cube C3: -1 < £,- < 1, i = 1, 2, 3.  The nodes of C3 are vertices of
C3 and midpoints of sides.  The space P consists of incomplete quartic polynomials of
the form

"l   + «2^1   + «3^2   + <*&  + «5*1   + a6?l?2   + «7*1*3  + «8*2  + «9*2*3

(5.1) +a10?2 +axx%\i2 +ax2t% + <xX3%x%2 + a14^\ + a15£2|3

+ "16^2^3  + «17*1*2*3 + «18*1*2*3  + «19*1*2*3  + «20*1*2*1-

P satisfies again (2.6).  The functions NÁ£X, %2, %3) can be found in [8, p. 121].  The
definition of a fc-strongly regular partition is the same as in two dimensions with one
exception:   instead of (2.9) we have to require

(5.2) c2xh3<\Je\<c2h¡.

With exception of these changes the definition of Vn is the same as before.  The
definition of u% is a*(«*, v) = f*(v)\/v E Vh, where

«**(* v) = £ £ /,(#) t h, |J(Ö?)■&((?).
e    r=l i,/=l oxi axj

(5J) /» = £ £ JeiQ*r)fiQ*r)W*r)>
e    r=l

Ur      \     3 '      3 3 /

The same superconvergence theorem as in two dimensions is true with one change
concerning the assumptions.  We have to assume that the partitions are 3-strongly
regular.  The reason is the following:   in two dimensions the derivatives Dax? of 2-
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strongly partitions are bounded by A)?1 not only for |a| < 3 but for all a because x\
are cubic polynomials.  We need this fact to prove (3.16).  In three dimensions xe¡ are
quartic polynomials, so we have to assume the 3-strong regularity.  The proof of the
theorem is similar to the proof of Theorem 4.1, and we leave it out.

6. Numerical Results and Application of Superconvergence in Practical Computations.
The following problem was solved:*

-A« = -2y + 54xy - 12xy2 + I6y2 - 14y3 - 4x3 - 12x + 16x2 - 42x2v in £2,
(6.1)

«lr = 0,    £2:   0<x< l,0<y< 1.
The exact solution is u(x, y) = x(l - jc)^(1 - j)(l + 2x + ly). We used partitions
consisting of square elements with vertices {(/A, /A)}^=0, M = h~x,h = 1/4, 1/5, 1/6,
1/7, 1/8 and Gauss' 2x2 formula.  The norm ||u - u%\\h is denoted by EG and is
equal in this case to

(6.2)        EG =    AT-'   £
fee

3("-"M\   + ftiu - Htm' Ibx       )        \        by

Here-A^Q = 4A~2 is the number of Gaussian points.  Also, the gradient at vertices of
square elements was computed (the unique values of the gradient were won by averag-
ing); and, as a measure of the error, the number

is taken.  The set V consists of all vertices of square elements with exception of the
vertices of £2.  Table 1 shows on one hand the big difference between the magnitudes
of EG and Ev and the superconvergence at Gaussian points; on the other hand it shows
that Ev goes to zero just as fast as A2, i.e. h~2Ev —*■ const > 0.

Table 1

A EG x 103 Ev x 103 h~3EG h~2Ev

4 9.0 41 0.57 0.65

4.2 25 0.52 0.64

2.2 18 0.49 0.63

1.3 13 0.46 0.63

0.85 10 0.43 0.63

*The author is indebted to M. Kovafíková who carried out all computations on the computer
DATASAAB D21.
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Gauss' 3x3 formula and Cebysev's product formula with nine points were also
applied.  The values EQ and Ev differ less than 0.2% from values given in Table 1 (let
us emphasize that whatever formula is applied, the set G is the set of maps of points
Q* ir= I, ... ,4) of Gauss' 2x2 formula).

The problem (6.1) was solved by curved elements not satisfying (2.8).  The square
elements were distorted into curved ones in that the midpoints of two sides of each
element were moved in the x-direction and y-direction, respectively.  The length of
these displacements was always the same:   % A2.  Such elements do not satisfy (2.8) as
33Xj/3£, 3£2 and b3xe2/b%\ b%2 are in absolute value equal to Wi2.  The number EG is
not equal to \\u - u%\\h; however, it is an equivalent norm; in addition EGx\\u - u%\\h
= 1 + 0(A).  Table 2 indicates convincingly that EG > ch2, c > 0, i.e. there is no
superconvergence.  Nevertheless, EG is still substantially smaller than Ey.

Table 2

A EG x 102 h~2EG Ev x 102

1
4 4.4 0.70 15

3.1 0.76 5.7

1
6 2.3 0.83 5.9

2.0 0.97 3.9

1.3 0.80 3.4

Gauss' 3x3 formula gives values of EG which differ less than 4% from values given in
Table 2.

In general, if we compute the gradient at Gaussian points we always can expect much
more accurate values than at vertices.   If a greater part of the elements differ little from
parallelepipeds we reach even a greater improvement of accuracy. The question is what
integration formula to choose.  Theorems 4.1 and 5.1 and Remark 5 show that very
often Gauss' 2x2 or 2x2x2 formula can be sufficient.   However, Gauss' 3x3
or 3 x 3 x 3 formula guarantees that, both in case of superconvergence as well as in
case that superconvergence does not set in (see [4, pp. 462—463]), we retain the highest
order of accuracy which is possible.

The usual requirement of users of finite element codes is to get the values of gradient
at vertices of elements.  These values must be interpolated from values at Gaussian
points.   If there is no superconvergence, i.e. the rate of convergence in the || '||ft-norm
is Oih2) and not better, then interpolation from four Gaussian points on each element
by a linear isoparametric shape function is sufficient.   Evidently, such interpolation
would make worse the accuracy won in case of superconvergence.   Therefore, a better
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Figure 1
way is to use the quadratic isoparametric shape function.    We choose eight Gaussian
points aAx\, x2), / = 1, . . . , 8 (see Figure 1).  The interpolation of the partial deriva-
tives buh/bxi at the point a0 = (Xj, x2) is done by the formula

8   buJxl, xL)      „    „

j=l 0Xi

The coordinates %°x, £2 are computed by solving the system of two nonlinear equations
xf = 2?-j x¡Nji%x, %2),   i = 1, 2, by Newton's method.  As the initial guess, we
choose the point (0, 0).  The convergence is very fast, and it is entirely sufficient to
stop after three iterations.
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