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SUPERCONVERGENCE OF MIXED FINITE ELEMENT
METHODS FOR OPTIMAL CONTROL PROBLEMS

YANPING CHEN

Abstract. In this paper, we investigate the superconvergence property of
the numerical solution of a quadratic convex optimal control problem by using
rectangular mixed finite element methods. The state and co-state variables
are approximated by the lowest order Raviart-Thomas mixed finite element
spaces and the control variable is approximated by piecewise constant func-
tions. Some realistic regularity assumptions are presented and applied to error
estimation by using an operator interpolation technique. We derive L2 super-
convergence properties for the flux functions along the Gauss lines and for the
scalar functions at the Gauss points via mixed projections. Moreover, global
L2 superconvergence results are obtained by virtue of an interpolation post-
processing technique. Thus, based on these superconvergence estimates, some
asymptotic exactness a posteriori error estimators are presented for the mixed
finite element methods. Finally, some numerical examples are given to demon-
strate the practical side of the theoretical results about superconvergence.

1. Introduction

Optimal control problems [27] are playing an increasingly important role in sci-
ence and engineering. They have various application backgrounds in the operation
of physical, social, and economic processes. Efficient numerical methods [32] are
critical for successful applications of optimal control in practical areas. With its
wide range of applications in science and engineering, the finite element method is
an important class of methods for optimal control problems and plays a very im-
portant role in numerical method for these problems. Many researchers have made
various contributions to the finite element methods for optimal control problems.
For example, they have obtained a priori error estimates (see, e.g., [17], [18], [2]), a
posteriori error estimates, based on which adaptive finite element methods can be
constructed (see, e.g., [25], [28], [29]), and have also obtained some recent super-
convergence and postprocessing results (see, e.g., [30], [33]). Most of this research
has been, however, for the standard finite element methods for optimal controls.
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1270 YANPING CHEN

In many control problems, the objective functional contains the gradient of the
state variables. Thus, the accuracy of the gradient is important in numerical ap-
proximation of the state equations. Mixed finite element methods are appropriate
for the state equations in such cases, since both the scalar variable and its flux
variable can be approximated to the same accuracy by using such methods. In
computational optimal control, mixed finite element methods are not as widely
used as in engineering simulations. Also, not much work exists on theoretical anal-
ysis of these methods in the literature, let alone on their superconvergence analysis.

Recently, in [9] and [10], we obtained sharp a posteriori error estimates and a
priori error estimates of mixed finite element methods for quadratic optimal con-
trol problems. A posteriori error estimates for general convex optimal control was
addressed in [11]. In this paper, we will prove the superconvergence of O(h1+s) (for
some 0 < s ≤ 1) for the control with the lowest order Raviart-Thomas mixed finite
elements based on rectangulation, via adopting a different interpolation operator
(see [30]). We shall derive the local and global L2 superconvergence analysis of the
rectangular lowest order Raviart-Thomas mixed finite element methods by applying
an operator interpolation technique. Some asymptotically exact a posteriori error
estimators will be presented for the mixed finite element methods. Some numerical
examples will be given to confirm the theoretical results.

Compared with related work (e.g., [30]), the present paper provides the first the-
oretical analysis of superconvergence properties for optimal control problems when
they are discretized by mixed finite element methods. We can obtain the super-
convergence of O(h1+s) (0 < s ≤ 1) for the control variable which is approximated
by piecewise constant functions. We develop a new technique to prove the super-
convergence results under some realistic regularity assumptions by using operator
interpolation. So far, such an application of the operator interpolation technique
to error estimation has not been found in existing superconvergence literature.

We consider the following two dimensional elliptic optimal control problem:

(1.1) min
u∈Uad

{
1
2
||p − pd||2 +

1
2
||y − yd||2 +

ν

2
||u||2

}
subject to the state equation

(1.2) divp + a0y = u, p = −A(x)grady, x ∈ Ω,

with the boundary condition

(1.3) y = 0, x ∈ ∂Ω,

where Ω is a rectangular domain, pd and yd are two known functions, p, y are the
state variables, u is the control variable, and ν > 0 is fixed. We use || · || to denote
the L2(Ω) norm. Moreover, Uad denotes the admissible set of the control variable,
defined for real numbers a and b by

(1.4) Uad = {u ∈ L2(Ω) : a ≤ u ≤ b a.e. in Ω}.
The paper is organized as follows. In section 2, some realistic regularity assump-

tions are presented by using an operator interpolation technique. We construct
a discretized scheme for the optimal control problem (1.1)–(1.3) by using mixed
finite element methods and give its equivalent optimality conditions. Some projec-
tion operators and their approximated properties are also introduced. In section
3, we derive the local L2 superconvergence analysis of the rectangular lowest order
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SUPERCONVERGENCE OF MIXED FEM FOR OPTIMAL CONTROL 1271

Raviart-Thomas mixed finite element methods by applying an operator interpo-
lation technique. In section 4, we carry out the global L2 superconvergence of
the rectangular lowest order Raviart-Thomas mixed finite element methods. Some
asymptotic exact a posteriori error estimators are presented for the mixed finite
element methods. In section 5, some numerical examples are given to demonstrate
our theoretical results. Finally, we give conclusions and mention some possible
future work in section 6.

Throughout the paper C will denote a generic positive constant that is indepen-
dent of h but which will depend on the regularity of the optimal control problem
(1.1)–(1.3).

2. Mixed methods for optimal control problems

In this section, we shall describe a mixed finite element discretization for the
optimal control problem (1.1)–(1.3). We assume that the coefficient matrix function
A(x) = (aij(x)) is symmetric with aij(x) ∈ W 1,∞(Ω), which satisfies the ellipticity
condition

c∗|ξ|2 ≤
2∑

i,j=1

aij(x)ξiξj , ∀ (ξ, x) ∈ R
2 × Ω, c∗ > 0.

We require the data in the control problem to satisfy sufficient regularity.
Next, we introduce the co-state elliptic equation

(2.1) divq + a0z = y − yd, q = −A(x)(gradz + p − pd), x ∈ Ω,

with the boundary condition

(2.2) z = 0, x ∈ ∂Ω.

In general, one can expect the following regularity results for the convex polyg-
onal domain.

Lemma 2.1. If Ω is a convex polygonal domain, let the state variable y and the
co-state variable z be the variational solutions of the elliptic problem (1.2)–(1.3)
and the elliptic problem (2.1)–(2.2), respectively. Then, there exists 0 < s0 ≤ 1
such that for 0 < s < s0,

||y||H2+s(Ω) ≤ C(s)||u||Hs(Ω),(2.3)

||z||H2+s(Ω) ≤ C(s)||y||Hs(Ω).(2.4)

It is known (see, e.g., [3] and [13]) that s0 = min{1, π/ω − 1} when both the
state equation and the co-state equation are a Laplace equation and ω is the radian
measure of the largest corner of the domain Ω (ω < π). If the state equation and the
co-state equation are variable coefficient equations, then s0 is dependent on ω and
the eigenvalue of the coefficient matrix A(x) at the corner points. Some regularity
analysis of elliptic problems with variable coefficients on polygonal domains are
provided in [19, 21]. A special finite element method was proposed [19, 22] which
has local refinement property and optimal error estimates by introducing a proper
transformation of variables. Superconvergence and extrapolation are considered in
[19, 20].

Thus, we make the following realistic assumption on the regularity of the solution
of the optimal control problem (1.1)–(1.3) and the co-state problem (2.1)–(2.2):

(2.5) u ∈ W 1,∞(Ω), y, z ∈ H2+s(Ω),
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1272 YANPING CHEN

for 0 < s ≤ 1. The operator interpolation technique will be used to obtain super-
convergence results under the realistic regularity assumptions (2.5).

Let

VVV = H(div; Ω) = {vvv ∈ (L2(Ω))2, divvvv ∈ L2(Ω)}, W = L2(Ω).

The Hilbert space V is equipped with the following norm:

||v||div =
(
||v||2 + ||divv||2

)1/2
.

Then, the weak formulation of the optimal control problem (1.1)–(1.3) is to find
(ppp, y, u) ∈ VVV × W × Uad such that

min
u∈Uad

{
1
2
||p − pd||2 +

1
2
||y − yd||2 +

ν

2
||u||2

}
,(2.6)

(A−1ppp,vvv) − (y, divvvv) = 0, ∀ vvv ∈ VVV ,(2.7)
(divppp, w) + (a0y, w) = (u, w), ∀ w ∈ W,(2.8)

where the inner product in L2(Ω) or (L2(Ω))2 is denoted by (·, ·). It is well-known
(see, e.g., [27]) that the convex control problem (2.6)–(2.8) has a unique solution
(ppp, y, u), and that a triplet (ppp, y, u) is the solution of (2.6)–(2.8) if and only if
there exists a co-state (qqq, z) ∈ VVV × W such that (ppp, y,qqq, z, u) satisfies the following
optimality conditions:

(A−1ppp,vvv) − (y, divvvv) = 0, ∀ vvv ∈ VVV ,(2.9)
(divppp, w) + (a0y, w) = (u, w), ∀ w ∈ W,(2.10)
(A−1qqq,vvv) − (z, divvvv) = −(p − pd, vvv), ∀ vvv ∈ VVV ,(2.11)
(divqqq, w) + (a0z, w) = (y − yd, w), ∀ w ∈ W,(2.12)
(z + νu, ũ − u) ≥ 0, ∀ ũ ∈ Uad.(2.13)

Introducing the projection ([30])

(2.14) Π[a,b](f(x)) = max(a, min(b, f(x)))

from above optimality condition (2.13) and Remark 3 in [8], we have that

(2.15) u(x) = Π[a,b]

(
−1

ν
z

)
.

Let Th denote a regular (in the sense of [12]) rectangular partition of the domain
Ω, where VVV h × Wh ⊂ VVV × W denotes the order k Raviart-Thomas mixed finite
element space [31]. To approximate the control, we use the following space of
piecewise constant functions:

Uh = {ũh ∈ Uad : ũh|T = constant, T ∈ Th} .

Before the mixed finite element scheme is given, we introduce the following
Raviart-Thomas projection (see [14] and [31]):

Πh × Ph : V × W → V h × Wh,

which has the following properties:
(i) Ph is the local L2(Ω) projection.
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(ii) Πh and Ph satisfy

div ◦ Πh = Ph ◦ div,(2.16)

(div(v − Πhv), wh) = 0, wh ∈ Wh,(2.17)

(divvh, w − Phw) = 0, vh ∈ V h.(2.18)

(iii) The following approximation properties hold (see [14] and [23]):

||v − Πhv||0,ρ ≤ Chr||v||r,ρ,
1
ρ

< r ≤ k + 1,(2.19)

||div(v − Πhv)||−t ≤ Chr+t||divv||r, 0 ≤ r, t ≤ k + 1,(2.20)
||w − Phw||−t,ρ ≤ Chr+t||w||r,ρ, 0 ≤ r, t ≤ k + 1,(2.21)

where || · ||r,ρ denotes the norm of the usual Sobolev space W r,ρ(Ω) for 1 ≤ ρ ≤ +∞
and r ≥ 0.

The mixed finite element approximation of (2.6)–(2.8) is to find (ppph, yh, uh) ∈
VVV h × Wh × Uh such that

min
uh∈Uh

{
1
2
||ph − pd||2 +

1
2
||yh − yd||2 +

ν

2
||uh||2

}
,(2.22)

(A−1ppph, vvvh) − (yh, divvvvh) = 0, ∀ vvvh ∈ VVV h,(2.23)
(divppph, wh) + (a0yh, wh) = (uh, wh), ∀ wh ∈ Wh.(2.24)

The control problem (2.22)–(2.24) again has a unique solution (ppph, yh, uh), and a
triplet (ppph, yh, uh) ∈ VVV h × Wh × Uh is the solution of (2.22)–(2.24) if and only if
there is a co-state (qqqh, zh) ∈ VVV h × Wh such that (ppph, yh, qqqh, zh, uh) satisfies the
following discretized optimality conditions:

(A−1ppph, vvvh) − (yh, divvvvh) = 0, ∀ vvvh ∈ VVV h,(2.25)
(divppph, wh) + (a0yh, wh) = (uh, wh), ∀ wh ∈ Wh,(2.26)
(A−1qqqh, vvvh) − (zh, divvvvh) = −(ph − pd, vvvh), ∀ vvvh ∈ VVV h,(2.27)
(divqqqh, wh) + (a0zh, wh) = (yh − yd, wh), ∀ wh ∈ Wh,(2.28)
(zh + νuh, ũh − uh) ≥ 0, ∀ ũh ∈ Uh.(2.29)

In the following analysis, we shall use some intermediate variables. For any
control function ũ ∈ Uad, we first define the state solution (p(ũ), y(ũ), q(ũ), z(ũ))
associated with ũ which satisfies

(A−1p(ũ), vvv) − (y(ũ), divvvv) = 0, ∀ vvv ∈ VVV ,(2.30)
(divp(ũ), w) + (a0y(ũ), w) = (ũ, w), ∀ w ∈ W,(2.31)
(A−1q(ũ), vvv) − (z(ũ), divvvv) = −(p(ũ) − pd, vvv), ∀ vvv ∈ VVV ,(2.32)
(divq(ũ), w) + (a0z(ũ), w) = (y(ũ) − yd, w), ∀ w ∈ W.(2.33)

Then, we define the discrete state solution (ph(ũ), yh(ũ), qh(ũ), zh(ũ)) correspond-
ing to ũ which satisfies

(A−1ph(ũ), vvvh) − (yh(ũ), divvvvh) = 0, ∀ vvvh ∈ VVV h,(2.34)
(divph(ũ), wh) + (a0yh(ũ), wh) = (ũ, wh), ∀ wh ∈ Wh,(2.35)
(A−1qh(ũ), vvvh) − (zh(ũ), divvvvh) = −(ph(ũ) − pd, vvvh), ∀ vvvh ∈ VVV h,(2.36)
(divqh(ũ), wh) + (a0zh(ũ), wh) = (yh(ũ) − yd, wh), ∀ wh ∈ Wh.(2.37)
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With these definitions, the exact state and co-state solutions and their approxi-
mation can be written as:

(ppp, y,qqq, z) = (p(u), y(u), q(u), z(u)),

(ph, yh, qh, zh) = (ph(uh), yh(uh), qh(uh), zh(uh)).

3. L2
superconvergence on rectangular mixed finite elements

From now on, we assume that the coefficient A(x) in the optimal control problem
(1.1)–(1.3) is a diagonal matrix function. Let Th = {Ti} be a rectangular partition
of Ω. In general, the partition Th is nonuniform but regular [12]. Based on this
partition, we consider the lowest order k = 0 Raviart-Thomas mixed finite element
space V h × Wh, namely,

V h = {v ∈ V : ∀ Ti ∈ Th, v|Ti
∈ Q1,0(Ti) × Q0,1(Ti)},

Wh = {w ∈ W : ∀ Ti ∈ Th, w|Ti
∈ Q0,0(Ti)},

where Qm,n(Ti) indicates the space of polynomials of degree no more than m and
n in x and y on Ti, respectively.

Thus, on each rectangle element Ti ∈ Th, the Gauss point is its center point Si.
For example,

if Ti = [ai, bi] × [ci, di], then Si = ((ai + bi)/2, (ci + di)/2) .

As in [15], we define some semi-norms for v = (v1, v2) ∈ V and w ∈ W as follows:

|||w|||0 =

( ∑
Ti∈Th

|Ti| · w2(Si)

)1/2

, |Ti| = meas(Ti),(3.1)

|||v1|||1 =

( ∑
Ti∈Th

|di − ci| ·
∫ bi

ai

v2
1(x1, (ci + di)/2)dx1

)1/2

,

|||v2|||2 =

( ∑
Ti∈Th

|bi − ai| ·
∫ di

ci

v2
2((ai + bi)/2, x2)dx2

)1/2

,

and

(3.2) |||v||| = |||v1|||1 + |||v2|||2.
It is clear from [15] that these semi-norms are equivalent to the L2-norms for the
functions from V h and Wh, respectively.

For any smooth function f(x) ∈ Uad, we define an interpolation function fI ∈ Uh

(or fI ∈ Wh):

(3.3) fI(x) = f(Si) if x ∈ Ti,

where Si is the center point of the rectangle Ti. Let f be a function belonging to
H2(Ti) for all i. Then, by the Bramble-Hilbert lemma, we have [30]

(3.4)
∣∣∣∣
∫

Ti

(f(x) − f(Si))dx

∣∣∣∣ ≤ Ch2
√
|Ti||f |H2(Ti)

and

(3.5)
∑

i

∣∣∣∣
∫

Ti

(f(x) − f(Si))dx

∣∣∣∣ ≤ Ch2

(∑
i

|f |2H2(Ti)

)1/2

.
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From the regularity assumption (2.5) and the projection formula (2.15) of u, we
can classify the rectangles Ti ∈ Th into two sets K1 and K2:

K1 = {Ti : u only belongs to W 1,∞(Ti)}, K2 = {Ti : u ∈ H2(Ti)}.

Clearly, the number of elements in K1 grows for decreasing h. We make the follow-
ing additional assumption for K1 which is fulfilled in many practical cases (see the
assumption (A3) in [30]):

(3.6) meas(K1) ≤ c · h.

We shall prove that there exists the following superconvergence property between
the interpolation function uI and the discrete solution uh of the exact control u.
Before presenting the main theorem, we first state some known results and derive
some lemmas.

Lemma 3.1. Let zh(u) and zh(uh) be the discrete solutions of (2.34)–(2.37) with
ũ = u and ũ = uh, respectively. Then we have

(3.7) (zh(uh) − zh(uI), uI − uh) ≤ 0.

Proof. In the equations (2.34)–(2.37), we choose test functions ũ = uI and ũ = uh,
respectively, and get the difference equations:

(A−1(ph(uh) − ph(uI)), vvvh) − (yh(uh) − yh(uI), divvvvh) = 0,

(div(ph(uh) − ph(uI)), wh) + (a0(yh(uh) − yh(uI)), wh) = (uh − uI , wh),

(A−1(qh(uh) − qh(uI)), vvvh) − (zh(uh) − zh(uI), divvvvh) = −(ph(uh) − ph(uI), vvvh),

(div(qh(uh) − qh(uI)), wh) + (a0(zh(uh) − zh(uI)), wh) = (yh(uh) − yh(uI), wh),

for any vh ∈ V h and wh ∈ Wh. For above equations, we choose wh = zh(uh) −
zh(uI) in the second equation, vh = ph(uh) − ph(uI) in the third equation, wh =
yh(uh) − yh(uI) in the fourth equation, and vh = qh(uh) − qh(uI) in the first
equation. Then we can deduce that

(zh(uh) − zh(uI), u − uh)
= −(div(ph(uh) − ph(uI)), zh(uh) − zh(uI))

− (a0(yh(uh) − yh(uI)), zh(uh) − zh(uI))
= −(A−1(qh(uh) − qh(uI)), ph(uh) − ph(uI))

− (ph(uh) − ph(uI), ph(uh) − ph(uI))
+(div(qh(uh) − qh(uI)), yh(uh) − yh(uI))
− (yh(uh) − yh(uI), yh(uh) − yh(uI))

≤ −(A−1(qh(uh) − qh(uI)), ph(uh) − ph(uI))
+(div(qh(uh) − qh(uI)), yh(uh) − yh(uI)) = 0,

which implies (3.7). �

Lemma 3.2. Assume that the regularity conditions (2.5) and (3.6) hold. Let uI be
the interpolation of the exact control u defined in (3.3) and z(uI) and z(u) be the
solutions of (2.30)–(2.33) with ũ = uI and ũ = u, respectively. Then we have

(3.8) ||z(uI) − z(u)|| ≤ C
(
||u||W 1,∞(Ω), ||z||H2(Ω)

)
h2| ln h|1/2.
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Proof. From the regularity of state and co-state functions, we use the strong forms
of equations (1.2) and (2.1) to obtain the error equations

− div(A(x)grad(y(uI) − y(u))) + a0(y(uI) − y(u)) = uI − u,(3.9)

− div(A(x)(grad(z(uI) − z(u)) + p(uI) − p(u)))(3.10)

+ a0(z(uI) − z(u)) = y(uI) − y(u),

which imply that

(3.11) ||z(uI) − z(u)||H1(Ω) ≤ C
(
||y(uI) − y(u)|| + ||p(uI) − p(u)||

)
.

Now, we multiply (3.10) by y(uI) − y(u) to obtain that

||y(uI) − y(u)||2

= (y(uI) − y(u), y(uI) − y(u))

= −(div(A(x)(grad(z(uI) − z(u)) + p(uI) − p(u))), y(uI) − y(u))

+ (a0(z(uI) − z(u)), y(uI) − y(u))

= (A(x)grad(z(uI) − z(u)), grad(y(uI) − y(u)))

+ (A(x)(p(uI) − p(u)), grad(y(uI) − y(u)))

+ (a0(z(uI) − z(u)), y(uI) − y(u))

= (A(x)grad(y(uI) − y(u)), grad(z(uI) − z(u)))

− (p(uI) − p(u), p(uI) − p(u)) + (a0(y(uI) − y(u)), z(uI) − z(u))

= (uI − u, z(uI) − z(u)) − (p(uI) − p(u), p(uI) − p(u)),

where we used p(uI) − p(u) = −A(x)grad(y(uI) − y(u)) and (3.9). Thus, we have
the following identity:

(3.12) ||y(uI) − y(u)||2 + ||p(uI) − p(u)||2 = (uI − u, z(uI) − z(u)).

Now, we define a standard piecewise linear function space

(3.13) Sh = {rh(x) ∈ C(Ω) : rh ∈ Q1,1(Ti), ∀ Ti ∈ Th},

and a standard H1(Ω)-orthogonal projection Qh: C(Ω) → Sh, which satisfies: for
any ψ ∈ C(Ω)

(3.14) (grad(ψ − Qhψ), gradrh) = 0, ∀ rh ∈ Sh.

By standard finite element analysis, the projection Qh has the following approxi-
mate property and stable property:

(3.15) ||ψ − Qhψ|| ≤ Ch||ψ||H1(Ω)

and

(3.16) ||Qhψ||H1(Ω) ≤ C||ψ||H1(Ω).

Set r = z(uI) − z(u) and rh = Qh(z(uI) − z(u)). We can write the right side of
(3.12) as follows:

(3.17) (uI − u, z(uI) − z(u)) = (uI − u, r − rh) + (uI − u, rh).

It follows from (3.15) that

(3.18) (uI−u, r−rh) ≤ ||uI−u||·||r−rh|| ≤ Ch2||u||W 1,∞(Ω) ·||z(uI)−z(u)||H1(Ω).
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We decompose the integral (uI − u, rh) into two parts:

(3.19) (uI − u, rh) =
∫

K1

(uI − u) · rhdx +
∫

K2

(uI − u) · rhdx.

Since rh ∈ Q1,1(Ti) for any rectangle Ti, we then have

(3.20)
∫

Ti

uIrhdx =
∫

Ti

u(Si)rhdx =
∫

Ti

u(Si)rh(Si)dx.

By means of assumption (3.6) and (3.16), we obtain that∣∣∣∣
∫

K1

(uI − u)rhdx

∣∣∣∣ ≤
∑

Ti∈K1

∣∣∣∣
∫

Ti

(u(Si) − u(x)) · rh(x)dx

∣∣∣∣
≤ C

∑
Ti∈K1

h|u|1,∞,Ti
· |rh|0,∞,Ti

· |Ti|

≤ Ch2|u|1,∞ · |rh|0,∞ ≤ Ch2|u|1,∞ · | ln h|1/2||rh||H1(Ω)

≤ Ch2| ln h|1/2||u||W 1,∞(Ω) · ||z(uI) − z(u)||H1(Ω).(3.21)

Here, we used the well known inequality that

(3.22) ||rh||L∞(Ω) ≤ C| ln h|1/2||rh||H1(Ω).

By using (3.20) and (3.5), we obtain that∣∣∣∣
∫

K2

(uI − u)rhdx

∣∣∣∣ ≤
∑

Ti∈K2

∣∣∣∣
∫

Ti

(u(Si) − u(x)) · rh(x)dx

∣∣∣∣
=

∑
Ti∈K2

∣∣∣∣
∫

Ti

[
(urh)(Si) − (urh)(x)

]
dx

∣∣∣∣
≤ Ch2

( ∑
Ti∈K2

|urh|2H2(Ti)

)1/2

≤ Ch2

( ∑
Ti∈K2

|u|2H2(Ti)
· |rh|2H1(Ti)

)1/2

.

From (2.15), we obtain that

|u|H2(Ti) ≤ C|z|H2(Ti),

which was discussed in [30] in detail. Applying the estimate in H1 norm for L2

projections (see [5]), we have

|rh|H1(Ti) = |Qh(z(uI) − z(u))|H1(Ti) ≤ C|z(uI) − z(u)|H1(Ti).

Therefore,

∣∣∣∣
∫

K2

(uI − u)rhdx

∣∣∣∣ ≤ Ch2

( ∑
Ti∈K2

|z|2H2(Ti)
· |z(uI) − z(u)|2H1(Ti)

)1/2

≤ Ch2 · ||z||H2(Ω) · |z(uI) − z(u)|H1(Ω).(3.23)
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Finally, we can combine the estimates (3.12), (3.17)–(3.19), and (3.21)–(3.23) to
derive

||y(uI) − y(u)||2 + ||p(uI) − p(u)||2

≤ Ch2| ln h|1/2 · ||z(uI) − z(u)||H1(Ω)

≤ Ch2| ln h|1/2 · (||y(uI) − y(u)|| + ||p(uI) − p(u)||),(3.24)

where C = C
(
||u||W 1,∞(Ω), ||z||H2(Ω)

)
, and we use the stable property (3.11) in the

last step. The above inequality implies the result (3.8). �

By using the standard superconvergence results of the mixed finite element meth-
ods ([15, 16]), we have the following results.

Lemma 3.3. For any function ũ ∈ Uad, let (p(ũ), y(ũ), q(ũ), z(ũ)) and
(ph(ũ), yh(ũ), qh(ũ), zh(ũ)) be the solutions of (2.30)–(2.33) and (2.34)–(2.37), re-
spectively, for the lowest order Raviart-Thomas mixed finite elements. If the regu-
larity condition

y(ũ), z(ũ) ∈ H1(Ω) p(ũ), q(ũ) ∈ (H2(Ω))2

holds, then we have

||Phy(ũ) − yh(ũ)|| + ||Πhp(ũ) − ph(ũ)||(3.25)

≤ Ch2
(
||p(ũ)||H2(Ω) + ||y(ũ)||H1(Ω)

)
,

||Phz(ũ) − zh(ũ)|| + ||Πhq(ũ) − qh(ũ)||(3.26)

≤ Ch2
(
||q(ũ)||H2(Ω) + ||z(ũ)||H1(Ω)

)
.

Lemma 3.4. Assume that the regularity condition (2.5) holds. Let z(uI) and
zh(uI) be the solutions of (2.30)–(2.33) and (2.34)–(2.37) with ũ = uI , respectively.
Then we have

(3.27) (zh(uI) − z(uI), uI − uh) ≤ Ch1+s||z||H2+s(Ω) · ||uI − uh||, 0 < s ≤ 1.

Proof. It is easy to see that

(3.28) (zh(uI) − z(uI), uI − uh) = (zh(uI) − Phz(uI), uI − uh).

On the one hand, under the condition z(uI) ∈ H3(Ω), namely

z(uI) ∈ H1(Ω) q(uI) ∈ (H2(Ω))2,

by applying the superconvergence result (3.26) in Lemma 3.3 with ũ = uI , we
obtain that

||zh(uI) − Phz(uI)|| ≤ Ch2
(
||q(uI)||H2(Ω) + ||z(uI)||H1(Ω)

)
≤ Ch2||z(uI)||H3(Ω).(3.29)

On the other hand, by the standard priori error estimate, we have

(3.30) ||zh(uI) − Phz(uI)|| ≤ Ch||z(uI)||H2(Ω).

It easy to see that the equations (2.34)–(2.37) define a linear operator z(uI) −→
zh(uI) and Ph defines a linear operator z(uI) −→ Phz(uI). Let L be the linear
operator z(uI) −→ zh(uI) − Phz(uI), namely

Lz(uI) = zh(uI) − Phz(uI).
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Then, by the interpolation theory in Sobolev space (see [1]), it follows from (3.29)–
(3.30) that

||L||L(H2+s(Ω)→L2(Ω)) ≤ ||L||sL(H3(Ω)→L2(Ω))||L||1−s
L(H2(Ω)→L2(Ω))

≤ C(h2)s · h1−s = Ch1+s,

which implies

||zh(uI) − Phz(uI)|| = ||Lz(uI)||
≤ ||L||L(H2+s(Ω)→L2(Ω)) · ||z(uI)||H2+s(Ω)

≤ Ch1+s||z(uI)||H2+s(Ω)

≤ Ch1+s||z||H2+s(Ω).(3.31)

Then, the requested result (3.27) follows from (3.28) and (3.31). �

Lemma 3.5. Let uh be the solution of (2.25)–(2.29) and uI and zI the interpolation
functions of u and z defined in (3.3), respectively. Then we have

(3.32) (z − zI , uI − uh) ≤ Ch2||z||H2(Ω) · ||uI − uh||.

Proof. It follows from the regularity of the elliptic equations (1.2), (2.1), and (3.4)
that

(z − zI , uI − uh)

=
∑

i

∫
Ti

(z(x) − zI(x)) · (uI(x) − uh(x))dx

=
∑

i

(uI(Si) − uh(Si))
∫

Ti

(z(x) − z(Si))dx

≤
∑

i

Ch2|uI(Si) − uh(Si)|
√
|Ti| · |z|H2(Ti)

≤ Ch2 · ||uI − uh|| · |z|H2(Ω),

which implies the estimate (3.32). �

Now, we are able to derive our first main result.

Theorem 3.1. Assume that the regularity conditions (2.5) and (3.6) hold. Let uI

be the interpolation of the exact control u defined in (3.3) and uh be the solution of
(2.25)–(2.29). Then we have the estimate

(3.33) ||uI − uh|| ≤ Ch1+s, 0 < s ≤ 1.

Proof. First, we derive a variational inequality for the function uI . Since the rela-
tion (2.13) is true for all ũ ∈ Uad, we have

(z(x) + νu(x)) · (ũ − u(x)) ≥ 0, ∀ ũ ∈ [a, b], ∀ x ∈ Ω.

We apply this formula for x = Si and ũ = uh(Si). This is correct because of the
continuity of u, z, and uh in these points {Si}. That is,

(z(Si) + νu(Si)) · (uh(Si) − u(Si)) ≥ 0, ∀ Si.

It follows from the definition (3.3) of uI that

(z(Si) + νuI(Si)) · (uh(Si) − uI(Si)) ≥ 0, ∀ Si.
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We integrate this inequality over Ti and add up over all i to obtain that

(3.34) (zI + νuI , uh − uI) ≥ 0.

Now, in (2.29), we choose the test function ũh = uI to obtain that

(3.35) (zh(uh) + νuh, uI − uh) ≥ 0.

By adding these two inequalities (3.34) and (3.35), we have

(zh(uh) − zI + ν(uh − uI), uI − uh) ≥ 0.

Hence,

ν||uI − uh||2 ≤ (zh(uh) − zI , uI − uh)
= (zh(uh) − zh(uI), uI − uh) + (zh(uI) − z(uI), uI − u)

+(z(uI) − z(u), uI − uh) + (z − zI , uI − uh).(3.36)

Then we combine Lemma 3.1, Lemma 3.4, Lemma 3.2, and Lemma 3.5 to deduce
the superconvergence result (3.33). �

Furthermore, we can establish the following superconvergence result for state
and co-state. But, due to the low regularity of the control, the accuracy is only of
the order h1+min(s,1/2).

Theorem 3.2. Assume that the regularity conditions (2.5) and (3.6) hold. Let
(p, y, q, z, u) ∈ (V × W )2 × Uad be the exact solutions defined in (2.9)–(2.13) and
(ph, yh, qh, zh, uh) ∈ (V h×Wh)2×Uh be the exact solutions of (2.25)–(2.29). Then
we have

||Πhp − ph||div + ||Phy − yh|| ≤ Ch1+min(s,1/2),(3.37)

||Πhq − qh||div + ||Phz − zh|| ≤ Ch1+min(s,1/2),(3.38)

for 0 < s ≤ 1.

Proof. It follows from (2.9)–(2.12) and (2.25)–(2.28) that we have the error equa-
tions:

(A−1(p − ppph), vvvh) − (y − yh, divvvvh) = 0,

(div(p − ppph), wh) + (a0(y − yh), wh) = (u − uh, wh),
(A−1(q − qqqh), vvvh) − (z − zh, divvvvh) = −(p − ph, vvvh),
(div(q − qqqh), wh) + (a0(z − zh), wh) = (y − yh, wh),

for all vh ∈ V h and wh ∈ Wh. By using the definitions of projections Πh and Ph,
the above equations can be rewritten as follows:

(A−1(Πhp − ppph), vvvh) − (Phy − yh, divvvvh) = φ1(vh),
(div(Πhp − ppph), wh) + (a0(Phy − yh), wh) = ψ1(wh),
(A−1(Πhq − qqqh), vvvh) − (Phz − zh, divvvvh) = φ2(vh),
(div(Πhq − qqqh), wh) + (a0(Phz − zh), wh) = ψ2(wh),

for all vh ∈ V h and wh ∈ Wh, where

φ1(vh) = −(A−1(p − Πhp), vh),
ψ1(wh) = (u − uh, wh) − (a0(y − Phy), wh),
φ2(vh) = −(p − ph, vvvh) − (A−1(q − Πhq), vh),
ψ2(wh) = (y − yh, wh) − (a0(z − Phz), wh).
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Since the terms φ1(vh), ψ1(wh), φ2(vh), and ψ2(wh) can be regarded as linear
functionals of vh and wh defined on V h and Wh, respectively, then we know from
the stability result of [7] that

||Πhp − ph||div + ||Phy − yh|| ≤ C

{
sup

vh∈V h

|φ1(vh)|
||vh||div

+ sup
wh∈Wh

|ψ1(wh)|
||wh||

}
,(3.39)

||Πhq − qh||div + ||Phz − zh|| ≤ C

{
sup

vh∈V h

|φ2(vh)|
||vh||div

+ sup
wh∈Wh

|ψ2(wh)|
||wh||

}
.(3.40)

It is easy to see that

(p − ph, vvvh) = (p − Πhp, vvvh) + (Πhp − ph, vvvh),

(y − yh, wh) = (y − Phy, wh) + (Phy − yh, wh) = (Phy − yh, wh).

By the standard superconvergence of the mixed finite element methods, we have

(a0(y − Phy), wh) ≤ Ch2||y||H1(Ω)||wh||,(3.41)

(a0(z − Phz), wh) ≤ Ch2||z||H1(Ω)||wh||.(3.42)

On the one hand, under the condition y, z ∈ H3(Ω), applying the integral identity
technique ([26] and [15]), we see that

(A−1(p − Πhp), vh) ≤ Ch2||y||H3(Ω)||vh||,(3.43)

(A−1(q − Πhq), vh) ≤ Ch2||z||H3(Ω)||vh||,(3.44)

(p − Πhp, vh) ≤ Ch2||y||H3(Ω)||vh||.(3.45)

On the other hand, applying the standard error estimates of the mixed finite element
methods and the approximation properties of the projection operators Ph and Πh,
we have that

(A−1(p − Πhp), vh) ≤ Ch||y||H2(Ω)||vh||,(3.46)

(A−1(q − Πhq), vh) ≤ Ch||z||H2(Ω)||vh||,(3.47)
(p − Πhp, vh) ≤ Ch||y||H2(Ω)||vh||.(3.48)

Then, by interpolation theory, under the regularity conditions (2.5), we obtain that

(A−1(p − Πhp), vh) ≤ Ch1+s||y||H2+s(Ω)||vh||,(3.49)

(A−1(q − Πhq), vh) ≤ Ch1+s||z||H2+s(Ω)||vh||,(3.50)

(p − Πhp, vh) ≤ Ch1+s||y||H2+s(Ω)||vh||.(3.51)

Here, we only give the proof of (3.49). We define a linear functional

Ty = (A−1(p − Πhp), vh) = (A−1((−Agrady) − Πh(−Agrady)), vh).

Then, it follows from (3.43) and (3.46) that

||T ||L(H2+s(Ω)→R) ≤ ||T ||sL(H3(Ω)→R)||T ||1−s
L(H2(Ω)→R)

≤ C(h2||vh||)s · (h||vh||)1−s = Ch1+s||vh||,
which implies (3.49). We can similarly prove (3.50) and (3.51).

Note that

(u − uh, wh) = (u − uI , wh) + (uI − uh, wh)
= (u − uI , wh)K1 + (u − uI , wh)K2 + (uI − uh, wh).(3.52)
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It follows from the assumption (3.6) and (3.5) that

(u − uI , wh)K1 ≤
∑

Ti∈K1

∫
Ti

|u(x) − u(Si)| · |wh|dx

≤ Ch
∑

Ti∈K1

||u||1,∞,Ti

∫
Ti

|wh|dx

≤ Ch||u||1,∞
∑

Ti∈K1

√
|Ti| · ||wh||Ti

≤ Ch3/2||u||1,∞ · ||wh||,(3.53)

(u − uI , wh)K2 ≤
∑

Ti∈K2

|wh| ·
∣∣∣∣
∫

Ti

(u(x) − u(Si))dx

∣∣∣∣
≤ Ch2

∑
Ti∈K2

||u||H2(Ti) ·
√
|Ti| · |wh|

≤ Ch2||u||H2(Ω) · ||wh||.(3.54)

By using Theorem 3.1, we clearly see that

(3.55) (uI − uh, wh) ≤ ||uI − uh|| · ||wh|| ≤ Ch1+s||wh||.

We apply the estimates (3.52)–(3.55), (3.41), and (3.49) in (3.39) to obtain the result
(3.37). Similarly, we can apply the estimates (3.42), (3.50)–(3.51), and (3.37) in
(3.40) to obtain the result (3.38). �

Lemma 3.6. For 0 < s ≤ 1, assume that v ∈ (H1+s(Ω))2∩V , w ∈ H2(Ω), and wI

is the interpolation function of w defined in (3.3). Then we have for some constant
C > 0 that

|||v − Πhv||| ≤ Ch1+s||v||H1+s(Ω), 0 < s ≤ 1,(3.56)

||Phw − wI || ≤ Ch2||w||H2(Ω).(3.57)

Proof. From [15], if v ∈ (H2(Ω))2 ∩ V and w ∈ H2(Ω), then we have

|||v − Πhv||| ≤ Ch2||v||H2(Ω),(3.58)

||Phw − wI || ≤ Ch2||w||H2(Ω).(3.59)

The estimate (3.56) can be proved by interpolation theory. �

Corollary 3.1. Assume that the regularity conditions (2.5) and (3.6) hold. Let
(p, y, q, z, u) ∈ (V × W )2 × Uad be the exact solutions defined in (2.9)–(2.13) and
(ph, yh, qh, zh, uh) ∈ (V h×Wh)2×Uh be the exact solutions of (2.25)–(2.29). Then
we have

|||p − ph||| + |||y − yh|||0 ≤ Ch1+min(s,1/2),(3.60)

|||q − qh||| + |||z − zh|||0 ≤ Ch1+min(s,1/2),(3.61)

|||u − uh|||0 ≤ Ch1+s,(3.62)

for 0 < s ≤ 1.
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Proof. First, the errors are decomposed as

p − ph = (p − Πhp) + (Πhp − ph),
y − yh = (y − Phy) + (Phy − yh),
q − qh = (q − Πhq) + (Πhq − qh),
z − zh = (z − Phz) + (Phz − zh),

and note that

|||y − Phy|||0 = |||yI − Phy|||0 = ||yI − Phy||,
|||z − Phz|||0 = |||zI − Phz|||0 = ||zI − Phz||,
|||u − uh|||0 = |||uI − uh|||0 = ||uI − uh||.

Then by Lemma 3.6 and Theorems 3.1 and 3.2 we can prove the results of (3.60)–
(3.62). �

4. Global L2
superconvergence by postprocessing

In this section, we will apply a higher order interpolation postprocessing method
presented by Lin and Yan [26] to obtain global superconvergence for the mixed finite
element approximations. As by-products, these superconvergence results can be
utilized to form a class of useful a posteriori error estimators to assess the accuracy
of the mixed finite element solutions in applications for the optimal control problems
considered in this paper.

We construct a larger rectangular elements partition T2h, which is the coarse
meshes of Th. That is, each element τ of T2h is composed of four neighboring
rectangular elements of Th. Based on this coarse meshes, we denote V 2h × W2h to
express the order k = 1 Raviart-Thomas mixed finite element spaces:

V 2h = {v ∈ V : ∀ τ ∈ T2h, v|τ ∈ Q2,1(τ ) × Q1,2(τ )},
W2h = {w ∈ W : ∀ τ ∈ T2h, w|τ ∈ Q1,1(τ )},

and the related Raviart-Thomas projection (see [14] and [31]):

Π2h × P2h : V × W → V 2h × W2h,

which satisfies the following properties [26]:
(i) P2hPh = P2h and ||P2hwh|| ≤ C||wh||, for all wh ∈ Wh.
(ii) Π2hΠh = Π2h and ||Π2hvh||div ≤ C||vh||div, for all vh ∈ V h.
By using the interpolation operators Π2h and P2h and their properties, we im-

mediately obtain the following global superconvergence theorem.

Theorem 4.1. Assume that the regularity conditions (2.5) and (3.6) hold. Let
(p, y, q, z, u) ∈ (V × W )2 × Uad be the exact solutions defined in (2.9)–(2.13) and
(ph, yh, qh, zh, uh) ∈ (V h×Wh)2×Uh be the exact solutions of (2.25)–(2.29). Then
we have

||p − Π2hph||div + ||y − P2hyh|| ≤ Ch1+min(s,1/2),(4.1)

||q − Π2hqh||div + ||z − P2hzh|| ≤ Ch1+min(s,1/2),(4.2)

for 0 < s ≤ 1.
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Proof. From property (i) of the operator P2h, we find that

y − P2hyh = y − P2hy + P2h(Phy − yh).

Therefore, it follows from the approximation property, property (i) of the operator
P2h, and Theorem 3.2 that

||y − P2hyh|| ≤ ||y − P2hy|| + C||Phy − yh|| ≤ Ch1+min(s,1/2),

which implies (4.1). Similarly, we can obtain (4.2). �

Furthermore, by using Lemma 3.3, it is obvious to see that

Lemma 4.1. For any function ũ ∈ Uad, let (p(ũ), y(ũ), q(ũ), z(ũ)) and
(ph(ũ), yh(ũ), qh(ũ), zh(ũ)) be the solutions of (2.30)–(2.33) and (2.34)–(2.37), re-
spectively, for the lowest order Raviart-Thomas mixed finite elements. If the regu-
larity condition

y(ũ), z(ũ) ∈ H1(Ω), p(ũ), q(ũ) ∈ (H2(Ω))2

holds, then we have

||p(ũ) − P2hph(ũ)|| + ||p(ũ) − Π2hph(ũ)|| ≤ Ch2,(4.3)

||z(ũ) − P2hzh(ũ)|| + ||q(ũ) − Π2hqh(ũ)|| ≤ Ch2.(4.4)

Proof. For brevity, we only give the proof of (4.4). From property (i) of the operator
P2h, we find that

z(ũ) − P2hzh(ũ) = z(ũ) − P2hz(ũ) + P2h(Phz(ũ) − zh(ũ)).

Therefore, it follows from the approximation property, property (i) of the operator
P2h, and Lemma 3.3 that

||z(ũ) − P2hzh(ũ)|| ≤ ||z(ũ) − P2hz(ũ)|| + C||Phz(ũ) − zh(ũ)|| ≤ Ch2,

which implies (4.4). �

Then, in order to improve the accuracy of the control approximation on a global
scale, as in [30] we construct a postprocessing projection operator of the discrete
co-state to the admissible set

(4.5) û(x) = Π[a,b]

(
−1

ν
(P2hzh(uh))(x)

)
,

where Π[a,b] was defined in (2.14). Now, we can prove the following global super-
convergence result.

Theorem 4.2. Assume that the regularity conditions (2.5) and (3.6) hold. Let
(p, y, q, z, u) ∈ (V × W )2 × Uad be the exact solutions defined in (2.9)–(2.13) and
(ph, yh, qh, zh, uh) ∈ (V h×Wh)2×Uh be the exact solutions of (2.25)–(2.29). Then
we have

(4.6) ||u − û|| ≤ Ch1+s, 0 < s ≤ 1.
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Proof. We note that the projection Π[a,b] defined in (2.14) is Lipschitz continuous
with constant 1 from L2(Ω) to L2(Ω). From (2.15) and (4.5), we obtain by the
triangle inequality

||u − û|| ≤ C||z − P2hzh||

≤ C
(
||z(u) − z(uI)|| + ||z(uI) − P2hzh(uI)||

+||P2hzh(uI) − P2hzh(uh)||
)
.(4.7)

We firstly apply Lemma 3.2 to obtain that

(4.8) ||z(u) − z(uI)|| ≤ Ch2| ln h|1/2.

Then, from the approximation property of the operator P2h, property (i) of the
operator P2h, and (3.31), we have

||z(uI) − P2hzh(uI)|| ≤ ||z(uI) − P2hz(uI)|| + ||P2hz(uI) − P2hzh(uI)||
≤ Ch2||z(uI)||H2(Ω) + ||P2hPhz(uI) − P2hzh(uI)||
≤ Ch2||z(uI)||H2(Ω) + ||Phz(uI) − zh(uI)||
≤ Ch1+s||z||H2+s(Ω).(4.9)

Next, it remains to bound the third term of above inequality (4.7). By property
(i), we have

(4.10) ||P2hzh(uI) − P2hzh(uh)|| ≤ C||zh(uI) − zh(uh)||.

Similar to the proof of Lemma 3.1, we use (2.34)–(2.37) to obtain the error equations

(A−1(ph(uI) − ph(uh)), vvvh) − (yh(uI) − yh(uh), divvvvh) = 0,

(div(ph(uI) − ph(uh)), wh) + (a0(yh(uI) − yh(uh)), wh) = (uI − uh, wh),

(A−1(qh(uI) − qh(uh)), vvvh) − (zh(uI) − zh(uh), divvvvh) = −(ph(uI) − ph(uh), vvvh),

(div(qh(uI) − qh(uh)), wh) + (a0(zh(uI) − zh(uh)), wh) = (yh(uI) − yh(uh), wh),

for all vh ∈ V h and wh ∈ Wh. We use the stability property of the saddle-point
problem to obtain that

||zh(uI) − zh(uh)|| + ||qh(uI) − qh(uh)||
≤ C (||yh(uI) − yh(uh)|| + ||ph(uI) − ph(uh)||)
≤ C||uI − uh|| ≤ Ch1+s,(4.11)

where the last step was derived by using Theorem 3.1.
Finally, we have established (4.6) from (4.7) combined with (4.8)–(4.11). �

It is of great importance for a mixed finite element method to have a computable
a posteriori error estimator by which we can evaluate the accuracy of the mixed
finite element solutions in applications. One way to construct error estimators is to
employ certain superconvergence properties of the finite element solutions. Thus,
based on the above global superconvergence, we can obtain the following recovery
type a posteriori error estimates for the control problems.

Theorem 4.3. Assume that the regularity conditions (2.5) and (3.6) hold. Let
(p, y, q, z, u) ∈ (V × W )2 × Uad be the exact solutions defined in (2.9)–(2.13) and
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(ph, yh, qh, zh, uh) ∈ (V h×Wh)2×Uh be the exact solutions of (2.25)–(2.29). Then
we have

||p − ph||div = ||Π2hph − ph||div + O(h1+min(s,1/2)),

||y − yh|| = ||P2hyh − yh|| + O(h1+min(s,1/2)),

||q − qh||div = ||Π2hqh − qh||div + O(h1+min(s,1/2)),

||z − zh|| = ||P2hzh − zh|| + O(h1+min(s,1/2)),
||u − uh|| = ||û − uh|| + O(h1+s),

for 0 < s ≤ 1. Furthermore, there hold

lim
h→0

||Π2hph − ph||div

||p − ph||div
= 1,

lim
h→0

||P2hyh − yh||
||y − yh||

= 1,

lim
h→0

||Π2hqh − qh||div

||q − qh||div
= 1,

lim
h→0

||P2hzh − zh||
||z − zh||

= 1,

lim
h→0

||û − uh||
||u − uh||

= 1.

Proof. The proof follows easily from Theorems 4.1-4.2 and the composed relations
as follows:

p − ph = (Π2hph − ph) + (p − Π2hph),
y − yh = (P2hyh − yh) + (y − P2hyh),
q − qh = (Π2hqh − qh) + (q − Π2hqh),
z − zh = (P2hzh − zh) + (z − P2hzh),
u − uh = (û − uh) + (u − û).

�

Therefore, the recovery type a posteriori error estimators defined above are
asymptotically exact if the conditions for superconvergence are valid.

5. Numerical tests

We present below two examples to illustrate the superconvergence theoretical
results of the control. In both cases, the Laplace operator −∆ was chosen for
the elliptic operator A(x). The first example is based on Example 1 of [30] with
some modification. In the second example, we take the obstacle function not as a
constant, but with some weak discontinuities, and find the same superconvergence
phenomenon in the first example.

Actually, our numerical example satisfies the stronger regularity y, z ∈ H3(Ω).
The numerical results will show that the approximated solution of the control pos-
sesses almost two order superconvergences for the approximation space of piecewise
constant functions.

Both optimization problems were solved numerically by projected gradient meth-
ods, with codes developed based on AFEPack [24]. The discretization was already
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described in previous sections: The control function u is discretized by piecewise
constant functions, whereas the state (y, p) and the co-state (z, q) were approxi-
mated by the lowest order Raviart-Thomas mixed finite element functions. In our
examples, we choose the domain Ω = [0, 1] × [0, 1]. We use the uniform rectangle
partitions.

Example 1. We consider the following two dimensional elliptic optimal control
problem:

(5.1) min
u∈Uad

{
1
2
||p − pd||2 +

1
2
||y − yd||2 +

ν

2
||u||2

}
subject to the state equation

(5.2) divp + a0y = u + f, p = −A(x)grady, x ∈ Ω,

which is written in the form of the first order system with the boundary condition

(5.3) y = 0, x ∈ ∂Ω,

where Ω = [0, 1] × [0, 1]. Here we choose A(x) ≡ 1 and a0 ≡ 0. Then the state
equation may be restated as

(5.4) divp = u + f, p = −grady, x ∈ Ω.

Next, we introduce the co-state elliptic equation

(5.5) divq = y − yd, q = −(gradz + p − pd), x ∈ Ω,

with the boundary condition

(5.6) z = 0, x ∈ ∂Ω.

Now, we define the optimal state function by

y(x1, x2) = sin(πx1) sin(πx2)

and the source function f is given by

f(x1, x2) =

⎧⎨
⎩

uf (x1, x2) − a, if uf (x1, x2) < a,
0, if uf (x1, x2) ∈ [a, b],
uf (x1, x2) − b, if uf (x1, x2) > b,

with uf (x1, x2) = 2π2 sin(πx1) sin(πx2). Due to the state equation (5.4), we obtain
for the exact optimal control function u

u(x1, x2) =

⎧⎨
⎩

a, if uf (x1, x2) < a,
uf (x1, x2), if uf (x1, x2) ∈ [a, b],
b, if uf (x1, x2) > b.

For the optimal co-state function z, we find

z(x1, x2) = −2π2ν sin(πx1) sin(πx2).

It follows from the co-state equation (5.5) that

y − yd = −div(gradz + p − pd) = −4π4ν sin(πx1) sin(πx2) − div(p − pd)

or
divpd + yd = y + u + f + 4π4ν sin(πx1) sin(πx2).

Thus, the desired state variables are given by

yd(x1, x2) = y + 2π4ν sin(πx1) sin(πx2) = (1 + 2π4ν) sin(πx1) sin(πx2)
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Figure 1. The profile of the numerical solution of Example 1 on
the 64 × 64 mesh grid.

and

divpd = u + f + 2π4ν sin(πx1) sin(πx2) = −div(grad(y − π2ν sin(πx1) sin(πx2))).

We may choose

pd(x1, x2) = −grad(y − π2ν sin(πx1) sin(πx2))
= (−(π − π3ν) cos(πx1) sin(πx2),−(π − π3ν) sin(πx1) cos(πx2)).

In numerical implementation, we set a = 6 and b = 16 to make both the lower
and the upper constraints active. The profile of the numerical solution is plotted in
Figure 1 and the error ‖uI − uh‖ and ‖u− û‖ obtained on a sequence of uniformly
refined meshes are presented in Table 1. The superconvergence phenomenon can
clearly be observed from the data.

resolution ‖uI − uh‖ order ‖u − û‖ order
16 × 16 3.239e-02 - 1.494e-01 -
32 × 32 8.457e-03 1.94 3.763e-02 1.99
64 × 64 2.058e-03 2.04 9.387e-03 2.00

128 × 128 5.218e-04 1.98 2.354e-03 2.00

Table 1. The error of the numerical solution of Example 1 on a
sequence of uniformly refined mesh grid.

Example 2. In this example, we investigate the case of the nonconstant control
constraints. We replace a and b in Example 1 by two specific functions as follows:

a(x1, x2) = 5 +
5√
2
|x1 − x2|,

b(x1, x2) = 10 +
8√
2
|x1 + x2 − 1|.
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Figure 2. The profile of the numerical solution of Example 2 on
the 64 × 64 mesh grids.

Then not only the constraints depend on the coordinates (x1, x2), but also there are
some weak discontinuities in both constraints. The profile of the numerical solution
is presented in Figure 2. From the error data on the uniformly refined meshes, as
listed in Table 2, it can be seen that the superconvergence remains, even though
there is the introduction of the weak discontinuities in the input data.

resolution ‖uI − uh‖ order ‖u − û‖ order
16 × 16 1.995e-02 - 9.109e-02 -
32 × 32 5.056e-03 1.98 2.289e-02 1.99
64 × 64 1.261e-03 2.00 5.712e-03 2.00

128 × 128 3.205e-04 1.98 1.435e-03 1.99

Table 2. The error of the numerical solution of Example 2 on a
sequential of uniformly refined mesh grids.

6. Conclusion and future work

The present paper discussed the rectangular lowest order Raviart-Thomas mixed
finite element methods for the optimal control problem (1.1)–(1.3). By applying
the superconvergence results (see [15] and [16]) of standard mixed finite element
methods, we have established some local and global superconvergence results in
L2 norm both for the state and the co-state discrete solutions with convergence
order h1+min(s,1/2)), and for the control approximation with convergence order h1+s,
where 0 < s ≤ 1.

These results can be extended to mixed finite element methods on quadrilaterals.
Moreover, one may consider the piecewise point behavior of the approximations and
L∞-norm superconvergence properties for the flux functions along the Gauss lines
and for the scalar functions at the Gauss points. We have used piecewise constant
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functions to approximate the control variable. In our future work, we shall use the
standard linear element space to approximate the control function.

Furthermore, we shall investigate the case that a and b in the admissible control
set Uad are some smooth functions (not constants, as in the present paper; see
(1.4)) or the set

(6.1) Uad =
{

u ∈ L2(Ω) :
∫

Ω

u(x)dx ≥ 0
}

.
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[4] J. Bergh, J. Löfström, Interpolation Spaces, An Introduction, Springer, Berlin, 1976.
MR0482275 (58:2349)

[5] J. H. Bramble and J. Xu, Some estimates for a weighted L2 projection, Math. Comp., 56
(1991), pp. 463-476. MR1066830 (91k:65140)

[6] J. H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed
finite elements, Numer. Math., 68 (1994), no. 3, pp. 311-324. MR1313147 (96a:65162)

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.
MR 92d:65187 MR1115205 (92d:65187)

[8] E. Casas and L. A. Fernández, Optimal control of semilinear elliptic equations with point-
wise constraints on the gradient of the state, Appl. Math. Optim., 27 (1993), pp. 35-56.
MR1183301 (93h:49012)

[9] Y. Chen and W. B. Liu, Posteriori error estimates for mixed finite elements of a quadratic
control problem, Recent Progress in Computational and Applied PDEs, Kluwer Academic,
2002, pp. 123-134.

[10] Y. Chen and W. B. Liu, Error estimates and superconvergence of mixed finite element for
quadratic optimal control, International J. Numerical Analysis and Modeling, 3 (2006), no.

3, pp. 311-321. MR2237885 (2007c:49036)
[11] Y. Chen and W. B. Liu, A posteriori error estimates for mixed finite element solutions of

convex optimal control problems, Journal of Computational and Applied Mathematics, in
press.

[12] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amster-
dam, 1978. MR0520174 (58:25001)

[13] M. Dauge, S. Nicaise, M. Bourland, and M.S. Lubuma, Coefficients of the singularities for
elliptic boundary value problems on domains with conical points III: Finite Element Methods
on Polygonal Domains, SIAM J. Numer. Anal., 29, no. 1, 1992, pp. 136-155. MR1149089
(93a:65146)

[14] J. Douglas, Jr. and J. E. Roberts, Global estimates for mixed finite element methods for
second order elliptic equations, Math. Comp. 44 (1985), pp. 39–52. MR771029 (86b:65122)

[15] R. E. Ewing, R. Lazarov, and J. Wang, Superconvergence for the Velocity Along the Gauss
Lines in Mixed Finite Element Methods, SIAM J. Numer. Anal., 28 (1991), pp. 1015–1029.
MR1111451 (92e:65149)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0450957
http://www.ams.org/mathscinet-getitem?mr=0450957
http://www.ams.org/mathscinet-getitem?mr=1937089
http://www.ams.org/mathscinet-getitem?mr=1937089
http://www.ams.org/mathscinet-getitem?mr=1987589
http://www.ams.org/mathscinet-getitem?mr=1987589
http://www.ams.org/mathscinet-getitem?mr=0482275
http://www.ams.org/mathscinet-getitem?mr=0482275
http://www.ams.org/mathscinet-getitem?mr=1066830
http://www.ams.org/mathscinet-getitem?mr=1066830
http://www.ams.org/mathscinet-getitem?mr=1313147
http://www.ams.org/mathscinet-getitem?mr=1313147
http://www.ams.org/mathscinet-getitem?mr=1115205
http://www.ams.org/mathscinet-getitem?mr=1115205
http://www.ams.org/mathscinet-getitem?mr=1183301
http://www.ams.org/mathscinet-getitem?mr=1183301
http://www.ams.org/mathscinet-getitem?mr=2237885
http://www.ams.org/mathscinet-getitem?mr=2237885
http://www.ams.org/mathscinet-getitem?mr=0520174
http://www.ams.org/mathscinet-getitem?mr=0520174
http://www.ams.org/mathscinet-getitem?mr=1149089
http://www.ams.org/mathscinet-getitem?mr=1149089
http://www.ams.org/mathscinet-getitem?mr=771029
http://www.ams.org/mathscinet-getitem?mr=771029
http://www.ams.org/mathscinet-getitem?mr=1111451
http://www.ams.org/mathscinet-getitem?mr=1111451


SUPERCONVERGENCE OF MIXED FEM FOR OPTIMAL CONTROL 1291

[16] R. E. Ewing, M. Liu, and J. Wang, Superconvergence of mixed finite element approxi-
mations over quadrilaterals, SIAM J. Numer. Anal., 36 (1999), pp. 772–787. MR1681041
(2000c:65102)

[17] F. S. Falk, Approximation of a class of optimal control problems with order of convergence
estimates, J. Math. Anal. Appl., 44 (1973), pp. 28–47. MR0686788 (58:33347)

[18] T. Geveci, On the approximation of the solution of an optimal control problem governed by
an elliptic equation, RAIRO Anal. Numer., 13 (1979), pp. 313–328. MR555382 (80j:93060)

[19] Y. Huang, Finite element Method — Extrapolations and Superconvergence, Ph.D thesis,
Institute of System Science and Mathematics Science, April, 1987.

[20] Y. Huang and Q. Lin, Finite element methods and extrapolations on polygonal domains,
Numer. Math. Sinica, Vol. 12, no. 3, 1990, pp. 239-249. MR1217895 (94c:65138)

[21] Y. Huang and Q. Lin, Elliptic boundary value problems and finite element method approx-
imations on polygonal domains, J. Sys. Sci. & Math. Sci., 12, no. 3, 1992, pp. 263-268.
MR1217895 (94c:65138)

[22] Y. Huang and Q. Lin, Green’s function and some estimate of F.E.M. approximations on
polygonal domains, J. Sys. Sci. & Math. Sci., 14, no. 1, 1994, pp. 1-8. MR1331525 (96c:65181)

[23] Y. Kwon and F. A. Milner, L∞-error estimates for mixed methods for semilinear second-
order elliptic equations, SIAM J. Numer. Anal., 25 (1988), pp. 46–53. MR923925 (89c:65122)

[24] R. Li, W. B. Liu, http://circus.math.pku.edu.cn/AFEPack.
[25] R. Li, H. Ma, W. B. Liu, and T. Tang, Adaptive finite element approximation for distributed

elliptic optimal control problems, SIAM J. Control and Optimization, 41 (2002), pp. 1321-
1349. MR1971952 (2004a:49036)

[26] Q. Lin, N. N. Yan, Structure and Analysis for Efficient Finite Element Methods, Publishers
of Hebei University, in Chinese, 1996.

[27] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,
Springer-Verlag, Berlin, 1971. MR0271512 (42:6395)

[28] W. B. Liu and N. N. Yan, A posteriori error estimates for optimal boundary control, SIAM
J. Numer. Anal., 39 (2001), pp. 73-99. MR1860717 (2002j:49040)

[29] W. B. Liu and N. N. Yan, A posteriori error estimates for control problems governed
by Stokes’ equations, SIAM J. Numer. Anal., 40 (2003), pp. 1805-1869. MR1950625

(2003j:65119)
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