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Superconvergence of a Finite Element

Approximation to the Solution of a

Sobolev Equation in a Single Space Variable

By Douglas N. Arnold, Jim Douglas, Jr. and Vidar Thomée*

Abstract. A standard Galerkin method for a quasilinear equation of Sobolev type using

continuous, piecewise-polynomial spaces is presented and analyzed. Optimal order error

estimates are established in various norms, and nodal superconvergence is demonstrated.

Discretization in time by explicit single-step methods is discussed.

1. Introduction. We shall consider the numerical solution of the periodic initial

value problem for the Sobolev equation given by

(1.1a)    - iauxl)x + cu, = - iaux)x + ßux + y    for x G R, t G J = [0, T],

(1.1b) w(x, 0) = u0(x)      foTx G R,

(1.1c) u(x + I, t) = u(x, t)    for (x, t) G R X J.

The coefficients a and c will be allowed to depend on x and will be assumed to be

1-periodic and bounded above and below by positive constants, so that the bilinear

form

A (<p, xft) = (acr/, xf/') + (op, \p) = [ (ay'ip' + c<f*p) dx

is equivalent to the usual inner product on the Sobolev space //'([0, 1]). The

coefficients a, ß, and y will be C1 functions of x, t and « which are 1-periodic with

respect to x.

Sobolev equations of the form (1.1a) have been employed to model a variety of

physical processes (see [6] for references). An example of particular interest is the

equation

(1.2) -uxx, + «, + (1 + u)ux - vuxx = 0

that has been studied extensively by Benjamin, Bona, and Mahony [1] and others

[3], [ 13]—[16] as an alternative to the Korteweg-de Vries equation for describing

unidirectional, long, dispersive waves.

The numerical solution of problems similar to (1.1) has been treated by a

number of authors [5]-[9], using both finite difference and finite element methods.

The special case described by (1.2) has also been studied in [2], [4], [16], [17], [20].

We shall consider a standard Galerkin method for (1.1), and we shall derive both
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global estimates and, more interestingly, superconvergence results for the ap-

proximate solution at knots at which the smoothness constraint of the piecewise-

polynomial trial space reduces to simple continuity. Our global estimates, while

new in their explicit form, are closely related to ones obtained earlier by Ewing [6];

they are included so that they can be applied in the derivation of the superconver-

gence estimates. The superconvergence is demonstrated using a duality argument

based on the pivot space formed by the periodic functions in //'.

Denote the periodic Sobolev spaces by

Hk = {f G HkJ9)\fix + 1) = fix), x G R},

and let the norm of Hk be \\f\\k = ||/||w*(/), where / is any interval of length one.

Frequently, the index zero will be omitted for H°(I) = L2(I). We shall abbreviate

the notation for the space L"(0, T; Hk) to L"(Hk), 1 < q < oo. The letter C will

be used to indicate generic constants, and the usual functional notation will be

employed to specify dependence. However, dependence on T and the coefficients

a, c, a, ß, and y will generally not be noted explicitly.

We assume that the problem (1.1) is well-posed in the sense that, for given

«0 G Hx, there exists a unique C1 map u of J into Hx satisfying (1.1a) weakly and

such that u(0) = w0. Existence and uniqueness results of this sort can be proved

under a variety of hypotheses. Well-posedness of (1.2) is proved in [1], [3], [13], [14],

[15], [18]. The following theorem, the proof of which is indicated in the Appendix,

is similar, but not identical, to several appearing elsewhere [10], [18], [19].

Theorem 1.1. Suppose that a and c are strictly positive, l-periodic functions in

L°°(R) and that a, ß, y G C¿(R X J XR) are l-periodic with respect to their first

argument. Then, given u0 G Hx, there exists a unique C1 map u of J into Hx such

that

(1.3a)     A(u„ x) = (a(u)ux, xj + (ß(u)ux, x) + (?(«), x)   for x G Hx,

(1.3b) «(0) = «0.

Further, \\u\\L^Hi) is bounded by a constant depending only on ||«0lli' T, and the

coefficients a, c, a, ß, and y.

The following regularity theorem is also proved in the Appendix.

Theorem 1.2. Let k be a positive integer, let m = max(l, k — 1), and suppose that

a and c are strictly positive, l-periodic functions in Ck~ '(R), and that a, ß, and y are

functions in Cm(R) which are l-periodic with respect to their first argument. Let u be

a Cl map of J into H¡ satisfying (1.3) with u0 G Hk. Then u(t) G Hk for all t G J.

Moreover

(1-4) ll"llz.»(w,*) + ||u,IIz-(ä/) < C,

where C is a constant which depends only on ||Mn|l*> T, and the coefficients a, c, a, ß,

and y.

2. The Finite Element Approximation. We suppose given a sequence of values of

h clustering at 0 and for each h a partition 0 = x¡¡ < xx < • ■ ■ < x£ = 1 with

sup,(x,A - x/L,) = h. The finite element space 911 = <D1LA C //p" is then taken to be

the space of continuous,  l-periodic functions which restrict to polynomials of
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SUPERCONVERGENCE OF A FINITE ELEMENT APPROXIMATION 55

degree at most r on each of the subintervals (x/L,, x/1). Here, r > 1 is a fixed

integer. It is well known that for some constant C, independent of h,

(2.1) inf   (||ç-xll + A|lv-xlli)<C|M|,A«    for <p G ///, 1 < q < r + 1.
xe9R.»

The semidiscrete solution of (1.1) is defined to be the function U = Uh: J -* 911

such that

(2.2a)   ¿(t/„ x) = (a(i/)l/x, xJ + (ßW)Ux, x) + (y(U), x)    for X G 911, f G /,

(2.2b) A(U(0),x) = A(uo,x)    for x G 911.

The Eqs. (2.2a) can be interpreted as a finite system of ordinary differential

equations in the coefficients of U with respect to some basis for 911. Therefore,

(2.2) has a unique solution at least locally in /. In the next section we shall show

that the solution U persists for / G J.

3. Global Error Estimates. Henceforth, we assume that a, c G Cr(R) and a, ß, y

G C(R X y X R). In this section we prove the following theorem.

Theorem 3.1. The solution Uh of (2.2) is defined for all t G J, and

\\Uh - «IL-(/ç) < COM,)/**-1   forO<s<Kq<r+l.

Proof. First we make the temporary assumption that a, ß, y G C¿(R X y X R).

It is then easy to see that U is defined on all of J. Indeed, setting x = U in (2.2a)

and integrating over the interval (0, t) c J yields

AiUit), Uit)) < AiUiO), 1/(0)) + c['\\Uir)\\2xdT.

From this relation, Gronwall's lemma and (2.2b) follow the a priori estimates

(3.1) \\U\\L~W)<C\\U(0)\\x <C||«0||1,

which suffice to establish existence of Uit) for all t E J.

For the purpose of the error analysis, we introduce the elliptic projection « = üh:

J —» 911 of «, defined by the equations

(3.2) Aiù, x) = Aiu, x)    for x G 911.

Let t] = ü — u, f = U — u, £ = « — 1/ = tj — f. It is well known that

(3.3) ||tj(0||, < C\\uit)\\qh"-S    fovtEj,0<s<l <q<r+l.

Hence, in order to prove the theorem, it suffices to show that

ItöL-W) < C(||«oll,)A*"'   forO <s < 1< 9 <r + 1.

Now, if we subtract the weak form of (1.1a) from (2.2a) and use Taylor's theorem,

we find that

A(S„ x) = B(S, x) = i<*iU)$x, X.) + (W, X,)

+ (/8(l/)fx, x) + ([ Ä«, + yu]t, x)    forx G 911,

where Fu = /¿ Fu{u + rf ) í/t for F = a, ß, or y. Note that, since the solution « of

(1.1) is stable in the space Hx by Theorem 1.1 and since ||<p||L. < }|<p||,,

(3.5) \B(q>, ^)| < CdlMolDllcpll.ll^ll,    fortp, * G H¡.
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Moreover, integrating by parts, we obtain

B(cp, ■/,) = (<p, -a(UUxx +[-ax(U) - au(U)Ux + Rxux - ß(U)}^x

+ [-ßx(U) - ßu(U)Ux + ßuux + %]*).

Since (3.1) implies that

\(<p,au(U)UxxPx)\ < IMI ||au(í/)||L„||í/J| ||^||L- < C(||«oll,)||qf»|| M\\2,

then

(3-6) \B(q>,*)\ < C(ll"oll.)ll<Pll Mi-

It follows from (3.2) that A(t),, x) = 0 for x G 9IL; consequently, A(£t, x) =

-A($,, x) and

(3.7a) A<¿, x) - -B(S, X)   for X G 911.

The initial values of Uh were chosen in (2.2b) so that

(3.7b) £(0) = 0.

The choice x = I, in (3.7a) leads to the inequality

(3.8) 111,11, < caiuoiioiin,.
Now, by (3.7b),

ll«0ll. HlffcO-)*!   <  í'\\Ur)\\)dT
\\Jo III      •'o

<C(||«oll,) f(||«T)||, + ||tj(t)||1)í/t,
•'0

since f = tj - £. An application of Gronwall's lemma shows that

U\\l-w) < C(KII,)||t,||í1(h;) < cîkii,)!!«!!^;)/!'-'.

In light of the regularity Theorem 1.2, this shows the desired estimate for j = 1.

It remains to consider the case s = 0. Fix / G J and let \p G H2 be the l-periodic

solution of the equation

- (a*x)x + cxp - tt(t).

Then,

(3.9) uh<c\\m\\-
Now, by (3.7a),

mm2 = Am*)
= A iè,it), 4>-x)+ B(m, * - X) - B($(t), *)   for x G 91L.

So, by (3.5) and (3.6),

U,(t)f < C[(|fc(/)||, + U(t)\U)  inf   ||* - xlli + IIK0II Hhl

with C = C(||w0||,). Hence, by (2.1), (3.8), and (3.9),

\\i(t)\\ < cGiftoii,* + ||f(0l!) < c(n«oll,)(A* + 111(011),
where in the latter inequality we have used the // ' estimate on | and Hl and L2

estimates on tj. Integration in time and application of Gronwall's lemma as before

yields the desired estimate and thus completes the proof of the theorem in case

a, ß, y G Q'(R X J X R).
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Finally, we must remove the hypothesis that the coefficients and their first

derivatives are bounded. Let a*, ß*, and y* be functions in C^(R X J X R) which

are periodic with respect to their first argument, and which extend a, ß, and y from

a neighborhood of the solution surface, {(x, t, u(x, t))\(x, t) G R X J}. Then the

differential problem derived from (1.1) by replacing the coefficients a, ß, y with a*,

ß*, y* has a unique solution by Theorem 1.1, which must be «. The above analysis

applies to that equation, giving for each h the semidiscrete Galerkin solution U*,

which converges to « uniformly in (x, t). For small h, (a*, ß*, y*) = (a, ß, y) on

{ix, t, Uflix, t))\(x, t) E R X J}, and so U* must also be the (necessarily unique)

semidiscrete Galerkin solution for the original problem; i.e., Uh = U* converges to

« and the desired error estimates hold.

4. Superconvergence Estimates. The following theorem is the major result of this

paper. It will be deduced by a refinement of the duality argument used in showing

the L2-estimate in Theorem 3.1.

Theorem 4.1. The error in the solution given by the semidiscrete finite element

method satisfies the inequality

\Uh(x,t)-u(x,t)\ < C(\\u0\[t+1)h2r

for each knot x G (xq, xx, . . . , xnA} and each t E J.

For the proof, we fix a knot x and define the space

//=/// n Hr+l((x,x +1)),

normed by \\\\p\\\ = ||»r'll#'+1((;c,*+i)y Thus, the elements of H are continuous l-peri-

odic functions with r + 1 locally square-integrable derivatives, except at the point

x, where the first derivative can have a simple discontinuity. An example of such a

function is the periodic Green's function for the operator <p —> ~iacpx)x + c<p at x;

that is, the function G G Hpl defined by the equations

A(<p, G) = <p(x)    for^e//;.

From the elementary theory of ordinary differential equations we know that |||C|||

may be bounded by a constant depending only on a and c.

Since the finite element space is constrained only by continuity at the knot x, the

usual proof of (2.1) yields the estimate

(4.1) inf  |M-xlli <C\\W\\hr   for * EH.
xe9H

For <p G // ', we define the following dual norm:

IIMH, =   sup A(<p,M\M\\\.

The lemma below shows that this norm dominates the knot value.

Lemma 4.2. There exists a constant C such that

W(x)\ <C 111*111,   foryEH}.

Proof. This follows immediately from the relations

|<p(x)| = \A(<p, G)\ < |||<p||UI||C7|||.
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Now Hl • Hl has the appearance of a norm of order r + 1, and we have defined its

dual by pivoting about the Hp inner product; so, we should expect ||| • |||„ to

behave like a norm of order -(r - 1). (In fact, as we shall see at the end of this

section, m • |||„ dominates the usual norm in H^r~X).) Thus, the exponent appear-

ing in the next result is the expected one.

Lemma 4.3. The dual norm of the error tj = üh — u in the elliptic projection

satisfies the inequality

HfoWlll. < C(||iyr+1)A*   fortEJ.

Proof. Let $ E H. By (3.3) and (4.1),

A(r,, *) =   inf AU * - x) < CIItjH,  inf  ||* - x||, < C\\u\\r+xh2r\U\l
xe'ttt xe*

which demonstrates the lemma.

To bound |||£|||„ we need a lemma which will allow us to estimate the right-hand

side of (3.7a) by duality. Since the coefficients of the form B are not known to be

sufficiently smooth to enable us to do this, we first refine this form. Carrying some

additional terms in the Taylor expansions, we write (3.7a) in the form

(4-2) A(i, x) - -*(?, X) - R(X)   forXG91L,

where

Bi<p, i) = (a(u)tpx, xpx) + (a„(M)Kx<p, xpx)

+ (ß(u)Vx, *) + ([ ßu(u)ux + yu(u)]<p, if,),

and

B(X) = fà& + <uj2, x,) + (ßJSx + ßmuj2 + yuJ2, x).

Here,

Puu = f '(1 - r)FJ(u + t(U - «)) dr    for F = a, ß, or y.

Note that, by Theorem 3.1,

(4.3) \R(x)\ < CMIL-Hf H.llxll, < Cdlttoll^^A^HxIl,.
Clearly,

(4-4) \B(<p,*)\ < C(||«0||,)||«p||,||^||,.

Lemma 4.4. There exists C = C(||«0||r+1) such that

|B(<p, *)| < ClUtplllJII^III   for <pEHpx,tEH,tE J.

Proof. It follows from (4.4) and the Riesz representation theorem that, for given

\p G Hp, there exists a unique \j/ G Hpl such that

A(<p,xP) = B(<p,x(,)    for <pEHpl

and

llalli < C(||ty,)||<Mli.
Clearly, it now suffices to show that

(4-5) HI^III < CHICHI    for * E H.
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In view of the definition of B, xp satisfies the differential equation

- (axpx)x + cxj=9 = - (a(u)xpx)x + au(u)ux^x - (ß(u)xp)x + (ßu(u)ux + yu(u))xp

on (x, x + 1). Moreover,

|^(x)| = |^(x + i)|< iMi, < cdKiDi^H,.

Thus, regularity of the Dirichlet two-point boundary value problem implies that

111*111 < aiM.Xll'r'll, + l|0||/r-((ic,ir+i))) < C(||«0||r+I)|||*|||,
which shows (4.5).

Proof of Theorem 4.1. By Lemmas 4.2 and 4.3 it remains to show that, for

i « a - u„,

(4.6) Mim, < C(\\u0\\r+X)h2r    for/G 7.

Let xp E H. By (4.2), we have for fixed / G J the relation

A(i, xp) = A(i„ * - x) + B(S, xp - x) - B(S, xP) - R(x).

Choosing x by (4.1) and using (4.4), Lemma 4.4, and (4.3), we obtain the estimate

1^(4, m < c(\\u0\\r+x)(m\x + uwx)hr + mí m, + h2')w\xp\\\.

Thus,

mi, nu < cdi«biir+,)(**■ + iitíiiu),

by Lemma 4.3, (3.8), and Theorem 3.1. Integrate (4.7) in time and apply Gronwall's

lemma to conclude (4.6). Hence, the theorem has been proved.

We shall complete this section by demonstrating that, for <p G Hp,

(4-8) llSrW-os    sup   (v,*)/||*||r_, <C||M|L,
+£//;-'

and thus, by Lemma 4.3 and (4.6),

l|i4-«IU-(^-'>)<C([|«olu,)A2'.

In fact, for given xp E Hp~\ there exists a unique xp E Hp + ' such that

(<p,xp) = A(<p,xp)    fortpG//;,

and

lll*ll « IMU. < CUM,.,.
Hence, by the definition of ||| • |||t,

l(<P,*)l< llalli,111*111 < C|[|«p|||J|*||r_„

which shows (4.8).

5. Discretization in Time by Explicit Single-Step Methods. When solving para-

bolic differential equations by finite element methods, one typically uses an

implicit finite difference method to solve the system of ordinary differential

equations which arises from the finite element discretization of the spatial operator.

Standard explicit ODE solvers do not generally provide stable approximations if

the time step and the mesh parameter are allowed to tend to zero independently.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



60 DOUGLAS N. ARNOLD, JIM DOUGLAS, JR. AND VIDAR THOMÉE

For Sobolev equations, however, the situation is more favorable. In fact, the

usual bounds for the truncation error of single-step methods, such as Runge-Kutta

methods or predictor-corrector methods based on quadrature rules, apply equally

well to the semidiscrete Sobolev equation (2.2), with the constant independent of the

level of spatial discretization. We do not wish to carry out the error analysis for such

methods at length here and so shall consider only the simple case of Euler's

method. Convergence proofs for more accurate methods, as described in, e.g., [11],

•  can easily be adapted to our situation in the same manner.

The Euler-Galerkin method defines approximations U" to u at tn = nk ik > 0

being the step-size) by the equations

(5 l&)A{U"+l ~ U"' X) = ^(a('"' U")U"' Xc)

+ (ß(tn, U")U"X, x) + (y(t„, U"), x)]     forX G 91L,

(5.1b) A(U°, x) = A(u0, x)    forXG91t.

Theorem 5.1. The error in the Euler-Galerkin method satisfies the following

inequalities :

sup || U" - u(t„)\\s < C(||«o||,)A«-' + C(||«0||,)*
n = 0,l, . . .,[T/k]

for0<s<l<q<r+l,

and, with x E [x{¡, xx, . . . , x¡¡},

sup \U"(x) - u(x, 01 < C(||«0||r+1)A2' + C(||tt0||,)A.
n = 0, 1.[T/k]

Proof. In view of Theorems 3.1 and 4.1, it suffices to show that, for e" = U" -

U(Q,

Ik" Hi < CdlKoll,)*    for«- 1,2,..., [T/k].

Since

U(tn+X) - U(t„) = kU,(t„) + k2 Ç U„(tn + rk)(l - T) dT,

then, by (2.2),

A(U(tn+x)- U(Q,x)

(5.2)    = *[(«&■ U(Q)Ux(tH), x,) + (ß(tn, U(tn))Ux(t„), x) + (y(tn, £/(/„)), x)]

+ k2 CA(Ult(tn + rk), x)(l - t) dr   for X G 9H.
-'o

We now subtract (5.2) from (5.1a) and use the bound (invoke again the argument

at the end of Section 3 to avoid global boundedness assumptions)

\\F(tn, U") - F(tn, £/(0)IL- < CHe-IL- < C||e"||,    for F = «, ß, or y,

and the fact that (cf. (A.2) and (A.3))

l|t/|l£-(*;) + ll£/„lk-(»;)<ail«ollt)-
Then,

\A(e" + l - e", x)\ < C(||«0||,)(/c||el, + /c2)||X||,    for X G 911.
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It results from the choice x = en+l that

A(en+1, <?"+1)1/2 < (1 + Ck)A(en, e")1/2 + Ck2.

Since e° = 0, a simple induction shows that

||e"||, < CxA(e\ en)1/2 < C,((l + Ck)" - \)k < Cx(eCT - l)k,

for«-0,1,..., [T/k],

which completes the proof of the theorem.

Note that to solve (5.1) it is necessary only to factor and store the single band

matrix corresponding to the form A.

Appendix.

Proof of Theorem 1.1. The method of Faedo-Galerkin [12] can be applied in an

essentially standard way. Letting {xm}m-i oe a smooth basis for Hp and V the

linear span of {xm}m=i> we define t" E (0, T] and u" G C'(0, t"; V) so that

(Ala) A{<' Xm) = (a("")M- **m) + («"")<• Xm) + iyiW), xm\

fort G[0, t"],m = 1, 2, . . . , n,

(Alb) A(u"(0), xm) = Aiu0, Xm)   for m = 1,2, ...,«,

which is possible by the standard existence theorem for ordinary differential

equations. Replacing x"1 by w", we find that

||«"(i)Hi <C   for/e[0,/"],

with C depending only on a, c, a, ß, y, T, and ||«0||, but not on n. It follows that

we may take t" = T for all n. Next, using the test function u" E V we conclude

that

(A.2) lkl¿-(*;) < C ||«!£.(*;)< C,

and, by differentiating (A.l) and substituting u¡¡ G V for xm, that

(A3) IKIL-W) < c.

Thus, {«"}, {«,"}, and {«,"} are uniformly bounded sets in Lx(Hp). In particu-

lar {«"} is uniformly bounded in //'(/ x J), which is compactly contained in

L2(I X J). There thus exist u E L°°(Hp) and a subsequence {«"'}"_, such that as

v —> oo, «"- -» « weakly* in L°°(Hp), strongly in L2(/ X /), and almost everywhere,

and such that u,"' -^ u, and «,?■ -» «„ weakly* in L°°(HX). It follows that « G

C\Hj), and it is then easy to pass to the limit in the L'(7)-weak* topology in

(A.l), verifying (1.3) with x = Xm- Since m is arbitrary, this completes the proof.

Proof of Theorem 1.2. We shall show that the sequence {«"} constructed above

satisfies the inequality

(A.4) ||«"IL-(h/) + Ik'IL-W) < C,

with C independent of n. Since the set of functions in L°°(Hp) with norm not

exceeding C is compact, the result (1.4) follows. For k = 1, the inequality (A.4) is

given by (A.2). We shall proceed by induction on k, abbreviating 3*/3x* to 9* and

dropping the superscript n for brevity. Replace xm in (A.l) by x = (-1)*92*«,-
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Then, in view of the inductive hypothesis,

k

Aiu„ x) = Aidku„ dku,) + 2 (k.)[iVa-dk + 1-\, 9*+1w,) + (9>c • dk~\, 9*«,)]
j=\\J I

>¿P\HÍ-C(||«olU),

where K = min(inf a, inf c). Also,

£(*W[a(«)]9*+l-«,9* + 1«,)
k

l(«("K' xJI =

<¿I|9'C+1",I|2+C(||«0|U)(1 + ||«||2 + 1).

|(^(«K,x)| + |(y(«),x)|<^?I|9A:+1«,II2 + c(||«0iu)(i + ||«||i+1).

8/i '

Similarly,

J_
8/C1

Thus,

ll",lli+, < c(kiu)(i + ||«||2 + 1).
It follows from Gronwall's lemma that

ll«lk-(jf/*') < C(ll«olU+i)-

These two inequalities imply (A.4) with k replaced by k + 1 and complete the

proof.
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