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In this paper, we study the superconvergence property for the discontinuous Galerkin
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perconvergence towards a particular projection of the exact solution when the upwind flux

is used for conservation laws and when the alternating flux is used for convection-diffusion

equations. The order of superconvergence for both cases is proved to be k+ 3
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1 Introduction

In this paper, we consider one-dimensional linear hyperbolic conservation laws

ut + cux = 0, (1.1)

and convection-diffusion equations

ut + cux = buxx, (1.2)

where c, b are constants and b > 0. We study the the superconvergence of the discontinuous

Galerkin (DG) solutions and the local DG (LDG) solutions towards a particular projection

of the exact solution. Superconvergence requires upwind fluxes for the DG scheme and

alternating fluxes for the LDG scheme. This superconvergence also implies a good control

on the time evolution of the errors.

The DG method discussed here is a class of finite element methods using completely

discontinuous piecewise polynomial space for the numerical solution and the test functions. It

was originally devised to solve hyperbolic conservation laws containing only first order spatial

derivatives, e.g. [14, 13, 12, 11, 15, 17]. It has the advantage of flexibility for arbitrarily

unstructured meshes, with a compact stencil, and with the ability to easily accommodate

arbitrary h-p adaptivity. The DG method was later generalized to the LDG method by

Cockburn and Shu to solve the convection-diffusion equation [16]. Their work was motivated

by the successful numerical experiments of Bassi and Rebay [5] for the compressible Navier-

Stokes equations.

For ordinary differential equations and steady hyperbolic problems, Adjerid et al. [1, 4]

proved the DG solution is superconvergent at Radau points. In [8], we proved superconver-

gence of the DG solution towards a particular projection of the exact solution in the case

of piecewise linear polynomials on uniform meshes for the linear conservation law (1.1) and

considered its impact on the time growth of the errors. We also demonstrated numerically

that the conclusions hold true for very general cases, including higher order DG methods,
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nonlinear equations, systems, and two dimensions. For convection-diffusion equations, in

[7], Celiker and Cockburn studied the steady state solution of (1.2), and proved that for a

large class of DG methods, the numerical fluxes (traces) are superconvergent, see also [6]

for related discussions on elliptic problems. In [3, 2], Adjerid et al. showed for convection

or diffusion dominant time dependent equations, the LDG solution is superconvergent at

Radau points. In [9], we discussed the superconvergence property of the LDG scheme for

convection-diffusion equations. We proved the superconvergence result for the heat equation

in the case of piecewise linear solutions on uniform meshes, and gave numerical tests to

demonstrate the validity of the result for higher order schemes and nonlinear equations.

The proof in [8, 9] uses Fourier analysis and works only for piecewise linear approximation

space (because of the algebraic complication for higher order polynomials), uniform meshes

and periodic boundary conditions. In this paper, we use a different framework to prove

the superconvergence results and do not rely on Fourier analysis. The proof now works for

arbitrary non-uniform regular meshes and schemes of any order.

Even though the proof in this paper is given for the simple scalar equations (1.1) and

(1.2), the same superconvergence results can be easily proved for one-dimensional linear

systems along the same lines. The generalization to two space dimensions is more involved,

see [8] for some discussion.

This paper is organized as follows: in Section 2, we consider the superconvergence of

the DG method for the linear conservation law (1.1). We prove our main superconvergence

result in Theorem 2.2. In Section 3, we prove the superconvergence of the LDG method for

the linear convection-diffusion equation (1.2), and discuss the effect of fluxes on superconver-

gence. Finally, conclusions and plans for future work are provided in Section 4. The proofs

for some of the technical lemmas are collected in the Appendix.
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2 Conservation laws

In this section, we consider, without loss of generality, the linear conservation law (1.1) with

c = 1:
{

ut + ux = 0, 0 ≤ x ≤ 2π
u(x, 0) = u0(x)

. (2.1)

We will consider both the periodic boundary condition u(0, t) = u(2π, t) and the initial-

boundary value problem u(0, t) = g(t).

The usual notation of the DG method is adopted. If we want to solve this equation on

the interval I = [0, 2π], first we divide it into N cells as follows

0 = x 1

2

< x 3

2

< . . . < xN+
1

2

= 2π. (2.2)

We denote

Ij = (xj− 1

2

, xj+ 1

2

), xj =
1

2

(

xj− 1

2

+ xj+ 1

2

)

, (2.3)

as the cells and cell centers respectively. hj = xj+ 1

2

− xj− 1

2

denotes length of each cell. We

denote h = maxj hj as length of the largest cell.

Define V k
h = {υ : υ|Ij

∈ P k(Ij), j = 1, · · · , N} to be the approximation space, where

P k(Ij) denotes all polynomials of degree at most k on Ij. The DG scheme using the upwind

flux will become: find uh ∈ V k
h , such that

∫

Ij

(uh)tvhdx −
∫

Ij

uh(vh)xdx + u−
h v−

h |j+ 1

2

− u−
h v+

h |j− 1

2

= 0 (2.4)

holds for any vh ∈ V k
h . Here and below (vh)

−
j+ 1

2

= vh(x
−
j+ 1

2

) denotes the left limit of the

function vh at the discontinuity point xj+ 1

2

. Likewise for v+

h .

In addition, if k ≥ 1, we can define P−
h u to be a projection of u into V k

h , such that

∫

Ij

P−
h u vh dx =

∫

Ij

u vh dx (2.5)

for any vh ∈ P k−1 on Ij , where k is the polynomial degree of the DG solution, and

(P−
h u)− = u− at xj+1/2. (2.6)
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Notice that this special projection is used in the error estimates of the DG methods to derive

optimal L2 error bounds in the literature, e.g. in [18]. We are going to show that indeed

the numerical solution is closer to this special projection of the exact solution than to the

exact solution itself, extending the results in [8]. Let us denote e = u − uh to be the error

between the exact solution and numerical solution, ε = u − P−
h u to be the projection error,

and ē = P−
h u − uh to be the error between the numerical solution and the projection of the

exact solution.

We introduce two functionals which are essential to our estimates. We prove in Lemma

2.1 that they are related to the L2 norm of a function on Ij .

B−
j (M) =

∫

Ij

M(x)
x − xj−1/2

hj

d

dx

(

M(x)
x − xj

hj

)

dx,

B+

j (M) =

∫

Ij

M(x)
x − xj+1/2

hj

d

dx

(

M(x)
x − xj

hj

)

dx.

Lemma 2.1. For any function M(x) ∈ C1 on Ij ,

B−
j (M) =

1

4hj

∫

Ij

M2(x)dx +
M2(xj+1/2)

4
, (2.7)

B+

j (M) = − 1

4hj

∫

Ij

M2(x)dx − M2(xj−1/2)

4
. (2.8)

The proof of this lemma is given in the Appendix.

Theorem 2.2. Let u be the exact solution of the equation (2.1). If k ≥ 1, define uh to be

the DG solution of (2.4) with the initial condition uh(·, 0) = P−
h u0. We have the following

error estimate:

||ē(·, t)||L2 ≤ C1 (t + 1) hk+3/2, (2.9)

and

||e(·, t)||L2 ≤ C1 t hk+3/2 + C2 hk+1, (2.10)

where C1 = C1(||u||k+3), C2 = C2(||u||k+3).
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Proof: Since u satisfies (2.1), we can easily check that

∫

Ij

utvhdx −
∫

Ij

u(vh)xdx + u−v−
h |j+ 1

2

− u−v+

h |j− 1

2

= 0 (2.11)

holds for any vh ∈ V k
h . Combined with (2.4), we have the error equation

∫

Ij

etvhdx −
∫

Ij

e(vh)xdx + e−v−
h |j+ 1

2

− e−v+

h |j− 1

2

= 0 (2.12)

which holds true for any vh ∈ V k
h . By the property (2.5) of the projection P−

h , we have

∫

Ij

ε(vh)xdx = 0

since (vh)x is a polynomial of degree at most k − 1 in Ij . By the property (2.6) of the

projection P−
h , we have

e−
j+ 1

2

= ε−
j+ 1

2

+ ē−
j+ 1

2

= ē−
j+ 1

2

.

Thus,
∫

Ij

etvhdx −
∫

Ij

ē(vh)xdx + ē−v−
h |j+ 1

2

− ē−v+

h |j− 1

2

= 0, (2.13)

and by integration by parts,

∫

Ij

etvhdx +

∫

Ij

(ē)xvhdx + [ē]v+

h |j− 1

2

= 0, (2.14)

where [ē] = ē+ − ē− denotes the jump of ē.

Taking vh = ē in (2.13), since e = ē + ε, we obtain

∫

Ij

(ē)t ēdx +

∫

Ij

εt ēdx −
∫

Ij

ēēxdx + ē−ē−|j+ 1

2

− ē−ē+|j− 1

2

= 0,

or
∫

Ij

(ē)t ēdx +

∫

Ij

εt ēdx + F̂j+ 1

2

− F̂j− 1

2

+
1

2
[ē]2

j+ 1

2

= 0 (2.15)

with

F̂j+ 1

2

= −1

2
(ē+

j+ 1

2

)2 + ē−
j+ 1

2

ē+

j+ 1

2

.

Summing the equality (2.15) over j, with periodic boundary conditions, we have

∫

I

(ē)t ēdx +
1

2

N
∑

j=1

[ē]2
j+ 1

2

+

∫

I

εt ēdx = 0.
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For initial-boundary value problems, since ē−1
2

= 0, the equality becomes

∫

I

(ē)t ēdx +
1

2

N−1
∑

j=1

[ē]2
j+ 1

2

+
1

2
(ē+

1

2

)2 +
1

2
(ē−

N+
1

2

)2 +

∫

I

εt ēdx = 0.

In both cases,

d

dt
||ē||2L2 ≤ 2

∣

∣

∣

∣

∫

I

εt ēdx

∣

∣

∣

∣

. (2.16)

Now, let us return to the error equation (2.14). If v+

h (xj− 1

2

) = 0, then the equation

reduces to
∫

Ij

etvhdx +

∫

Ij

(ē)xvhdx = 0.

Notice that this is a completely local equality inside the cell Ij. Throughout this paper we

will repeatedly use such special test functions to obtain similar local equalities to facilitate

our analysis.

Define ē = ej +wj(x)(x−xj)/hj on Ij , with ej = ē(xj) and wj(x) = (ē−ej)hj/(x−xj) ∈

P k−1, then

∫

Ij

etvhdx +

∫

Ij

(wj(x)(x − xj)/hj)xvhdx = 0

as long as v+

h (xj− 1

2

) = 0, vh ∈ P k. Clearly, vh = wj(x)(x − xj−1/2)/hj is a legitimate choice,

so using the definition of B−
j (M), we have

∫

Ij

etwj(x)(x − xj−1/2)/hjdx + B−
j (wj) = 0.

From Lemma 2.1, this is equivalent to

∫

Ij

et wj(x)(x − xj−1/2)/hj dx +
1

4hj

∫

Ij

w2

j (x)dx +
w2

j (xj+1/2)

4
= 0. (2.17)

Hence,

∫

Ij

wj(x)2dx ≤ −4hj

∫

Ij

et wj(x)(x − xj−1/2)/hj dx = −4

∫

Ij

et wj(x)(x − xj−1/2) dx.

We define piecewise polynomials w(x) and φ1(x), such that w(x) = wj(x), φ1(x) =

x − xj−1/2 on Ij. Clearly ||φ1||L∞ = maxj hj = h, hence

||w||2L2 ≤ 4||et||L2||w||L2||φ1||L∞ ≤ 4h||et||L2||w||L2,
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thus

||w||L2 ≤ 4h||et||L2. (2.18)

The bound of ||et||L2 can be obtained from the following lemma.

Lemma 2.3. Under the same condition as in Theorem 2.2, we have

||et||L2 ≤ Chk+1(t + 1) (2.19)

where C = C(||u||k+3).

The proof of this lemma is given in the Appendix. We now resume the proof of Theorem

2.2. Combining (2.18) and (2.19), we have

||w||L2 ≤ Chk+2(t + 1),

where C = C(||u||k+3).

Next, we look back at the right hand side of (2.16)

∫

I

εt ēdx =
∑

j

∫

Ij

εt (ej + wj(x)(x − xj)/hj)dx =
∑

j

∫

Ij

εt wj(x)(x − xj)/hjdx

where we have used the fact that k ≥ 1 and hence the definition of the projection P−
h ensures

that ε, as well as εt, are orthogonal to piecewise constant functions. Define a new function

φ(x) = (x − xj)/hj on Ij, then ||φ(x)||L∞ = 1

2
, and

∣

∣

∣

∣

∫

I

εt ēdx

∣

∣

∣

∣

≤ ||εt||L2 ||φ||L∞ ||w||L2 ≤ C ′||u||k+2h
k+1

1

2
Chk+2(t + 1) = C1h

2k+3(1 + t)

where C1 = C1(||u||k+3). Plugging into (2.16), we have

d

dt
||ē||2L2 ≤ C1h

2k+3(1 + t).

Since ē(x, 0) = 0, we have, after an integration in t,

||ē||L2 ≤ C1h
k+3/2(1 + t).

Combined with ||ε||L2 ≤ C ′||u||k+1h
k+1, we have finished the proof for Theorem 2.2.
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We remark that the error estimate (2.10) implies that the error does not grow with

time for a long time t = O( 1√
h
). See [8] for numerical experiment results to show this

non-growth of error for a long time for linear as well as nonlinear scalar and systems of

hyperbolic conservation laws, for both periodic boundary conditions and initial-boundary

value problems. This is a major advantage of DG methods for solving hyperbolic wave

equations over long time.

3 Convection-diffusion equations

We are interested in the linear convection-diffusion equation with periodic boundary condi-

tions,






ut + cux = buxx

u(x, 0) = u0(x)
u(0, t) = u(2π, t).

(3.1)

Here, u0(x) is a smooth 2π-periodic function, c and b are constants and b > 0. We consider

only the periodic boundary conditions for simplicity. Since we do not use Fourier analy-

sis, this assumption is not essential. The LDG scheme for (3.1) uses the same mesh and

approximation space as in Section 2 and is formulated based on rewriting (3.1) into
{

ut + cux = aqx

q − aux = 0.
(3.2)

Here a =
√

b, and we introduce a new variable z = cu − aq, that will be used later in the

proof. Then the scheme becomes, to find uh, qh ∈ V k
h , such that

∫

Ij

(uh)tvhdx −
∫

Ij

cuh(vh)xdx + cũhv
−
h |j+ 1

2

− cũhv
+

h |j− 1

2

+

∫

Ij

aqh(vh)xdx − aq̂hv
−
h |j+ 1

2

+ aq̂hv
+

h |j− 1

2

= 0, (3.3)

∫

Ij

qhwhdx +

∫

Ij

auh(wh)xdx − aûhw
−
h |j+ 1

2

+ aûhw
+

h |j− 1

2

= 0

hold for any vh, wh ∈ V k
h , where ũh is the upwind flux depending on the sign of c. Without

loss of generality we assume c ≥ 0 and ũh = u−
h . The alternating diffusion fluxes are taken

as

q̂h = q+

h , ûh = u−
h , (3.4)
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or

q̂h = q−h , ûh = u+

h . (3.5)

The projection P−
h is defined as before. Similarly, the projection P +

h is defined as follows:

for any function u, P+

h u ∈ V k
h satisfies

∫

Ij

P+

h u vh dx =

∫

Ij

u vh dx

for any vh ∈ P k−1 on Ij and

(P+

h u)+ = u+ at xj−1/2.

In order to better control the errors of the initial condition, we define two operators P 1
h

and P 2
h , which will be used in the initial condition of the numerical scheme. P 1

h is defined

as: for any function u, P 1
hu ∈ V k

h , and suppose qh ∈ V k
h is the unique solution to

∫

Ij

qhwhdx +

∫

Ij

aP 1

hu(wh)xdx − a(P 1

hu)−w−
h |j+ 1

2

+ a(P 1

hu)−w+

h |j− 1

2

= 0 (3.6)

for any wh ∈ V k
h , then we require

∫

Ij

((P−
h u − P 1

hu) − a(P+

h q − qh)) vh dx = 0 (3.7)

for any vh ∈ P k−1 on Ij and

u− − (P 1

hu)− = a(q+ − q+

h ) at xj−1/2. (3.8)

We recall that q = aux.

On the other hand, P 2
h is needed only for the case of c > 0 and is defined as follows. For

any function u, P 2
hu ∈ V k

h , and suppose qh ∈ V k
h is the unique solution to

∫

Ij

qhwhdx +

∫

Ij

aP 2

hu(wh)xdx − a(P 2

hu)+w−
h |j+ 1

2

+ a(P 2

hu)+w+

h |j− 1

2

= 0 (3.9)

for any wh ∈ V k
h , then we require

cP 2

hu − aqh = P−
h z (3.10)
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for z = cu − aq.

The definitions of the above operators are nontrivial. Proof for existence and uniqueness

will be provided in Lemma 3.1. We remark that P 1
h and P 2

h are only introduced for technical

purposes in the proof, to guarantee that the initial errors of the LDG solution are small

enough to be compatible with the superconvergence error estimate. In the numerical exper-

iments, we have used simply the L2 projection of u or P−
h u, P+

h u as the initial condition,

and still observed superconvergence, see [9].

In the discussion that follows, we will consider various measurements of errors. Let us

denote eu = u − uh to be the error between the exact solution and the numerical solution,

εu = u − Phu to be the projection error, and ēu = Phu − uh to be the error between the

numerical solution and the projection of the exact solution. Similarly, eq = q−qh, ez = z−zh

is the error between the exact solution and the numerical solution, εq = q−Phq, εz = z−Phz

is the projection error, and ēq = Phq − qh, ēz = Phz − zh is the error between the numerical

solution and the projection of the exact solution for q and z, respectively. Here, the projection

Ph can be P−
h or P+

h depending on the problem and will be specified later.

We introduce a new parameter λ =
minj hj

maxj hj
. In the rest of the paper, if λ appears in the

estimate, it means we require a lower bound for λ, i.e., the mesh needs to be regular.

Lemma 3.1. P 1
hu, P 2

hu exist and are unique. Moreover, we have the following estimate

||P−
h u − P 1

hu|| ≤ C(λ, ||u||k+2)h
k+3/2, (3.11)

||P+

h u − P 2

hu|| ≤ C(||u||k+2)h
k+3/2. (3.12)

The proof of this lemma is given in the Appendix.

We will next present the major result of this section. We first consider the case c > 0.

Theorem 3.2. If k ≥ 1, let u, q = aux be the exact solution of the convection diffusion

equation (3.1) when c > 0 and ũh = u−
h , and uh, qh be the LDG solution of (3.3). If the
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fluxes (3.4) are used, then we define Phu = P−
h u, Phq = P+

h q, and we choose the initial

condition as uh(·, 0) = P 1
hu0. We have the following error estimate:

||ēu(·, t)||2L2 +

∫ t

0

||ēq(·, s)||2L2 ds ≤ Ch2k+3(t + 1)2,

and in particular

||ēu(·, t)||L2 ≤ Chk+3/2(t + 1).

where C = C(||u||k+5, λ, a/c).

Otherwise, if the fluxes (3.5) are used, we let Phu = P+

h u, Phz = P−
h z and uh(·, 0) = P 2

hu0.

We have the following error estimate:

||ēu(·, t)||2L2 +

∫ t

0

||ēz(·, s)||2L2 ds ≤ Ce2C1th2k+3,

and in particular

||ēu(·, t)||L2 ≤ CeC1thk+3/2.

where C = C(||u||k+5, a/c) and C1 = C1(a/c) > 0.

Proof: Without loss of generality, we will only prove for c = 1.

We first consider the case for the fluxes (3.4). Now, the scheme becomes,

∫

Ij

(uh)tvhdx + Tj(uh, qh; vh) = 0,

∫

Ij

qhwhdx + Qj(uh; wh) = 0, (3.13)

for any vh, wh ∈ V k
h , where

Tj(uh, qh; vh) = −
∫

Ij

uh(vh)xdx+u−
h v−

h |j+ 1

2

−u−
h v+

h |j− 1

2

+

∫

Ij

aqh(vh)xdx−aq+

h v−
h |j+ 1

2

+aq+

h v+

h |j− 1

2

,

and

Qj(uh; wh) =

∫

Ij

auh(wh)xdx − au−
h w−

h |j+ 1

2

+ au−
h w+

h |j− 1

2

.

From (3.2), we have

∫

Ij

utvhdx + Tj(u, q; vh) = 0,

∫

Ij

qwhdx + Qj(u; wh) = 0
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that hold for any vh, wh ∈ V k
h . Combined with (3.13), we have the error equations

∫

Ij

(eu)tvhdx + Tj(eu, eq; vh) = 0,

∫

Ij

eqwhdx + Qj(eu; wh) = 0

that hold for any vh, wh ∈ V k
h . Using the properties of the projections P−

h and P+

h , we have

∫

Ij

(eu)tvhdx + Tj(ēu, ēq; vh) = 0, (3.14)

∫

Ij

eqwhdx + Qj(ēu; wh) = 0, (3.15)

or equivalently

∫

Ij

(eu)tvhdx−
∫

Ij

ēu(vh)xdx+ ē−u v−
h |j+ 1

2

−ē−u v+

h |j− 1

2

−a

∫

Ij

(ēq)xvhdx−a[ēq]v
−
h |j+ 1

2

= 0, (3.16)

and
∫

Ij

eqwhdx − a

∫

Ij

(ēu)xwhdx − a[ēu]w
+

h |j− 1

2

= 0 (3.17)

for any vh, wh ∈ V k
h . Taking vh = ēu, wh = ēq in (3.14) and (3.15), summing (3.14) and

(3.15) and then over all j, we obtain

∫

I

(ēu)t ēudx +

∫

I

(ēq)
2dx +

∫

I

(εu)t ēudx +

∫

I

εq ēqdx +
1

2

∑

j

[ēu]
2

j+ 1

2

= 0. (3.18)

Thus,

1

2

d

dt
||ēu||2L2 + ||ēq||2L2 ≤

∣

∣

∣

∣

∫

I

(εu)t ēudx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

εq ēqdx

∣

∣

∣

∣

. (3.19)

Now, we return to the error equation (3.17). If w+

h (xj− 1

2

) = 0, then the equation reduces

to
∫

Ij

eqwhdx − a

∫

Ij

(ēu)xwhdx = 0.

Define ēu = rj + dj(x)(x−xj)/hj on Ij, where rj is a constant and dj(x) ∈ P k−1, and let

wh = dj(x)(x − xj−1/2)/hj. Clearly, wh ∈ P k and w+

h (xj− 1

2

) = 0, so

∫

Ij

eq dj(x)(x − xj−1/2)/hj dx − aB−
j (dj) = 0.

By Lemma 2.1, we have

∫

Ij

eq dj(x)(x − xj−1/2)/hj dx − a

4hj

∫

Ij

d2

j(x)dx − a
d2

j (xj+1/2)

4
= 0,
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hence

∫

Ij

dj(x)2dx ≤ 4

a

∫

Ij

eq dj(x)(x − xj−1/2) dx. (3.20)

Introducing piecewise polynomials φ1(x) and d(x), such that φ1(x) = x− xj−1/2 and d(x) =

dj(x) on Ij, we know that ||φ1||L∞ = h. We then have

||d||2L2 ≤ 4

a
||eq||L2||d||L2||φ1||L∞,

thus

||d||L2 ≤ 4h

a
||eq||L2. (3.21)

For the other error equation (3.16), we follow the same procedure. If v−
h (xj+ 1

2

) = 0, then

the equation reduces to

∫

Ij

(eu)tvhdx −
∫

Ij

ēu(vh)xdx − ē−u v+

h |j− 1

2

− a

∫

Ij

(ēq)xvhdx = 0.

Define ēq = bj + sj(x)(x−xj)/hj on Ij, and let vh = sj(x)(x−xj+1/2)/hj in the equation

above. Clearly, vh ∈ P k and v−
h (xj+ 1

2

) = 0, so

∫

Ij

(eu)t sj(x)(x − xj+1/2)/hj dx − Q1,j + Q2,j = 0

with

Q1,j =

∫

Ij

ēu(vh)xdx + ē−u v+

h |j− 1

2

=

∫

Ij

dj(x)
x − xj

hj
(vh)xdx + (dj−1(x)

x − xj−1

hj−1

+ rj−1 − rj)v
+

h |j− 1

2

=

∫

Ij

dj(x)
x − xj

hj
(sj(x)(x − xj+1/2)/hj)xdx −

(

1

2
dj−1(xj− 1

2

) + rj−1 − rj

)

sj(xj− 1

2

)

and

Q2,j = −a

∫

Ij

(ēq)xvhdx = −aB+

j (sj) = a

(

1

4hj

∫

Ij

s2

j(x)dx +
s2

j(xj− 1

2

)

4

)

where we have used Lemma 2.1. Thus,

∫

Ij

s2

j (x)dx ≤ 4hj

a

(

Q1,j −
∫

Ij

(eu)t sj(x)(x − xj+1/2)/hj dx

)

14



and hence, if we define the piecewise polynomial s(x) such that s(x) = sj(x) when x ∈ Ij ,

then

∫

I

s2(x)dx ≤ 4

a

( ∣

∣

∣

∣

∣

∑

j

hjQ1,j

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

j

∫

Ij

(eu)t sj(x)(x − xj+1/2) dx

∣

∣

∣

∣

∣

)

. (3.22)

To estimate the right hand side of the above inequality, we need the following lemma.

Lemma 3.3. Under the same condition as in Theorem 3.2, we have

||(eu)t||L2 ≤ Chk+1(t + 1), (3.23)

||eu||L2 ≤ Chk+1(t + 1), (3.24)

||eq||L2 ≤ Chk+1(t + 1), (3.25)

where C = C(||u||k+5) is a constant.

The proof of this lemma is given in the Appendix. From (3.21) and (3.25), we have

||d||L2 ≤ Chk+2(t + 1),

where C = C(a). Our next goal is to bound the right hand side of (3.22), thus obtain a

bound for s(x). Define the piecewise polynomial φ2(x), such that φ2(x) = x − xj+1/2 on Ij .

Then ||φ2||L∞ = h and

∣

∣

∣

∣

∣

∑

j

∫

Ij

(eu)t sj(x)(x − xj+1/2) dx

∣

∣

∣

∣

∣

≤ ||(eu)t||L2 ||s||L2 ||φ2||L∞ ≤ Chk+2(t + 1)||s||L2.

The other term on the right hand side of (3.22) is

∑

j

hjQ1,j

=
∑

j

(

∫

Ij

dj(x)(x − xj)(sj(x)(x − xj+1/2)/hj)xdx − hj

(

1

2
dj−1(xj− 1

2

) + rj−1 − rj

)

sj(xj− 1

2

)

)

.

We need to express rj − rj−1 in terms of dj and
∫

Ij
eqdx. In (3.15), let wh = 1, we get

∫

Ij

eqdx − aē−u |j+ 1

2

+ aē−u |j− 1

2

= 0.

15



After plugging in ēu = rj + dj(x)
x−xj

hj
on Ij , we obtain

rj − rj−1 =

∫

Ij
eqdx

a
− 1

2
dj(xj+ 1

2

) +
1

2
dj−1(xj− 1

2

).

Thus

∑

j

hjQ1,j

=
∑

j

∫

Ij

dj(x)(x − xj)sj(x)/hjdx +
∑

j

∫

Ij

dj(x)(x − xj)s
′
j(x)(x − xj+1/2)/hjdx

−
∑

j

1

2
hj dj(xj+ 1

2

) sj(xj− 1

2

) +
1

a

∑

j

hj

(

∫

Ij

eqdx

)

sj(xj− 1

2

)

= T1 + T2 − T3 + T4,

where

T1 =
∑

j

∫

Ij

dj(x)sj(x)(x − xj)/hjdx, T2 =
∑

j

∫

Ij

dj(x)(x − xj)s
′
j(x)(x − xj+1/2)/hjdx,

T3 =
∑

j

1

2
hj dj(xj+ 1

2

) sj(xj− 1

2

), T4 =
1

a

∑

j

hj

(

∫

Ij

eqdx

)

sj(xj− 1

2

).

We again introduce a piecewise polynomial φ3 = (x − xj)/hj on Ij , then ||φ3||L∞ = 1

2
,

and

|T1| ≤ ||d||L2 ||s||L2 ||φ3||L∞ ≤ Chk+2(t + 1)||s||L2.

Similarly, for T2, we introduce φ4 = (x − xj)(x − xj+1/2)/hj on Ij. We have ||φ4||L∞ = h
2
,

and

|T2| ≤ ||d||L2 ||s′||L2 ||φ4||L∞ ≤ Chk+3(t + 1)||s′||L2.

Since s(x) ∈ V k−1

h , we have ||s′||L2 ≤ Ck−1/h ||s||L2 for a regular mesh. Here, Ck−1 only

depends on k. Thus,

|T2| ≤ Chk+2(t + 1)||s||L2.
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For the two remaining terms, we have

|T3| ≤ 1

2

∑

j

|hj dj(xj+ 1

2

) sj(xj− 1

2

)|

≤ 1

2

∑

j

hj
Ck
√

hj

√

∫

Ij

d2
jdx

Ck
√

hj

√

∫

Ij

s2
jdx

≤ 1

2
C2

k

∑

j

√

∫

Ij

d2
jdx

∫

Ij

s2
jdx

≤ 1

2
C2

k

√

∑

j

∫

Ij

d2
jdx

∑

j

∫

Ij

s2
jdx

=
1

2
C2

k ||d||L2 ||s||L2

≤ Chk+2(t + 1)||s||L2,

and

|T4| ≤ 1

a

∑

j

∣

∣

∣

∣

∣

hj

(

∫

Ij

eqdx

)

sj(xj− 1

2

)

∣

∣

∣

∣

∣

≤ 1

a

∑

j

hj

√

hj

√

∫

Ij

e2
qdx

Ck
√

hj

√

∫

Ij

s2
jdx

≤ 1

a
Ckh

∑

j

√

∫

Ij

e2
qdx

∫

Ij

s2
jdx

≤ 1

a
Ckh

√

∑

j

∫

Ij

e2
qdx

∑

j

∫

Ij

s2
jdx

=
1

a
Ckh||eq||L2 ||s||L2

≤ Chk+2(t + 1)||s||L2.

In the above derivation, we use the property that d(x), s(x) ∈ V k
h , thus Ck is a constant that

only depends on k.

Now, (3.22) yields

||s||2L2 ≤ Chk+2(t + 1)||s||L2,

and therefore

||s||L2 ≤ C(λ, a)hk+2(t + 1).
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We are now ready for the final step of our proof. In (3.19),

∫

I

(εu)t ēudx =
∑

j

∫

Ij

(εu)t (rj + dj(x)(x − xj)/hj)dx =
∑

j

∫

Ij

(εu)t dj(x)(x − xj)/hjdx,

∫

I

εq ēqdx =
∑

j

∫

Ij

εq (bj + sj(x)(x − xj)/hj)dx =
∑

j

∫

Ij

εq sj(x)(x − xj)/hjdx.

Recall φ3(x) = (x − xj)/hj, and ||φ3(x)||L∞ = 1

2
, thus

1

2

d

dt
||ēu||2L2 + ||ēq||2L2 ≤

∣

∣

∣

∣

∫

I

(εu)t ēudx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

εq ēqdx

∣

∣

∣

∣

≤ ||(εu)t||L2 ||φ3||L∞ ||d||L2 + ||εq||L2 ||φ3||L∞ ||s||L2

≤ Ch2k+3(t + 1)

where C = C(||u||k+5, λ, a). Using the fact that ||ēu||L2 ≤ C(||u||k+3, λ)hk+3/2 at t = 0,

which is due to the special choice of the initial condition and Lemma 3.1, we have proved

||ēu(·, t)||2L2 +

∫ t

0

||ēq(·, s)||2L2 ds ≤ Ch2k+3(t + 1)2,

and in particular

||ēu(·, t)||L2 ≤ Chk+3/2(t + 1).

Next, we consider the flux choice (3.5). This is the case that the choices for û for the

diffusion part and ũ for the convection part do not coincide. The scheme becomes,

∫

Ij

(uh)tvhdx −
∫

Ij

uh(vh)xdx + u−
h v−

h |j+ 1

2

− u−
h v+

h |j− 1

2

+

∫

Ij

aqh(vh)xdx − aq−h v−
h |j+ 1

2
+ aq−h v+

h |j− 1

2
= 0,

∫

Ij

qhwhdx +

∫

Ij

auh(wh)xdx − au+

h w−
h |j+ 1

2

+ au+

h w+

h |j− 1

2

= 0 (3.26)

for any vh, wh ∈ V k
h . The error equations are now,

∫

Ij

(eu)tvhdx −
∫

Ij

eu(vh)xdx + e−u v−
h |j+ 1

2

− e−u v+

h |j− 1

2

+

∫

Ij

aeq(vh)xdx − ae−q v−
h |j+ 1

2

+ ae−q v+

h |j− 1

2

= 0,

∫

Ij

eqwhdx +

∫

Ij

aeu(wh)xdx − ae+

u w−
h |j+ 1

2

+ ae+

u w+

h |j− 1

2

= 0
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for any vh, wh ∈ V k
h . Since z = u − aq, ez = eu − aeq, eq = (eu − ez)/a, we have

∫

Ij

(eu)tvhdx −
∫

Ij

ez(vh)xdx + e−z v−
h |j+ 1

2

− e−z v+

h |j− 1

2

= 0,

∫

Ij

eu − ez

a
whdx +

∫

Ij

aeu(wh)xdx − ae+

u w−
h |j+ 1

2

+ ae+

u w+

h |j− 1

2

= 0

for any vh, wh ∈ V k
h . Using the properties of the projections P−

h and P+

h , we have

∫

Ij

(eu)tvhdx −
∫

Ij

ēz(vh)xdx + ē−z v−
h |j+ 1

2

− ē−z v+

h |j− 1

2

= 0, (3.27)

∫

Ij

eu − ez

a
whdx +

∫

Ij

aēu(wh)xdx − aē+

u w−
h |j+ 1

2

+ aē+

u w+

h |j− 1

2

= 0 (3.28)

or
∫

Ij

(eu)tvhdx +

∫

Ij

(ēz)xvhdx + [ēz]v
+

h |j− 1

2

= 0, (3.29)

∫

Ij

eu − ez

a
whdx − a

∫

Ij

(ēu)xwhdx − a[ēu]w
−
h |j+ 1

2

= 0 (3.30)

for any vh, wh ∈ V k
h . Letting wh = ēz, vh = ēu, multiplying (3.27) by a, subtracting (3.28),

and summing over all j, we obtain

a

∫

I

(ēu)t ēudx +

∫

I

(ēz)
2

a
dx + a

∫

I

(εu)t ēudx +
1

a

∫

I

εz ēzdx − 1

a

∫

I

εu ēzdx − 1

a

∫

I

ēu ēzdx = 0,

(3.31)

hence we have

a

2

d

dt
||ēu||2L2 +

∫

I

(ēz)
2

a
dx ≤ a

∣

∣

∣

∣

∫

I

(εu)t ēudx

∣

∣

∣

∣

+
1

a

∣

∣

∣

∣

∫

I

εz ēzdx

∣

∣

∣

∣

+
1

a

∣

∣

∣

∣

∫

I

εu ēzdx

∣

∣

∣

∣

+
1

a

∣

∣

∣

∣

∫

I

ēu ēzdx

∣

∣

∣

∣

≤ a

∣

∣

∣

∣

∫

I

(εu)t ēudx

∣

∣

∣

∣

+
1

a

∣

∣

∣

∣

∫

I

εz ēzdx

∣

∣

∣

∣

+
1

a

∣

∣

∣

∣

∫

I

εu ēzdx

∣

∣

∣

∣

+
1

2a
||ēu||2L2 +

1

2a

∫

I

(ēz)
2dx.

Thus,

d

dt
||ēu||2L2 +

1

a2
||ēz||2L2 ≤ 2

∣

∣

∣

∣

∫

I

(εu)t ēudx

∣

∣

∣

∣

+
2

a2

∣

∣

∣

∣

∫

I

εz ēzdx

∣

∣

∣

∣

+
2

a2

∣

∣

∣

∣

∫

I

εu ēzdx

∣

∣

∣

∣

+
1

a2
||ēu||2L2.(3.32)

Now, we return to the error equation (3.29) and (3.30). If v+

h (xj− 1

2

) = 0 and w−
h (xj+ 1

2

) =

0, then the equations reduce to

∫

Ij

(eu)tvhdx +

∫

Ij

(ēz)xvhdx = 0,
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∫

Ij

eu − ez

a
whdx − a

∫

Ij

(ēu)xwhdx = 0.

Define ēu = rj + dj(x)(x− xj)/hj, ēz = bj + sj(x)(x− xj)/hj on Ij , with rj , bj being con-

stants and dj(x), sj(x) ∈ P k−1. If we choose the test functions as vh = sj(x)(x− xj−1/2)/hj,

wh = dj(x)(x − xj+1/2)/hj, then we have

∫

Ij

(eu)t sj(x)(x − xj−1/2)/hj dx + B−
j (sj) = 0,

∫

Ij

eq dj(x)(x − xj+1/2)/hj dx − aB+

j (dj) = 0.

By Lemma 2.1, we have

∫

Ij

(eu)t sj(x)(x − xj−1/2)/hj dx +
1

4hj

∫

Ij

s2

j(x)dx +
s2

j(xj+1/2)

4
= 0,

∫

Ij

eq dj(x)(x − xj+1/2)/hj dx +
a

4hj

∫

Ij

d2

j(x)dx +
ad2

j (xj−1/2)

4
= 0.

Then,

∫

Ij

s2

j(x)dx ≤ −4

∫

Ij

(eu)t sj(x)(x − xj−1/2) dx,

∫

Ij

d2

j(x)dx ≤ −4

a

∫

Ij

eq dj(x)(x − xj+1/2) dx.

Define piecewise polynomials s(x), d(x), φ1(x), φ2(x), such that s(x) = sj(x), d(x) = dj(x), φ1(x) =

x − xj−1/2, φ2(x) = x − xj+1/2 on Ij , then

||s||2L2 ≤ 4||(eu)t||L2||s||L2||φ1||L∞, ||d||2L2 ≤ 4

a
||eq||L2||d||L2||φ2||L∞.

However, ||φ1||L∞ = ||φ2||L∞ = h, hence we conclude

||s||L2 ≤ Ch||(eu)t||L2, ||d||L2 ≤ Ch||eq||L2. (3.33)

Moreover, from (3.10), at t = 0, ēz = 0. Hence, by (3.27), at t = 0,
∫

Ij
(eu)tvh dx = 0, for

any v ∈ V k
h . This implies ||(ēu)t|| ≤ Chk+1 at t = 0.

The bound for ||(eu)t||L2 and ||eq||L2 at time t can be obtained similar to Lemma 3.3.

Lemma 3.4. Under the same condition as in Theorem 3.2, we have

||eu||L2 ≤ CeC1thk+1, (3.34)
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||(eu)t||L2 ≤ CeC1thk+1, (3.35)

||eq||L2 ≤ CeC1thk+1, (3.36)

with C = C(||u||k+5, a), C1 = C1(a) > 0.

The proof of this lemma is given in the Appendix. By Lemma 3.4, (3.33) leads to

||s||L2 ≤ CeC1thk+2, ||d||L2 ≤ CeC1thk+2

with C = C(||u||k+5, a), C1 = C1(a) > 0.

We are now ready for the final step of our proof. In (3.32),

∫

I

(εu)t ēudx =
∑

j

∫

Ij

(εu)t (rj + dj(x)(x − xj)/hj)dx =
∑

j

∫

Ij

(εu)t dj(x)(x − xj)/hjdx,

∫

I

εz ēzdx =
∑

j

∫

Ij

εz (bj + sj(x)(x − xj)/hj)dx =
∑

j

∫

Ij

εz sj(x)(x − xj)/hjdx,

∫

I

εu ēzdx =
∑

j

∫

Ij

εu (bj + sj(x)(x − xj)/hj)dx =
∑

j

∫

Ij

εu sj(x)(x − xj)/hjdx.

Recall φ3(x) = (x − xj)/hj, and ||φ3(x)||L∞ = 1

2
, thus

d

dt
||ēu||2L2 +

1

a2
||ēz||2L2

≤ ||φ3||L∞
(

2||(εu)t||L2 ||d||L2 +
2

a2
||εz||L2 ||s||L2 +

2

a2
||εu||L2 ||s||L2

)

+
1

a2
||ēu||L2

≤ CeC1th2k+3 + C2||ēu||L2

and C = C(||u||k+5, a), C1 = C1(a) > 0, C2 = C2(a) > 0. Using the fact that ||ēu||L2 ≤

C(||u||k+3, λ)hk+3/2 at t = 0, which is due to the special choice of the initial condition and

Lemma 3.1, we have proved

||ēu(·, t)||2L2 +

∫ t

0

||ēz(·, s)||2L2 ds ≤ Ce2C1th2k+3,

and in particular

||ēu(·, t)||L2 ≤ CeC1thk+3/2,

where C = C(||u||k+5, a, λ), C1 = C1(a) > 0.
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Theorem 3.2 can be generalized to equations in the case of c ≤ 0. The case of c < 0 is

symmetric to that of c > 0 and is omitted. For c = 0, we have the following theorem.

Theorem 3.5. If k ≥ 1, let u, q = aux be the exact solution of the diffusion equation (3.1)

when c = 0, and uh, qh be the LDG solution of (3.3). If the fluxes (3.4) are used, we define

Phu = P−
h u, Phq = P+

h q, and we choose the initial condition as uh(·, 0) = P 1
hu0. We have

the following error estimate:

||ēu(·, t)||2L2 +

∫ t

0

||ēq(·, s)||2L2 ds ≤ Ch2k+3(t + 1)2,

and in particular

||ēu(·, t)||L2 ≤ Chk+3/2(t + 1).

The situation with the fluxes (3.5) is symmetric to that with the fluxes (3.4).

The proof of this theorem is similar to that for the case of c > 0 given above and is

therefore omitted.

4 Conclusion and future work

In this paper, we have studied the superconvergence property of the DG and LDG methods

applied to one-dimensional linear conservation laws and convection-diffusion equations. We

improve the proof in [8, 9] to arbitrary regular mesh and any order k ≥ 1.

Future work includes the study of superconvergence of DG and LDG for two-dimensional

problems and for nonlinear equations.
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A Appendix: Proofs of some of the lemmas

In this appendix, we collect the proofs of some of the technical lemmas.

A.1 The proof of Lemma 2.1

We will only prove (2.7). The proof for (2.8) follows similar lines and is omitted.

B−
j (M) =

∫

Ij

M(x)
x − xj−1/2

hj

(

M ′(x)
x − xj

hj

+ M(x)
1

hj

)

dx

=

∫

Ij

(

M(x)M ′(x)
(x − xj)(x − xj−1/2)

h2
j

+ M2(x)
x − xj−1/2

h2
j

)

dx

=

∫

Ij

d

dx

(

M2(x)

2

)

(x − xj)(x − xj−1/2)

h2
j

dx +

∫

Ij

M2(x)
x − xj−1/2

h2
j

dx

=
M2(xj+1/2)

4
−
∫

Ij

M2(x)

2

2x − xj − xj−1/2

h2
j

dx +

∫

Ij

M2(x)
x − xj−1/2

h2
j

dx

=
1

4hj

∫

Ij

M2(x)dx +
M2(xj+1/2)

4
.

This finishes the proof of Lemma 2.1.

A.2 The proof of Lemma 2.3

From the projection results [10], ||εt||L2 ≤ C ′||ut||k+1h
k+1 ≤ C ′||u||k+2h

k+1, and ||εtt||L2 ≤

C ′||utt||k+1h
k+1 ≤ C ′||u||k+3h

k+1, where the constant C ′ only depends on k.

Since e = ε + ē, we will only need to prove that ||ēt||L2 ≤ Chk+1(t + 1). Starting from

the error equation (2.12) and taking the derivative with respect to t, we get

∫

Ij

ettvhdx −
∫

Ij

ēt(vh)xdx + ē−t v−
h |j+ 1

2

− ē−t v+

h |j− 1

2

= 0

which holds for any vh ∈ V k
h . By taking vh = ēt, and summing up over j, we have

∫

I

(ē)tt ētdx +
1

2

N
∑

j=1

[ēt]
2

j+ 1

2

+

∫

I

εtt ētdx = 0
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for periodic boundary conditions, and

∫

I

(ē)tt ētdx +
1

2

N−1
∑

j=1

[ēt]
2

j+ 1

2

+
1

2
(ē+

t )2
1

2

+
1

2
(ē−t )2

N+
1

2

+

∫

I

εtt ētdx = 0

for initial-boundary value problems. In both cases,

1

2

d

dt

∫

I

ē2

tdx ≤ ||εtt||L2 · ||ēt||L2 = C1h
k+1||ēt||L2

where C1 = C ′||u||k+3. Therefore,

d

dt
||ēt||L2 ≤ C1h

k+1.

This gives us

||ēt||L2 ≤ C1h
k+1t + ||ēt(·, 0)||L2.

To bound ||ēt(·, 0)||L2, we take t = 0 in the error equation (2.13). At t = 0, ē = 0, thus
∫

Ij
etvhdx = 0. This means

∫

Ij

ētvhdx = −
∫

Ij

εtvhdx

for any vh ∈ V k
h at t = 0. Let vh = ēt(x, 0), then

||ēt(·, 0)||2L2 ≤ ||εt(·, 0)||L2 ||ēt(·, 0)||L2 ≤ C2h
k+1||ēt(·, 0)||L2,

where C2 = C ′||u||k+2, thus

||ēt(·, 0)||L2 ≤ C2h
k+1 (A.1)

and we have proved Lemma 2.3 by taking C = max(C1, C2).

A.3 The proof of Lemma 3.1

We will first prove the existence and uniqueness of P 1
hu. Since q − aux = 0, we have

∫

Ij

qwhdx +

∫

Ij

au(wh)xdx − au−w−
h |j+ 1

2

+ au−w+

h |j− 1

2

= 0

for any wh ∈ V k
h . Combined with (3.6), we get an error equation,

∫

Ij

(q − qh)whdx +

∫

Ij

a(u − P 1

hu)(wh)xdx − a(u − P 1

hu)−w−
h |j+ 1

2

+ a(u − P 1

hu)−w+

h |j− 1

2

= 0,
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which, by the property of the projection P−
h , is equivalent to

∫

Ij

(q−qh)whdx+

∫

Ij

a(P−
h u−P 1

hu)(wh)xdx−a(P−
h u−P 1

hu)−w−
h |j+ 1

2

+a(P−
h u−P 1

hu)−w+

h |j− 1

2

= 0.

We introduce the notation for the two errors Eu = P−
h u− P 1

hu, Eq = P+

h q − qh, and use the

notation εq = q − P+

h q. The above equality can then be rewritten as

∫

Ij

(εq + Eq)whdx +

∫

Ij

aEu(wh)xdx − aE−
u w−

h |j+ 1

2

+ aE−
u w+

h |j− 1

2

= 0, (A.2)

and the conditions (3.7), (3.8) are now

∫

Ij

(Eu − aEq) vh dx = 0 (A.3)

for any vh ∈ P k−1 on Ij and

E−
u = aE+

q at xj−1/2. (A.4)

(A.2) is equivalent to the original definition of qh (3.6). Thus, we only need to prove there is

a unique solution Eu to the equations (A.2), (A.3), (A.4), then P 1
hu = P−

h u − Eu will exist

and will be unique.

Combining (A.2), (A.3), (A.4), we arrive at the following equation

∫

Ij

(εq + Eq)whdx +

∫

Ij

a2Eq(wh)xdx − a2E+

q w−
h |j+ 1

2

+ a2E+

q w+

h |j− 1

2

= 0, (A.5)

or

∫

Ij

Eqwhdx +

∫

Ij

a2Eq(wh)xdx − a2E+

q w−
h |j+ 1

2

+ a2E+

q w+

h |j− 1

2

= −
∫

Ij

εqwhdx, (A.6)

or equivalently,

∫

Ij

(εq + Eq)whdx − a2

∫

Ij

(Eq)xwhdx − a2[Eq]w
−
h |j+ 1

2

= 0, (A.7)

for any wh ∈ V k
h . For any given u, εq is uniquely defined, thus the equation (A.6) is a

n(k + 1) × n(k + 1) linear system for Eq ∈ V k
h with a known right hand side. Hence, if we

can prove uniqueness for Eq, then existence will follow.
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The solution Eq to (A.6) is unique. Otherwise, suppose there are two solutions E1
q and

E2
q . Define g = E1

q − E2
q , then

∫

Ij

gwhdx +

∫

Ij

a2g(wh)xdx − a2g+w−
h |j+ 1

2

+ a2g+w+

h |j− 1

2

= 0

for any wh ∈ V k
h . Let wh = g, and sum over all j, we obtain

∫

I

g2 dx +
a2

2

∑

j

[g]2
j+ 1

2

= 0.

Thus, g = 0. We have proved Eq exists and is unique. Similarly, given Eq, (A.3) and (A.4)

is a n(k + 1) × n(k + 1) linear system for Eu. The solution is unique, because

∫

Ij

g vh dx = 0

for any vh ∈ P k−1 on Ij and

g− = 0 at xj−1/2.

will imply g = 0. That proves the existence and uniqueness of Eu, thus P 1
hu.

To prove the estimate (3.11), we start with (A.7). Similar to the proof of Theorem 2.2,

we define Eq = bj + sj(x)(x − xj)/hj on Ij , where bj is a constant and sj(x) ∈ P k−1, then

let wh = sj(x)(x − xj+1/2)/hj on Ij. Since wh(x
−
j+ 1

2

) = 0, from (A.7) we get

∫

Ij

(εq + Eq) sj(x)(x − xj+1/2)/hj dx − a2B+

j (sj) = 0,

which by Lemma 2.1 is,

∫

Ij

(εq + Eq) sj(x)(x − xj+1/2)/hj dx + a2

(

1

4hj

∫

Ij

s2

j(x)dx +
s2

j(xj−1/2)

4

)

= 0.

Thus,

∫

Ij

sj(x)2dx ≤ − 4

a2

∫

Ij

(εq + Eq) sj(x)(x − xj+1/2) dx.

Define piecewise polynomials s(x) and φ2(x), such that s(x) = sj(x), φ2(x) = x − xj+1/2 on

Ij , then

||s||2L2 ≤
4

a2
||εq + Eq||L2||s||L2||φ2||L∞.
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However, ||φ2||L∞ = h, hence

||s||L2 ≤ Ch||εq + Eq||L2 ≤ Ch(||εq||L2 + ||Eq||L2) ≤ Chk+2 + Ch||Eq||L2, (A.8)

where C = C(a, ||u||k+2). Now, plugging wh = Eq in (A.6) and summing over all j, we get

∫

I

E2

q dx +
a2

2

∑

j

[Eq]
2

j+ 1

2

= −
∫

I

εqEq dx,

thus

||Eq||2L2 ≤
∣

∣

∣

∣

∫

I

εqEq dx

∣

∣

∣

∣

. (A.9)

Since εq is orthogonal to any constant, we have

∣

∣

∣

∣

∫

I

εqEq dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

j

∫

Ij

εq sj(x)(x − xj)/hjdx

∣

∣

∣

∣

∣

.

Define a new function φ(x) = (x − xj)/hj on Ij, then ||φ(x)||L∞ = 1

2
, and

∣

∣

∣

∣

∫

I

εq Eqdx

∣

∣

∣

∣

≤ ||εq||L2 ||φ||L∞ ||s||L2 ≤ Chk+1||s||.

Therefore, (A.9) and (A.8) imply

||Eq||2L2 ≤ Chk+1||s|| ≤ Ch2k+3 + Chk+2||Eq||L2.

Thus, we have proved a bound for Eq,

||Eq||L2 ≤ Chk+3/2,

where C = C(||u||k+2). Using the relations (A.3) and (A.4), we will be able to prove a bound

for Eu. Suppose

Eu =
k
∑

m=0

aj
mPm

(

2(x − xj)

hj

)

and

Eq =
k
∑

m=0

bj
mPm

(

2(x − xj)

hj

)

on Ij , with Pm(·) denoting the m−th order Legendre polynomial. From the orthogonality,

(A.3) means

aj
m = a bj

m, for m = 0, 1, . . . k − 1 and any j.
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Now (A.4) implies
k
∑

m=0

aj
m = a

k
∑

m=0

bj+1

m (−1)m,

thus

aj
k = a

(

k
∑

m=0

bj+1

m (−1)m −
k−1
∑

m=0

bj
m

)

.

Now,

∫

Ij

E2

udx =

k
∑

m=0

(aj
m)2

∫

Ij

(

Pm

(

2(x − xj)

hj

))2

dx =

k
∑

m=0

(aj
m)2

hj

2m + 1

= a2

k−1
∑

m=0

(bj
m)2

hj

2m + 1
+ (aj

k)
2

hj

2k + 1
≤ a2

k
∑

m=0

(bj
m)2

hj

2m + 1
+ (aj

k)
2

hj

2k + 1

= a2

∫

Ij

E2

qdx + (aj
k)

2
hj

2k + 1
,

and

(aj
k)

2
hj

2k + 1
= a2

hj

2k + 1

(

k
∑

m=0

bj+1

m (−1)m −
k−1
∑

m=0

bj
m

)2

≤ a2
2hj

2k + 1





(

k
∑

m=0

bj+1

m (−1)m

)2

+

(

k−1
∑

m=0

bj
m

)2




≤ a2
2(k + 1)hj

2k + 1

(

k
∑

m=0

(bj+1

m )2 +

k−1
∑

m=0

(bj
m)2

)

≤ a2(2(k + 1))

(

k
∑

m=0

(bj+1

m )2
hj

2m + 1
+

k−1
∑

m=0

(bj
m)2

hj

2m + 1

)

≤ a2(2(k + 1))

(

1

λ

k
∑

m=0

(bj+1

m )2
hj+1

2m + 1
+

k
∑

m=0

(bj
m)2

hj

2m + 1

)

= a2(2(k + 1))

(

1

λ

∫

Ij+1

E2

qdx +

∫

Ij

E2

qdx

)

.

Thus,

∫

Ij

E2

udx ≤ a2

(

(1 + 2(k + 1))

∫

Ij

E2

qdx +
2(k + 1)

λ

∫

Ij+1

E2

q dx

)

.

Summing over all j, we obtain

||Eu||2L2 ≤ a2

(

1 + 2(k + 1) +
2(k + 1)

λ

)

||Eq||2L2.

30



We now have

||Eu||L2 ≤ C(λ)||Eq||L2 ≤ C(λ, ||u||k+2)h
k+3/2,

hence we have proved (3.11).

We now proceed to prove the existence and uniqueness of P 2
hu. Since q − aux = 0, we

have
∫

Ij

qwhdx +

∫

Ij

au(wh)xdx − au+w−
h |j+ 1

2

+ au+w+

h |j− 1

2

= 0

for any wh ∈ V k
h . Combined with (3.9), we get an error equation,

∫

Ij

(q − qh)whdx +

∫

Ij

a(u − P 2

hu)(wh)xdx − a(u − P 2

hu)+w−
h |j+ 1

2

+ a(u − P 2

hu)+w+

h |j− 1

2

= 0,

which, by the property of the projection P +

h , is equivalent to

∫

Ij

(q−qh)whdx+

∫

Ij

a(P+

h u−P 2

hu)(wh)xdx−a(P+

h u−P 2

hu)+w−
h |j+ 1

2

+a(P+

h u−P 2

hu)+w+

h |j− 1

2

= 0

for any wh ∈ V k
h . We use the notation zh = cP 2

hu−aqh, Eu = P+

h u−P 2
hu and εu = u−P+

h u,

εz = z − P−
h z. The above equality can be rewritten as

∫

Ij

(q − qh)whdx +

∫

Ij

aEu(wh)xdx − aE+

u w−
h |j+ 1

2

+ aE+

u w+

h |j− 1

2

= 0, (A.10)

or
∫

Ij

(q − qh)whdx − a

∫

Ij

(Eu)xwhdx − a[Eu]w
−
h |j+ 1

2

= 0 (A.11)

for any wh ∈ V k
h . Since

q − qh =
cu − z

a
− cP 2

hu − zh

a
=

−(z − zh) + c(u − P 2
hu)

a
,

using (3.10) here, we have

q − qh =
−(z − P−

h z) + c(u − P 2
hu)

a
=

−εz + c(εu + Eu)

a
. (A.12)

Thus (A.11) becomes

∫

Ij

cEu

a
whdx +

∫

Ij

aEu(wh)xdx − aE+

u w−
h |j+ 1

2

+ aE+

u w+

h |j− 1

2

=

∫

Ij

εz − cεu

a
whdx (A.13)
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for any wh ∈ V k
h . This is a n(k +1)×n(k +1) linear system for Eu with a known right hand

side. The solution is unique. Otherwise, suppose there are two solutions E1
u and E2

u. Define

g = E1
u − E2

u, then

∫

Ij

cg

a
whdx +

∫

Ij

ag(wh)xdx − ag+w−
h |j+ 1

2

+ ag+w+

h |j− 1

2

= 0

for any wh ∈ V k
h . Let wh = g, and sum over all j,

∫

I

cg2

a
dx +

a

2

∑

j

[g]2
j+ 1

2

= 0.

Thus, g = 0. Now Eu exists and is unique. By the equivalence of (3.9) and (A.10), P 2
hu

exists and is unique.

The final step is to prove the error bound (3.12). Similar to the proof of Theorem 2.2,

we define Eu = rj + dj(x)(x − xj)/hj on Ij, where rj is a constant and dj(x) ∈ P k−1, then

let wh = dj(x)(x − xj+1/2)/hj in (A.11) to get,

∫

Ij

(q − qh) dj(x)(x − xj+1/2)/hj dx − aB+

j (dj) = 0,

or, by Lemma 2.1,

∫

Ij

(q − qh) dj(x)(x − xj+1/2)/hj dx +
a

4hj

∫

Ij

d2

j (x)dx +
ad2

j(xj−1/2)

4
= 0.

Therefore
∫

Ij

dj(x)2dx ≤ −4

a

∫

Ij

(q − qh) dj(x)(x − xj+1/2) dx.

Define piecewise polynomials d(x), φ2(x), such that d(x) = dj(x), φ2(x) = x − xj+1/2 on Ij ,

then

||d||2L2 ≤ 4

a
||q − qh||L2||d||L2||φ2||L∞

Since ||φ2||L∞ = h, we have

||d||L2 ≤ Ch||q − qh||L2 .
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In (A.13), let wh = Eu, and sum over all j,

∫

I

cE2
u

a
dx +

a

2

∑

j

[Eu]
2

j+ 1

2

=

∫

I

εz − cεu

a
Eudx,

hence, since εz and εu are orthogonal to piecewise constants,

||Eu||2L2 ≤ 1

c

∣

∣

∣

∣

∫

I

(εz − cεu)Eudx

∣

∣

∣

∣

=
1

c

∣

∣

∣

∣

∣

∑

j

∫

Ij

(εz − cεu)dj(x)(x − xj)/hjdx

∣

∣

∣

∣

∣

≤ C(||εz||L2 + ||εu||L2)||d||L2 ≤ Chk+1||d||L2 ≤ Chk+2||q − qh||L2.

However, by (A.12),

||q − qh||L2 ≤ ||εz − cεu

a
||L2 +

c||Eu||L2

a
≤ Chk+1 +

c||Eu||L2

a
,

which tells us

||Eu||2L2 ≤ Ch2k+3 + Chk+2||Eu||L2,

and (3.12) follows. This finishes the proof for Lemma 3.1.

A.4 The proof of Lemma 3.3

From the projection results, ||(εu)t||L2 ≤ C ′||ut||k+1h
k+1 ≤ C ′||u||k+3h

k+1 with C ′ as a con-

stant.

Since eu = εu + ēu, to prove (3.23), we will only need to prove ||(ēu)t||L2 ≤ Chk+1(t + 1).

Similar to the proof of Lemma 2.3, we take the derivative with respect to time for the error

equations (3.14) and (3.15), and let vh = (ēu)t, wh = (ēq)t, sum them over all j, to obtain

∫

I

(ēu)tt (ēu)tdx +

∫

I

((ēq)t)
2dx +

∫

I

(εu)tt (ēu)tdx +

∫

I

(εq)t (ēq)tdx +
1

2

∑

j

[(ēu)t]
2

j+ 1

2

= 0.

Thus,

1

2

d

dt
||(ēu)t||2L2 + ||(ēq)t)||2L2 ≤

∣

∣

∣

∣

∫

I

(εu)tt (ēu)tdx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

(εq)t (ēq)tdx

∣

∣

∣

∣

≤ ||(εu)tt||L2 ||(ēu)t||L2 +
||(εq)t||2L2

4
+ ||(ēq)t||2L2.

Therefore,

1

2

d

dt
||(ēu)t||2L2 ≤ ||(εu)tt||L2 ||(ēu)t||L2 +

||(εq)t||2L2

4
.
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Again by the projection results, ||(εu)tt||L2 ≤ C ′||u||k+5h
k+1 and ||(εq)t||L2 ≤ C ′||q||k+3h

k+1,

thus,

d

dt
||(ēu)t||2L2 ≤ 2C ′||u(t)||k+5h

k+1 ||(ēu)t||L2 +
1

2
(C ′||q(t)||k+3h

k+1)2.

Denote E(t) = ||(ēu)t||L2, A = 2C ′||u(t)||k+5h
k+1, B = 1

2
(C ′||q(t)||k+3h

k+1)2, then

d

dt
E2(t) ≤ AE(t) + B.

Notice that here, although A, B do not explicitly depend on t, they are functions of time

through the dependence on the norm of u(t) and q(t). In our example, ||u(t)|| and ||q(t)||

are exponentially decaying with respect to time. However, we just assume that A, B are

bounded, namely, for any t, A ≤ α, B ≤ β, whereas, α = C2h
k+1, β = C2h

2k+2. Thus,

d

dt
E2(t) ≤ αE(t) + β. (A.14)

Because of the way the initial condition of uh is chosen, using (3.7) and (3.8), and plugging

in (3.14), we have, at t = 0,
∫

Ij

(eu)tvhdx = 0 (A.15)

for any vh ∈ V k
h . Let vh = ēu, then similar to the proof of (A.1) in Lemma 2.3, at t = 0, we

have

||(ēu)t(·, 0)||L2 ≤ ||(εu)t(·, 0)||L2 ≤ C ′||u||k+3h
k+1. (A.16)

We have thus proved

E(0) ≤ C ′||u(·, 0)||k+3h
k+1 = C1h

k+1.

Combined with (A.14), we will be able to obtain a bound on E(t). Integrate (A.14) with

respect to t,

E2(t) ≤ E2(0) + βt + α

∫ t

0

E(s)ds.

If t ≤ T , then

E2(t) ≤ E2(0) + βT + α

∫ t

0

E(s)ds.
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Define w(t) = E2(0) + βT + α
∫ t

0
E(s)ds, then the above inequality reads E(t) ≤

√

w(t).

Moreover,

d

dt
w(t) = αE(t) ≤ α

√

w(t).

It is now easy to derive

w(t) ≤ 2w(0) +
(αt)2

2
= 2(E2(0) + βT ) +

(αt)2

2
,

therefore,

E2(t) ≤ 2(E2(0) + βT ) +
(αt)2

2

for any t ≤ T . We can simply take T = t now to obtain

E2(t) ≤ 2(E2(0) + βt) +
(αt)2

2
≤ 2(C2

1h
2k+2 + C2h

2k+2t) +
C2

2

2
h2k+2t2.

Taking a square root, we obtain

||(eu)t||L2 ≤ Chk+1(t + 1).

Similarly to the above, it is easy to derive (3.24) if we work with (3.18) directly. From

(3.18), (3.23) and (3.24), we have

||ēq||2L2 ≤
∣

∣

∣

∣

∫

I

(ēu)t ēudx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

(εu)t ēudx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

εq ēqdx

∣

∣

∣

∣

≤ ||(ēu)t||L2 ||ēu||L2 + ||(εu)t||L2 ||ēu||L2 + ||εq||L2 ||ēq||L2

≤ Ch2k+2(t + 1)2 + Chk+1||ēq||L2,

thus (3.25) follows. This finishes the proof for Lemma 3.3.

A.5 The proof of Lemma 3.4

We can rewrite the error equation (3.31) into the following form,

a

2

d

dt
||ēu||2L2 +

1

a
||ēz||2L2

≤ a

∣

∣

∣

∣

∫

I

(εu)t ēudx

∣

∣

∣

∣

+
1

a

∣

∣

∣

∣

∫

I

εz ēzdx

∣

∣

∣

∣

+
1

a

∣

∣

∣

∣

∫

I

εu ēzdx

∣

∣

∣

∣

+
1

a

∣

∣

∣

∣

∫

I

ēu ēzdx

∣

∣

∣

∣

≤ a

2
(||(εu)t||2L2 + ||ēu||2L2) +

1

2a
(||εz||2L2 + ||ēz||2L2) +

1

a
||εu||2L2 +

1

4a
||ēz||2L2 +

1

a
||ēu||2L2 +

1

4a
||ēz||2L2 ,
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then

d

dt
||ēu||2L2 ≤ ||(εu)t||2L2 +

1

a2
||εz||2L2 +

2

a2
||εu||2L2 +

(

2

a2
+ 1

)

||ēu||2L2.

From the projection properties, ||εu||L2 ≤ C ′||u||k+1h
k+1,||εz||L2 ≤ C ′||u||k+2h

k+1 and

||(εu)t||L2 ≤ C ′||u||k+3h
k+1 with C ′ as a constant. Therefore,

d

dt
||ēu||2L2 ≤ Ch2k+2 + C1||ēu||2L2,

and C = C(||u||k+3), C1 = C1(a). Since ||ēu|| ≤ Chk+1 initially,

||ēu||2L2 ≤ C

C1

eC1th2k+2.

Combined with ||εu||L2 ≤ C ′||u||k+1h
k+1, we have

||eu||L2 ≤
√

C

C1

eC1t/2hk+1.

We can rewrite it as

||eu||L2 ≤ CeC1thk+1, (A.17)

with C = C(||u||k+3, a), C1 = C1(a) > 0. Notice that, although the bound in (A.17) shows

an exponential growth, the constant C is compensating the growth, since our exact solution

u is exponentially decaying, as well as all of its norms. This explains why in the numerical

experiments, exponential decay of the error is observed, see [9].

To prove (3.35), we take the time derivative of the error equations (3.27) and (3.28), and

let the test functions be wh = (ēz)t, vh = (ēu)t. At t = 0, we still have (A.15) because of the

choice of initial condition, hence we have (A.16), or ||(ēu)t|| ≤ Chk+1 at t = 0. The remaining

proof is then very similar to the above and is thus omitted. From the error equation (3.31)

we have

a

∫

I

(ēu)tēudx +
1

a
||ēz||2L2

≤ a

2
(||(εu)t||2L2 + ||ēu||2L2) +

1

a
||εz||2L2 +

1

4a
||ēz||2L2 +

1

a
||εu||2L2 +

1

4a
||ēz||2L2 +

1

a
||ēu||2L2 +

1

4a
||ēz||2L2,
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thus,

||ēz||2L2

≤ −4a2

∫

I

(ēu)tēudx + 2a2(||(εu)t||2L2 + ||ēu||2L2) + 4||εz||2L2 + 4||εu||2L2 + 4||ēu||2L2

≤ 2a2(||(ēu)t||2L2 + ||ēu||2L2) + 2a2(||(εu)t||2L2 + ||ēu||2L2) + 4||εz||2L2 + 4||εu||2L2 + 4||ēu||2L2.

We already have bounds on every term on the right hand side of the above inequality, thus

(3.36) follows by taking into account eq = (eu − ez)/a. This finishes the proof of Lemma 3.4.
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