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Abstract

We consider infinite sequences of superstable orbits (cascades) generated by systematic
substitutions of letters in the symbolic dynamics of one-dimensional nonlinear systems in
the logistic map universality class. We identify the conditions under which the topologi-
cal entropy of successive words converges as a double exponential onto the accumulation
point, and find the convergence rates analytically for selected cascades. Numerical tests
of the convergence of the control parameter reveal a tendency to quantitatively univer-
sal double-exponential convergence. Taking a specific physical example, we consider
cascades of stable orbits described by symbolic sequences with the symmetries of quasi-
lattices. We show that all quasilattices can be realised as stable trajectories in nonlinear
dynamical systems, extending previous results in which two were identified.

Copyright L. Zaporski and F. Flicker.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 27-12-2018
Accepted 05-08-2019
Published 07-08-2019

Check for
updates

doi:10.21468/SciPostPhys.7.2.018

Contents

1 Introduction 2

2 Background 4
2.1 Symbolic Dynamics 4
2.2 Word Operations 5
2.3 Summary of Results 8

3 Generalised Time Quasilattices 9

4 Superconvergence of Topological Entropy 16
4.1 The Pell Cascade 20
4.2 The Clapeyron Cascade 21
4.3 Miscellaneous Cases 22

5 Superconvergence of Control Parameter – Numerical Analysis 23

6 Conclusions 24

References 26

1

https://scipost.org
https://scipost.org/SciPostPhys.7.2.018
mailto:leon.zaporski@maths.ox.ac.uk
mailto:flicker@physics.org
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.7.2.018&amp;domain=pdf&amp;date_stamp=2019-08-07
http://dx.doi.org/10.21468/SciPostPhys.7.2.018


SciPost Phys. 7, 018 (2019)

1 Introduction

Chaos theory, governing systems featuring a lack of predictability under deterministic dynami-
cal evolution, has found applications as varied as climate science, communications, economics,
and fluid mechanics, to name a few [3–8]. The key to this wide applicability lies in universality:
a quantitative and qualitative similarity across seemingly disparate chaotic models [9–13].

Figure 1: The topological entropy as a function of control parameter λ in the Lo-
gistic map (Eq. (1)). The characteristic multifractal shape is known as a Devil’s
Staircase [1]. The plot was generated by finding the smallest positive zeros of the
truncated kneading determinants numerically for itineraries of fλ(x) = 1−λx2 cor-
responding to λ ∈ [1.35, 2.00], uniformly sampled (see Section 4). The point λ∞
corresponds to the infinite word R∗∞ (notation defined in Section 4.3). The point
λR∗RL∞ marks the lower bound of the interval ∆0, and the upper bound of the in-
terval ∆1. The point λR∗2∗RL∞ marks the lower bound of the interval ∆1 and the
upper bound of the interval ∆2. The accumulation points of several substitution se-
quences are indicated, with the substitutions listed below the curve. Where colours
are used, they are consistent between figures. In the cases that accumulation points
correspond to generalised time quasilattices, the Boyle-Steinhardt class is indicated
above the curve (see Section 3) [2].

One of the clearest demonstrations of universality is provided by symbolic dynamics, the
study of a system’s dynamical behaviour when coarse-grained into discrete regions labeled
by different symbols [14–17]. Many properties of chaotic systems can be understood entirely
in terms of the sequences of symbols (regions visited) in this manner [18]. One example is
the ‘universal sequence’ in which periodic windows develop when chaos is reached via a pe-
riod doubling cascade: an infinite sequence of period-doubling bifurcations [9–13, 19, 20]. At
each bifurcation, an initially stable periodic trajectory (orbit) becomes unstable, while a new
trajectory of twice the period stabilises. Many important results concerning the period dou-
bling cascade were established using the tools of symbolic dynamics [14–17]. Period doubling
continues to be of importance to cutting edge research: recent experiments established the
existence of (discrete) time crystals, which spontaneously break the symmetry of a periodic
driving by returning a robust period-doubled response, made rigid to perturbations and finite
temperature by the local interactions of many degrees of freedom [21–25].

The present work is motivated in part by recent results establishing that periodically-driven
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nonlinear systems can feature not just period-doubled responses, but robust responses with the
symmetries of one-dimensional quasilattices [26]. Well known in the context of crystallogra-
phy, quasilattices are aperiodic long-range-ordered tilings, comprised of two or more unit cells,
which possess a discrete scale invariance but which lack the discrete translational invariance
of periodic crystal lattices [27]. Mathematically they can be generated by repeatedly substi-
tuting tiles in a prescribed manner [28, 29]. In the context of dynamical systems, unit cells
are replaced by trajectories with periods of fixed duration set, for example, by a periodic driv-
ing; the system spontaneously breaks the discrete time-translation symmetry of this driving
by returning an aperiodic sequence of periods of two different durations. The sequence of
cells can be generated mathematically by repeated application of substitutions to the symbolic
dynamics governing the system [26].

In the present work we consider a more general class of substitution rules applied to the
symbolic dynamics of nonlinear systems. Given a periodic orbit described by an itinerary of
coarse-grained regions visited in a dynamical system, an infinite sequence of new itineraries
is generated by repeatedly substituting the symbols corresponding to the regions. Quasilattice
substitution rules fall within the set we consider, and, by considering a simple generalisation of
the basic quasilattice concept, we find that we are able to identify aperiodic orbits correspond-
ing to all physically relevant quasilattices, extending previous results identifying two cases.
Generalizing further we consider a set of substitutions additionally covering, for example, the
period-doubling cascade [17]. The specific question we address is whether the complexity of
the sequences in these generalised cascades shows any universal behaviour analogous to that
shown in the period-doubling case.

Using the notion of topological entropy to quantify the complexity of symbolic sequences,
we are able to make a number of precise statements about the development of complexity upon
flowing down the cascades. Whereas the topological entropy is zero for all sequences in the
period-doubling cascade, for other substitution sequences it increases monotonically [30–34].
We find that the topological entropy of the wide class of substitution sequences we consider
converges as a double exponential onto its accumulation point. We find the convergence rates
analytically for some simple cascades, and outline the procedure for deriving the result for
arbitrary cascades, given certain general assumptions. By numerically investigating the corre-
sponding control parameters for specific unimodal maps, we further identify a second universal
double-exponential convergence. Together, these results suggest further universal properties
of the behaviour of these substitution sequences. In particular, the intervals within which ad-
missible words have lengths greater than n shrink geometrically as n increases, in both the
topological entropy (with geometric ratio 2) and control parameter (with a system-dependent
geometric ratio, previously identified in Ref. [35]).

This paper proceeds as follows. In Section 2.1 we provide some relevant background to the
field of symbolic dynamics, and define the conventions used in the paper. In Section 2.2 we
define the general class of substitutions we consider, and in Section 2.3 we collect a summary of
the mathematical results presented throughout the remaining paper. In Section 3 we motivate
the set of substitutions we consider by focussing on a specific subset of physical relevance,
featuring the symmetries of quasilattices. We demonstrate that, under a simple generalisation,
all one-dimensional quasilattices can appear as stable orbits in nonlinear dynamical systems. In
Section 4 we return to the wider class of substitutions, and present results on the convergence
of the topological entropy. In Section 5 we demonstrate the superconvergence of the control
parameter onto its accumulation point, in the same class of substitution sequences. We provide
concluding remarks in Section 6.
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2 Background

2.1 Symbolic Dynamics

One of the simplest systems to exhibit chaos is the one-parameter discrete-time logistic map [36]:

xn+1 = λxn(1− xn) , (1)

defined on the interval xn ∈ [0, 1]. The dynamics become chaotic above a critical value
λ0 = 3.56996... Chaos is reached through a cascade of supercritical pitchfork bifurcations
at λ < λ0, each of which doubles the period of the stable orbit [37]. The values of the con-
trol parameter λ converge geometrically (with a ratio given by the now-famous Feigenbaum
Constant δ = 4.669 . . .) to the accumulation point [38]. This mathematical prediction was
verified in various physical systems, including Rayleigh-Bénard convection and the Belousov
Zhabotinsky reaction [39–41].

The chaotic regimes of the continuous set of functions fλ are interspersed with periodic
windows of a finite range of λ, for which the system’s behaviour converges onto a stable pe-
riodic orbit. Periodic windows were found to appear in a universal order for all unimodal
maps [19,42]. In order to establish the symbolic dynamics of map fλ we can assign the labels
L, R or C to consecutive iterates of fλ if they are left, right, or central on the map (centred at
the maximum, xc), respectively [14, 16]. In that sense, sequences of letters (words) describe
the itinerary (or kneading sequence) of points visited, coarse-grained to L, R, or C . Various
tools have been developed to identify the words admissible as stable periodic orbits. In the fol-
lowing we focus on the generalised composition rules, which systematically generate admissible
words by a substitution process [15].

To take an example, the itineraries of positions visited by successive orbits in the period
doubling cascade can be described by the substitutions

R→ RL

L→ RR (2)

applied to the initial stable orbit R. At each stable orbit, the system exhibits periodic behaviour,
generating an itinerary given by K = K̄∞, where K̄ is a finite word, repeated infinitely to give
the itinerary K.

A word is defined to have an even parity if it contains an even number of letters R, and
an odd parity otherwise. A word K̄ with its last letter substituted with C , which we denote
K̄|C , corresponds to an orbit containing the maximum at xc , which ensures superstability –
a faster-than-exponential convergence onto a (super)stable orbit [9]. The universal order of
periodic windows coincides with the parity-lexicographic order of words, defined through the
relation ‘≺’ in the following way:

L ≺ C ≺ R (3)

and for two admissible words:

K̄= K̄∗L̄

K̄′ = K̄∗L̄′ , (4)

with K̄∗ their longest leftmost common substring (which may be the blank word, which has
even parity). Denoting l and l ′ the initial letters of L̄ and L̄′:

K̄≺ K̄′ if K̄∗ has even parity, and l ≺ l ′

K̄′ ≺ K̄ if K̄∗ has odd parity, and l ≺ l ′. (5)
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A word is said to be maximal if it is greater than or equal to all of its rightmost substrings (where
equality holds only for the rightmost substring being the word itself) [19]. All maximal words
are admissible [17,19].

Each admissible itinerary has a well-defined Topological Entropy, an important measure of
the dynamics’ complexity [43,44]. Consider the growth number s(n,ε), equal to the maximal
possible number of distinguishable orbits after n time steps, where two points belong to dis-
tinguishable orbits if they are separated by at least the distance ε. The topological entropy h
is then defined in the following manner [45]:

h≡ lim
ε→0

lim
n→∞

ln[s(n,ε)]
n

. (6)

The topological entropy for discrete-time dynamical systems governed by unimodal maps is
given by [46]:

h= ln
�

lim
i→∞

l1/i
i

�

, (7)

where li is the number of laps (monotone intervals) of f i
λ
, i.e. the ith iterate of fλ. The higher

the topological entropy, the more laps limi→∞ f i
λ

has. In that sense, if we interpret limi→∞ f i
λ

as a distribution of different initial values of x acted on with fλ iteratively, infinitely many
times, such a distribution is more complex for λ corresponding to a higher topological entropy.

The topological entropy depends only on the kneading sequence, not the form of the map
fλ [31]. Milnor and Thurston developed the concept of the kneading determinant, provid-
ing a systematic way of calculating the topological entropy based only on the kneading se-
quence [31].

Topological entropy is preserved on intervals of λ corresponding to period doubling cas-
cades, as well as period K-tupling cascades – sequences of orbits with periods increasing as Kn

(K , n ∈ N), with itineraries generated by an alternative composition rule, the Derrida-Gervois-
Pomeau star product (DGP∗) [47, 48]. All such cascades feature a geometric convergence of
their topological entropies, characterised with universal parameters, which can be seen as a
consequence of the associativity of the composition operators as well as the algebraic property
of DGP∗ leading to the conservation of topological entropy [49,50].

Plots of the evolution of the topological entropy with the control parameter take the form
of a Devil’s staircase, reproduced in Fig. 1 [47]. This features a multifractal structure (in the
sense that the fractal dimensions of local portions of the graph are position dependent, and
are elements of a continuous spectrum) and is non-decreasing, forming a piecewise-constant
function, that is Hölder continuous [1, 18, 34, 51]. The interval marked ∆F in the figure,
λ ∈ [0,λ∞) (of which only a small part is shown), features zero topological entropy. The
intervals marked ∆n (n integer) exhibit geometric scaling by 0.5 in the vertical direction and
the Feigenbaum constant δ(R) = 4.669 . . . in the horizontal direction [1,43].

2.2 Word Operations

Considering words written in an alphabet {L, R, C}, we define the following operations:

• ĀB̄ indicates the concatenation of words Ā and B̄

• |Ā| returns the number of letters in Ā

• |Ā|R,L returns the number of letters R, L in Ā

• Ā|C substitutes the final letter of Ā with the letter C .
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Inverse words are defined as follows:

Ā−1
�

ĀB̄
�

= B̄
�

ĀB̄
�

B̄−1 = Ā. (8)

We will be interested in substitution sequences of the form:

R→ R̄ and L→ L̄. (9)

Assume that R̄ contains both letters R and L and starts with the letter R. We define an operator
Ŝ(•) that acts on word W̄ by applying substitution rules to each of its letters. The operator
Ŝ(•) is distributive under concatenation. We prove an important theorem.

Theorem 1. Substitution rules generating a cascade with initial word W̄1 = R and W̄2 = R̄ can
be restated as a second order linear recursive relation W̄n+2 = g(W̄n,W̄n+1) under concatenation
if W̄3 = g(W̄1,W̄2).

Proof. Such a relation can be written for the first three words. Assuming

W̄n = g(W̄n−2,W̄n−1) ,

we have:
W̄n+1 = Ŝ(W̄n) = Ŝ g(W̄n−2,W̄n−1) .

Since Ŝ(•) is distributive, this gives

Ŝ g(W̄n−2,W̄n−1) = g(ŜW̄n−2, ŜW̄n−1) = g(W̄n−1,W̄n) , (10)

and therefore:
W̄n+1 = g(W̄n−1,W̄n) .

By induction,
W̄n+2 = g(W̄n,W̄n+1)

holds for all natural numbers n.

Not all substitution rules satisfy the conditions of Theorem (1). Take for example the
substitution rules R→ RLL and L→ RLR (the period-tripling cascade). The cascade develops
as follows:

R→ RLL→ RLLRLRRLR→ . . . (11)

The third word cannot be written in terms of the first and second, owing to the isolated letters
L.

The substitution can be characterised by a 2× 2 growth matrix

A=

�

a b
c d

�

, (12)

with non-negative integer entries, which quantifies the growth in the numbers of each letter
type:

� �

�W̄n

�

�

R�

�W̄n

�

�

L

�

→
�

a b
c d

�� �

�W̄n

�

�

R�

�W̄n

�

�

L

�

=

� �

�W̄n+1

�

�

R�

�W̄n+1

�

�

L

�

, (13)

where repeated applications of the matrix correspond to multiple iterations of the substitu-
tions. The class of substitutions we consider can then be written as

W̄n = W̄n−1P
�

W̄tr(A)−1
n−1 W̄−det(A)

n−2

�

(14)
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for n > 2, with W̄1 = R, and W̄2 a specified word. The symbol P indicates an unspecified
permutation. The characteristic equation of the growth matrix A is

λ2 = tr (A)λ− det (A) . (15)

The solutions (eigenvalues of A) must be real, and either integer or quadratic irrational. The
second case is returned to in detail in Section 3 when we consider the special case of quasi-
lattices. The ratio of the components of the eigenvector associated to the largest eigenvalue
gives the relative frequencies of the two cell types [2]. Eq. (15) can be seen as the n →∞
limit of the defining equation of some integer sequence Wn given by

Wn = tr (A)Wn−1 − det (A)Wn−2 (16)

for n> 2, W1 =
�

�W̄1

�

�= 1, and W2 =
�

�W̄2

�

�. The ratio Wn/Wn−1 gives the best possible rational
approximation, for denominators not larger than Wn−1, to the largest eigenvalue of the growth
matrix, i.e. the larger of the solutions to Eq. (15).

Taking as an illustrative example the case of the period-doubling substitutions of Eq. (2),
the words W̄n can be generated by

W̄n = W̄n−1W̄2
n−2 (17)

for n> 2, with W̄1 = R and W̄2 = RL. The first few cases are:

R→ RL→ RLR2→ RLR3 LRL→ RLR3 LRLRLR3 LR2→ . . . (18)

The growth matrix can be concisely expressed if letters are taken to combine under addition
rather than concatenation; forgiving this (hopefully intuitive) abuse of notation it is given by

�

R
L

�

→
�

1 1
2 0

��

R
L

�

=

�

R+ L
R+ R

�

, (19)

with characteristic equation

λ2 = λ+ 2 , (20)

which can be seen as the n→∞ limit of the integer sequence Wn given by

Wn =Wn−1 + 2Wn−2 (21)

for n > 2, with W1 =
�

�W̄1

�

� = |R| = 1 and W2 =
�

�W̄2

�

� = |RL| = 2. Explicitly, the first few terms
are

1, 2, 4, 8, 16, 32, 64, . . . (22)

i.e. Wn = 2n−1. The ratios of successive terms are all equal to 2, the largest eigenvalue of the
growth matrix (equivalently, the largest solution to the characteristic equation).

For substitutions to generate cascades of words admissible as the itinerary of a stable tra-
jectory, they must obey the generalised composition rules, defined by the following conditions
on R̄ and L̄ [15,17]:

1. R̄ has odd parity and L̄ has even parity

2. R̄� L̄

3. R̄|C is maximal
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4. R̄L̄|C is maximal

5. R̄(L̄)∞ is maximal.

A special class of cascades, generated by so-called DGP∗ composition rules, features a constant
topological entropy. These cascades can always be restated as a set of substitutions satisfying
the generalised composition rules:

R→ W̄K and L→ W̄eK , (23)

with K ∈ {L, R} and:

eK =

¨

L if K = R

R if K = L
. (24)

For cascades beginning from R, such substitution rules preserve topological entropy from the
second word onwards.

The cascade generated by substitution rules R → RLL and L → RLR, equivalent to the
DGP∗ composition rules generating period tripling, cannot satisfy the conditions of Theo-
rem (1). However, there are substitution rules equivalent to DGP∗ composition rules, that do
satisfy the conditions of Theorem (1): for example R→ RL and L→ RR (period doubling) or
R→ RLRR and L→ RLRL (period quadrupling).

Finally, while the focus of this work is substitution sequences of the form specified by
Eq. (9), there are cascades not expressible by substitution rules to which our results also apply
(such as the cascade considered in Section 4.3).

2.3 Summary of Results

We consider cascades of words corresponding to superstable orbits of dynamical systems gov-
erned by unimodal maps, generated by substitution rules obeying the generalised composition
rules. Specialising to the case in which the substitutions generate aperiodic words with the
symmetries of quasilattices, we prove that all physically relevant quasilattices can be realized
as words describing stable aperiodic orbits in the Logistic map universality class, extending
the known result that two cases were possible [26].

We prove that if the first three words of a cascade form a second-order recursive relation
in terms of string concatenation, the composition rule itself can be restated as a second order
recursive relation – see Theorem (1). Such a composition rule gives rise to an algebraic relation
between polynomials related to the Milnor-Thurston kneading determinants, for each three
consecutive words from the cascade – see Theorem (2).

If the topological entropies of the second and third words in the cascade differ, then no
two words from the cascade have equal topological entropies. If, addtionally, the lengths of
the words grow exponentially fast (a generic feature) then the topological entropy converges
as a double exponential onto the accumulation point h∞ (which is characteristic for a given
cascade). Both statements require one additional identity concerning the aforementioned al-
gebraic relation between polynomials to be satisfied – see Lemma (1) and Theorem (3).

The asymptotic form of convergence (or stair-climbing – see Fig. 1) can be found analyti-
cally. We do so for three cascades generated by the following substitution rules:

• R → RL and L → R2 L, the Pell cascade (Section 4.1) converges to the accumulation
point h∞ = 0.4411.. with:

ln
�

ln
�hn − hn−1

hn+1 − hn

��

∼ nln(1+
p

2) + ln( h∞
2
p

2
) . (25)
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• R→ RLR2 and L→ LR2, the Clapeyron cascade (Section 4.2) converges to the accumu-
lation point h∞ = 0.4484.. with:

ln
�

ln
�hn − hn−1

hn+1 − hn

��

∼ nln(2+
p

3) + ln( 1+
p

3
6+4
p

3
h∞) . (26)

• R → RL and L → L converges (geometrically) to the accumulation point h∞ = ln(2)
with:

hn − hn−1

hn+1 − hn
∼ 2 . (27)

Moreover, we show that our results extend to a larger class of cascades (Section 4.3).
The case of R→ RL and L → L reveals an interesting property of the Devil’s staircase of

topological entropy shown in Fig. 3 [47]. Since each word RLn is the last admissible word
of length n + 1 (in the sense that all admissible words existing for λ > λRLn have length
greater than n+ 1), the widths of intervals of topological entropy corresponding to words of
lengths greater than n shrink geometrically fast along the y-axis [17]. This supplements an
earlier result showing that the convergence of the control parameter for superstable orbits is
geometrical [35].

Finally, we study the convergence of the control parameter λn numerically in cascades gen-
erated by substitution rules not equivalent to any DGP∗ composition rule. Such a convergence
is faster than geometrical (hence the name superconvergence). Universal superconvergence has
been found before in dynamical systems governed by multimodal maps [50]. The supercon-
vergence of the control parameter in the class of cascades we focus on has the form:

ln[−ln(Λn/Λn+1)]→ An+ const as n→∞ , (28)

where

Λn ≡
λn −λn+1

λn+1 −λn+2
. (29)

Numerical analysis suggests that the constant A is independent of the form of fλ, and is a
universal characteristic for a given cascade. For example: A= 0.31 . . . in the cascade generated
by R→ RL and L→ R2 L, and A= 0.82 . . . in the cascade generated by R→ RLR2 and L→ LR2.

3 Generalised Time Quasilattices

The physical motivation for considering the general class of substitution sequences specified in
Section 2.2 is provided by a particular subset of these substitutions which leads to orbits with
the symmetries of quasilattices. In this section we consider this subset of sequences and show
that, with a small generalisation of the basic quasilattice concept, all physically relevant quasi-
lattices can appear as aperiodic words describing stable orbits in dynamical systems. We term
these (generalised) time quasilattices, in-keeping with the nomenclature laid out in Ref. [26].

Quasilattices are one-dimensional aperiodic sequences formed from two unit cells of dif-
ferent lengths [2,52]. The substitution rules in this case are known as ‘inflation rules’ [28,29].
The simplest example is given by the Fibonacci quasilattice, generated by the inflation rules

R→ RL, L→ R. (30)

Starting from the initial symbol R and applying the rules to each symbol in the word results in
a sequence of ‘Fibonacci words’:

R→ RL→ RLR→ RLR2 L→ RLR2 LRLR→ . . . (31)

9
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The Fibonacci quasilattice F̄∞ results after an infinite number of inflations of R. We label the
nth Fibonacci word F̄n. Each Fibonacci word is the concatenation of the previous two:

F̄n = F̄n−1F̄n−2 (32)

for n> 2, with F̄1 = R, and F̄2 = RL. Considering the inflation rule under addition rather than
concatenation gives the growth matrix:

�

R
L

�

→
�

1 1
1 0

��

R
L

�

=

�

R+ L
R

�

. (33)

The characteristic equation of this matrix,

λ2 = λ+ 1, (34)

has solutionsϕ, ϕ−1, withϕ =
�

1+
p

5
�

/2 a quadratic irrational number known as the golden
ratio. The length of the nth Fibonacci word

�

�F̄n

�

� is the nth Fibonacci number Fn:

Fn = Fn−1 + Fn−2 (35)

for n> 2 with F1 =
�

�F̄1

�

�= |R|= 1 and F2 =
�

�F̄2

�

�= |RL|= 2. Starting from F0 = 1 the first few
lengths are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . (36)

Successive applications of the matrix correspond to successive inflations of the original se-
quence; successive word lengths also grow as Fibonacci numbers Fn:

�

1 1
1 0

�n

=

�

Fn+1 Fn
Fn Fn−1

�

. (37)

Noting that the ratio of successive Fibonacci numbers gives the best rational approximation to
ϕ for a given size of denominator, and that

lim
n→∞

Fn

Fn−1
= ϕ , (38)

Eq. (34) can be seen as the n → ∞ limit of the defining relation of Fibonacci numbers,
Eq. (35).

Consider the general class of substitutions in two-letter alphabets specified in Section 2.2.
In each case, the growth of the words under the substitution is characterised by a 2×2 growth
matrix A with non-negative integer entries. The eigenvalues are real and given by

λ± =
tr (A)

2
±

√

√

√

�

tr (A)
2

�2

− det (A) . (39)

If tr (A)2 = 4 det (A) they are integers. Otherwise, the larger eigenvalue is a quadratic irrational
‘Pisot-Vijayaraghavan’ (PV) number: the largest root of an irreducible monic polynomial, all
of whose Galois conjugates have modulus strictly less than one [2, 28, 29, 52]. In this case
the monic polynomial is just the quadratic characteristic equation of the matrix, and the Ga-
lois conjugate is simply the smaller eigenvalue. The converse, that all quadratic irrational PV
numbers can be written as the eigenvalues of 2×2 matrices with non-negative integer entries,
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follows from the ability to specify the trace and determinant independently in Eq. (39). Ex-
plicitly, we can always find a 2×2 matrix A with non-negative integer entries such that the PV
number is the largest solution to

λ2 = tr (A)λ− det (A) , (40)

where tr (A) and det (A) are uniquely specified by the PV number itself.
The following three conditions are necessary and sufficient for the substitutions to corre-

spond to quasilattice inflation rules [2,53]:

1. the growth matrix must be unimodular

2. there must be two spacings between each symbol

3. the largest eigenvalue of the growth matrix must be a PV number.

Table 1 lists the first few quadratic irrational PV numbers, their characteristic equations, and
an example matrix with this characteristic equation. In the cases where the determinant of the
matrix is of unit magnitude, the numbers also correspond to quasilattice inflation rules. The
Boyle-Steinhardt class of the physically-relevant cases, to be discussed shortly, is also given.

The first condition, |det (A)|= 1, implies that, since the growth matrix is an integer matrix,
its inverse is also an integer matrix. The inflation (substitution) of any quasilattice sequence
can therefore be undone with a well-defined deflation. This endows quasilattices with a dis-
crete scale invariance [54]. This condition combines with the second condition, that the two
cell types appear with two spacings, to imply that the two possible spacings differ by one (i.e.
R can appear spaced by n or n + 1 Ls, and L can appear spaced by m or m + 1 Rs). In the
Fibonacci quasilattice, R appears sandwiching either 0 or 1 Ls, and L appears sandwiching
either 1 or 2 Rs. Note, however, that the growth matrix itself is not sufficient to guarantee the
second condition. For example, the growth matrix

�

1 1
2 1

�

(41)

could correspond to the inflation rules

R→ RL, L→ R2 L , (42)

with the first few terms being

R→ RL→ RLR2 L→ RLR2 LRLRLR2 L→ . . . (43)

or it could correspond to

R→ RL, L→ LR2 , (44)

with the first few terms being

R→ RL→ RL2R2→ RL2R2 LR3 LRL→ . . . (45)

The first option is the Pell quasilattice, considered shortly (purple in Fig. 1), with {0, 1} spaces
between Rs and {1, 2} spaces between Ls. The second option (green in Fig. 1) is not a quasi-
lattice, as it features {0,1, 2} spaces between Ls. It is therefore necessary to check the first few
terms of the sequence to confirm the substitutions are generating a quasilattice.

The first and second conditions ensure an important alternative construction for the se-
quence. Shown in Fig. 2, an irrationally-sloped line is drawn intersecting a two-dimensional
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Table 1: The first few quadratic-irrational Pisot-Vijayaraghavan (PV) numbers. Each
is the root of a monic quadratic equation uniquely specified by the number, listed in
the second column. This equation always corresponds to the characteristic equation
of a 2×2 matrix with non-negative integer entries; an example is given in each case in
column three. The trace is given by the coefficient of the linear term in the equation,
and the determinant the negative of the constant term. If the determinant has unit
magnitude the number relates to a quasilattice inflation rule. The Boyle-Steinhardt
class of the quasilattice is listed where applicable (see Table 2).

PV number equation example QL class

1+
p

5
2 λ2 = λ+ 1

�

1 1
1 0

�

1

1+
p

2 λ2 = 2λ+ 1

�

1 1
2 1

�

2

3+
p

5
2 λ2 = 3λ− 1

�

2 1
1 1

�

1

1+
p

3 λ2 = 2λ+ 2

�

1 1
3 1

�

-

3+
p

13
2 λ2 = 3λ+ 1

�

3 1
1 0

�

-

2+
p

2 λ2 = 4λ− 2

�

2 2
1 2

�

-

3+
p

17
2 λ2 = 3λ+ 2

�

1 2
2 2

�

-

2+
p

3 λ2 = 4λ− 1

�

1 2
1 3

�

3

3+
p

21
2 λ2 = 3λ+ 3

�

1 5
1 2

�

-

2+
p

5 λ2 = 4λ+ 1

�

3 1
4 1

�

4

periodic lattice. Writing R for each intersection with a vertical line of the lattice, and L for
each intersection with a horizontal line, the irrational slope (condition 3) ensures that the se-
quence of Rs and Ls is aperiodic. The figure shows the Fibonacci quasilattice being generated
by a line with gradient ϕ−1; shifting the intersecting line perpendicular to itself generates an
uncountably infinite set of different quasilattices which are locally isomorphic, meaning that
every finite sequence of Rs and Ls appearing in one appears in all others [28, 29]. Note that
shifting the line in this manner causes local R↔ L re-arrangements, which is the source of
the requirement that the possible letter spacings differ only by one. While not a focus of the
present work, this concept of quasilattices relating to higher-dimensional lattices is discussed
at length in Refs. [2,26,55].

The third condition, that the eigenvalues be non-integer (and therefore quadratic irrational
PV numbers), is again necessary for the interpretation of the quasilattice sequence in terms of
a cut through a higher-dimensional regular lattice in Euclidean space. Without it, the aperi-
odic sequence would need to result from the intersections of a rationally-sloped line, which
is impossible1. In the case of the Fibonacci quasilattice, both the largest eigenvalue and the

1One-dimensional aperiodic substitution sequences with rational growth numbers can be interpreted as cuts
through higher-dimensional spaces R×Qp with Qp the set of p-adic numbers, where p is a specified prime [57].
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Table 2: The Boyle-Steinhardt classification of the ten physically-relevant quasilat-
tices [2]. The first column lists the class, and the second column lists the growth
matrix for the simplest substitution in that class, the largest eigenvalue of which is
the PV number listed in Table 1 (consistent across the class). We consider the ad-
missibility of these quasilattice inflation rules as cascades of words describing stable
orbits in the logistic map universality class. The third column states the minimum
number of compound inflations to describe an admissible substitution (the corre-
sponding growth matrix will be the matrix in column two, raised to this power). The
final columns list the inflations themselves. An infinite number of inflations applied
to the word R results in a (generalised) time quasilattice.

Class A power R→ R̄ L→ L̄

1

�

1 1
1 0

�

3 RLR2 L R2 L

2a

�

1 1
2 1

�

1 RL R2 L

2b

�

2 1
1 0

�

2 R
�

LR2
�2

LR2

3a

�

3 1
2 1

�

1 RLR2 LR2

3b

�

2 1
3 2

�

2 RL
�

R2 L
�3

RL
�

R2 L
�2

RL
�

R2 L
�3

3c

�

1 1
2 3

�

1 RL LRLRL

4a

�

3 1
4 1

�

1 RLR2 R2 LR2

4b

�

2 1
5 2

�

2 R
�

LR2
�4 �

LR2
�4 �

LR3
�2 �

LR2
�3

4c

�

1 1
4 3

�

1 RL R (RL)3

4d

�

0 1
1 4

�

2 RL4 L
�

RL4
�4

relative frequencies of the two cell types are given by ϕ, the smallest PV number. This con-
dition also has important consequences for the diffraction pattern (Fourier transform) of the
sequence: in particular, it forces the pattern to have sharp Bragg peaks, similar to a periodic
system, but also a dense background, similar to a disordered system [53].

While there exists an infinite number of quasilattices satisfying the two criteria, and an
infinite number of quadratic irrational PV numbers, it was identified by Boyle and Steinhardt
in Refs. [2, 58] that there are only ten physically relevant cases. The physical relevance de-
rives from the fact that quasilattices in these classes have higher-dimensional counterparts
whose symmetries correspond to those of physical quasicrystals, states of matter intermediate
between periodic crystals and disordered glasses [59]. The Fibonacci quasilattice has as its
counterpart the two-dimensional Penrose tiling [60,61], governed by the PV number ϕ2. This
is shown in Fig. 2. Table 2 lists each of the ten quasilattice classes along with its growth matrix.
The determinant of each matrix has modulus one, and the largest eigenvalue is a PV number

For example, the period-doubling cascade can be generated as a slice through R×Q2. We thank Shazia’Ayn Babul
for making this point clear to us
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R

R
R

R

R

R
R

L

L

L

L

L

R
LR

R
R

R
R

R
R

L

L

L

L
R

LR

RL

Figure 2: The two cells of a quasilattice can be generated by drawing an irrationally-
sloped line through a two-dimensional regular lattice; when the line cuts a vertical
line, write R, and when it cuts a horizontal line, write L. The grey line shows the
Fibonacci quasilattice being generated by a line with inverse slope ϕ =

�

1+
p

5
�

/2
the golden ratio; the purple line shows the Pell quasilattice being generated by a line
with inverse slope related to 1+

p
2 the silver ratio. Physically-relevant quasilattices

have higher-dimensional counterparts in Penrose-like tilings with symmetries which
can be realised by physical quasicrystals. The counterparts of the Fibonacci and Pell
quasilattices are the Penrose tiling (grey and white, lower) and Ammann-Beenker
tiling (purple and white, upper), respectively [2].

listed in Table 1.
Starting from an orbit described by the word R, repeated application of the inflation rules

will lead to a cascade of stable periodic orbits of increasing length. After an infinite number of
substitutions (at the accumulation point of the sequence), we arrive at a stable orbit described
by an aperiodic word: a time quasilattice. Demonstrating the existence of such cascades is sim-
ply a matter of checking the quasilattice substitution rules against the generalised composition
rules in Section 2.2. This was previously done in Ref. [26], where two such cases were found.
The first, class 2a in Table 2, features the inflation rules

R→ RL, L→ R2 L. (46)

Writing out the first few words

R→ RL→ RLR2 L→ RLR2 LRLRLR2 L→ . . . (47)

demonstrates that the symbols R and L appear with spaces {0,1} and {1, 2}, meeting the re-
quirement that each symbol appears with two possible spaces with these spaces differing by
one. The lengths of the words grow as Pell numbers Pn (sequence A000129 in the Online
Encyclopedia of Integer Sequences (OEIS)) [62, 63]. The words themselves are termed Pell
words, with the nth word denoted P̄n. The ‘Pell cascade’ of Eq. (47) results in the Pell quasi-
lattice P̄∞. As in the case of the Fibonacci words, the nth Pell word can also be generated as
a concatenation of the previous two; in this case we have

P̄n = P̄n−1P̄n−2P̄n−1 , (48)

which mirrors the defining equation of the Pell numbers:

Pn = 2Pn−1 + Pn−2 (49)
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for n > 2, P1 = 1, P2 = 2. Writing the Pell inflation rule under addition rather than concate-
nation results in the matrix equation

�

R
L

�

→
�

1 1
2 1

��

R
L

�

=

�

R+ L
2R+ L

�

. (50)

The characteristic equation of this matrix again constitutes the n →∞ limit of the defining
relation of the Pell numbers, Eq. (49):

λ2 = 2λ+ 1. (51)

A similar situation arises in class 3a. The inflation rules are

R→ RLR2, L→ LR2 (52)

and writing out the first few cases starting from R reveals that R and L appear with spaces
{0, 1} and {2,3} respectively. The growth matrix is

�

3 1
2 1

��

R
L

�

=

�

R+ L + R+ R
L + R+ R

�

, (53)

with characteristic equation

λ2 = 4λ− 1 . (54)

This can again be seen as the n→∞ limit of the defining relation of an integer sequence. In
this case it is the (modulus of the) Clapeyron numbers Cn (A125905 in the OEIS) [62]:

Cn = 4Cn−1 − Cn−2 (55)

for n > 2 with C1 = 1, C2 = 4. In order to write the nth Clapeyron word C̄n in terms of the
previous two we must make use of the inverse of a word, defined in Section 2.2:

C̄n = C̄n−1C̄−1
n−2C̄3

n−1. (56)

In order to establish whether the ten physical quasilattice classes in Table 2 can appear as
words describing stable orbits in nonlinear dynamical systems, we coded an algorithm for test-
ing arbitrary substitution rules against the generalised composition rules. The simplest case,
the Fibonacci quasilattice, does not obey the generalised composition rules. For example, the
Fibonacci substitutions of Eq. (30) do not preserve the parity of the words under substitution
(rule 1). However, three applications of the inflation rules do preserve parity, and, in fact,
obey all the generalised composition rules. This leads us to the conclusion that every third
Fibonacci word can be realised as a stable periodic orbit in a nonlinear dynamical system in
the Logistic map universality class. We term the process of carrying out n inflations at each
step nth-order compound inflation. The third-order compound inflation rules for the Fibonacci
substitution rules are

R→ RLR2 L, L→ R2 L , (57)

giving the first few words

R→ RLR2 L→ RLR2 LR2 LRLR2 LRLR2 LR2 L→ . . . (58)

For each of the ten classes in Table 2 we tested all inflation rules compatible with the growth
matrix, including possible re-orderings of the substituted symbol sequences which still result
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in quasilattices. We also checked the cases with L ↔ R: the L and R labels are arbitrary in
terms of the quasilattice unit cells, but can affect the admissibility of the sequences if L is taken
to correspond to the left of the dynamical system. If no solution was found, we considered a
second-order compound inflation, corresponding to two powers of the substitution matrix A
(the second column in Table 2), and further compound inflations until a solution was found.
The words generated by compound inflation are a slight generalisation of the quasilattices con-
sidered in Refs. [2] and [26]. For example, the PV number governing the third-order Fibonacci
compound inflation is ϕ3 rather than ϕ for the standard Fibonacci quasilattice. However, in-
teger powers of a unimodular matrix are still unimodular, and integer powers of PV numbers
are also PV numbers. Therefore the aperiodic sequences resulting from infinite numbers of
compound inflations are still valid quasilattices.

By this method, we were able to find time quasilattices for all ten quasilattice classes. This
extends the results of Ref. [26] in which instances were found in classes 2a and 3a. Column
three of Table 2 states the minimum order of compound inflation (or, equivalently, the min-
imum power to which the growth matrix A must be raised) for the substitution to become
admissible, and the final two columns list the substitutions themselves.

Although we have not shown them in the table, it is also possible to find admissible quasi-
lattice inflation rules with no higher-dimensional counterparts. Inspecting Table 1 we see that
the smallest PV number whose corresponding inflation matrix is unimodular, but which does
not appear in Table 2, is

�

3+
p

13
�

/2, with tr (A) = 3 and det (A) = −1. A substitution consis-
tent with these conditions and with the generalised composition rules is

R→ RL4
�

RL3
�2

L→
�

LRL3
�3 �

RL3
�7

, (59)

which we again verified numerically. There are infinitely many such PV numbers with uni-
modular growth matrices. Based on our ability to find examples for all tested cases, it seems
reasonable to expect that each can generate a time quasilattice, perhaps adjusting for com-
pound inflation.

4 Superconvergence of Topological Entropy

Having focussed on a specific set of substitution sequences in Section 3 we now return to
the general case in order to investigate the development of the words’ complexities as we
flow down the cascades under repeated substitutions. For word K (we will distinguish words
corresponding to superstable orbits with overbars, K̄, in this section) the topological entropy
h(K) can be calculated as −ln[x∗(K)], where x∗(K) is the smallest positive zero of the Milnor-
Thurston kneading determinant DK [31]:

DK(x) =
∞
∑

n=0

Θn xn , (60)

with the invariant co-ordinate Θn defined as:

Θ0 ≡ 1

Θn ≡
n
∏

i=1

εi for n> 0 ,
(61)

where, for a given kneading sequence K= K1K2 . . . :

εi =

¨

+1, if Ki = L

−1, if Ki = R
(62)
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and

εk+1 =
k
∏

i=1

εi , if Kk+1 = C . (63)

We reproduce an important identity [47]. Assume K = K̄∞ with K̄ corresponding to a
superstable orbit. We define a polynomial called the finite degree kneading determinant:

DK̄(x)≡
|K̄|−1
∑

n=0

Θn xn , (64)

recalling that |K̄| is the total number of letters within word K̄. It follows that

DK(x) = DK̄(x)
�

1+ x |K̄| + x2|K̄| + . . .
�

=
1

1− x |K̄|
DK̄(x). (65)

The first equality results from the fact that Θ0 = Θn|K̄| = 1 for n= 0,1, 2, . . . ; the second equal-
ity holds for x ∈ (−1,1). The spectrum of values of h(K̄∞) indicates that 1

2 ≤ x∗(K̄∞) ≤ 1,
which simplifies the task of finding x∗(K̄∞) to solving DK̄(x

∗) = 0 for the smallest positive
root [34].

Recalling that |W̄|R returns the number of letters R within word W̄, words W̄ of odd parity
will have |W̄|R odd and words of even parity will have |W̄|R even.

Theorem 2. Take Ē= F̄Ḡ. Then:

1. DĒ = DF̄ + (−1)|F̄|R x |F̄|DḠ

2. DF̄−1Ē = (−1)|F̄|R x−|F̄|(DĒ − DF̄)

3. DĒḠ−1 = DĒ − (−1)|ĒḠ−1|R x |Ē|−|Ḡ|DḠ

Proof. Identities 2 and 3 are just restatements of identity 1, which follows from the fact that
DF̄−1Ē = DḠ and DĒḠ−1 = DF̄. For clarity, we introduce some notation: Θk

W is an invariant co-
ordinate for a substring K1K2 . . . Kk from W̄. From the definition of the invariant co-ordinate
we have:

Θk
E =

¨

Θk
F , for k < |F̄|
(−1)|F̄|RΘk−|F̄|

G , for |F̄| ≤ k < |F̄|+ |Ḡ|.

From equation (64) we have:

DĒ(x) =
|Ē|−1
∑

n=0

Θn
E xn =

|F̄|−1
∑

n=0

Θn
E xn + (−1)|F̄|R x |F̄|

|Ḡ|−1
∑

n=0

Θn
G xn = DF̄(x) + (−1)|F̄|R x |F̄|DḠ(x) . (66)

Remark 2.1. Provided that the cascade {W̄n}n∈{0,1,2,3,..} is generated by a second order linear
recursive relation

W̄n = g(W̄n−2,W̄n−1) (67)

under concatenation, Theorem (2) ensures that:

DW̄n
(x) = an(x)DW̄n−1

(x) + bn(x)DW̄n−2
(x) (68)

for n≥ 3 where an(x) and bn(x) are polynomials.
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Remark 2.2. This applies to all cascades satisfying the conditions of Theorem (1). In all of them
we have:

W̄n = g(W̄n−2,W̄n−1) = W̄n−1 g∗(W̄n−2,W̄n−1) (69)

ensured by the substitution rule R → R̄, R and R̄ being the first two words in the cascade, and
the fact that R̄ begins with the letter R (a requirement of admissibility). This means that for such
cascades an(x) will have a constant term equal to 1, and bn will have no constant term.

We introduce an important lemma:

Lemma 1. Given a cascade satisfying the conditions from Remark (2.1) with bn(τn−1) 6= 0 for
n≥ 3:

τ2 6= τ1 =⇒ τn 6= τn+1 for any n≥ 2 ,

where τn is the smallest positive zero of DW̄n
(x).

Proof. Let τM = τM−1 for some M ≥ 3. Assume τN = τN−1 for some N ≤ M . Equation (68)
for n= N evaluated at τN implies

0= bN (τN )DW̄N−2
(τN )

and since bn(τn−1) 6= 0 for n ≥ 3, and τN = τN−1, it follows that τN is a zero of DW̄N−2
(x).

Due to the monotonicity of topological entropy we have τN−1 ≤ τN−2. Therefore,

τN = τN−1 =⇒ τN−1 = τN−2.

By (backwards) induction we have τn = τM for every n≤ M , and, in particular,

[There exists M ≥ 3 such that τM = τM−1] =⇒ [τ2 = τ1].

Therefore,
τ2 6= τ1 =⇒ τn 6= τn+1 for any n≥ 2.

Combining, we prove one of the main results of the paper:

Theorem 3. Provided that a cascade {W̄n}n∈{0,1,2,3,..} is generated by a second order linear re-
cursive relation

W̄n = g(W̄n−2,W̄n−1) = W̄n−1 g∗(W̄n−2,W̄n−1)

under concatenation, and its finite degree kneading determinants DW̄n
(x) with smallest positive

zeros τn satisfy
DW̄n
(x) = an(x)DW̄n−1

(x) + bn(x)DW̄n−2
(x) , (70)

with bn(τn−1) 6= 0 for every n≥ 3, the following is true:

[τ1 6= τ2] =⇒
�

lim
n→∞

�τn −τn+1

τn−1 −τn

�|W̄n|−1

= const.
�

, (71)

with the value of the limit greater than zero. The form of the limit from the equation above does
not hold for a few pathological cases of |W̄n| growing linearly with n.

Proof. Remark (2.2) tells us that bn(x) in equation (70) has no constant terms. This means:

bn(x) = −x p|W̄n|+q|W̄n−1|[1+O(x2)] , (72)

where p, q ∈ Z and |W̄n|≤ p|W̄n|+q|W̄n−1|≤|W̄n+1|.
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Evaluating equation (70) at τn−1 gives

DW̄n
(τn−1) = bn(τn−1)DW̄n−2

(τn−1) , (73)

with bn(τn−1) 6= 0. Take δn−1 = τn−1 − τn, and note it is greater than 0 for every n since
τ1 6= τ2 (see Lemma (1)). Since the topological entropy h(W̄∞n ) satisfies:

hn ≡ h(W̄∞n ) = −ln(τn) (74)

and converges to a well-defined limit h∞ (as values of control parameters λn within unimodal
maps, that correspond to kneading sequences Kn = W̄∞n converge to accumulation points at
λ∞) we have:

lim
n→∞

τn = τ∞ (75)

and therefore in the limit of large n, from the definition of the limit of the sequence {τn}n∈N ,
we have δn � 1. This allows us to expand DW̄n

(x) from equation (73) in powers of δn−1
around τn, and DW̄n−2

(x) from the same equation in powers of δn−2 around τn−2:

δn−1D′
W̄n
(τn) +O(δ2

n−1) = bn(τn−1)[−δn−2D′
W̄n−2
(τn−2) +O(δ2

n−2)]. (76)

Since δn� 1 in the limit of large n, we have:

lim
n→∞

δn−1

δn−2
= lim

n→∞
−bn(τn−1)

D′
W̄n−2
(τn−2)

D′
W̄n
(τn)

= lim
n→∞

−bn(τn−1)

= lim
n→∞

τ
p|W̄n|+q|W̄n−1|
n−1 [1+O(τ2

n−1)]. (77)

The second equality follows from the fact that, in the limit of large n, we have DW̄n
(x)≈ DW̄n−1

(x)
for x ∈ [0, 1) which can be seen directly from Remark (2.2); an(x) has a constant term equal
to 1, and all the other terms within an(x) and bn(x) are proportional to x |W̄n| and vanish as
|W̄n| → ∞. In that limit, we therefore expect DW̄n

(x) ≈ DW̄n−2
(x). In the case that the first

derivatives vanish at zero, we can always take higher order terms from the expansion; this
would change the value of the limit, but not its constancy. The third equality follows from
equation (72). Finally, we end up with the expression:

lim
n→∞

�δn−1

δn−2

�|W̄n−1|−1

= lim
n→∞

τ
p|W̄n||W̄n−1|−1+q
n−1 [1+O(τ2

n−1)]
|W̄n−1|−1

= τp limn→∞(|W̄n||W̄n−1|−1)+q
∞ = const. , (78)

or
lim

n→∞

�τn −τn+1

τn−1 −τn

�|W̄n|−1

= const. (79)

Remark 3.1. Theorem (3) has a consequence for the convergence of the topological entropy. For
cascades satisfying the conditions of Theorem (3), with τ1 6= τ2, in the limit of large n we have:
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hn − hn−1

hn+1 − hn
=
−ln(τn) + ln(τn−1)
−ln(τn+1) + ln(τn)

=
−ln(τn) + ln(τn +δn−1)
−ln(τn −δn) + ln(τn)

=
−ln(τn) + ln(τn) +τ−1

n δn−1 +���
��: 0

O(δ2
n−1)

−ln(τn) +τ−1
n δn −��

��*
0

O(δ2
n) + ln(τn)

=
δn−1

δn
=
τn−1 −τn

τn −τn+1
, (80)

which, in light of equation (79), yields a double-exponential convergence of the topological entropy
(provided |W̄n| grow exponentially fast, which is a generic feature of numbers defined by second-
order linear recursive relations).

We proceed to study the convergence of the topological entropy within specific cascades,
and find its analytical asymptotic form.

4.1 The Pell Cascade

Recall the substitution rule for the Pell cascade, R→ RL and L→ R2 L acting on R:

R→ RL→ RLR2 L→ RLR2 LRLRLR2 L→ . . . (81)

The first three words from the cascade obey

P̄n = P̄n−1P̄n−2P̄n−1. (82)

Theorem (1) tells us that the Pell Cascade is generated by a second-order recursive relation:

P̄n =











R, for n= 1

RL, for n= 2

P̄n−1P̄n−2P̄n−1, for n> 2.

(83)

We proceed by writing down the finite degree kneading determinant for P̄n+1|C in terms of
finite degree kneading determinants for P̄n|C and P̄n−1|C using the identities from Theorem (2).
Recall that |P̄n| ≡ Pn, which corresponds to the nth Pell number.

We have:

DP̄n+1
(x) = DP̄n

(x)− x Pn DP̄n−1
(x) + x Pn+Pn−1 DP̄n

(x). (84)

The term bn+1(x) = −x Pn has a single zero x = 0, that does not coincide with the smallest
positive zero of DP̄n

, i.e. τn, for any n. Moreover τ1 6= τ2 (see Fig. 3) so for δn = τn − τn+1,
due to Theorem (3):

lim
n→∞

� δn

δn−1

�

1
Pn = τ∞ , (85)

with 0< τ∞ < 1. The Pell number Pn can be expressed by a closed formula:

Pn =
1

2
p

2

�

�

1+
p

2
�n −

�

1−
p

2
�n�

. (86)
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In the limit of large n we have Pn ∼
1

2
p

2

�

1 +
p

2
�n

, which, due to Remark (3.1) yields a
double-exponential convergence of topological entropy. In the limit of large n we have:

hn − hn−1

hn+1 − hn
∼ τ

− 1
2
p

2

�

1+
p

2
�n

∞ = exp
�

exp[nln(1+
p

2) + ln( h∞
2
p

2
)]
	

. (87)

Our numerical analysis indicates that h∞ = 0.4411 . . . in the Pell Cascade. To test the
theory we examine the asymptotic behaviour of the numerically generated sequence {hn}n∈N:

Ω(n)≡ ln
�

ln
�hn − hn−1

hn+1 − hn

��

→ an+ b. (88)

We used the Newton-Raphson method for finding consecutive values of τn. We wrote a code
exploiting this technique to collect the data, accurate to 800 decimal places. The calculated
values ofΩ(n) are plotted against n in Fig.3. The sequence rapidly reaches its predicted asymp-
totic behaviour.

4.2 The Clapeyron Cascade

The substitution rules R → RLR2 and L → LR2 applied to the initial word R generate words
with lengths given by the moduli of the Clapeyron numbers Cn. The first few words look as
follows:

R→ RLR2→ RLR2 LR3 LR3 LR2→ . . . (89)

Owing to Theorem (1), the alternative composition rule generating consecutive words repre-
senting stable orbits is:

C̄n+1 =











R, for n= 1

RLR2, for n= 2

C̄nC̄−1
n−1C̄3

n, for n> 2.

(90)

Using the identities from Theorem (2) we find a recursive relation between finite degree knead-
ing determinants for C̄n+1|C , C̄n|C and C̄n−1|C :

DC̄n+1
(x) =DC̄n

(x)− xCn DC̄−1
n−1C̄n

(x)+

− x2Cn−Cn−1 DC̄n
(x) + x3Cn−Cn−1 DC̄n

(x) , (91)

where
DC̄n
(x)− DC̄n−1

(x) = (−1)xCn−1 DC̄−1
n−1C̄n

(x). (92)

The factor (−1) is a result of the odd parity of C̄n−1. We introduced DC̄−1
n−1C̄n

(x) as a finite degree

kneading determinant for C̄−1
n−1C̄n |C (an inadmissible word) to provide an intermediate step

in explaining the final form of the recursive relation:

DC̄n+1
(x) =DC̄n

(x) + xCn−Cn−1[DC̄n
(x)− DC̄n−1

(x)]

− x2Cn−Cn−1 DC̄n
(x) + x3Cn−Cn−1 DC̄n

(x). (93)

Again, bn+1(x) = −xCn−Cn−1 has a single zero at x = 0 which does not coincide with τn for
any n. Moreover τ1 = 6= τ2 (see Fig. 3). Applying Theorem (3) and Remark (3.1) leads to:

hn − hn−1

hn+1 − hn
∼ exp

¦

exp
�

nln
�

2+
p

3
�

+ ln
�

1+
p

3
6+4
p

3
h∞

��©

. (94)

Our numerical analysis shows that h∞ = 0.4484 . . . As before, we test the above relation by
comparing the double logarithm of the left hand side (≡ Ω(n)) with the asymptote of the form
an+ b. The asymptotic behaviour is reached very quickly (see Fig. 3).
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4.3 Miscellaneous Cases

There are cascades that cannot be generated by substitution rules, but which satisfy the condi-
tions of Theorem (3). To take an example, consider the cascade generated by the second-order
linear recursive relation

S̄3|C = RC

S̄4|C = RLC

S̄n+1|C = S̄nS̄n−1|C . (95)

Word S̄n has length |S̄n|= Fn again corresponding to the nth Fibonacci number. Note, however,
that the sequence of letters created by these substitutions does not match the sequence of cells
in the Fibonacci quasilattice (see Section 3).

The proof of the admissibility of the words thus defined was given by K. Shibayama in
Ref. [64], and we term the resulting sequence of words the Shibayama cascade:

RC → RLC → RLLRC → RLLRRRLC → . . . (96)

which cannot be generated using substitution rules applied to R and L. Analysis analogous to
that in the previous sections leads to the result

hn − hn−1

hn+1 − hn
∼ exp

�

exp[nln(1+
p

5
2 ) + ln(h∞p

5
)]
	

, (97)

with h∞ = 0.5476 . . . (found numerically). Again, the asymptotic behaviour of Ω(n) was
reached rapidly (see Fig. 3).

Theorem (3) states that for the few cascades in which the lengths of the words grow linearly
with n, the form of the limit is different. For all cascades generated by substitution rules with R
as the first word, the only cascade featuring linear growth is generated by R→ RL and L→ L.
However, the conditions of Theorem (3) are satisfied in this case, and we end up with

lim
n→∞

hn − hn−1

hn+1 − hn
= 2 , (98)

which corresponds to a geometric, rather than double-exponential, convergence. The accu-
mulation point is h∞ = ln(2), so it reaches the top of the Devil’s staircase of Fig.1. Together
with the geometric convergence of the control parameter for superstable orbits in such cas-
cades (with a map-dependent, and therefore non-universal, geometric ratio) this leads to an
interesting fact concerning the structure of the Devil’s staircase of topological entropy [35].
Each word RLn is the last admissible word of length n + 1 (in the sense that all admissible
words existing for λ > λRLn have length greater than n+ 1), and points (λRLn|C , hRLn|C ) con-
verge geometrically fast along both the horizontal and vertical directions, up to the top of the
staircase [17]. Since this cascade was studied thoroughly in Ref. [35], we omit any further
discussion of it or any of its subcascades {RLwn}.

Other words with lengths growing linearly were qualitatively discussed before, using dif-
ferent techniques, in Ref. [18]. However, we believe the quantitative uniformity in the con-
vergence of the entropy is a new result of the present work.

Following the formula for topological entropy:

h
�

(R∗n ∗ M̄)∞
�

=
1
2n

h
�

M̄∞
�

(99)

derived by Collet, Crutchfield and Eckmann in Ref. [43], where the action of the operator R∗
is that of a single application of substitution rules R→ RL and L→ RR to a word (an example
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of a DGP∗ composition rule), and R∗n∗= R∗R∗· · ·∗R∗ iterated n times [48]. The action of the
R∗n∗ operator on each word from a given cascade accumulating at a point in the interval ∆m
(see Fig. 1) will transform such a cascade into another, accumulating at a point in the interval
∆m+n. In this new cascade, the entropy of the kth word, expressed in terms of the entropy of
the kth word from the old cascade, is given by h′k = 2−nhk, and the form of the expression for
Ω(n) remains unchanged. This is due to the cancellation of the factors of 2−n (see Eq. (88)).
Because of the perfect similarity of intervals ∆n, the convergence of the control parameters
in the transformed cascades is expected to be quantitatively identical [1]. The transformed
cascade is not equivalent to any cascade satisfying the conditions of Theorem (1), since the
first word is not R. These results are indicated in Fig. 1.

Figure 3: The convergence of the topological entropy in the Pell and Clapeyron cas-
cades, and the Shibayama cascade featuring words growing as Fibonacci numbers
(Eqs. (81),(89), and (95), respectively). Ω(n) = ln[ln(hn−hn−1

hn+1−hn
)] is shown as a func-

tion of n, where hn corresponds to the topological entropy of the nth word from a
given cascade. Dashed lines are asymptotes of the form ain+ bi with aP = ln(1+

p
2)

and bP = ln( h∞
2
p

2
), aC = ln(2 +

p
3) and bC = ln( 1+

p
3

6+4
p

3
h∞), aS = ln(1+

p
5

2 ) and

bS = ln(h∞p
5
), corresponding to the respective cascades.

5 Superconvergence of Control Parameter – Numerical Analysis

The results presented so far have concerned universal topological aspects of the kneading se-
quences. The values of the control parameter λ in Eq. (1) will be specific to the Logistic map.
Nevertheless, some statements can be made regarding the convergence of the control param-
eters λ appearing within cascades of superstable orbits. With λn the control parameter giving
the nth orbit in a cascade, we define the geometric ratio of consecutive control parameters as

Λn ≡
λn −λn+1

λn+1 −λn+2
. (100)
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It has been proven that Λn → const > 0 as n→∞ for period n-tupling cascades, generated
by DGP∗ composition rules [17]. Our numerical results show that cascades generated by
non-DGP∗ substitution rules feature a divergence of Λn as n → ∞, which corresponds to
convergence faster than geometric (hence the name ‘superconvergence’).

We used the technique of ‘word lifting’, defined in Refs. [17,26], to find the values of the
control parameter λ required to generate consecutive words in cascades. Calculations were
performed maintaining up to 400 decimal places. We repeated numerical calculations for both
the logistic map fλ(x) = 1−λx2, and another unimodal map in the same universality class, the
sine map fλ(x) = λ sin(πx). Based on the numerical data, we identified a double-exponential
convergence, with

ln[−ln(Λn/Λn+1)]→ Dn+ const as n→∞. (101)

The value of the parameter D is identical, to numerical precision, for both the sine map and
the logistic map, suggesting it is a universal characteristic of a given cascade. For example,
D = 0.31.. in the Pell Cascade, and D = 0.82.. in the Clapeyron Cascade (see Fig. 4).

Since the lengths of words grow exponentially fast within this class of cascades, the com-
putational cost of ‘word lifting’ becomes high very quickly. Moreover, the required precision
increases as one searches for more data points. Due to the rapid convergence of λn to a single
value as n increases, we require more and more decimal places to distinguish λn from λn+1
for higher values of n. For that reason the number of data points is low, but still sufficient to
illustrate the phenomenon. It is hard to claim universality of the second constant in Eq. (101)
based on the data; for example, in the Pell and Clapeyron cascades it is of order∼ 10−3, which
is lower than the accuracy of our estimate of the parameter D.

Other types of superconvergence have been reported before. For example, the values of λ
in the Shibayama cascade were shown to converge hypergeometrically, with [64]

Λn/Λn+1→ 0.629... as n→∞. (102)

However, as mentioned before, this cascade cannot be generated by substitution rules.

6 Conclusions

In this work we studied cascades of superstable orbits whose symbolic dynamics are gener-
ated by the repeated application of substitution rules. We demonstrated that, under certain
general assumptions, substitution sequences can be rewritten as second-order linear recur-
sive relations, allowing us to identify a double-exponential convergence of the topological en-
tropy of successive words to their respective accumulation points. We found the convergence
rates analytically for selected cascades. We numerically identified a quantitatively universal
double-exponential convergence of the control parameters leading to successive words in the
cascades. Finally, we identified a scaling property of the Devil’s staircase of topological en-
tropy: the widths of intervals within which all admissible words have lengths greater than an
integer n shrink geometrically as n increases, in both topological entropy (with geometric ratio
2) and the control parameter (with a system-dependent geometric ratio, previously identified
in Ref. [35]).

While we focussed on discrete-time unimodal maps in this work, the results hold more
generally for maps in the same universality class. This class includes more physically-relevant
continuous-time systems, such as the autonomous Rössler attractor [65], and periodically-
driven systems such as the forced Brusselator [42]. The wide applicability of the results again
derives from the concept of universality: many physically relevant chaotic models feature suffi-
ciently one-dimensional Poincaré first-return maps that their dynamics provide a good approx-
imation to those considered here [10,66–68]. Driven dissipative systems will naturally tend to
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Figure 4: The convergence of the control parameter λn corresponding to the nth

superstable orbit in a given cascade, measured by Λn ≡ (λn − λn+1)/(λn+1 − λn+2).
The data were obtained using the ‘word lifting’ technique applied to the logistic map
fλ(x) = 1 − λx2. The same procedure applied to the sine map fλ(x) = λ sin(πx)
produces plots indistinguishable by eye. The red and purple (top and bottom) cases
correspond to the Clapeyron and Pell cascades respectively.

feature dynamics of this sort, as the dissipation causes a collapse onto a subset of the available
phase space, but Hamiltonian systems can also demonstrate the same phenomena [10,11]. A
quantitative knowledge of the development of the complexity within such maps, as identified
here, increases our understanding of the behaviour of the corresponding systems. The physical
applications are wide-ranging, from chemical reactions, hydrodynamics, animal populations,
and many more [9,36,37,69,70].

A motivation for the present study was the observation that dissipative dynamical sys-
tems can spontaneously break the discrete time translation symmetry of a periodic driving
by returning a response with the symmetries of a quasilattice [26]. When stabilised to finite
temperature by the local interactions of many degrees of freedom, the result can be termed
a time quasicrystal; several experiments were proposed and carried out in which time qua-
sicrystals, or related phenomena, were reported [71–74]. The Pell and Clapeyron cascades
were previously shown to correspond to infinite sequences of successively-improving periodic
approximations to time quasilattices, with the quasilattices themselves lying at the sequences’
accumulation points [26]. In the present work we extended this result by identifying time
quasilattices in all ten physically-relevant quasilattice classes [2]. The results we presented
here concerning the convergence of more general cascades including these cases as a subset,
in particular the evolution of the ratios of successive control parameters, quantify the preci-
sion which would be required in any experimental investigation of time quasilattices via their
periodic approximants.

We expect many of the results we have presented to generalise to the symbolic dynamics
of systems divided into more than two partitions (described by alphabets containing corre-
spondingly larger numbers of letters), since for discrete-time multimodal maps in the logistic
universality class the ordering of periodic windows within the chaotic regime changes, but
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the windows themselves remain [17]. Technical details make results in the multimodal case
significantly harder to come by. While the monotonicity of topological entropy was proven for
the logistic map in a series of early results [30–34], the extension to multimodal maps is only a
recent development. Milnor’s monotonicity of entropy theorem [75,76] was proven for cubic
maps in Ref. [77], and for general maps only very recently [51,78].

Finding a link between the convergence of the control parameter λ and the convergence
of the topological entropy h within discrete-time unimodal dynamical systems, such as that
suggested in Ref. [1], could, in light of the work presented here, explain the quantitative
form of the convergence of λ. This could point the way to a wider sense of universality, with
applications in physics and other fields drawing on chaos theory.
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