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Abstract 

Superconvergent error estimates in f2(H 1 ) and £00 (H 1 ) norms are 

derived for recovered gradients of finite difference in time/piecewise 

linear Galerkin approximations in space for linear and quasi-nonlinear 

parabolic problems in two space dimensions. The analysis extends 

previous results for elliptic problems to the parabolic context, and 

covers problems in regions with non-smooth boundaries under certain 

assumptions on the regularity of the solutions. 
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1 Introduction 

1.1 Background 

This paper is concerned with the derivation of superconvergent error es

timates for recovered gradients of finite difference in time/piecewise linear 

Galerkin approximations in space for linear and nonlinear parabolic prob

lems in two space dimensions. For the linear and quasi-nonlinear problems 

the analysis covers the cases of variable coefficients and of regions with non

smooth domains under certain assumptions on the regularity of the solutions. 

Superconvergent recovered gradient error estimates for elliptic problems 

having solutions with low regularity due to Wheeler and Whiteman (12] and 

Goodsell and Whiteman [4], [5], (13]-[15], which developed the work of Levine 

[7], are here extended to parabolic problems with variable coefficients and, 

using numerical integration with either interpolation of coefficients or Gaus

sian quadrature, f2 (H1 ) results are produced. The analysis has been further 

developed to produce similarly f2 (H1
) and (:,o(H1

) superconvergent estimates 

for quasi-nonlinear parabolic problems. 

The application of gradient recovery for time independent problems was 

discussed by Krizek and Neittaanmaki [6] and Wheeler and Whiteman [12]. 
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Thomee et al. [10] have considered the recovery of gradients for the heat 

equation in domains with smooth boundary, and in this context have proved 

£00 ( £00 ) superconvergent estimates. The results here involving interpolation 

of coefficients extend the work of Douglas and Dupont [1] who obtained 

optimal convergence results in £00 (L2 ) for nonlinear parabolic problems. 

1.2 Superconvergence results for elliptic problems 

The results for the parabolic problems of later sections of this paper are based 

on superconvergent recovered gradient error estimates for two dimensional 

elliptic problems. These are reviewed briefly and the notation is defined. 

Let n C IR-2 be a simply connected open bounded domain with polygonal 

boundary an. The function u(x) satisfies 

-V · (a(x)Vu(x)) = f(x), x En, 

u ( x) = 0 , x E an , 

(1.1) 

(1.2) 

where a(x) and f(x) are continuous and their second derivatives are locally 

in Loo(n) and a(x) 2:: do > 0, x E n. A weak formulation of (1.1) is set up 

by multiplying both sides by v E HJ(n) and integrating to obtain 

A(u,v)=(f,v) V vEHJ(n), 
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where 

A(u,v) = k aVu-Vv, u,v E Ht(n), (1.4) 

and 

(f,v) = fo!v' VE Ht(n). (1.5) 

For convenience and ease of explanation the variable coefficients in ( 1. 1) 

have been taken as a scalar rather than as a positive definite matrix, whilst 

homogeneous Dirichlet boundary conditions have been used in (1.2). The 

matrix of coefficients and more general boundary conditions could also be 

treated. 

Following [15], it is assumed that for the region n of problem ( 1. 1 )

(1.2) there exist subdomains no, n1 , n2, such that n0 CC n1 CC n2 C n 

satisfying the following conditions 

Condition 1. n0 , n1 , n2 are rectangular and are partitioned by a uniform 

isosceles right triangular mesh in the following way: each subdomain is the 

union of a finite number of squares each of which is subdivided into two 

triangles Tk by the diagonal of positive slope. 

Condition 2. n2 is remote from singularities of the solutions u of (1.3) at 

corners of an, so that u E W,!(n2), and the regularity off is assumed to be 
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such as to guarantee this. 

The part of the region f! - !12 is covered with a quasiuniform trian

gular mesh which is compatible with the regular mesh in !12 . Let hk de

note the diameter of the escribing circle of any element Tk and define h = 

maxelements hk. A finite dimensional subspace Sh C HJ(n), consisting of 

continuous piecewise linear functions, is defined over the triangular mesh 

partition of n. The Galerkin problem approximating (1.3) is that of finding 

(1.6) 

In (1.6) it has been assumed that all integrations have been performed ex

actly. If, as is usual, the integrations are performed numerically, the resulting 

problem is that in which 

(1.7) 

where A* and ( · , · )* indicate numerical integration. 

We wish to use gradient recovery at all vertices (nodes) of triangles in f!o 

and, as in (4), we define for nodes internal to !10 the recovered gradient of 

(1.8) 
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where Tt, i = 1, 2, ... , 6, are the six triangles surrounding the node. For 

nodes on the boundary 8!10 we define suitable specific recovery schemes, 

see [13], and these together with (1.7) produce recovered gradients of vh at 

all nodes of !10 • To these we now fit respectively to each component of the 

recovered gradient a piecewise linear function (Vvf:)x E Sh and (Vv{;)y E Sh. 

This construction ensures that 

where u1 E Sh is the piecewise linear interpolant to u. The following result, 

which uses result (1.9), is due to Whiteman and Goodsell [15]. 

Theorem 1.1 Let u(x) E Hci(D) n Hq(D) n H3 (!12 ), 1 < q < 2, be the 

solution of the weak problem ( 1. 3} and uh E Sh be the solution of the Galerkin 

problem with numerical integration, ( 1. 7). If Vu;/ is the recovered gradient 

function derived using (1.8) then 

IVu - Vu~RI :S C(w)h2
(q-l) (Julq n + Jul 3 n ) 

o,no ' ' 2 
(1.10) 

where w E C 00 (!1) n C3°(!1) is a cut-off function such that w(x) = 1, x E no, 

w(x) = 0, XE (!1 - !11) U 8!11. 
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Remark 1.1 Result (1.10) has assumed the regularity u E Hq(O), 1 < q < 2, 

for the weak solution, thinking of lower regularity as arising from the data 

and the geometry of problems (1.1)-(1.2). It could be that, in spite of the 

geometry of the problem, the solution is in fact smoother than the above so 

that u E H 2 (0). In this latter case the estimate (1.10) becomes 

(1.11) 

where the auxiliary problem 

-V · (aV(j)) = 1/J 
(1.12) 

(j) = 0 on an, 

m n,} 

1/J E L 2 (f!), is such that q> E Hl+P(f!), 0 < p:::; 1. 

The above theorem, remark, and recovery of gradients will now be applied 

for the space derivatives of parabolic problems. 
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2 Discrete Time Galerkin Procedures with 

Quadrature for Linear Parabolic Problems 

2.1 Weak formulation, notation and numerical schemes 

In this section we consider a linear parabolic problem with nonconstant co-

efficients, involving the elliptic operator of Section 1. For this problem we 

derive superconvergent estimates for recovered spacial derivatives of discrete 

time piecewise linear Galerkin approximations. These estimates will be ex-

tended to more general linear problems and in Section 3 to quasi-nonlinear 

parabolic problems. 

The function u(x, t) satisfies the equation 

8u(x,t) 
at - V · (a(x, t)Vu(x, t)) = f(x, t), x E O, t E J - (0, T], (2.1) 

together with the boundary condition 

u(x,t) = 0, x E 80, (2.2) 

and the initial condition 

U ( X, 0) = Uo ( X) , X E n , (2.3) 
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where, as in Section 1, n C IR2 is a simply connected polygonal domain with 

boundary an. The functions a(x, t), f(x, t), (x, t) E n X IR are assumed to be 

such that a(x, t) E L00 ((0, T); W!(D)) and /(x, t) is positive and bounded. 

It is also assumed that u(x, t), the solution of (2.1)-(2.3) is such that 

where 1 < q ~ 2. 

For convenience we have assumed homogeneous Dirichlet boundary con

ditions. General Dirichlet, Neumann and mixed boundary conditions can be 

treated with only minor modifications in the arguments. 

In approximating problem (2.1)-(2.3) we use a continuous piecewise linear 

Galerkin technique in the space dimensions, whilst the time discretisation is 

treated using implicit single step finite difference techniques of the "()" -type, 

where O ~ () ~ ½- These time discretisation methods are chosen because they 

are most commonly used in practical computations for genuine engineering 

problems. 

We first set up the weak form of (2.1) by multiplying both sides of the 

equation by a test function v(x) E HJ(D) and integrating by parts so that we 

have the weak form of (2.1)-(2.3) in which, for any t E J, u(x, t) E HJ(D) x J 
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satisfies 

(ut(x, t), v(x)) + A (t; u(x, t), v(x)) = (f(x, t), v(x)) , v(x) E Hci(n), 

(2.5) 

where Ut = au/ fJt and, for v(x) E HJ(n), 

A(t; </>,¢) - In a(x,t)~(</>(x)) · ~('lj;(x))dx, 

(J( . , t), v) = in J(x, t)v(x)dx. 

(2.6) 

(2.7) 

As in Section 1 we again define Sh C HJ ( n) to be the space of piecewise 

linear functions on n. The continuous time Galerkin problem approximating 

(2.5) is that in which uh(x, t) E Sh x J satisfies 

where 

(2.9) 

and 

(J(., t), vh) = in J(x, t)vh(x)dx. (2.10) 

The time interval [O, T] is discretised by letting !:it = T / N, where N is a 

positive integer, and setting tn = n!:it, n = 0, I, 2, ... , N. The 0-type finite 
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difference replacements will be at time levels tn,o where 

tn,O = etn + (1 - 0)tn+l , 0 ::; 0 ::; ~ , n = 0, 1, ... , N - 1 . (2.11) 

Similarly for any function </>(x, t) E L2 (!1) x L00 (J) for n = 0, 1, ... , N - 1, 

we define 

0<0<~, - - 2 

and also for ut(x, tn) = uf the backward difference replacement 

(2.12) 

(2.13) 

We shall adopt the following standard norm notation. If w(x, t) defined 

on [0, T] x n is sufficiently smooth and 1 ::; p ::; oo, then 

llwllLp((o,T),H) = IIF(t)IILp(o,T) 

where 

F(t) = llwllH (t) 

and His a normed linear space with 11 llw In general we shall take H to be 

a Sobolev space Hq(O) for some positive q. 

In addition we define 

llwlls,oo,O - llwllL00 ((0,T),W~(O)) 
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llwlloo,n II W II Loo ((O,T),Loo(!1)) (2.15) 

where 

II· lls,p,n = 11 · llw;(n) 
1 

= ( ~ IID0 ·llip(n)) 
2 

lal'.Ss 
(2.16) 

For p = 2 we have that 

11·11s = ll·lls,2,!1 · (2.17) 

For the corresponding seminorms we use the notation I · I and the summation 

in (2.16) is for lal = s. 

Lemma 2.1 Let V = HJ(D) and Q(·) = Q(x, t, u(x, t)) be a function that 

is bounded above and below by positive constants a0 and a1 . Further assume 

that Q is Lipschitz continuous as a function ofu and that IGI and IV·Q(u)GI 

with G = ~ are bounded on O x [O, T]. We assume the elliptic regularity 

given by (1.12). Let WE Sh satisfy 

(Q(u)V(u - W), Vv) = 0, v E Sh. (2.18) 

If u and ~~ belong to L 2 (0, T; Hq(D)), l ~ q ~ 2, then v = u - W satisfies 
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Proof. It is easy to show that there exists a constant C such that 

(2.19) 

Moreover, if a E V is such that 

(Q(u)v'a, v'v) = 0, v E Sh, (2.20) 

then it follows by the "Nitsche lift" (see (9]) and elliptic regularity that there 

exists a constant C** such that 

(2.21) 

To obtain estimates for ~~ we employ arguments used in (11) and [2). 

If we differentiate (2.18) with respect tot we see that 

( Q(u)v!;, v'v) (au oQ ) ot OU v'v, v'v 

_ (Gv'v,v'v), vESh. (2.22) 
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One can easily show by standard arguments that 

(2.23) 

Let /3 E V satisfy 

(Q(u)V/3, Vv) = (GVv, Vv), v EV. (2.24) 

Then if a= !~ - /3 we see from(2.21), (2.22) and (2.24) that 

(2.25) 

The last inequality follows by noting that 

To bound ll/311o,n we let ~ E V be such that 

(Q(u)V~, Vv) = (/3,v), v EV. 
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Then 

111111~.n - (Q(u)V<l>, V;,) 

= (GVv, V<l>) 

- (Q(u)Vv, Q-1(u)GV<l>) 

- (Q(u)Vv, V(Q-1(u)G<l> - x)) 

- (Q(u)Vv,<l>V(Q-1(u)G)), XE Sh 

- (Q(u)Vv, V(Q-1(u)G<l> - x)) 

+ (11, V · Q(u)<l>V(Q-1(u)G)), XE Sh. 

Thus, 

111111~.n < ChP llvll 1,n ll<l>lll+p,n + C 11 11 110,n ll<l>lll+p,n 

< Chp+q-t 11/111~.n · 

and the result is immediate. 

Returning now to the discretisation of the parabolic problem (2.5) and 

using the replacement (2.13) in (2.5) with v = Vh E Sh, we have a t = tn,B 

such that 

(8tun,vh) + An·8(un,B,vh) = (f(x,tn,o),vh) + (En· 9 ,vh)' Vh Esh' (2.26) 
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where 

(2.27) 

and En,B is the remainder arising from the time discretisation, i.e. 

We are finally able to define the approximating problem for (2.1 )-(2.3) 

as that in which the solution uHx) 

* . { o 1 N} 5h uh . t , t , ... , t --+ 

satisfies 

(2.28) 

where A *n,B ( · , ·) is the numerical approximation to A n,B (- , ·) produced by us-

ing numerical integration, as discussed in Section 1, either by using a quadra

ture rule or by interpolating to the coefficients a(x, t). We similarly define 

(!(· ,tn·8),vh)* to be the numerical approximation to(!(· ,tn,0),vh)· 

For every t E J we now define the elliptic projection uh(x, t) E Sh x J of 

u by 

(2.29) 
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Then iih = iih(x, tn) is, from (2.26), given by 

For convenience we now define 

(2.31) 

(2.32) 

Then subtracting (2.30) from (2.28) we obtain, using the above notation, 

(2.33) 

where 
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Setting vh = 17n,O in (2.33) we obtain 

( Dt'f/n, 17n,0)+ A *n,0 ( 17 n,0, 17 n,0) = r;,0 ( 17n,0)-( En,0, 17n,0)-( Dt~n, 17n,0)+ T
2
n,0 ( 17 n,0) . 

But 

( 8t'f/n' 'f/n,0) = ( ryn+~~ Tln' 017n + ( 1 - 0)ryn+I) 

- ~t { (l - 0) ll'f/n+l 11:,n - 0 1177n 11i,n - (l - 20)( 'f/n, 'f/n+l)} 

> ~t { { (1 - 8) - (
1 ~ 20

)} ll77n+111:,n -{0 + 
1 ~ 20

} llr,nll~,n} 

so that 

and hence 

2~t {ll77n+111:,n - ll77nll~,n} + A*n,0 (r,n,0,1ln,0) 

:s; 1r;·°(17n,0)1 + l(En·0,1Jn,O)I + l(8tC,17n,O)I + 1r;·°(17n·0)1. (2.34) 

For the term 1Tt·0(17n•0)1 in (2.34) we have that 

1r;·°(r,n·0)I - IU(· ,tn,0),r,n,0)*-(J(· ,tn,0),r,n,0)1 

< Ch 2 \\J(· 'tn·0)\\2,n \\ 17 n,Ollo.n 

< Ch2JJJ(·,tn,O)Jl2,n{ll77nllo,n+ll77n+lllo,n} (2-35) 
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using approximation theory and Lemmas 3. 7 and 3.8 of [12]. 

In considering the term l(En,0, 1]n,0)1 in (2.34), we have that 

l(En,0,1]n,0)1 < C 11En,0llo,n 111]n,011o,O 

< C IIEn,Ollo,n {ll7Jnllo,n + 111]n+lllo,n} 

Using Taylor series expansions, it can easily be verified that 

II En,0110,0 

l1En,011o,n 

1 o::;0< 2 , 

1 
0 = 2. 

Now consider the term T2n'
8(r-,n• 0 ) in (2.34). We have that 

Tt0( 17n,0) 

Consider the second pair of terms 
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For the case of interpolation where a*(· , ·) = a1( · , ·) this gives 

(2.39) 

For the quadrature case 

< Ch 2 11 11 1- n,01 I n,01 a 2,oo,n uh 1,n T/ 1,n . (2.40) 

Now 

lun,01 < iu~,0 - un,01 + lun,01 
h 1,n 1,n 1,n 

(2.41) 

Thus from (2.38)-(2.41) fort E (tn, tn+I) we have 
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For the first two terms in the right hand side of (2.38) we have 

k a(x, tn·9)\7( uh(· , tn·0) - u~·0) · \lrt·0 dx 

k a(x,tn,B)\7 (uh(· ,tn,0 )-0uh - (1-0)uh+l) · '17Jn,Bdx 

< llalloo,11 luh( · 'tn,0) - 0uh - (1 - 0)uh+l 11,11 11Jn,8 l1,11 

llall 00 ,11 l1Jn,Bll,!1 X C~t½ l(uh)tb((tn,tn+l);Hl(r!)), 0 ~ (} < ½, 

llall 00 ,11 l1Jn,Oll,!1 X C~d l(uh)ttb((tn,tn+l);Hl(r!)) , (} = ½ · 

Estimates (2.42) and (2.43) together provide a bound for IT2n,B ( 1Jn,B) !

Consider next the term (8t~n,1Jn,B) in (2.34); by Cauchy-Schwarz 

But 

Now ~t = tt(u'l;, - un) and from Lemma 2.1 
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From (2.34) and the estimates (2.35)-(2.44) we find that 

2~t {ll77n+111:,n - ll77nll~,n} + A*n,0(17n,0,17n,0) 

< {Ch' JJJ( · , t"·') JJ,,n 

+ hq-l+PC (llatll
00

,n llall
00

,n) X 

(llullL2((tn,tn+1 );Hq(O)) + llutll£2((t",t"+1 );Hq(O))) 

(2.44) 

+ C~tf3-½ 11:;:~11 } (1177nllo,n + ll77n+lll 0 n) + 
£2((tn,tn+I );£2(0)) ' 

+ { Ch' llall,,00,n (lu"·'li,n + IC·'l,,n) 

(2.45) 

where f3 = 1 if O ::; 0 < ½ and f3 = 2 if 0 = ½· 

Let ao = inf(o,T)xn a*(x, t) and a1 = sup(o,T)xn a*(x, t). Then 

(2.46) 
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Thus, using (2.46) and the inequality ab :S: t;a2 + ½b2 with t = ½ for terms 

involving ll1tllo n and ll7Jn+l Ila n and E = ao for terms involving 17Jn,BI we , , 1,n 

obtain from (2.45) that 

2~t {ll7Jn+l11:,n - ll7Jnll~,n} + ao 11~7Jn,e11:,n 

< Ch4 IIJ(· 'tn,B)JJ:,n + C (llalloo,n' llatlloo,n) h2(q-1+p) 

+ .6.t2(3-1 ~ 
II 

8f3 112 ) 
8tf3 L2((tn,tn+1); HI(O)) 

(2.4 7) 

where in ( 2.4 7) we used the fact that 

l
un,81 < C(a a ) lun,81 

h 1,n - o, 1 1,n 

and 

11a;;t,n '.SC (ao, ll•llw1ocn1) 11:~111,n . 
Multiplying (2.47) by 2.6.t and summing over n for n = 0, 1, 2 ... , N - 1, we 
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obtain the estimate 

2 2 N-l 2 
ll 17 Nllo.n -11 170 110,n + 2ao ~ !lt l1Jn,9ii,n 

< C1h2(q-l+p) {}; !lt /If(·' tn,0)11:.n 

+ C(llalL'°,n, llatlloo,n) llull:Hl(O,T);Hq(n)) 

+ llall~-(0,Tl, W<,(O)) llull/v(o,T); H'(O)) } + 

{ 
II 

af3+1u 11

2 
- 2,6 + C2(!lt) /3+1 at £2(0,T); £2(0) 

8f3u 
2 

} + llall~L 00 (0,T); wi(n)) 8 (3 
t (£2(0,T); Hl(O)) 

(2.48) 

which can be written as 

N-1 
~ C1h2(q-l+p) + C2 (tlt)2f3 + C3 L !lt ll7Jnll~.n (2.49) 

n=l 

where the constants C1 , C2 , C3 depend on various derivatives off, A and u 

as in (2.37). 

Application of Gronwall's Lemma (see [2] and [3]) to (2.49) yields the 

following result which we state as a theorem: 
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1 < q ~ 2 be the solution of the weak form (2.5) of the parabolic problem 

(2.1)-(2.3) defined inn x J. Let Sh E HJ(O) denote the spaces of piecewise 

linear functions defined on the triangular partition of O as in Section 1 and 

let ith(x, t) E Sh be the elliptic projection of u(x, t). If u:(x) is the solution 

of (2.28) attn, where J = (0, T), T = N ~t and tn = n~t, then 

(1 - ~t) Jiu~ -ur: 112 + ao ~1 ~t IJu:·0 - i,,~·0112 
0,0 n=O 1,0 

< C h2(q-1+p) + C (~t)2f3 _ 1 2 (2.50) 

where C1 and C2 are constants, 1 < q ~ 2, /3 = 1 when O s;; 0 < ½ and /3 = 2 

when 0 = ½- Here O < p ~ 1 is a parameter arising as in (1.12). 

At any time level tn, n = 1, ... , N, we now apply the recovery proce

dure described in Section 1 to u: to produce the recovered gradient function 

\7 u~R- Thus, combining the inequality (1.10) of Theorem 1.1 with the re

sult of Theorem 2.1, we now have the main (superconvergence) result of this 

section. 

*n 
Theorem 2.2 If u(x, t) and uh(x) are as m Theorem 2.1, and all the hy-

*n,R 
potheses of that theorem hold, and if \7 uh is the recovered gradient function 
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at the time level n, n = 1, 2, ... , N, then 

lll 'vu - 'v i°l:111
2 

= O(h2(q-i+p)) + (~t) 2,a (2.51) 
(£2(o,tN);£2(0o)) 

where 1 < q ~ 2, 0 < p ~ 1, and /3 = 1 if O < 0 < ½ and /3 = 2 if 0 = ½, 

where 

N-1 

lll'vwlll~£2(o,tN);L2(0o)) = L ~t l'vu(tn)l12(no) 
n=O 
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3 £2(0, T) Recovery of Gradients for 

Nonlinear Parabolic Problems 

We now extend the previous analysis to nonlinear parabolic problems in 

which the function u(x, t) satisfies the equation 

au(x, t) at -V · (a(x,t,u(x,t))Vu(x,t)) = J(x,t,u(x,t)), 

x E O , t E J = ( 0, T] , ( 3 .1) 

together with the boundary condition 

u(x, t) = 0, x E an, (3.2) 

and the initial condition 

u(x, 0) = u0(x), XE O. (3.3) 

The same regularity conditions on f as in Section 2.1 are taken, and we 

further assume that f and a are Lipschitz continuous with respect to u with 

Lipschitz constant K, and that the regularity of u(x, t) is as in (2.4). 

The weak formulation corresponding to (2.5) is, for any t E J, to find 

u(x, t) E HJ(O) x J such that 
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(ut(x, t), v(x)) + A (t; u(x, t), v(x)) 

= f (x, t, u(x, t), v(x)) Vv(x) E HJ(O) , (3.4) 

where 

A(t; </>, ¢) = k a (x, t, u(x, t)) \7 </>(x) · \7¢(x)dx (3.5) 

and 

(f( ·, t, u( ·, t)), v) = k J (x, t, u(x, t)) v(x)dx. (3.6) 

Equation (2.26) now becomes 

whilst the Galerkin problem with quadrature, corresponding to (2.28), is 

(3.8) 

where the A*n,li is now defined as 

27 



Here the use of the * in a* and (f, · )* has the same definition as in Section 2 

and 

(3.10) 

In the analysis below we denote by Ji the linear interpolate in Sh of f. 

Equation (2.30) correspondingly becomes 

- A (tn,0 ii, (· tn,0) V ) , h , ' h 

(3.11) 

Modifications to extend the result of Theorem 2.1 to the current nonlinear 

problem involve only the reestimation of Tt'0 and r;·0 for the present case. 

In order to do this we proceed as follows. Following (2.24) we now have that 

(3.12) 

Let {z1(x)},% 1 be a nodal basis for Sh corresponding to the set of nodes Xi 
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of the partition of n, and define 

M 

fr(x,t,u(x)) = "2:,J(xj,t,u(xj))zj. 
j=l 

Set Vh = 17n,o. We first consider the case of interpolation of coefficients. Thus 

jTi"''(~"·')j = ( ~ (f(x,, t"·', E'u~"·'(x,)) - f(x,. t"·', u(x,, t"·'))) z,, ~"·') 

+ (Jr(x, tn,0, u(x, tn,0)) - f(x, tn,0, u(x, tn,0))), 1Jn,0) 

< °'"' 8 f ( tn,0 ) (Ex *n,0( ) ( tn,0) n,0) ~OU Xj, ,Vj Uh Xj -UXj, Zj,1] 
J 

(3.13) 

Now, assuming that l8J/8ul ~ I<, we have that 

°'"' of ( tn,0 )(Ex *n,0( ) ( tn,0)) L.., -;::i- Xj, , Vj Uh Xj - U Xj, Zj . uu 
J 

J 

+ L, 1Exu;·0(xj) - u1(Xj, tn•0)1 Zj. 
J 

Thus, 
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ITt'0(1,n,0)1 < I{ [ I: IExu~n,B(Xj) - Exu7,0(Xj)I Zj 
1 o,n 

+ L 1Exu?'0(xj) - u1(Xj, tn,0)1 Zj ] 111,n·ollo,n 
1 o,n 

+ Ch2 jjJ(tn,B)llz.n 111}n,011o,n 

< C(K) [ ll(uh - u,J"llo,n + ll(uh - U[ r-111..n + 

+ (~t]P 11a;:n1..n1 11~"·'11 •. n 

+ Ch2!1J(tn,0)ll2,n 111Jn,0llo,n ' (3.14) 

where /3 = 1, 0 s; () < ½ and /3 = 2, () = ½-

Here we have used the equivalence of norms for finite dimensional spaces, 

i.e. 

III: lailzillo,n ~ III: OjZjllo,n · 

We simplify the bound (3.14) as follows: 
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[r;·' ( q•·')[ -S C(/<) { llq•ll~,n + [[q•-' [[:,n 

+ IICll~,n + llc- 1 11:,n + ll(u1 - ufll~,n 

+ 11(u1 - ur-'t.n + (L'it)'" II:: w{.n 
+ llrt·0 11:,n} + Ch

4 IIJ(tn,O)ll2,n 

< C(K) { llq•ll~,n + [[qn-1[[:,n 

+ h2(q-l+p) t llu"II: n + (.6.t)2,3 II i)i'.3~ (tn)ll2 } 
l'=n-1 ' at 1,0 

+ Ch41if(tn,0)"2,n + C llr,n+111:,n (3.15) 

where [n is a point between tn-l and tn,O. 

Now using Gauss quadrature we have 

(3.16) 

where 
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(3.20) 

Using the Lipschitz continuity off and the definition of Ex, we have that 

I: r (s;t + s;k°)r,n,0 dx 
k }Tk 

< C [(~t)2
/3-l II:~ 11

2 

+ J( llu - u1IIL"'((O,T),L2(fl))l 
£2((tn,tn+I ),£2(fl)) 

+ C llrJn,011:,n (3.21) 

Now for simplicity we consider first s;{ 

'"' r sn,0 rJn,0 dx 
L.., J1T 2k 

k k 

L { s;k°(r,n,0 _ rJn,0(Gk)) 
k }Tk 

< L h% JJJ(x, tn,u, Exu;,°(x))Jl1 T JJr,n,Ull1 Tk 
k ' k ' 

< ao JJr,n·0 JJ:,n + C h
4 llfll~.n (3.22) 

In obtaining (3.22) we have used the fact that for any continuous F(x) 

thus, 

/ ( F ( x) - F (Gk)) · 1 dx = 0 , 
}Tk 

f (F(x) - F(Gk))0(x)dx = f (F(x) - F(Gk))(0(x) - const)dx. 
}Tk }Tk 

Now turning to s;k°, we have that 
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- f (x, tn,0' Exut·\x)) + f (x, tn,0' Exu1(x))] T/n,0 

+ f [J(x,tn,o,Exut'°(x))-f(x,tn,O,Exu1(x))] 'f/n,Odx (3.23) 
lrk 

By applying the mean value theorem and Gauss quadrature estimates to 

(3.23) we have that 

< L ll'f/n,011 hk IIJJII IIExu7·0 - Exu~n,0lloT 
k l,Tk Ju L

00
((0,T);L

00
(0)) ' k 

+ J( 11Exut'
0 

- Exu7·
0

llo,n IIT/n,Ollo,n 

Thus 

L I s;;.° dx < h
2 ll 1t·0 ll:,0 +Cll 1t+111:,n 

k lrk 

+ C (!1 1tll~,n + ll11n-l11:,0 ) 
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Combining (3.21), (3.22) and(3.24) we have an estimate for Tt8(1,n•0). The 

only terms which did not appear (for the linear problem) in (2.45) are the 

ll77n-lll~,n and \\(uh - u1)l\\:,n' £ = n - 1,n, in (3.24). These of course arise 

from the extrapolation which was not needed in the linear case. This has no 

effect on the final estimate, as in (2.45), because of the application of the 

Gronwall inequality and approximation theory. 

We now seek to estimate the term T2n'°(17n,0), as in (2.27), for the nonlinear 

context. The term r;·0(17n,0) is defined as 

In a similar manner to the treatment of r;, 0 
( 17 n,

0
) for the case of the 

interpolation of coefficients we have that 

-1 L a(xj, tn,0, Exut"0(xj))zjv'u~'0. v'17n,0dx 
n i 

+ lo a(x, tn,0, u(x, tn,0))v'uh(·, tn,0). v'17n,0dx 

f '°'( ( . tn,0 Ex •n,0( ·)) + ( . tn,0 Ex n,0( ·)) .n-n,0. n n,0d - ln~-ax], , uh X1 ax], , UI X1 Z1VUh V1] X 

J 

+ f '°' ( tn,0 Ex n,0( ) + ( tn,0 ( tn,0)) n-n,0 n n,0d lr~-aXj, ' UI Xj axj, ,UJXj, ZjVUh ·v1] X 
n i 

f ("' ( . tn,0 ( . tn,0)) . + ( tn,0 ( tn,0))) n-n,0. n n,0d + Jn 7 -a x1 , ,u1 x1 , z1 ax, ,u x, vuh v1] x 
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The proof proceeds similarly to the treatment of the Tt· 0 
( rt·0

) terms. In 

particular 

IT2n,0 ( 7]n,0) I 

< J( [ L 1Exu~n,0(xj) - Exu~'o(Xj)I Zj 
1 o,n 

J o,n 

+ Ch' llall,,o (t"·')] IIVii,11=,o ll"~"·'llo,o 

+ C(~t)i'.3-½ II of3u II 11v177n,011 
8tf3 L2((t",tn+1 );Hl(O)) o,n 

so that 

IT2n,0(77n,O)I < C(J<, llv'ulLX),n) X 

{ 11~"11!,o + 11~·-'ll:,0 + h'l,-1+,) ,t., llu'll:,o 

+ (~t)2{3-111af3~112 + h4 llall;,n (tn,0)} 
Of L2((t",t"+1 );Hl(O)) 

+ :a 117]n,011:,n . (3.25) 

35 



We remark that for q = 2 

since 

+ llv'(u - ui)lloo,n 

0(1) 

(3.26) 

In the case of Gauss quadrature the treatment of r;·0 
( r,n•0

) simplifies 

since v'u~·0 · v'r,n,B is constant over Tk. More precisely, we have 

TtB(TJn,0) = L (- r a(Gk, tn,B, Exut·0(Gk))v'u~·0 . v'r,n,0dx 
k }Tk 

+ hk a(x, tn,B, u(x, tn,B))v'u~'B. v'r,n,Bdx) 

L (- r a(x, tn,0, Exut·0(x))v'u~·0 . v'r,n•0dx 
k }Tk 

+ hk a(x, tn,B, u(x, tn,B))v'u~'B. v'r,n,Bdx) 

< I< IIExu~n,B - u(·, tn,B)llo,n llv'u~'0 lloo,n llv'r,n,Bllo.n .(3-27) 

The bounds for Tt·0(r,n,0) and T2n'8(r,n,B) include no new terms over those 

for the linear case except the IIT/n-Illo,n and I:l=:n-i ll(uh - u1tll:,n so that 

36 



an estimate of the type (2.4 7) can be obtained and this leads immediately to 

the theorem 

Theorem 3.1 Let u(x, t) be the solution of (3.1)-(3.3) and have the same 

regularity as that given by (2.4). We further assume with a(t) = a(t, u(t)) 

the elliptic regularity assumption for q = 2. Let u;;,n(x) be defined by (3.8) 

with u;;,0 = ui or u 1(·, t0
). Then 

where f3 = 1 when O ~ 0 < ½ and f3 = 2 when 0 = ½. 

In addition the following theorem results immediately from Theorem 3.1, 

and the recovery results of Section 2. 

Theorem 3.2 Let u(x, t) and u;;,(x, t) satisfy the hypotheses of Theorem 3.1 

and let Vu;;_nR be the recovered gradient function at the time level n, n = 

1, 2, ... , N. Then (2.51) holds for (Vu - Vu;;_R) in the case of the nonlinear 

problem (3.1)-(3.3). 
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4 t\)0(0, T) Recovery of Gradients for 

Nonlinear Parabolic Problems 

All the estimates derived so far in this paper have been in terms of the Lr 

norm in time. From a practical point of view it is much more useful to have 

estimates which in time are in terms of the £00 -norm. We 'now derive an £00 -

norm time estimate for the backward difference procedure ( 0 = 0) as applied 

to the nonlinear problem (3.1)-(3.3). Whilst for simplicity we consider the 

case O = 0, our arguments can be generalized in a straightforward fashion to 

include the case O ::; 0 ::; ½-

We proceed as in the previous sections and taking O = 0 subtract equa-

tion (3.11) involving the elliptic projection uh from equation (3.8) involving 

the calculated Galerkin approximation uj;. For ease of notation in allowing 

variability of the third variable in a(· , · , ·) we redefine the A* and A to 

contain three arguments. Thus 

A*n+1(z,</>,1/>) = lo a*(x,tn+1 ,z)V</>-V1j>dx 

! J a1 ( x, tn+l, z) V </> · V1j>dx 

= ~ f a(Gk,tn+1 ,z(Gk))"v</>·"v1/Jdx 
k }Tk 

(4.1) 
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depending on whether interpolation or Gauss quadrature is used, and 

A(t;z,</>,1/;) = k a(x,t,z(x,t))~</>- ~1/;dx (4.2) 

so that 

Setting vh = Ot1Jn in ( 4.3), multiplying the result by f:lt and summing the 

result over n, n = 0, 1, 2, ... , N - 1, we obtain 

where 

fn 
1 

N-1 N-1 

L f:lt ll8t1Jn 11~,n + L f:ltA •n+l ( U~n, 1Jn+l, Ot1Jn) 
n=O n=O 

N-1 

L f:lt(Tt + f2n + 'T(;) 
n=O 

N-1 

L tlt [ ( Oten, Ot1Jn) + ( En,9
, Ot1Jn)] 

n=O 

- A*n+1(un u-n+1 817n) + A(tn+i. un+i un+i 817n) 
h, h ' t ' ' h ' t ' 
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( 4.4) 

(4.5) 

(4.6) 

(4.7) 



Writing the time difference Dtr"t as (77n+1 -17n)/ f::l.t and taking 77° = 0, the 

second term on the left hand side of ( 4.4) becomes 

N-1 

L f::l.tA*n+1(uhn,1Jn+1,8t1Jn) 
n=O 

1 N-1 

f::l.t L f::l.t [A*n+l(uhn,1Jn+l,1Jn+l) - A*n+l(ut,1Jn,1Jn)] 
n=O 

1 { N N-1 } 
f::l.t E f::l.tA*n(uhn-1,1Jn,1Jn)- E f::l.tA*n+1(uhn,1Jn,1Jn) 

A*N ( uhN-1, 17N, 1JN) 

+ ~t {}; L'.t(A'"(u;n-1
, q•, q•) - A'"+1(u.", q•, q•))} 

N-1 

A*N(uhN-1,1JN,17N) - L f::l.tTt' (4.8) 
n=O 

where 

Combining ( 4.4) and ( 4.8) we see that 

(4.10) 

We now estimate the right hand side terms of ( 4.10) and for ease of 
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notation adopt again the norm 111 · 111, where 

N 

lll</>111 2 = L 6.t 11</>nll~,n · ( 4.11) 
n=O 

By the Schwartz inequality we have 

N 

I: 6.t(8tC,8t1t)::; lll8telll · lll8t11III ( 4.12) 
n=O 

and 
N 

L 6.t(En,B,8t1Jn)::; 6.t lluttll£2((0,T);L2(0) lll811JIII (4.13) 
n=O 

Now using summation by parts we have that 

N-1 

I: 6.t'i't = 
n=O 

N-1 

L 6.t 1 ( a*(x, tn+I' uhn) - a*(x, tn+I' un)) Vuh+I . V( 8t1Jn) 
n=O O 

E {- lo 6.t81 ([a*(x,tn,ut- 1
) - a*(x,tn,un-1

)] Vuh) · V17ndx} 

+ lo (a*(x,tN,u~N-l) - a*(x,tN,uN-1
)) Vuf. V17Ndx 

I:1 

- [J 81 (a*(x,tn,uhn-I) -a*(x,tn,un-I)) Vuh · V17ndx 
n=l n 

+ 1n (a*(x,tn,uhn- 1
) - a*(x,tn,un- 1

)) V8tuh · V17ndx] 6.t 

{ ( *( tN *N-1) *( tN N-1)) '7-N 'r7 Nd + Jn a x, , uh . - a x, , u v uh . v 17 x . ( 4.14) 

We note that 
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8t (a*(x,tn,uhn-l)-a*(x,tn,un-l)) 

= Dt ( ~:· (x, tn, 11n-1 )( uhn-1 _ un-1)) 

= 8t ( ~:· (x, tn, vn-1)) (uhn - un) 

8a* + au (x, tn+l' vn )8t( uhn-1 - un-1) 

for any ,:,n-l lying between uhn-l and un- 1 . 

Using the Lipschitz continuity of a* and the Schwarz inequality we deduce 

that 

N-1 

L f:1tTt 
n=O 

< }; L'.t (Io,!: Lo ll\7ii•lloo,n (ll~"llo,n + ll<"llo,n) 

+ II:: t~ IIVuhlloo,n (11at1Jn-l lla.n + 11atc-l lla.n) 

+ II~: 11
00 

IIVotfihlloo,n (ll11n-l llo,n + 11c-1 ll 0,n)) IIV11nllo,n 

+ (lleN-1 llo,n + ll11N-1 lla,n) llvuf lloo,n llv11Nllo,n 

< C1 ( 11111111 + 111~111 + lll8t11III + lll8t~III) · IIIV11III 

+ Ci (lleN-i lla,0 + ll11N-1 lla,n) IIV11Nllo,n 
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We have 

n=O 
N-l 

L 6-t r (a*(x,tn+l,un) - a(x,tn+l,un+l)) Vuh+l. VOt'TJn 
n=O }0, 

E 6-t (In ( a*(x, tn+l' un) - a*(x, tn+lun+l)) Vuh+l . \7 Ot'T]n 

+ k (a*(x,tn+ 1 ,un+1)- a(x,tn+i,un+1
)) Vuh+i · Vot7Jn) .(4.16) 

Again we apply summation by parts which yields 

N-l 
I: 6-ti'; = 
n=O 

El -(6.t)2 (l 8t(a: (· ,tn,0n-l)8tun-lvuh). V77ndx 
n=l n a 

- 6-t k ~: (· , tN, 0N-l )8tUN-1vuf; · V77N dx 

N-1 

L 6-t J 8t ((a* - atVuh) · V77ndx 
n=l n 

Thus, from ( 4.17) 
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n=O 

C (flt 11 aa* II II v7 uh IL:c n 11 au: II au oo ' at L2((0,T);L2(O)) 

a2a* 
+flt atau 

00 

au 

+ 6-t II~: L 11°,u"-'L((O,T),L'(O)) · IIV(ii,),11=,0) 111v~111 

+ 6-t II~: L II au;-' 11 •. n · llv~NII IIVii,II= 

+ !!_(a* - a) t a'-v7uh 
· lllv71JIII 

at £2((o,T);L2(n)) e=o ae oo 

We have 

n=O 

< Ill! - /*Ill lll8t1JIII 
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( 4.19) 



In addition we see that 

n=O 

:0: % /).t ( II .5,q• llo,n + 11 •:; tJ h _, llq" llo,n II V'q" llo,n . ( 4.20) 

Applying results from Theorem 3.1 for q = 2 and p = 1 we have that 

ll 1tllo n :::; C(h
2 + ~t) · 

' 

Letting ~t = O(h2
) we have that 

n=O 

< (11!<\11111 + 
8
~ at L2((0,T);L2(O)) 

+ h 211 au II ) II I \717111 
Bt L2(0,T),H2(fl)) 

( 4.21) 

Combining the estimates ( 4.15), ( 4.18), ( 4.19) and ( 4.21) we conclude 

that 
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+ C1 (11177111 + 111~11I + lllht77l1I + lllht~l11) lllv777l1I 

+ C2!:::.t llullH2((0,T);L2(n)) 11117111 

+ C2 (11117111 + 111~11 I+ h2 llull£2((0,T);H2(n))) 

+ lllht77III + -
11
8

~11 Bt £2((0,T);£2(rl)) 

+ h211au11 lllv77711I 
8t £2((0,T);H2(0)) 

where C1 and C2 depend on 11~:i:llc,o,n' ll 8aC::ll
00

,n and Jlv7uhJl 00,n· C2 also 

depends on llv7uh,IL-

Using approximation theory and nonlinear results from Theorem 3.1 and 

Lemma 3.1, we have 

( 4.22) 

Thus for !:::.t = O(h2
) we have 
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which implies that 

ll rtll ~ C(h2 + ~t). 
1,oo,fl 

This provides the L00 -time estimate for the backward difference procedure. 

As stated earlier, the generalization to the case O ~ 0 ~ ½ follows similar 

arguments. We finally state these results as a theorem. 

Theorem 4.1 Let u(x, t) be the solution of problem (3.4) and u;;n(x) be the 

solution of (3.8) with 0 = 0, where * denotes numerical integration using 

either interpolation of coefficients or Gauss quadrature. It is assumed that 

q = 2 and p = l in (1.12). Then 

for any n ~ N where /3 = l if O ~ 0 < ½ and /3 = 2 if 0 = ½. 
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