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SUPERCONVERGENT FUNCTIONAL ESTIMATES
FROM SUMMATION-BY-PARTS
FINITE-DIFFERENCE DISCRETIZATIONS*
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Abstract. Diagonal-norm summation-by-parts (SBP) operators can be used to construct time-
stable high-order accurate finite-difference schemes. However, to achieve both stability and accuracy,
these operators must use s-order accurate boundary closures when the interior scheme is 2s-order
accurate. The boundary closure limits the solution to (s 4+ 1)-order global accuracy. Despite this
bound on solution accuracy, we show that functional estimates can be constructed that are 2s-order
accurate. This superconvergence requires dual-consistency, which depends on the SBP operators,
the boundary condition implementation, and the discretized functional. The theory is developed
for scalar hyperbolic and elliptic partial differential equations in one dimension. In higher dimen-
sions, we show that superconvergent functional estimates remain viable in the presence of curvilinear
multiblock grids with interfaces. The generality of the theoretical results is demonstrated using a
two-dimensional Poisson problem and a nonlinear hyperbolic system—the Euler equations of fluid
mechanics.
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1. Introduction. The finite-difference method is an efficient discretization for
a wide range of partial differential equations (PDEs). In addition, high-order finite-
difference methods are straightforward to derive and implement, which increases their
appeal. Unfortunately, constructing high-order schemes that are provably stable is
more difficult, and practitioners often resort to numerical experiments to test the
stability of a finite-difference method; this is never a satisfying or rigorous argument.

In an effort to construct stable high-order finite-difference discretizations, Kreiss
and Scherer [15] designed summation-by-parts (SBP) operators to mimic the stability
properties of Galerkin finite-element methods. SBP operators remained relatively
obscure until Carpenter, Gottlieb, and Abarbanel [4] combined them with a boundary-
condition penalty called a simultaneous approximation term (SAT) [9]. Subsequently,
the SBP—SAT method was extended to handle block interfaces [5], curvilinear domains
[24], and nonlinear problems requiring dissipation [22]. The SBP-SAT combination
has proven to be a powerful approach, with applications including the Euler [22, 12],
Navier—Stokes [23, 25, 26], and Einstein equations [17, 27].

Svird [32] showed that diagonal-norm SBP operators are necessary to guarantee
time stability when coordinate transformations are used. Unfortunately, to achieve
both stability and high-order accuracy, diagonal-norm SBP operators have interior
stencils that are twice the accuracy of their boundary stencils. For example, a sixth-
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894 JASON E. HICKEN AND DAVID W. ZINGG

order interior scheme must be paired with a third-order boundary scheme, and this
limits the global accuracy of the solution to fourth order. Thus, the price paid for
time stability is a decrease in solution accuracy for a given interior stencil size.

In many applications, solving the discretized PDEs is not the ultimate goal. Often,
the objective is an accurate estimate of some functionals that depend on the solution.
For example, a numerical solution to the Navier—Stokes equations may be sought
because it can be used to approximate the lift and drag on an aerodynamic shape.
In this context a discretization is efficient if it uses fewer computational resources,
relative to other discretizations, to obtain the same accuracy in a functional estimate.

The goal of this paper is to show that discretizations based on diagonal-norm
SBP operators produce superconvergent functional estimates. Specifically, if the in-
terior scheme is 2s-order accurate, then a properly discretized functional will also be
2s-order accurate despite the reduced accuracy of the boundary closure. This super-
convergence follows from the dual-consistency of SBP—SAT discretizations. Examples
of superconvergence are documented in the literature, e.g., [7, 35, 3, 2, 28], but this is
the first example, to our knowledge, of superconvergent functional estimates produced
by a finite-difference method.

The paper is organized as follows. Section 2 introduces the notation and defi-
nitions used in the subsequent sections. We also use section 2 to review SBP-SAT
discretizations. We present the main theoretical results in section 3. In particular, we
prove that SBP—SAT discretizations of one-dimensional scalar hyperbolic and elliptic
PDEs yield superconvergent functional estimates. In section 4, we discuss issues that
arise in practical implementations—curvilinear grids and subdomain interfaces—and
derive the necessary conditions for functional estimates to remain superconvergent in
these situations. We verify the theory in section 5 using a two-dimensional Poisson
PDE and the Euler equations of fluid dynamics. Conclusions and a summary are
presented in section 6.

2. Notation and definitions. This section introduces the notation and defini-
tions used throughout the paper. The notation is consistent with [13], and readers
familiar with that reference may wish to proceed to section 3.

The SBP difference operators are defined on a computational grid consisting of
n + 1 uniformly spaced points x = kh, k = 0,1,...,n, with mesh spacing h = 1/n.
This implies that the computational domain is the interval [0, 1]; if this is not the case,
it is assumed that an invertible and sufficiently differentiable transformation can be
introduced to map the domain to [0, 1].

We use capital letters with a script type to denote functions on a specified domain
0. For example, U(z) € CP[0,1] is a function in the set of p-times differentiable
functions on the interval [0,1]. Small roman letters in a serif type are used to indicate
a function restricted to the grid. This is illustrated with (x) and u € R" ! as follows:

w=[Uwo) Ulw) - Ul,)]”

If a subscript h appears on a vector, for example, u;, € R™t! this indicates that the
vector is the solution of a difference equation.

The “big O” notation is used extensively in the proofs of section 3. We write
F(h) = O(h?) if and only if 3M > 0 and h, > 0 such that

|F(h)| < Mh? Y h < h,.
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SBP SUPERCONVERGENT FUNCTIONALS 895

To manipulate the SAT penalties, we make use of the unit vectors e,, e, € R**1,
which are the first and last columns of the (n+1) x (n+1) identity matrix, respectively:
e=[1 00 - 0 0

en=1[0 00 --- 0 1]".

We will frequently use these vectors to construct the rank-one matrices
eoel = diag(1,0,0,...,0) and en el = diag (0,0,...,0,1).

The Kronecker and Hadamard products are nonstandard matrix products that
will prove useful in the development of the theory, particularly for problems involving
multiple space dimensions. For matrices A € R"*™ and B € R?*" the Kronecker
product is defined by

allB algB tee almB

anB  ax»pB -+ ayB
A®B=

amB a2 B - apmB

Thus, A ® B is an (ng) x (mr) matrix. The Kronecker product is associative and
distributive, but it is not commutative. In addition, we highlight the following two
properties of the Kronecker product:

(A® B)(C ® D) = AC ® BD,
(Ao B '=A"1e B .

The Hadamard product, also called the entrywise or Schur product, is defined by

aitbir  abiz - aimbim
az1ba1  agebaz -+ agmbam

A o B = 9
an1 bnl CLn2bn2 e CLn?’nbnrn

where A, B, (Ao B) € R**™. The Hadamard product is the entrywise multiplication
of each set of elements; in this sense it is analogous to matrix addition.

2.1. Summation-by-parts operators. We now formally define SBP finite-
difference operators, which were first introduced by Kreiss and Scherer [15] and later
refined by Strand [31].

DEFINITION 1 (summation-by-parts operator). The matriz D € R +1x(n+1) jg
a summation-by-parts (SBP) operator for the first derivative if it has the form

D =H'Q,

where H € RHUX(+D) s o symmetric-positive-definite weight matriz with entries
H;j = O(h), and Q € RFTUX(HD) satisfies

Q + QT = diag(—1,0,0,...,0,1)

T

:eneZ—eon.
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896 JASON E. HICKEN AND DAVID W. ZINGG

Furthermore, D is a 2s-order accurate approzimation to d/dx at the interior nodes,
{z1}7ZF, and a T-order accurate approzimation at the boundary nodes, {xx},_ and
{xk}Z:nfrJrl :

To be clear, there are r boundary points at each end of the domain. The even
order of accuracy 2s for the internal nodes is a consequence of using centered-difference
schemes consisting of s points on either side of the node in question. This provides
the lowest error for a given stencil size.

This work is concerned with SBP operators that have diagonal weight matrices
[15, 31] of the form

H, 0 0
H=h|lo0 I 0],
0 0 Hp

where

HL = dlag (poaplv t 'apT’—l)a
HR = dlag (pf’—la B aplvp())

with p; > 0. The matrix H is symmetric and positive-definite, so we can use it to
define an inner product and corresponding norm for vectors. Let u, 2z € R™! be two
functions restricted to the grid. Then

(u,2)g =u'Hz and |jull} = (u,u)n

define the H inner product and H norm, respectively.

SBP operators with diagonal weight matrices are limited to 7 < s; the truncation
error of the difference approximation at the boundary is at most s-order accurate
when the approximation is 2s-order accurate in the interior. Therefore, when these
operators are used in a time-stable discretization of a hyperbolic PDE, the solution
error is O(h**1), i.e., one order higher than the boundary truncation error [10].

Thus, the interior-node stencils of “diagonal norm” SBP operators seem unnec-
essarily large for the achievable solution accuracy. However, the intrinsic properties
of SBP operators produce two surprising consequences related to accuracy. The first
is that the weight matrix defines a 2s-order accurate quadrature [13]. The second,
which is the focus of this paper, is that functionals based on SBP-discretized PDEs
are also 2s-order accurate.

2.2. SBP-SAT discretizations of PDEs. We will use a simple constant-
coefficient linear advection equation to introduce SATs and illustrate an SBP-SAT
discretization of an initial-boundary value problem. Consider the PDE

ou ou
E_Fa%_o VZIIEQ—[Oal]v
(2.1) U(x,0) = Uy(x),

U, t) = U(t),

where a > 0 is the advection velocity. If we discretize the spatial derivative in (2.1)
using an SBP operator D, we obtain the semidiscrete equation

d
(2.2) % + aDuy, = 0.
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SBP SUPERCONVERGENT FUNCTIONALS 897

Equation (2.2) is not useful in practice, because the boundary data is not supplied
to the system of ODEs. To impose the boundary conditions in a strong sense, we
could use the injection method, which is a common approach in finite-difference dis-
cretizations. In the present example, injection would delete the first ODE in (2.2)
and replace it with the boundary condition

d
(2.3) [I—eel] [% + aDuh] + e [elun —UL()] = 0.
While simple to implement, injection can destroy the stability properties of high-order
SBP operators [20].

SATs offer a time-stable alternative to the injection method.! An SAT is a penalty
term used to impose the boundary conditions in a weak sense [9, 4]. The SBP-SAT
semidiscretization of (2.1) would take the form

d
(2.4) % +aDuy, = —ocaH ‘e, (el up — UL()),
where o is a penalty parameter. The SAT penalty on the right-hand side of (2.4) is
zero for all equations except the first.

To find acceptable values for o, we apply the energy method to (2.4) and seek a
time-stable solution with &, = 0. Multiplying (2.4) from the left by ul H and adding
the transpose of the result, we find

—aul (Q + Q1 )up — 20au?

= —au? + a(1l — 20)ug,

a 2
Sllunl%

where we have used Q + QT = e,el — e,el. To obtain a nongrowing solution, it

follows that o > % A similar condition for o arises when considering time-stability at
interfaces between grids (see, for example, [6]). These inequalities provide considerable
flexibility in choosing ¢ from the perspective of stability; however, we shall see that
only certain values lead to superconvergent functionals.

2.3. The dual problem and dual-consistency. Duality plays a central role
in the theory of superconvergent functionals; therefore, in this section we review the
continuous and discrete dual problems, and we introduce the concept of dual or adjoint
consistency [19] (dual and adjoint will be used interchangeably throughout the paper).

Let L be a linear differential operator, and consider the PDE

(2.5) LU-F=0 Vzeq,

where F € Lo(Q). For simplicity, we will assume that U satisfies homogeneous bound-
ary conditions; see [16] for a more general discussion. Consider a linear functional of
the solution to (2.5),

(2.6) ZU) = (G,U)e,

where (, )q is an inner product on 2, and G € Lo(f2). Taking the inner product of the
PDE with the generic function V, the functional can be written as

IU) = (G, U)a — (V,LU — F)q
(2.7) =V, Fla— (LY -G, U,

LA semidiscretization of (2.1) is time stable if, for U, = 0, the discrete solution satisfies ||uy, (t)|| <
K||ug|| for some constant K € R (see, e.g., [11]).
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898 JASON E. HICKEN AND DAVID W. ZINGG

where the formal adjoint operator L* is defined by Green’s identity [16] (V,LU)q =
(L*V,U)q. The dual problem associated with (2.5) and the functional Z can be
extracted from the second term in (2.7):

(2.8) L'V-G=0 Vazeq.

If we assume that the dual problem is well posed, with solution V), then the second
term in (2.7) vanishes, and the functional becomes

IU) =Z(V) = (V, Fa.

Note that the roles of F and G in the primal formulation (i.e., the PDE (2.5) and
Z(U)) are reversed in the adjoint formulation (i.e., the PDE (2.8) and Z(V)).
The preceding analysis can be adapted to the discrete problem. Let

Lhuh - f =0
be a discretization of (2.5), and let

In(un) = (g, un)n

be a discrete approximation of the functional Z. In general, the linear operator Ly
incorporates both the discretization of the PDE and the boundary conditions. Simi-
larly, the discrete inner product (, ), may include internal and boundary terms. Using
this inner product, we have

In(un) = (g, un)n — (vn, Lnup — f)n

= (vn, F)n — (LEvn — g, un)n,

where (vp,, Lpup)n = (L;{vh, uy,) defines the discrete adjoint operator L;‘f, assuming a
real-valued problem. In analogy with (2.8), we define the discrete dual equation

(2.9) Lfv, —g=o0.

DEFINITION 2 (dual (adjoint) consistency). A discrete operator Ly and func-
tional Iy, are dual (adjoint) consistent of order ¢ > 1 with respect to a corresponding
continuous PDE and functional if

LTv—g= 0(hY),

where v 1s the solution to the continuous dual problem projected onto the discrete
solution space.

In other words, a discretization is dual-consistent if it leads to a discrete dual
problem that is a consistent discretization of the continuous dual PDE. It is important
to recognize that dual-consistency does not follow from consistency of the primal PDE
discretization in general.

3. Theory. The main results of this section assume a linear functional and a
linear scalar PDE in one space dimension. These assumptions help simplify the pre-
sentation, and they can be relaxed without significant difficulties. For example, the
results can be generalized to nonlinear PDEs and functionals by using Fréchet deriva-
tives to define the linear adjoint problem [28], and multidimensional PDEs can be
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SBP SUPERCONVERGENT FUNCTIONALS 899

discretized using tensor products to construct the necessary SBP derivative opera-
tors. Indeed, the results will be illustrated in section 5 using the two-dimensional
Euler equations.

We will require the following lemma to prove the superconvergence of SBP—SAT
functional estimates. The proof can be found in [13].

LEMMA 3. Let D = H='Q be an SBP first derivative operator. Then

(z,Du) g = 2T Qu

is a 2s-order accurate approrimation to the integral

1
/ Zg dr,
o dz

3.1. Linear hyperbolic PDEs. Consider a scalar hyperbolic PDE of the form

where ZX4 € C25-1]0, 1].

ou 0

EjL%()\u)_}' VeeQ=[0,1], ¢t>0,
U(z,0) = Up (),
U0,t) = Ur(t),

where A(z) > 0 is the spatially varying wave speed. We will restrict our attention to
stationary problems, in which case the above PDE simplifies to

51) %(Au):}" VzeQ=10,1]

U) =Uy.
The SBP-SAT discretization of this PDE is given by

(3.2) D (Aup) = f — H egho (e] un —UL) ,
where

)\i:/\(xi), i:O,...,n,
A:dia'g()\07A17"'aAN)7

f=[Flw) Fla) - Fla)]".

The vector u, € R"™! denotes the unique solution to the linear system (3.2). For
diagonal-norm SBP operators with an s-order accurate boundary closure, Gustafsson’s
theory [10] and numerical experiments suggest that the solution error ||up — u|p is
at best O(h*T!). Despite this bound on the accuracy of the discrete solution, the
following theorem concludes that a functional estimate based on uj can approximate
the actual functional to order 2s.

THEOREM 4. Let T : L?[0,1] — R be a linear functional defined by

(3.3) W) :/0 GUdr +a (\A)|,_,
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900 JASON E. HICKEN AND DAVID W. ZINGG

where G € C?%[0,1], and let H'A = H-Y(Q + e, el )A denote the matriz appearing
in the linear system (3.2). Assume the PDE (3.1) is well posed and admits the solu-
tion U € C*2[0,1]. Furthermore, assume the linear system (3.2) is nonsingular with
solution up, € R" and [|[A~TH|| < C for some constant C' € R, independent of
n. Then the functional estimate

(3.4) Tn(un) = (g,up)g + a)\n(efuh),

where

g=[G(z0) G(a1) --- G(xa)]",

is a 2s-order accurate approzimation to T(U ).
Proof. Using the SBP norm to integrate the functional Z(/), we have [13]

ZU) = (g,w)m + oy (elu) + O(h?*)

=g Hu+ alpelu+ O(h?%)

_T T T T 2s

=g Hup —g" H(up — u) + adpe, up — arpe,, (up —u) + O(h=°)

=Tn(up) — (97 + adpel H™1) H(up, — u) + O(h*).
We must show that the second term in the last line is order h%¢. Our strategy will
be to rearrange this expression to find a suitable equation for the discrete adjoint
variables. The result will then follow by showing that the discrete adjoint variables
are a sufficiently accurate approximation to the continuous adjoint variables.

We begin by left-multiplying (3.2) by H and grouping terms involving wuy on the
left-hand side,

(3.5) Aup = Hf 4+ ey,
and we observe that

A= (Q+eel)A
(3.6) = ()\nen ez: — QTA)

by the properties of SBP operators. Equation (3.6) expresses A in a way that fa-
cilitates the definition of the discrete adjoint variables below. Note that when A is
applied to the exact solution u, rather than uj, we have

(3.7) Au = HD(Au) + AoeUL.

By assumption, the linear system (3.2) is nonsingular, which implies that A~!
exists. Inserting I = HA“'AH~! into the equation for Z(U), and using (3.5) and
(3.7), we find

IU) =Tn(up) — (9" + arnep H ') HAT'AH " H (up, — u) + O(h**)
=Tn(up) — (gTH + oz/\nez;) AT H(f — DAu) + O(h*)
= Ty (up) — v} H(f — DAu) + O(h*).

We have introduced the discrete adjoint variables, vy, which are defined by

vp=A"T (Hg + epApa).
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SBP SUPERCONVERGENT FUNCTIONALS 901
Left-multiplying this definition by H~!AT and inserting (3.6), we have
(3.8) —ADv, =g—H e\, (efvh — a) .

Inspecting (3.8), we see that it is the SBP-SAT discretization of the continuous dual
problem corresponding to (3.1) and (3.3):

v
59) AZ =6 Vrea=[0,1]
V(1) = a.

The wave speed for the dual problem is —A(z), and the boundary condition is imposed
at « = 1 rather than z = 0.

Let v € R**! be the projection of the continuous adjoint variable V onto the grid;
then, the truncation error of the discretization (3.8) is given by

Th =g+ H ey pa— H AT,

and the SBP-SAT discretization implies that ||T}]lc = O(h®). Consequently, the
error between the discrete adjoint and continuous adjoint variables satisfies

H AT (v, —v) = Ty,
from which we can obtain the following bound using the assumption on [|A~T H || «:

[on = vlleo < Cl[Thlloc = O(h®).

The above bound on the discrete adjoint error is suboptimal, but it is adequate for
the present proof.
Finally, we have

T(U) = T (up) — vi H(f — DAu) + O(h**)
= Tn(up) —vTH(f — DAu) + (v — vp)TH(f — DAu) + O(h*%).

The first error term, v7 H(f — DAu), is order h?¢ in light of Lemma 3 and the PDE
definition (3.1). The second error term is the SBP inner product between the adjoint
error (v—vp,), which we have already shown is O(h#), and the truncation error f—DAuw,
which is also order h*. Consequently, the second error term is O(h?®), and we are left
with

(3.10) IU) = T (un) + O(h*),

completing the proof. O

Remark. The assumption ||A~TH|l, < C is a form of stability requirement on
the discrete adjoint system. Such conditions, together with consistency, are used to
establish the convergence of a discrete solution to its continuous counterpart in steady
boundary value problems; see, for example, [18]. As with similar stability conditions,
this assumption is difficult to prove in general. Nevertheless, numerical experiments
and experience suggest that it does hold for diagonal-norm SBP operators for a large
range of problems. For example, Figure 3.1 plots |A™7 H||o versus n € [12,200]
for a constant wave speed A = 1 and three diagonal-norm SBP schemes (second-
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second—order (s = 1)
10* I — — — third-order (s=2)
R K fourth—order (s=3)
N L T
= | Tl
n 107 7
<
10° b b
1 1 1 1
0 50 100 n 150 200

FiG. 3.1. Variation of ||A~T H||eo versus n for second-, third-, and fourth-order diagonal-norm
SBP operators (A =1).

order, third-order, and fourth-order).? The second- and third-order schemes yield
|A~TH||» = 1, to machine precision, while the norm for the fourth-order scheme is
monotonically decreasing for n > 15.

The proof of Theorem 4 relies on the dual-consistency of the SBP—SAT discretiza-
tion. That is, the SBP—SAT discretization of the PDE and the discrete functional
estimate lead to a discrete dual problem that is a consistent, and sufficiently ac-
curate, discretization of the dual PDE. If the difference operator did not satisfy the
SBP property, or if there were a mismatch between the SAT penalties and the discrete
functional definition, the functional estimate would not be superconvergent.

3.2. Linear elliptic PDEs. Next, we consider a model linear elliptic PDE that
includes both Dirichlet and Neumann boundary conditions. To simplify the analysis,
we cast the second-order scalar PDE in the form of a first-order system:

YWy =F  veea=D1],

Ox
ou
(3.11) W=22  Vee=[01],
U0) =Uy, W(1) = Wg.

In general, the diffusion coefficient, v(x) > 0, is permitted to be a function of the
space coordinate. An SBP-SAT discretization of the PDE (3.11) is given by

—D (Twp) = f — H e, (eguh —Z/{L) — H 'exyn (eth - WR) ,

3.12
( ) wp, = Duy, + H e, (eguh—UL),

where

vi = (i), i1=0,...,n,
I' = diag (70, 715 ---»IN),
f=[Fl@o) Fla) - Flan)] .

2Fourth-order diagonal-norm SBP operators are not unique; here we use the fourth-order mini-
mum bandwidth operator from [8].
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To be clear, wy, depends explicitly on w, in the discrete formulation; i.e., this is not
a compact- or Padé-type scheme.

For constant -y, the discretization in (3.12) would approximate the second deriva-
tive using two applications of the first derivative operator. This approach may not
be optimal from the perspective of stencil size. Narrow-stencil SBP operators for
the second derivative have been proposed [21] but only for constant diffusion coeffi-
cients. Research into narrow-stencil operators that permit spatially varying diffusion
coefficients is ongoing [14].

The order of accuracy of uy, in (3.12) is not obvious. The truncation errors of
the individual equations in (3.12) correspond with the accuracy of the first-derivative
SBP operator, O(h®) at the boundary and O(h?%) in the interior. However, if we
eliminate wy,, we obtain a single equation for uj that has a boundary truncation error
of O(h*~1). Sviird and Nordstrém [33] have shown that the boundary closure can be
reduced two orders for strongly pointwise-stable discretizations of parabolic equations.
This suggests that the truncation error present in (3.12) leads to a solution error that is
O(h**1), since SBP-SAT discretizations of parabolic equations, with suitable penalty
parameters, are strongly pointwise-stable [33].

The following theorem extends Theorem 4 to the elliptic case. Here, the functional
includes contributions from the function and its derivative in the interior and on the
boundary. The boundary contributions to the functional are at opposite ends of the
domain with respect to the given boundary conditions; if the opposite were true, we
would simply use the given boundary data.

THEOREM 5. Let T : L?[0,1] — R be a linear functional defined by

1 1 au 81/{
(3.13) I(u)z/o Q1L{dx+/0 92% dr +all,_, + <7%)

z=0

Assume that G1,Ga € C?°[0,1]. IfU € C?4[0,1] is the solution to (3.11), and up,wy, €
R™1 are the solutions to (3.12), then the functional estimate

In(un) = (g1, un)m + (g2, wn)H
(3.14) . ., .,
+ a(e,un) + Byole; wr) + Bley un —UL),

where

T

912[91(%) Gi(wy) -~ gl(ﬂinﬂ )
g2 = [Go(z0) Galw1) -+ Galwn)]”,

is a 2s-order accurate approximation to (U ).
Proof. As in the hyperbolic PDE case, we begin by integrating the appropriate
terms in the functional Z(U) using the SBP norm:

I(U) = (91, ) + (92, w)r + (e u) + Byoleq w) + O(h*).
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Subsequently, we add and subtract terms to relate the functional to the estimate
Ih(uh):

Z(U) = gf Hup, + g3 Hwp, + a(eXuy) + Byo(elwn) + Bel (up, — u)
— g1 H(up —u) — g3 H(wp, — w)
—ael (up, —u) — Byoel (wy, — w) — Bel (up —u) + O(h*%)
= Tn(up) + O(h**)
— (gip +ael H™! 4 BeOTH’l) H(up —u)
~ (92 + Broeq H™Y) H(wp, — w).
To prove the result, we must show the error terms in the last two lines are O(h?%). In
the hyperbolic case, we used the system matrix and its inverse to rearrange the error
term and find expressions for the discrete adjoint variables. While this is possible in
the elliptic case, it becomes considerably more tedious due to nested operators. In-
stead, we proceed by introducing the discrete adjoint variables as unspecified Lagrange
multipliers and then determine suitable equations for the discrete dual problems.
Define the primal-equation residuals as follows:
ry =D (Twp) + f — H™te, (eguh — Z/{L) — H 'eyyn (egwh — WR) ,

Tw = Dup, — wp, + H7160 (eoTuh —L{L) .

The residuals are equal to zero, because u;, and wy, satisfy the discrete equations. By

exploiting the properties of SBP operators, and noting that Uy, = el'u and Wg = el w,

we can rewrite the residuals as
ry = f+ D (Tw) —H! [eoengfl} H(up —u)
—H ' [D'TT + egel voH '] H(wp, — w)

and
To=Du—w—H" [DT—enez;H_l] H(up —u) — (wp, —w).

This reformulation of the residuals, in which (uj, —u) and (wp, —w) terms are grouped,
will simplify the subsequent algebra.

Let vy, € R and z;, € R™*! be unspecified vectors—the Lagrange multipliers—
associated with r, and r,,, respectively. We take the SBP inner product of the multi-
pliers vy, and zp with their corresponding primal-equation residuals and subtract the
result from the functional. We then group terms that contain (up — ) and (wp — w)
in order to define the discrete adjoint equations:

ZU) = In(up) + O(h*)
- (gip +aelH ! 4 ﬁeoTHfl) H(up —u)
— (92 + Broeq H™') H(wp, —w)
— v,:eru — z?;Hrw
= Tn(un) — v} H (f + DT'w) — 2§ H (Du — w) + O(h*®)
+ [ef DT —gf — (2fen+a) et H ' + (vie, — B) el H™'] H(up — u)
+ [vp DTTT — g7 + 2] + (vi e — Blel voH '] H(wp, — w).
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We have not yet specified v, and zp, so we use this freedom to eliminate the terms
multiplying (up — u) and (wp, — w). Hence, the discrete adjoint variables satisfy the
following equations:

Dzp =91+ H e, (efzh + a) — H e, (egvh — B) ,

(3.15) _
—z, =Dy — go + H o€, (egvh — B) .

These linear equations are an SBP—SAT discretization of the continuous dual problem,
which is given here for reference:

0z

= -a VreQ=[01],
0
(3.16) —zzya—z—gg VaeeQ=[01],
V(0) = B, Z(1) = —a.

The SBP-SAT discretization (3.15) of the dual problem is pointwise-stable, so it
follows from the truncation error that vy is (s + 1)-order accurate [33] and zj, is at
least s-order accurate.

Returning to the expression for the functional, we have

T(U) = Tn(up) — v} H (f + DT'w) — zi H (Du — w) + O(h**)
= TIn(up) — v H (f + DTw) — 2T H (Du — w)
— (v, —0)TH (f + DTw) — (21, — 2)TH (Du — w) + O(h?).

The first and second error terms, v” H (f + DI'w) and 27 H (Du — w), can be shown to
be order h?* using Lemma 3. The third and fourth error terms are also order 2s, since
(vp, —v) and (zp, — 2) are order h*T1 and order h®, respectively, and the discretization
errors in the primal PDE are order A%, e.g., ||f + DI'w|| = O(h®). Therefore, we are
left with

T(U) = Tp(up) + O(h*),

which is the desired result. a

4. Practical issues. In developing the present theory we have considered very
simple model problems. In this section, we address two issues that arise when finite-
difference methods are used in practice—curvilinear and semistructured grids.

4.1. Curvilinear grids. SBP operators can be used in higher-space dimensions
by applying one-dimensional operators to each spatial direction independently. For
example, suppose the cubic domain = [0, 1]3 is discretized using a Cartesian product
of n+1 uniformly spaced nodes. Thus, the grid nodes will have the spatial coordinates

1
(G k,m) V(i k,m) € {0 < j, k,m < n}.

Xjkm = (T4, Yks 2m) = -

. . L . 3
Discrete functions on this grid are represented as vectors in R *t1D” and we assume

that the entries in these vectors are ordered by j first, then k, and finally m. Under
these assumptions, the SBP operator for 0/0x is given by

(4.1) D, =(I®I®D),
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where D is a one-dimensional SBP operator and I is the (n + 1) x (n + 1) identity
matrix.

The above definition of D, is suitable only for regular grids on a cubic domain.
More general geometries and grids (with the same topology) must be handled by using
curvilinear grids. However, curvilinear transformations introduce geometric quantities
into the discretization, and the influence of these terms on superconvergence is not
obvious.

To extend the results of section 3 to curvilinear grids, we need to show that

1. discrete integration on a curvilinear domain remains 2s-order accurate, and
2. the discrete primal and dual equations have truncation errors of O(h?).
For simplicity, we will restrict our focus to domains in R2. Extension to higher
dimensions should be straightforward.

First, consider integration of U (z, y) over a domain €, that is a closed compact set
of R2. Moreover, assume that €2, is such that there exists an invertible transformation
T(z,y) = (&(z,y),n(z,y)) of class C?* that maps €, to the square Q¢ = [0,1]2. The
domain ¢ will be associated with computational space. Using the change of variable

theorem, we have
// Udxdy = // UJdEdn,
Qn Qe

(v,y) Ox0dy Oyox

a(&,mn)  0£on O I

is the Jacobian of the transformation 7! (since the transformation is invertible, we
will assume that J is positive, without loss of generality).

In practice the transformation 7 is not explicitly available, so the Jacobian at
the grid points is approximated by

where

o))

J

(4.2) J = (Dex) o (Dpy) — (Dey) o (Dyx),

where we have abused notation to let  and y denote vectors of nodal coordinates.
To make use of Kronecker products, we assume that the unknowns are ordered first
in the & direction and then in the n direction. Thus,

De=(I®D) and D,=(D®I).

We have tacitly assumed that both directions are discretized using the same number
of points, since this allows us to use the same one-dimensional operator D to define
both D¢ and D,;; however, this assumption is not necessary. In general, the coordinate
directions can have different numbers of nodes.

When SBP operators are used to calculate J, the error in approximating J at
the boundary is O(h*). Despite this reduced order of accuracy, the following theorem
indicates that superconvergence of discrete integration is not affected.

THEOREM 6. Let Q, and Q¢ be connected compact subsets of R?. Furthermore,
let T : Qy — Q¢ be a C** invertible mapping. For grids based on the uniform dis-
cretization of Q¢ and mapped to 0, using T 1, the quadrature

(4.3) Tn(u) =u(H @ H) J
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is a 2s-order accurate estimate of the integral

(4.4) W) = / /Q Udndy

forU € C?*(Qy).

The proof is based on an iterated application of Lemma 3 and is given in Ap-
pendix A.

Next, we need to show that an SBP-SAT discretization of a PDE on a curvilinear
domain has a truncation error of O(h®). Moreover, this discretization must lead to a
set of discrete dual equations that have a truncation error of O(h®) with respect to
the adjoint PDE.

Let €, and Q¢ be the physical and computational spaces, respectively, defined
previously. Consider the hyperbolic PDE

0 0

— (AU) + MNU)=F ¥ Q,

SO+ ) =F Vxe

where (A;, Ay) is a spatially varying velocity. Transforming this PDE to computational
space, we find

0

(45) 5

Ael) + a% AU) =FT VEeQ.

Using the metric relations [29, 34], the velocity components in computational space
can be expressed as

B £ f Oy ox
Af_“7<5A+5y )_ 377A an””
o N (U NUP i B +‘%A
" ox”" oy Y) o oc™

For simplicity, we will assume that A¢ > 0 and A, > 0 and impose suitable boundary
conditions for the inlet boundary:

(4.7) UO,n) =Uw(n) and U, 0) =Us(E).

The PDE in computational space contains geometric quantities that must be ap-
proximated using a finite-difference operator. In particular, the Jacobian is approx-
imated using (4.2), and the components of the velocity field (4.6) are approximated
using

A¢ = diag (A Dyy — AyDyx),
A, = diag (—A,Dey + Ay Dex),

where the diagonal matrices A; and A, hold the velocity field components (A, Ay)
evaluated at the grid nodes (z, Yy, ):

A, = diag Az (25K, Yjk)),
A, = diag (A\y(zjk, yjk))-
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With the geometric quantities approximated, the SBP—SAT discretization of the PDE
(4.5), with boundary conditions (4.7), can be written as

D, (Aguh) + D, (A up) = (Jof)— [I & (H71 T)} Ag(uh —u)

(4.8)
— [(H (e )®I}A (up, — u),
where uy, € RM+D? i5 the discrete solution, and u € R™+D? i5 the exact solution—u
is used only to supply boundary conditions here. If we use the same SBP operator for
(4.8) and the geometric terms (J, Az, Ay), then the truncation error of the discretized
primal PDE is O(h®) at the boundary and O(h?*) in the interior, as required for
superconvergence of functional estimates.?

Finally, we turn to the accuracy of the discrete adjoint equation. The algebra
leading to this equation is analogous to the algebra involved in the one-dimensional
problems of section 3, so we will simply state the final result:

—A¢Devy, — AyDyvp = (Jog) — Ae [T ® (H Yenel)] (vn — v)

(4.9)
- A, [( te, el )®I} (v, — ),

where v;, € R®+D” are the discrete adjoint variables, and v € RM+1” is the restriction
to the grid of the continuous adjoint variables. Equation (4.9) is a discretization of
the continuous dual problem and, like the primal discretization, has a truncation error
of O(h*) at the boundary and O(h?*) in the interior.

We have shown that a two-dimensional hyperbolic PDE can be discretized with
SBP operators and SATs such that superconvergent functional estimates are possible.
While this is only one particular example, the generalization to higher dimensions and
diffusion-type PDEs is straightforward.

4.2. Interface SATs for semistructured grids. Semistructured grids are nec-
essary when the domain is not topologically equivalent to a hyperrectangle. These
grids may also be employed to improve mesh quality, to avoid singularities, and to
partition work for parallel computations [12].

A semistructured grid partitions a domain into a set of nonoverlapping curvilinear
subdomains, such that each subdomain can be mapped to a hyperrectangle. Thus,
the individual subdomains can be treated as in the previous case.

The subdomains introduce artificial boundaries that must be addressed by the
discretization. One strategy is to use SATs at the interfaces between subdomains.
Indeed, the SAT methodology offers several advantages in this context [12]: SATs
require only C° grid continuity, they help reduce communication in parallel solution
algorithms, and they lead to a (linearly) time-stable scheme.

In this section, we will show that using SATs to couple subdomains does not
affect the superconvergence of functional estimates for the PDEs of interest. Thus,
we consider the advection-diffusion PDE

0 0

(4.10) U
W=— VeeQ=]0,2].
ox

3The SBP operator appearing in A¢ and Ay is Dy and Dg, respectively, so the SBP operator is
not applied twice in the same direction in (4.8).
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Note that the domain has changed to the interval [0, 2]; this is merely for convenience.
We do not specify the boundary conditions, since the boundary SATs can be ignored
in the analysis of the interface SATs.

Partition the domain Q = [0,2] into the two subdomains ;, = [0,1] and Qg =
[1,2], with an interface at = 1. Discretize Qf, using n + 1 uniformly spaced points,
and Qg using m + 1 uniformly spaced points. The last grid point of €, lies on the
interface and coincides with the first grid point of Q.

To simplify the presentation, we need to introduce some additional notation. Let
Dy = HL_lQL be a first-derivative SBP operator for 2;. Similarly, let Dr = HﬁlQR
be an SBP operator on Qr. We define the following R(*+m+2)x(n+m+2) matrices:

~ [D, o0 - [H, 0 . QL o
SRS S |

Using the properties of @ and g, we note that

Q + QT = €n 62 — €o eg — En+1 6’5+1 + entm+1 €Z+m+1a
where ey, €5, €41, and €,,4,,11 are the appropriate columns of the (n+m+2) x (n+
m + 2) identity matrix. Ignoring boundary SATs corresponding to e, and €y, ym+1,

the SBP-SAT discretization of (4.10) is

HD (Aup) — HD (Twy) = oven(el — el ) Auy

T T
=+ pLeﬂ(en —Cpt1 th

(4.11) + URenH(ez;H — el Auy,
' + prensi(eqpn — e )Twn,
Jun

Huwp, — HDup, = een(el —el

T T
+ €rCny1 (enJrl en)“”“

where oy, 0, pr, Pr, €L, €r € R are SAT penalty parameters. In contrast with previous
SBP-SAT discretizations in this paper, we have left-multiplied by H to help “clean
up” the right-hand side. As before, up,w, € R +2) are the discrete solution
vectors, and A and I' are diagonal (n +m + 2) x (n + m + 2) matrices representing
A and v on the grid. Due to the coincident grid points at the interface, we have
)\n = )\n+l and Yn = Yn4+1-

To find conditions on the penalty parameters that lead to dual-consistency, we
take the inner product of the equations (4.11) with their corresponding discrete adjoint
variables v, and zp. After rearranging the result, we identify the adjoint equations
with the terms multiplying u;, and wjp. Omitting the algebra, we find the discrete
dual equations

—HADv, + HDz, = A [(UL —Denel —open ez;ﬂ] Up,
e, + Den ez — €rén ezﬂ] Zn

(4.12)
en+1 ezﬂ — €Len+1 ef] Zh,

(
(or + Denta ez;ﬂ — oLeni1 eﬂ s
(

th + ﬁff)vh = (

T T
€n €, — Pren en+1] U,

—
>
e
+
—_
~— ~— =

T T
€nt1€mi1 — PLEnt1Em ] Vn,
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where boundary terms involving e, and e, 4,11 have been dropped. To obtain con-
sistent interface SAT terms in the adjoint equations (4.12), we require

(4.13) o, =o0g + 1,
(4.14) oL = pr — 1,
(4.15) €, = € — 1.

The first two constraints, (4.13) and (4.14), are also required for discrete conservation
[6]. The third equation appears to be a unique requirement for dual-consistency.

The penalty parameters in (4.11) must satisfy additional constraints to guarantee
time-stability. We do not discuss these constraints here and direct the interested
reader to [6] for a review. For discretizations involving SAT interfaces, we will use the
following SAT parameter values, which satisfy both the dual-consistency conditions
(4.13)—(4.14) and the stability conditions:

1 1 1
UL:_g[Sgn(An)_1]7 PL:—§7 €L=—§7

1 1 1
ch:—E[Sgn(/\nH)—Fl], Pr =5 =5

5. Numerical examples. We have chosen two examples to illustrate the su-
perconvergence of SBP-SAT functional estimates. The examples were selected to
verify the generality of the theory, and for each case we consider second-, third-, and
fourth-order SBP operators (s =1, s = 2, and s = 3, respectively). Diener et al. [8]
describe the specific diagonal-norm operators that we use here. For the fourth-order
scheme we use their minimum bandwidth operator.

5.1. Two-dimensional Poisson problem. Consider the following Poisson-
type PDE on Q = [0,1] x [0,1]:

V- (\VU)=F VxeQ,

5.1
(5.1) Ux) = B(x) vV x € 09.

To demonstrate the theory, it is sufficient to specify a solution and diffusion coefficient
for (5.1) and then determine the appropriate boundary conditions and source term,
i.e., the method of manufactured solutions. Hence, we choose

) = v (=2

) and (%) =

The contours of the function U are plotted in Figure 5.1 for reference.
We are also free to specify the functional in this example and will consider func-
tionals of the form

(5.2) ZW) = [ 57 (8- vu) d,

where 091 = {(z,y) |z € [0,1],y = 0}, i.e.,, 98 is the bottom edge of the square
domain. As we shall see, some care must must be exercised in the choice of the
function S(z), because the functional defines the adjoint variables (see (3.16), for

example). If the adjoint variables are not sufficiently differentiable, the functional
estimate will not be superconvergent.
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Fic. 5.1. Contours of the exact solution U.

The PDE (5.1) is discretized using SBP operators and SATs. Geometric quan-
tities, such as 0,€ and J, are approximated using the methods described in section
4.1. Thus, the discrete equations are given by

—De (FEEU’}(L&) + Fﬁnw}(Ln)) — Dy (anw}(f) + anwi(Ln)) =fod

— [T ® (H el + H "epel )] Tee(un — u)
(5.3) — [(H 'ecel + H 'enel) @ I] Typy(un — u),

w = Deup, + [T ® (H eoel — H  enel)] (un — ),

0

w = Dyup + [(H 'esel — H 'enel) @I (w, —u).
The vectors w,(f) and w,(:’) approximate the components of the gradient (O:U, OU).
The diffusion coefficient and geometric quantities are gathered into the diagonal ma-
trices

Pee = ding (7) ding[(Dyy) o (Dyy) + (Dya) o (Dya)] ding (1),
Te, = Tye = — diag (7) ding [(Dyy) o (Dey) + (Dyr) o (Dea)] ding (J) ",
Ty = diag () ding [(Dey) o (Dey) + (Dex) o (Dex)] ding (1) .

We emphasize that the geometric quantities are approximated using SBP operators,
even when an analytical mapping is available.

Including the matrices I'¢¢ and I';,, in the SAT penalties of (5.3) is not strictly
necessary; these terms simply alter the scaling applied to the difference (up — w).
Thus, there is flexibility in the choice of scaling for these SATs, and the functional
estimate will be superconvergent provided it uses the same scaling. Of course, the
choice of scaling will impact the condition number of the system matrix.

5.1.1. Dual-consistency of the discrete functional. To obtain a supercon-
vergent functional estimate, the theory requires that the functional be discretized such
that the discrete adjoint equations are a consistent and accurate approximation to the
continuous adjoint problem. We will illustrate this requirement using two alternative
discretizations of the functional (5.2).
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TABLE 5.1
Comparison of the convergence rates of dual-consistent and dual-inconsistent functional estimates.

Dual consistent Dual inconsistent
n 2nd 3rd 4th 2nd 3rd 4th
24 2.00597 4.16802 6.29756 1.89587  5.12368  6.52419
48 2.00064 4.13503  5.90746 1.95935 1.83905 8.17144
96 1.99998 4.09146  5.80347 1.98600 2.08327 1.88536
192 1.99997 4.06162 6.35784 1.99533  2.70180  4.17460

We fix the functional (5.2) by choosing

(e —1)(e —e")
(5.4 Bla) = - =),

which yields Z(U) = 4 for the exact solution. This f(x) vanishes at x =0 and z =1,
which ensures that the continuous adjoint variables are sufficiently smooth; the role
of B in superconvergence will be explored further in the next section.

If we define b = [B(zo) PB(z1) --- ﬁ(xn)}T, then a dual-consistent discretiza-
tion of (5.2) is given by

Tn(up) = (e, @ b)T (I ® H) {Fnéw}(f) + anwi(Ln)

(5.5)
+ [(H*160 eg) ® I} Lo (un — u)} )

A functional estimate that is dual-inconsistent is given by
(5.6) Tn(un) = (eo @ b)T (I ® H) [[pe Deup, + Ty Dyuin] -

The only difference between (5.5) and (5.6) is the SAT-like penalties in the former.
These penalties provide consistent boundary conditions to the adjoint PDE. Therefore,
although the penalties contribute terms that are only O(h®), these small corrections
are necessary for superconvergence.

The accuracy and convergence rate of the two functional estimates are determined
using a sequence of grids. The grids consist of (n+1) X (n+1) nodes in each coordinate
direction, with n € {n;} = {12,18,24,36,48,72,96, 144, 192}. The discrete solution
uyp, is obtained by solving (5.3) using a direct (banded) solver from LAPACK [1].

For mesh level ¢, the functional convergence rate is given by

¢ = ! In <|Ell|)
! 1n(ni/nl-_1) |Ez| ’

where E; is the functional error using n; + 1 nodes in each direction. Table 5.1 lists
the convergence rates for every other value of n; starting at n; = 24. The conver-
gence rates are consistent with the theory. The second-order discretization produces a
second-order functional estimate, independent of the two formulations considered. In
contrast, the third- and fourth-order discretizations yield superconvergent functional
estimates, but only for the dual-consistent functional.

Figure 5.2 plots the functional errors E; versus mesh spacing h = 1/n;. Ini-
tially, the third- and fourth-order dual-inconsistent functionals converge at higher-
than-expected rates; however, for smaller values of h they behave as predicted. Salas
and Atkins [30] observed similar behavior in functional estimates—rapid convergence
followed by asymptotic behavior—and attributed it to interactions between the errors
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----m---- Dual Consistent, 2nd order
——a—— Dual Consistent, 3rd order
—-—m—-— Dual Consistent, 4th order
----0---- Dual Inconsistent, 2nd order | |
——o—— Dual Inconsistent, 3rd order | - ____.__
—.—o—-— Dual Inconsistent, 4th order '

0.04 0.06 0.08 0.1

Fic. 5.2. Dual consistent and dual inconsistent functional errors.

in up and the numerical quadrature. The present results suggest that dual consistency
may eliminate this behavior, since the corresponding dual-consistent functionals ap-
pear to converge at the same rate throughout the range of n considered. Therefore,
the dual-consistent functionals may be more amenable to Richardson extrapolation.

5.1.2. Adjoint smoothness and functional accuracy. We have seen that
the superconvergence of SBP-SAT functionals is destroyed if the discretization is not
dual-consistent. Here we show that, even if the discretization is dual-consistent, su-
perconvergence will not be possible if the continuous adjoint variable is not sufficiently
smooth.

For an arbitrary S(x), the PDE (5.1) and functional (5.2) have the associated
adjoint PDE

V-(yVV)=0 Vx e,
(5.7) V(x) = (%) vV x € 00y,
V(x) =0 Vx e 0N\ 0.

The functional is an integral over 921, so (z) defines the adjoint variable on this
subset of the boundary only. On the remaining boundaries, the absence of the func-
tional implicitly defines V = 0; therefore, 8(x) must equal zero at x = 0 and z = 1
for the boundary data to be continuous. This requirement was satisfied by (5.4),
so the resulting adjoint variable was smooth, and the dual-consistent functional was
superconvergent.

Now, consider adopting 8(x) = 1 in the definition of the functional (5.2). This
apparently innocuous choice leads to discontinuous boundary conditions in (5.7) and,
consequently, the adjoint variable plotted in Figure 5.3. Singularities in V are visible
at (0,0) and (1,0).

Table 5.2 lists the convergence rates of dual-consistent discretizations of (5.2) with
B(x) = 1. We use the same methodology and sequence of grids as in the previous
study. As predicted by the theory, the singularities in the adjoint variable prevent
superconvergence of the functional estimate.

5.2. Impact of a curvilinear grid on functional accuracy. Next, we verify
the analysis presented in section 4.1, namely, that the functional estimates remain
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Fi1G. 5.3. Contours of the adjoint variable when B(z) =1 in (5.2).

TABLE 5.2
Convergence rates of functional estimates corresponding to a nonsmooth adjoint variable.

n 2nd 3rd 4th
24 1.83336  1.97355  3.00296
48 1.88125  2.59152  3.74879
96 1.90415 2.80494 3.91383

192 1.91653  2.89948  3.96385

superconvergent on curvilinear grids. We introduce a smooth mapping from compu-
tational to physical space:

z(&,n) =&+ 4—10 sin (27€) sin (277),
(Em) =+ 5 sin (2mn) s (2nE).

Such a curvilinear grid, while unnecessary for the domain €2, eliminates certain error
cancellations that can arise on uniform Cartesian grids; such cancellations would not
be representative of the grids encountered in practice. Figure 5.4 shows an example
grid with n = 48 in each computational direction.

We consider a sequence of grids with (n; + 1) nodes in the &- and 7-coordinate
directions, where, as before,

n; € {12,18,24, 36,48, 72,96, 144, 192}.

The functional is (5.2) with 3 given by (5.4). Table 5.3 lists the convergence rate of
the functional estimate (5.5) on both uniform and curvilinear grids, for every other
grid in the sequence beginning with n; = 24. The third-order functional estimate is
clearly superconvergent on the curvilinear grid. The fourth-order functional does not
exhibit its expected convergence rate (sixth-order) for the range of h considered.
Figure 5.5 plots the error in the functional estimates calculated on the uniform
and curvilinear grids. The second- and third-order estimates are nearly identical on
both grid families. The fourth-order estimate varies slightly between the two grid
families; the fourth-order method appears to be more sensitive to the curvilinear grid.
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TABLE 5.3
Convergence rates of the functional estimate on uniform and curvilinear grids.

Uniform grid Curvilinear grid
n 2nd 3rd 4th 2nd 3rd 4th
24 2.00597 4.16802  6.29756 2.02270 4.17574  12.32711
48 2.00064 4.13503  5.90746 2.00454  4.19971 6.07181
96 1.99998  4.09146  5.80347 2.00087  4.12854  9.04578
192 1.99997 4.06162 6.35784 2.00018 4.07716  4.88753

1 ----m---- Uniform Grid, 2nd order
——=a—— Uniform Grid, 3rd order
—.—m—-— Uniform Grid, 4th order

----0---- Curvilinear Grid, 2nd order ! !
——o—— Curvilinear Grid, 3rd order |-____._____.
1 —-=o0—-— Curvilinear Grid, 4th order : :
>
0.5

A
004 006 0.08 0.1

107

0 0.5 X 1

Fi1G. 5.5. Functional estimate errors on the
uniform and curvilinear grids.

F1G. 5.4. Example curvilinear grid with n = 48.

5.3. Nonlinear problem: Two-dimensional Euler equations. The Euler
equations model the flow of a compressible inviscid fluid. They provide a useful
verification of the present theory, since they are nonlinear. In two dimensions, the
steady Fuler equations take the form

pu pU

o | pu>+0p 0 puv ~0

oz pou oy | p2+p | 7
(e +p)u (e +p)v

where p is the density, u = (u v)7 is the velocity, e is the energy, and p is the pressure.
The Euler equations are closed using the perfect-gas equation of state and are subject
to appropriate boundary conditions. On wall boundaries, a tangential flow is imposed
by setting n”u = 0, where fi is a unit normal to the boundary. On the remaining
boundaries, incoming characteristics are set equal to the exact solution.

The Euler equations are a system of nonlinear PDEs, so some additional remarks
on their discretization are warranted. Numerical dissipation must be added to the
discrete equations to damp high-frequency modes, because the SBP operators are
nearly skew-symmetric. To ensure that the discretization is dual-consistent and stable,
we use dissipation operators of the form [22, §]

A, =H'DTv.D,,

where D, denotes an s-order undivided difference operator, ¥ is a diagonal matrix of
flux Jacobian spectral radii (see Appendix B), and H is the weight matrix from the
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first-derivative SBP operator. The operator A, is applied to the conservative variables
(p, pu, pv, e) individually. The matrix H A, is symmetric semidefinite (X contains only
positive entries), so the dissipation operator is both stable and dual consistent with
respect to the H inner product. We pair Ag with the first-derivative SBP operator
that is s-order accurate at the boundary, thereby maintaining (s + 1)-order accuracy
of the solution.*

Until now, we have discussed SAT penalties only for scalar PDEs. For hyperbolic
systems, such as the Euler equations, the SAT penalties can be applied to the incoming
characteristics by analyzing the eigenvalues of the flux Jacobian matrix; see [12] for
details of our implementation. However, this approach must be modified for the
tangential-flow boundary condition to ensure dual consistency. To avoid a lengthy
digression, the appropriate boundary treatment is analyzed in Appendix B.

We will use the two-dimensional supersonic vortex to illustrate SBP—SAT func-
tional convergence for the Euler equations. This isentropic flow has a smooth analyti-
cal solution that can be used to verify the solution; indeed, this is one of the few flows
for which an analytical solution of the two-dimensional Euler equations is known. The
streamlines of the vortex are concentric circles about the origin, and the density is
defined by (in polar coordinates)

1
-1 2 -1
p(r) = pin [1 + 7—M§1 <1 - Tﬂ)} .

2 r2

The remaining variables can be obtained using isentropic relations. The subscript “in”
indicates values along the inner radius ry,. Assuming nondimensionalized variables,
we have chosen 1y, = 1, pin = 2, Mi, = 2, and pin, = 1/, where v is the ratio of heat
capacities.

The geometry and grid topology for this example are shown in Figure 5.6. The
grid comnsists of four curvilinear blocks that conform to the radii » = 1 and r = 3.
Angular perturbations have been introduced in the radial grid lines to prevent error
cancellations that may appear with orthogonal grid lines.

An inviscid-wall boundary condition is applied along the inner radius, 99, =
{r=1,0 € [0,7/2]}, and characteristic-based SATs supply the exact solution along
the remaining boundaries. The functional is the force in the x direction on the bound-
ary 0Qi,. The functional’s exact value is FF = —1/~.

We use a set of six grids for the grid refinement study. The finest grid consists
of 321 x 321 nodes on each block, or 412164 nodes in total. The five remaining grid
levels are obtained by successively removing every other node from the finest grid.
The grid in Figure 5.6 is the second coarsest grid (21 x 21 nodes per block). The
fourth-order SBP stencil is not compatible with the coarsest grid in the set, so only
five-grid levels are used with the fourth-order operator.

We begin by examining the L? error in the solution. Figure 5.7 plots the error in
density versus the normalized mesh spacing h;/hg, where h; = 1/n is the mesh spacing
on a block of grid level i. Results from second-, third-, and fourth-order accurate
SBP operators are included, and both dual-consistent and dual-inconsistent boundary
treatments are shown; the boundary treatments are described in Appendix B. The
figure demonstrates that the discretizations obtain their designed order of accuracy.
Moreover, dual-consistency has very little impact on the solution’s order of accuracy.

4In the notation of reference [22], the present dissipation operators do not use an operator B
whose entries decrease to O(h®~1) toward the boundaries, so As must use a wider stencil than the
dissipation operators of [22] to obtain the necessary accuracy.
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Fic. 5.6. Geometry and grid topology for the inviscid-vortexr study.

----m---- Dual Consistent, 2nd order ----m--- Dual Consistent, 2nd order
——=—— Dual Consistent, 3rd order ——a—— Dual Consistent, 3rd order
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©,
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F1G. 5.7. Vortex flow, L? error in p. F1c. 5.8. Vortex flow functional error.

TABLE 5.4

Convergence rates of the dual consistent and dual inconsistent functional estimates for the
vortez-flow example.

Dual consistent Dual inconsistent
n 2nd 3rd 4th 2nd 3rd 4th
20 1.32696  4.32777 — 2.10279  1.67020 —
40 1.72834  4.17770  5.79869 1.95301  2.42847  3.66070
80 1.87561  3.96340  6.27190 1.93302  2.72474  3.84329
160 1.95240 3.91546  6.46379 1.95034  2.85689  3.90725
320 1.97473  3.93968 6.50283 1.97506  2.92272  3.93769

Next, examine the functional error, plotted in Figure 5.8. Here we see a significant
difference in error between the dual-consistent and dual-inconsistent discretizations
(note the different y-axis range from Figure 5.7). Table 5.4 lists the order of accuracy
of the functional estimates. As predicted by the theory, the third- and fourth-order
dual-consistent SBP discretizations produce superconvergent functionals.
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6. Conclusions. Diagonal-norm SBP operators have interior stencils that are
2s-order accurate and boundary closures that are s-order accurate. This reduction
in accuracy at the boundary is required to guarantee time stability. The boundary-
stencil accuracy limits the global solution accuracy to O(h**1) at best.

Nevertheless, we have shown that SBP-SAT discretizations lead to functional
estimates that are O(h?*). To achieve this superconvergence, the functional and SATs
must be carefully discretized to ensure that the SBP—SAT method is dual-consistent.

The superconvergence of SBP—SAT functional estimates was illustrated using a
two-dimensional Poisson PDE and the Euler equations. The theory was verified in the
presence of curvilinear grids and multiblock grids with interfaces. Dual-inconsistent
boundary conditions and functional estimates were shown to destroy superconver-
gence. In addition, superconvergence requires the primal and adjoint solutions to be
sufficiently smooth; this was illustrated by considering a particular functional in the
Poisson PDE example.

Appendix A. Proof of Theorem 6.

THEOREM 6. Let Q, and Q¢ be connected compact subsets of R?. Furthermore,
let T : Qy — Q¢ be a C** invertible mapping. For grids based on the uniform dis-
cretization of Q¢ and mapped to Q using T, the quadrature

(4.3) Th(u) =u(H® H)J

is a 2s-order accurate estimate to the integral

(4.4) ) = / | Udsdy

for U € C?%(Qy).

Proof. Expanding the Jacobian in the change of variable theorem, we find

(A1) / /Q udriy = / | uddedn

:/ ug—z?dgd —// ugggxdgd

Expressing the first integral as an iterated integral, we have

Ox Oy ! [ ! < 8y) }
(A.2) /quafandgd _/n_o /5_0 u fdg

If we associate the term U(Qy/0n) with Z in Lemma 3, we can express the inner
integral as

1
ay) Oz — _N\T — 2
U= ) —=déE=(uo HDz + O(h~*
[ (w5 e = o) (1)
= (wo Dz)" Hy + O(h*),
where we have introduced the following vector functions of length n + 1:
_ T
_/ oy Jy T
g = [$hom) BEEum - B

2(n) = [z(éo,n) x(Em) - @(Enm]”
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For notational convenience, we define w = H (o D). Substituting the above expres-
sion for the inner integral into (A.2), we have

! ! oy \ Ox 1 s )
Uz | 5 %| dn= dn + O(h*
/n—o[/g—o( an>ag 5] g /n_wy n+0(h™)

n

0
= Z /:0 @i(n)g—z(&,n) dn + O(h*?).

We can invoke Lemma 3 on each integral in the above sum. Hence,
Ox Oy T 9
U——-=d&dn = He)(D®I O(h=®
[ uGegdedn = w1 & (D Dy +00)
¢
=[uo(I®D)x)]"(I® H)(H ®I)(D®I)y+ 0(h*)

(A.3) =" (H © H) [(D¢x) o (Dyy)] + O(h**),

where w, u, z, and y are vectors on the whole grid corresponding to the n discretization

of w, u, T, and g, respectively.
The analysis above can be repeated to show

(A.4) / . ug—g g—zdgdn =uT(H ® H) [(Dey) o (Dyz)] + O(h*).

Using (A.3) and (A.4) in (A.1), we find

/ [ ugdgin = u(H © H) [(Der) o (D) ~ (Dew) o (Dy)] + O(h*)
=u(H ® H)J + O(h*),

which is the desired result 0

Appendix B. Dual-consistent tangential-flow boundary condition and
force functional for the Euler equations. We will illustrate the appropriate dual-
consistent inviscid-wall SAT boundary treatment using the linearized one-dimensional
Euler equations

0
B.1 —(AQ)=0 v 0,1
(B.1) = (4Q) rel01]
where Q = [p, pu, €]’ and A is the 3 x 3 (constant) flux Jacobian matrix evaluated at
a fixed state:

B pu
A:8_ pu? +p
Q (e +p)u

We impose a boundary condition at = 0 that mimics the tangential-flow boundary
condition in two or three dimensions:

0 0 0
PQ=10 arT 0| Q=0,
0 0 0
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where n = 1. Note that P is an orthogonal projection matrix, and its definition
remains valid in multiple dimensions provided 7 is a unit normal vector to the solid
wall.

The SBP-SAT discretization of (B.1) on a grid with n 4+ 1 nodes is (ignoring the
SAT at = = 1 for simplicity)

(D®I3)Agy = — [(H 'esel) @ (I3 — P)| Ag, — [(H 'ec el ) ® P] Sqn,

where g, € R3"*+1 is the discrete solution vector and I3 is the 3 x 3 identity matrix.
The matrix A is block diagonal and holds the flux Jacobian matrix at each node, and
3 is a diagonal matrix containing the spectral radii, o, of the flux Jacobian matrices.
Specifically, we have that

A= dla'g (A07A17 s 7ATL)7
Y= diag (130'0, I30'1, e ,I3(Tn).

The SAT penalty at = 0 is unusual, insofar as it consists of a penalty on the flux
and a penalty on the variable.

The above discretization will be dual-consistent for the pressure force at the left
boundary if this functional is evaluated as

In = —g" P (Ao — I300) qo,

where g7 = [0 #7 0]. The unit normal vector ¢ gives the direction of the desired
force; here it can take on only the scalar values 1 or —1, but in multiple dimensions
it will define the direction of lift or drag.

If we now follow the algebra in Theorem 4, but replace the scalar hyperbolic
PDE with the linearized Euler equations, we arrive at the following discrete adjoint
equation:

AT (D@ I3)vp = (AT = %) [(H 'esel) @ P] (va — g).

The difference AT — ¥ ensures that the adjoint SAT penalty is applied to waves that,
in the primal equation, are exiting the domain or stagnant (one of the wave speeds
is zero at the wall). This is a stable boundary treatment for the adjoint variables.
The boundary condition enforced is P(vy — g) = 0; i.e., the normal component of the
adjoint variables corresponding to momentum is equal to the normal component of g.
This is the correct boundary condition for the dual equations.
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