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Abstract 

Rice bran oil was extracted using environmentally-friendly supercritical carbon dioxide at 

varying conditions. Experimental treatments included pressure (27.6, 41.4 and 55.2 MPa), 

temperature (40 and 60 oC) and flow rates (25, 45 and 65 g/min) of supercritical carbon dioxide. 

Extracts collected at different time intervals during 4-hour extraction runs in a 3-L extractor were 

analyzed for oil yield and antioxidants. Normal-phase HPLC was used for analyzing the extract 

for important antioxidant compounds of oryzanol, tocopherols, tocotrienols.  Silica rich rice hull 

ash adsorbent was also incorporated in combined extraction-adsorption experiments under 

similar supercritical fluid conditions. Supercritical extraction yields of rice bran oil and 

antioxidants were compared with 6 -hour Soxhlet extraction using petroleum ether solvent. Total 

oil extract yields for SFE (17.26-18.52 %) and experiments conducted with ash (17.35-18.99 %) 

for the extraction conditions of higher pressure (55.2 MPa) and flow rates (65 g/min) were 

comparable to the ether extractable oil yield (17.88 %). Extract yield significantly increased 

(p<0.05) with an increase in pressure and flow rate. However, the temperature effect on extract 

yield was not significant. Antioxidant extraction significantly increased with increased pressure, 

but not with increased flow and temperature. These behaviors with pressure, flow and 

temperature were similar for oryzanol, tocopherols and tocotrienols. Rice hull ash adsorbent did 

not significantly affect oil yields, but did influence the antioxidants in the extract. A much 

greater ash adsorption effect for noted for oryzanol, which was different from the effect that was 

seen for of vitamin E components. A separate batch adsorption study carried out at different 

temperature (20, 30, 40 oC) for varied time intervals also showed similar adsorption behavior. 

Freundlich isotherms successfully described adsorption behavior of the antioxidant compounds 

in the batch study using rice bran oil-hexane miscella. Freundlich fitting parameters (k and 1/n) 

were used to plot Van’t Hoff- Arrhenius equations and calculate the change in enthalpy value 



 xiii

(∆H) due to adsorption of antioxidants. Goto et al. (1993) model was applied to extraction yield 

data and successfully characterized extraction behavior. Values of partition coefficient K and 

mass transfer coefficient Kp were calculated and reported.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1

Chapter 1 

Introduction 

1.1 Rice Bran  

Rice (Oryza Sativa L.) is grown over vast areas of land around the world and is a major 

staple food for more than half of the world population (Juliano, 1985). The Asian continent 

accounts for approximately 90 percent of rice production and is also the major consumer. In 

1999-2000, land devoted to world rice production was 381 million acres. In 2004 –2005, global 

rice production was forecasted to be 397.8 million tons (milled basis). (Economic Research 

Service, 2004). The US share in global rice production is around 1.5 –2 %. Recently, US 

domestic market has grown to 60 percent of production. American rice production is 

concentrated mainly in the south with Arkansas contributing a projected 4.81 million tons of the 

10.23 million tons of US rice production forecasted for 2004-05. Louisiana ranks second in the 

total area and third with respect to total production of rice and is projected to contribute 28.1 

million cwt of rice (Rice Outlook, 2004). Per capita consumption of rice in Asia was estimated as 

104.32 kg per annum whereas the average global consumption per capita is 65.77 kg. American 

per capita consumption is 12.25 kg/year, but has nearly doubled in the past 20 years (Economic 

Research Service, USDA, 2004) 

Rice is an excellent source of nutrients, where protein contains the eight essential amino 

acids. Rice is a relatively good source of thiamin, riboflavin, niacin, phosphorous, iron and 

potassium and is also a good source of carbohydrates, which serves as a form of energy. Non-

allergenic and gluten-free characteristics make rice ideal for persons with these special dietary 

requirements (USA Rice, 2004).  
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Harvested rice is in the form of rough rice (paddy) with the edible portion covered with 

an outer protective layer known as the husk or hull. After being dried, the rice passes though 

sheller machines to remove the hull material. Shelling produces brown rice, with a thin bran 

layer surrounding the rice kernel. Abrasive forces in the milling machine remove the outer bran 

layer on the brown rice and the resultant product is white rice. White rice is consumed after 

appropriate polishing to further remove any remaining bran layers and to give a desired degree of 

whiteness and polish. The rice hull and rice bran are obtained as by-products of the rice milling 

industry (Juliano, 1985). 

Rice bran, which includes the pericarp, the aleurone and subaleurone layers, parts of the 

germ and the embryo as well as small portions of the starchy endosperm (Houston, 1972; 

Saunders, 1990), is a valuable milling by-product.  After milling, the immediate stabilization of 

rice bran using thermal treatment techniques deactivates enzymes responsible for its degradation. 

Stabilized rice bran is free from rancidity, off flavors, and bitter and soupy taste, and is suitable 

for further use and processing. (Randall et al., 1985; Saunders, 1986). Rice bran had gained 

significant attention after adequate progress in its stabilization techniques (Sarkar and 

Bhattacharya, 1991; Sivala et al., 1993; Proctor and Bowen, 1996; Lloyd et al., 2000). Bran, 

10% of the weight of rough rice, is rich in oil (15- 22 %), depending on the milling procedure 

and the rice variety (Houston, 1972; Martin, 1994).   

1.2 Rice Bran Oil and Its Nutritional Benefits 

Rice bran is nutritionally rich, with 16 –22% lipid, 12 –16 % protein, 8-12 % crude fiber 

and high levels of other vitamins and minerals (Saunders, 1990). The high content of lipid makes 

bran a commercially viable feedstock for oil extraction. Rice bran has received increased 

attention as a product mainly due to the nutritional benefits of these lipid compounds. Crude rice 

bran oil contains triglycerides (68-71%), diglycerides (2-3 %), monoglycerides(5-6%), free fatty 
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acids (2-3 %), waxes (2-3 %), glycolipids (5-7 %), phospholipids (3-4 %)  and  unsaponifiables 

(4%) as lipids (McCaskill and  Zhang,1999). Rice bran oil(RBO) also contains nutritionally 

important antioxidant compounds, which include oryzanols, tocopherols and tocotrienols 

(Godber et. al., 1994). These antioxidant compounds are beneficial in lowering cholesterol as 

well as preventing cardiovascular diseases (Lloyd et al., 2000).  Tocopherols are also believed to 

have anticancer effects (Tarber and Packer, 1995; Dunford, 2001). Oryzanols are also believed to 

have cholesterol-reducing effects (Nicolosi et al., 1992; Dunford, 2000). 

1.3 Extraction of Bran Oil and Supercritical Fluid Extraction 

As a result of developments in the stabilization of rice bran and the increase in 

knowledge about health benefits associated with rice bran oil, extraction of RBO has received 

greater attention (Sayre et al., 1985; Kim et al., 1987; Sarkar and Bhattacharya, 1991; Gopala 

Krishna, 1993; Sivala et al., 1993; Proctor et al., 1994; Proctor and Bowen, 1996; McCaskill and 

Zhang, 1999; Lloyd et al., 2000). Solvent extraction is the conventional method used for 

recovery of lipids from rice bran. This extraction practice uses highly toxic and flammable 

solvents like hexanes, petroleum ether, isopropanol, etc. These solvents also have problems 

associated with waste disposal due to increased environmental concerns and regulations. Toxic 

solvent residues in the final food product are another concern. These issues have promted 

scientists to search for alternative non-hazardous extraction techniques, of which supercritical 

fluid extraction (SFE) is a prominent alternative technique that promises to meet a growing 

demand for natural, green and organic extracts from food and biological materials. Supercritical 

carbon dioxide is the most widely used supercritical solvent in the food industry (Rozzi and 

Singh, 2002). Apart from carbon dioxide’s non toxic and non–flammable nature, supercritical 

carbon dioxide extraction also offers the most important advantage of varying the extraction 

power of solvent by changing operating conditions such as pressure, temperature and flow rate. 
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This provides selective extraction and fractionation capabilities to the process. Carbon dioxide 

has a low critical temperature (31oC) making this SFE solvent ideal for biological materials like 

rice bran because of the possible degradation of  thermally-labile bioactive compounds at higher 

temperatures. 

1.4 Rice Hull  

The rice hull (husk) also constitutes an important by-product of the rice milling industry 

as it accounts for approximately 20% of the paddy’s weight. Rice husks are rich in cellulose (28-

36 %), crude fiber (34.5-45.9 %) and ash (13.2 –21.0 %) (Juliano, 1985). The milling method 

and the rice variety influence the constituents in rice husk by- product. The environmentally 

sound disposal and use of large quantities of hull is a challenging issue for rice processors around 

the world. The use of rice hulls as animal feed has been reported in many countries like India but 

its value as a feed is still debated (Govind Rao, 1980). Increasing environmental concerns 

prevent the open burning of rice hulls and its low bulk density makes land filling costly due to 

the associated high transportation cost (Vallupilai et al., 1997). In countries like the US, where 

the rice milling industry is well organized and mills are large, rice hulls are burnt to generate 

thermal power for drying and other mill operations. Rice hull energy content ranges between 

13.8 –15 MJ /kg (Juliano, 1985). Alternatively, one ton of rice husk is equivalent to 0.48 ton of 

coal or 0.36 ton of fuel oil (UNIDO, 1984). Agri-electric Corporation in Lake Charles, 

Louisiana, has successfully operated an electric generation plant based on rice hulls for the past 

twenty years and is providing directions for the use of rice hull for energy generation. 

1.5 Rice Hull Ash and Adsorbent Properties 

    Rice husk ash (RHA) is an end product of the combustion of rice husk (or hull). Rice husk 

contains 13.2-21.0 % crude ash (Juliano, 1985). The bulk density of RHA is around 2,000 –2,300 

kg/m3 (UNIDO, 1984). This hull ash also poses a potential waste disposal problem unless used in 
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a beneficial way. The chemical composition of ash varies according to the conditions in the 

gasifier used for burning the husk. RHA has a very high content of silica, which has very good 

absorbent properties. RHA has been used in cement manufacturing (Mehta and Pitt,1976; Cook 

and Suwanvitaya, 1981; Hamad and Khattab 1981; UNIDO,1984; Luh,1991). The ash has also 

been used as an antiskidding agent and in rubber compounding (Luh, 1980, 1991), an insulating 

material  (Beagle,1978; Govind Rao,1980; Juliano,1985; Luh,1991) and  soil conditioning agent 

(Beagle,1978; Govind Rao,1980; Sistani et al., 1997). In recent years, RHA has also been used 

as an adsorbent for wastewater components (Beagle, 1978; Mamipitiyarachchi, 1981; Pandya et. 

al., 1985; Ahmed and Ram 1992; Tiwari et al., 1995) and for oil components like free fatty acids, 

lutein, phospholipids and carotene  (Brown and Snyder, 1985; Proctor and Snyder, 1987; 

Palaniappan, 1989, 1990; Palanippan and Proctor, 1990; Proctor et al., 1995; Liew et al., 1993; 

Farook and Ravendran, 2000; Chang et al., 2001; Chou et al., 2001).  

1.6 Problems and Justification for Present Study 

RBO has many medicinal and nutritional benefits (Orthpoefer,1996; McCaskill and 

Zhang, 1999), whereas RHA has high absorption properties for various natural oil components. 

Interest in environmentally friendly supercritical extraction technology is growing rapidly and is 

considered a promising extraction technique available for food and biological materials 

(Mohamed and Mansoori, 2002). Supercritical CO2 extraction was observed to out-perform 

solvent (hexane and isopropanol) extraction for the extraction and fractionation of RBO and 

important components (Xu and Godber, 2000). Several studies address the supercritical 

extraction of RBO (Zhao et al.,1987; Ramsay et al., 1991; Saito et al.,1993; Gracia et al., 1996; 

Shen et al., 1996; Kuk  and Dowd, 1998; Kim et al., 1999; Dunford and King, 2000; Xu and 

Godber, 2000; Badal, 2002), but  more research efforts are needed to determine the best 

extraction conditions for various useful components of RBO such as tocopherols, tocotrienols 



 6

and oryzanols at the pilot scale. This would increase our understanding related to the 

fractionation of these compounds in RBO as related to the operating conditions of the SFE under 

large-scale extractions. Although the absorption of soya, sesame, palm and other oils by RHA 

have been studied (Brown and Snyder 1985, Proctor and Snyder, 1987; Proctor and Palaniappan, 

1989, 1990; Palanippan and Proctor, 1990; Proctor et al., 1995; Liew et al.  1993; Farook and 

Ravendran, 2000; Chang  et al., 2001, Chou et al., 2001), none have reported the absorption of 

RBO by RHA. Also, the combined effect of SFE and adsorption of the RBO on RHA have not 

been reported.  

   Therefore, the present study is an attempt to discern the effect of different supercritical 

extraction conditions on the extraction of nutritionally important RBO components and their 

absorption on RHA, using a pilot scale extractor. This would effectively combine the application 

of two rice milling by-products in a single step and also identify another way for separation and 

concentration of nutritionally and medicinally important components of RBO. 

1.7 Objectives 

The present study was carried out with the following specific objectives: 

1. Evaluate different supercritical CO2 extraction conditions for the extraction of rice bran 

oil and the fractionation of its important components at pilot scale. 

2. Study industrial rice hull ash for the adsorption of rice bran oil and fractionation of its 

components in the supercritical extractor. 
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Chapter 2 

Review of Literature 

2.1 Rice Bran and Rice Bran Oil  

2.1.1 Physiology and General Characteristics 

 Rice cultivation is almost 7000 years old. The USA is one of the major exporters (4th) of 

rice despite its low share (1.5- 2 %) in global production. This is due to relatively low domestic 

consumption (12.25 kg/year per capita) compared to other major rice producing countries, where 

domestic production and consumption rates (up to 104.32 kg/year in Asia per capita) are high. 

Rice production in the USA is concentrated in six regions among which Louisiana is 3rd after 

Arkansas and California (Economic Research Services, USDA, 2004). In 2002, Louisiana 

produced 1,392,129 metric tons of rice from over 531,791 acres, representing $122.8 million in 

gross farm value. Additionally, marketing, processing and transportation of rice added $159.6 

million. (Louisiana Summary, 2002).  

Rough rice (paddy) (Figure 2.1.1.1) is composed of a white starchy rice kernel tightly 

surrounded by a coating of bran, enclosed in a tough siliceous hull. The outer most layer of the 

husk contains very little nutrients, but provides protection against insect infestation and fungal 

infestation (Juliano, 1985; Hu, 1995). Removal of the hull from the rice kernel in rice processing 

results in brown rice, which is called shelling. Brown rice consists of the endosperm (major part 

of rice, which is rich in starch and protein), surrounded by the outer bran layer rich in lipid, 

protein and crude fiber. When the husk is removed from paddy by shelling, the bran layer comes 

in direct contact with air, resulting in the development of off-flavor in brown rice due to its lipase 

enzyme. This makes it unacceptable to consumers. Moreover, the look of brown rice is not 

appealing due to its color (Saunders, 1990; Hu, 1995). Further processing of rice is required to 

remove the bran layers from brown rice to produce white rice (Barber and Barber, 1980; Hu  
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Figure 2.1.1.1 Rice kernel (Juliano, 1985) 
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1995). The process of removing the outer bran layer, which uses abrasive or frictional force, is 

known as milling or polishing. 

Rice processing, until the past few years, was confined to drying, shelling, milling and 

polishing to produce white rice, resulting in loss of many nutrients through bran removal. The 

effective utilization of rice bran layers is possible by deactivating the lipase enzyme responsible 

for the hydrolytic degradation of rice bran constituents (Martin, 1994). Successful developments 

and use of various techniques, mainly heat and chemicals, to stabilize rice bran has occurred in 

the past two decades (Barber and Barber, 1980; Sayre et al., 1982; Rhee and Yoon, 1984; Juliano 

1985;  Randall et al., 1985; Prabhakar and Venkatesh, 1986; Saunders, 1990; Champagne et al., 

1992; Malekin, 1992; Martin, 1994; Shin et al., 1997; Ramezanzadeh et al., 2000;  Lakkakula et 

al., 2004). This has resulted in the emergence of rice bran as an important by-product of the rice 

milling industry.  

The rice caryopsis is made of the pericarp (1-2%), aleurone, seed coat and nucellus 

(combined 4 %), embryo (2%) and endosperm (89 %). Rice bran is composed of fractions from 

the pericarp, the aleurone, the sub-aleurone layers, the seed coat, the nucellus along with the 

germ, or embryo, and a small portion of endosperm (Houston, 1972; Juliano, 1985; Salunkhe et 

al., 1992; Hargrove, 1994). The percentage and composition of rice bran vary according to the 

rice variety, any pretreatment before milling, such as parboiling, the type of milling system and 

the degree of milling (Gopal Krishna et al., 1984; Juliano, 1985; Saunders, 1990). Rice bran has 

a light tan color and is oily with a bulk density of 36.8-40.0 g per 100 ml, and constitutes almost 

10 % of the rough rice weight (Houston, 1972; Hu, 1995). After a typical milling operation, 

nearly 86 –90 % of rice bran particles are typically less then 0.70 mm in size while 6-13% range 

between 0.70-0.85 mm ( Juliano, 1985, Hu 1995 ). Rice bran contains 12-22 % oil, 11-17% 

protein, 6-14%  fiber, 10-15% moisture and 8-17% ash (Saunders, 1990; Xu, 1998) (see Tables–
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2.1.1.1 and 2.1.1.2).   Rice bran is rich in vitamins and minerals, including vitamin E, thiamin, 

niacin, aluminum, calcium, chlorine, iron, magnesium, manganese, phosphorus, potassium, 

silicon, sodium and zinc (Juliano, 1985; Sunders,1990; Hu,1995; Xu,1998). 

The importance of rice bran as a processed product is mainly attributed to its lipid 

content. Interest in rice bran oil is growing due to its various beneficial effects on health. Rice 

bran contains on average 16-22 % oil (Saunders, 1990). In 1996, world rice bran oil (RBO) 

production was 450,000 metric tons (MT), of which 100,000 MT was produced in Japan. USA   

RBO production potential was estimated to be 82,000 MT (Orthoefer, 1996). RBO is widely 

used as edible oil in several countries such as Japan, Korea, China, Taiwan, Thailand and 

Pakistan (Ruknmani and Raghuram, 1991). Crude rice bran oil contains 88 –89 % neutral lipids, 

2-4 % free fatty acids (FFA), 3-4% waxes and 4.2 % unsaponifiables (Orthoefer, 1996). RBO 

composition may vary according to the rice variety, composition of bran and the procedure 

employed for extracting bran (Fujino, 1978; Salunkhe et al., 1992). The composition of crude 

RBO is given in Table 2.1.1.3 whereas Table 2.1.1.4 gives details of important characteristics of 

rice bran oil. Rice bran oil has oleic acid (38.4 %), linoleic acid (34.4%) and linolenic acid 

(2.2%) as unsaturated fatty acids, and palmetic (21.5%) and stearic acid (2.9%) as saturated 

fatty-acids (Rukmani and Raghuram, 1991; Xu, 1998). Three major fatty acids palmitic, oleic 

and linoleic, make up 90 % of the total fatty acids of the rice bran oil. Rice bran is a good source 

of linoleic acid that is essential to human health (Ramezanzadeh et al., 2000). The free fatty acid 

(FFA) composition of RBO is similar to peanut oil except for unsaponifiable portion. Table 

2.1.1.5 and 2.1.1.6 compares the fatty acids and sterols in rice bran and other vegetable oils.  

2.1.2 Nutritional Aspects of Rice Bran Oil 

In Japan, rice bran oil is popularly known as heart oil because it controls cholesterol 

(Sarkar and Bhattacharya,1991). The growing interest in rice bran oil is due to its high 
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Table: 2.1.1.1 Composition of rice bran 

Component %  

Protein 

Oil 

Ash 

Carbohydrates 

Fiber 

     Crude 

        Total dietary 

            Soluble  fiber 

            Insoluble fiber

15 

18 

7 

50 

 

7 

28 

2.4 

25.6

                   Source : Orthoefer (1996) 

 

Table: 2.1.1.2 Composition ranges and caloric content of different rice bran 

Type of Bran Moisture  

      % 

Protein 

% 

Fat 

% 

Crude 

Fiber 

% 

Ash 

% 

Calories  

per g 

Rice bran 8-12 12-16 16-22 8-12 7-10 3.2 

Parboiled rice bran 

( without calcium carbonate) 

7-9 17-20 25-32 12-15 8-10 3.5 

Parboiled rice bran 

(with 4-6% calcium carbonate) 

7-9 14-18 23-27 10-13 10-13 3.5 

     Source: Saunders (1990) 
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Table 2.1.1.3 Composition of crude rice bran oil 

Component % 

Saponifiable lipids 

   Neutral Lipids  

90-96

88-89

     Triglycerides 83-86

      Diglycerides 

      Monoglycerides 

      Free fatty Acids 

3-4 

6-7 

2-4 

      Waxes 3-4 

  Glycolipids 6-7 

   Phospholipids 

Unsaponifiable lipids

4-5 

4.2 

   Phytosterols 43 

   Sterolesters 

  Triterpene alcohols 

10 

28 

   Hydrocarbons 18 

   Tocopherols 1 

                                              Source: Orthoefer (1996) 

Table 2.1.1.4 Characteristics of refined rice bran oil 

Characteristic Value for  rice bran oil

Acid value 1.2 

Iodine value 99-108 

Saponification value 180-190 

Smoke point 213 oC 

Fire point 352 oC 

Cloud point 17 oC 

Refractive index 25 oC 1.470-1.473 

Specific gravity   0.916-0.921 

Source: Saunders (1991), Rukmini and Raghuram (1991)  
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Table: 2.1.1.5 Comparison for fatty acid composition and physicochemical parameters for  
       rice bran oil and other vegetable oils (% of total lipid) 
 

  Fatty acid Rice 

 bran  

Palm Peanut Cotton  

seed 

Corn Soybean Safflower 

Palmitic 

C16:0  

17 43 14 23 11 10 6 

Stearic 
C18:0  

2 4 3 3 2 4 2 

Oleic 

C18:1 

40 37 39 17 24 23 12 

Linoleic 

     C18:2 

34 9 36 51 58 51 74 

Linolenic 

     C18:3 

1 - - - 1 1 1 

Source: Saunders (1991)  

Table 2.1. 1.6  Comparison of  sterols and triterpenes in different oils (% in oil) 

 Oil Campesterol Stigmasterol β-
sitosterol 

Cycloartanol Cycloartenol 24-
methylene  
Cyloartanol 

Rice Bran 0.506 0.271 0.885 0.106 0.482 0.494 

Safflower 0.045 0.031 0.181 0.001 0.034 0.007 

Corn 0.410 0.110 1.180 0.004 0.008 0.011 

Sunflower 0.031 0.031 0.235 ------- 0.029 0.016 

Cottonseed 0.017 0.004 0.400 ------ 0.010 0.017 

Sesame 0.117 0.062 0.382 0.004 0.062 0.107 

Soybean 0.072 0.072 0.191 ------- 0.168 0.008 

Groundnut 0.036 0.021 0.153 0.001 0.011 0.016 

 Source : Rukmani and Raghuram (1991) 
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unsaponifiable level (4.2 %) compared with other vegetable oils (Orthoefer, 1996; Lloyd et al., 

2000; Dunford, 2001). Rice bran is a rich source of vitamin E (∼300 mg/kg) (0.1-0.14%). Rice 

bran contains the major vitamin E components such as tocopherols (α, β, γ and δ) and 

tocotrienols (α, β and γ). Rice bran also has a high concentration of oryzanols (∼3000 mg/kg) 

(0.9-2.9%). The unsaponifiable portion of RBO contains a unique complex of these naturally 

occurring antioxidant compounds, where tocopherols make up 1.0 % of unsaponifiables and 

tocotrienols make up about 1.7% of unsaponifiables. (Kato et al., 1981; Sayre and Saunders, 

1990; Hu, 1995; De Deckere and Korver, 1996; Shin et al., 1997; Xu and Godber, 1999; Lloyd et 

al., 2000; Xu et al., 2001). 

Oryzanols, tocopherols and tocotrienols, as antioxidants, give improved stability to the 

rice bran lipids and also improve the frying quality of the rice bran oil ( Llyods et al. 2000; Yuki 

and Ishikawa,1976; Duve and White, 1991; Sonntag, 1997; Xu, 1998). RBO also has a good 

balance of linoleic and oleic acids and has a low level of linolenic acids. Gamma oryzanol 

reduces cholesterol absorption (Rong et al, 1997) and reduces harmful cholesterol (LDL) without 

reducing good cholesterol (HDL). Oryzanols have been reported to promote growth, 

gonadotrophoic action, hypothalamus stimulation and hypolipidimic effects (Sugano and Tsuji, 

1997). The antioxidant properties of these compounds were found to protect against vascular 

diseases and cancers in biological systems that result generally from cell damage caused by free 

radicals (Komiyama et al., 1992; Nestaretnam et al., 1998; Xu, 1998) and serum cholesterol  

(Orthoefer and Nicolosi, 1993). Various compounds of tocopherols and tocotrienols make up 

Vitamin E, which is a fat soluble antioxidant that protects cell membranes by blocking the 

oxidation of the unsaturated fatty acids and acting as a scavengers of free radicals (Bourgeois, 

1992; Hu, 1995).  Rice bran oryzanol has also shown a beneficial effect for the treatment of bone 

osteoporosis ( Godber et al., 2001). 
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2.1.3 Chemical Composition and Structure of Important Components of Rice Bran Oil 

Several studies have reported the details and composition of important components of 

rice bran oil. Oryzanols are a mixture of ferulate (4-hydroxo-3- methoxycinnamic acid) esters of 

sterols (campesterol, stigmasterol and β-stigmasterol) and triterpene alcohols (cycloartenol, 24-

methylenecycloartanol, cyclobranol). Major portions of γ-oryzanol are cycloartenyl ferulate, 24–

methylene cycloartanyl ferulate and campesteryl ferulate (see Figure 2.1.3.1).  γ -Oryzanol is 1.5 

–2.9 % of rice bran oil, is white or yellowish, tasteless powder with little or no odor and has a 

melting point of 137.5 to 138.5oC (Okada and Yamaaguchi, 1983; Juliano, 1985; Budavari et al., 

1989; Hu, 1995, Xu, 1998; Xu and Godber, 2000).  

Vitamin E, which is a mixture of tocopherols and tocotrienols, is a pale-yellow, viscous oil 

with a boiling point range of 200-220 oC at 0.1 mm Hg ( Budavri et al., 1989, Hu, 1995). 

Tocopherols and tocotrienols differ in the number and position of methyl groups on the fused 

chromonol ring, and the absence and presence of three double bonds in isoprenoid side chain 

(Figure 2.1.3.2) (Hua, 2000).  Major forms of tocopherols in rice bran oil are 5,7,8- 

trimethyltocol (α-tocopherol), 7,8-dimethyltocol (γ-tocopherol) and 8-methyltocol (δ-

tocopherol). Similarly, major tocotrienol forms are 5,7,8-trimethyltocotrienols (α-tocotrienol), 8- 

dimethyltocotrienol (γ-tocotrienol) and 8-methyltocotrienol (δ-tocotrienol) (Diack and Saska,  

1994; Hu, 1995; Xu, 1998; Xu and Godber, 1999; Hua, 2000). 

2.2 Rice Hull and Rice Hull Ash  

2.2.1 General Introduction 

The rice hull (husk), which is the outer fibrous layer of the rice kernel, constitutes 

approximately 20% of the weight of paddy grain being processed. The production of over 510 

million tons of rice produces nearly 100 million tons of rice hulls available from rice mills 
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                Figure 2.1.3.1 Structures of major components of oryzanols  (Hua, 2000) 

 

 

Figure 2.1.3.2 Structures of tocopherols and tocotrienols (Hua, 2000) 
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 (Vellupillai et. al, 1997). The environmentally sound disposal or use of large quantities of rice 

hulls is a challenging issue associated with growing rice production. Rice husks, whose 

constituents are influenced by the milling method and variety, are rich in lignin, cellulose and 

ash. Table 2.2.1.1 and 2.2.1.2 gives the average composition of rice husks and rice hull ash 

respectively.  

Over the past several years, attempts have been made in many parts of the world to 

utilize large quantities of rice hulls from rice mills in a beneficial way. Houston (1972), Beagle 

(1978) and Govind Rao (1980) had reviewed and listed various potential uses of rice husks. 

These include animal feed, bedding materials, soil conditioner, fertilizer, bio-fuel, a source of  

organic and inorganic chemicals, carbon, abrasives components, refractory and insulating 

materials, paper and board manufacturing, etc.  An increased energy cost in all parts of the world 

has lead to increased applications and use of rice hulls as a renewable source of energy. The rice 

hull energy content at 14.0 % moisture content is 11.9 – 13.0 MJ/kg (5,116.5-5,589.4 Btu/lb) 

(Vellupillai et. al., 1997). In developing countries, like India, where rice milling industries are  

small and scattered, hulls are used as a part of brick kilns, as an ingredient in dung-cake, as 

components in goldsmith or blacksmith furnaces or as a fuel for water heating systems (Govind 

Rao, 1980). In developed countries, like the US, where rice mills are operating on a large scale 

and are concentrated, rice hulls have been used to generate energy for the rice mills themselves. 

A survey of seven American states reported 10-100% rice hulls being used in rice mill boilers 

(Vellupillai et al., 1997). There is an increasing trend towards use of hulls for energy generation 

in the US because it eliminates high transportation costs for disposing this low bulk density 

product, while saving fuel costs for the rice mill. 

RHA is an end product of the rice husk energy generation system. RHA represents 

approximately 16-22 % by weight of husk (IRRI, 2003).  Based on current rice production in the 
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Table 2.2.1.1 Composition of rice hull 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source : Juliano (1985) 

Table 2.2.1.2   Composition of rice hull ash 

Constituent  Weight (%) 

SiO2 

K2O 

MgO 

Al2O3 

CaO 

Fe2 O3  

Na2 O 

93.1 

2.3 

0.5 

0.4 

0.4 

0.2 

0.1 

              Source: UNIDO (1984) 

          

 Constituent  Proportion

Crude protein (% NX6.25) 

Crude fat (%) 

Crude fiber (%) 

Available carbohydrates (%) 

Crude ash (%) 

Silica (%) 

Calcium (mg/g) 

Phosphorous (mg/g) 

Neutral detergent fiber (%) 

Acid detergent fiber (%) 

Lignin(%) 

Cellulose (%) 

Pentosans(%) 

Hemicelluloses (%) 

Total Digestible nutrients (%)

1.9-3.0 

0.3-0.8 

34.5-45.9 

26.5-29.8 

13.2-21.0 

18.8-22.3 

0.6-1.3 

0.3-0.7 

66-74 

58-62 

9-20 

28-36 

21-22 

12 

9.3-9.5 
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US, even if 25 % of the hulls were used in the mill for energy generation, 102,300 tons of rice 

hull ash would be available. RHA can be used in widely varying areas such as cement 

manufacturing, insulation and refractory material, rubber compounding, antiskiding agent, water 

treatment etc. Beagle (1978) tabulated various possible uses of RHA in his report. But until 

recently, RHA was used primarily for production of cement. Mehta and Pitt (1976) conducted 

pioneering work to design an appropriate energy generation system for the utilization of rice 

husks to produce highly reactive ash, which can be successfully utilized for cement 

manufacturing. UNIDO (1984) published a detailed report on the potential use RHA for cement 

manufacturing.  

The composition of RHA from energy production systems depends on the conditions of 

pyroprocessing. RHA is a very rich source of silica (>90 %). Typical constituents of RHA are 

listed in Table 2.2.1.2. RHA bulk density is in the range of 2,000 – 2,300 kg/m3 (Vellupillai et. 

al, 1997).  There are several studies that relate to the properties of RHA at various processing 

conditions (Hamad et al., 1981; James and Rao, 1986; Nakata et al., 1989; Proctor, 1990; 

Kamath and Proctor, 1998; Farook and Supramaniam, 2000; Kalapathy et al., 2000; Kalapathy et 

al., 2002). 

2.2.2 Rice Hull Ash as an Absorbent 

The cellulose of the rice hull is consumed in the burning process and leaves silica-rich 

ash as an end product. Due to its high silica content (>90%), RHA may serve as an excellent 

medium for adsorption processes. RHA has the potential to replace other conventional sorbent 

materials such as bleaching earth, clay, activated carbon, silicate, etc. in various industries. 

Goodwin and Mulkey (1986) have patented an adsorbent prepared from RHA mixed with alkali 

metal hydroxide and boric acid. Grease sweep consisting of RHA is used extensively for oil 

adsorption in spills and on floors in automobile workshops. In the past decade, few studies 
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relating to use of RHA as an adsorbent have been reported. These studies dealt with the 

adsorption of components from oils and wastewater. Kamath and Proctor (1998) used sodium 

hydroxide and sulfuric acid to produce rice hull silica gel (RHSG) from RHA, which was later 

compared to commercial silica gel ( Trisyl 300). It was observed RHSG had a surface area of 

258 m2/g, half that of Trisyl 300, and the particle pore diameter of 121Å was twice that of Trisyl 

300. The particle size of RHSG ranged from 5 to 45µm, whereas Trisyl 300 ranged from 5 to 

25µm. The study indicated viability of producing commercial silica gel from RHA. Kalapathy et 

al. (2000) also successfully used alkaline extraction (NaOH) and acid precipitation (HCl) for the 

production of silica gel from RHA. Kamath et al. (2002) later improved their method for the 

production of silica from RHA by using citric and oxalic acids to reduce the sodium content in 

the final product from 4 % to below 1 %.  

Few studies have examined adsorption of oil components with RHA. Soy oil adsorption 

with rice hull ash is the most extensively studied adsorption of oil on RHA. Further more, some 

of the studies indicated that adsorption characteristics of RHA were changed with acid activation 

(Pallaniappan and Proctor, 1990). When compared to that of commercial bleaching clay and 

silica hydrogel, RHA adsorbed more xanthophylls, lutein, phospolipids, free fatty acids and 

peroxides per unit of surface area. RHA was not as effective as silica hydrogel on the basis of 

weight of adsorbent used (Proctor et al., 1995). Soy oil phospholipid adsorption on acid activated 

rice hull ash was found to be higher for smaller doses of adsorbents (Proctor et al., 1992). 

Lutein’s adsorption from soy oil on RHA increased with 5 % acid activation (sulfuric acid), but 

free fatty acid adsorption from soy oil decreased (Proctor and Pallanippan, 1989&1990). Soya oil 

adsorption studies for phospholipds using silica (Brown and Snyder, 1985; 1989), and for lutein 

using silicic acid (Proctor and Snyder, 1987) have also been reported. 
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Studies of adsorption of carotene from palm oil by RHA (treated with 20 % sulfuric acid, 

followed by washing with de-ionized water) indicated that unwashed acid activated ash was 

more effective. Relative adsorptive activities of acid-treated RHA were higher than carbon and 

silica, but lower compared to bleaching clay. Activity of ash was associated with preadsorbed 

acid (Liew et al., 1993). The adsorption of monglycerides of palmitic and oleic acids was 

achieved from palm oil on RHA and yielded 15.84 mg adsorption per gram of ash in the case of 

monopalmitin (Ooi and Leong, 1991). Analysis of bleaching earth as an adsorbent for palm, 

palm kernel and coconut oil indicated surface area, particle size, pore size distribution and 

phosphorus content as important factors affecting adsorption behavior (Morgan et al., 1985). 

The bleaching of sesame oil using RHA suggested activation by H2SO4 to be more 

effective than  HNO3 and HCl. Acid activation was able to increase adsorption up to 43 %. Here, 

the increase in adsorption capacity of acid activated ash was not related to an increase in specific 

surface area but was due to increased numbers of active sites. Impurities such as Al2O3, Fe2O3, 

CaO, MgO, Mn2O, K2O and Na2O cover parts of the active sites and are removed due to acid 

activation making a higher number of the sites available for adsorption. Acid activation 

parameters such as acid type, concentration, activation time and ashing parameters such as 

ashing time and temperature may also affect adsorption efficiency of rice hull ash (Chang et al., 

2001). When adsorption efficiency of RHA for free fatty acids and carotenoids from sesame oil 

was compared with commercial synthetic silica and wood carbon (vegetable carbon), RHA 

retained most of the oil, while silica had lower retention compared to wood carbon (Jorge et al., 

2000). Studies of various parameters during the bleaching of sesame oil using acid activated rice 

hull ash indicated that RHA/acid ratio, speed of agitation during activation and pH had no effect 

on bleaching efficiency. Bleaching efficiency, however, increased with temperature up to 120oC 

(Lin et al., 2001). 
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A comparative study for the bleaching of rice bran oil, sunflower oil and groundnut oil 

with RHA prepared at 400oC for various time intervals suggested burning for 6-8 hrs produces 

ash of comparable efficiency to bleached clay (Vedanayagam et al., 1997). Decolorization 

studies on rubber and melon seed oil using fuller’s earth, activated charcoal and their mixture 

(1:1) at three different temperatures produced Freundlich and Langmuir isotherms, which 

indicated the formation of a monolayer on the adsorbent. Also, an increase in adsorption with 

temperature due to an increase in active sites (Achife and Ibemesi, 1989) was observed. Rice 

bran oil bleaching using silica gel indicated column percolation as a more efficient method 

compared to shaking and decanting (Gopala Krishna, 1992) 

Other studies involving RHA as an adsorbent for oil components include adsorption of 

saturated fatty acids (Farook and Ravendran, 2000), oleic acid (Proctor et al., 1995), lauric, 

myristic and stearic acids (Idris and Farook,1994), myristic, palmitic and stearic acids (Huseyin 

and Yuksel, 1999) and  rubber and melon seed oils (James and Rao, 1986). RHA is also suited 

for adsorption from other mediums apart from oil such as organic waste water substances from 

cargo red and vacuum pump oil in a packed bed (Chou et al., 2001), decolorization of raw sugar 

solutions (Ahmedna et al., 1997), protein adsorption (Jeyashoke et al., 1996), purification of 

bacteriocins from freeze dried culture supernatants (Janes et al., 1998), Hg (II) adsorption from 

aqueous solutions (Tiwari et al., 1995), basic blue dye adsorption from textile effluent (Ahmed 

and Ram, 1992) and adsorption treatment of textile dyes (Sumanjit, 2001)  

2.3 Properties of Rice Bran and Rice Hull Ash 

Properties of rice bran and hull ash are important for characterization and understanding 

extraction and adsorption processes. Physical properties such as particle size, shape, size 

distribution, porosity, bulk density, particle density, surface area, etc., are important for the 

present study. Tao et al. (1994) studied thermo-physical properties of bran from long and 
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medium grain varieties. They used USDA procedures for the determination of bulk density. 

Particle density was determined by taking the ratio of bran mass to the volume of solid particles 

and porosity was measured by the water displacement method. They observed the bulk density as 

0.28 –0.29 g/cm3, particle density as 1.00 –1.08 g/cm3 and porosity as 72.10- 73.00 %. DeSouza 

et al. (2000) extracted silica from rice hull using three different processes and determined 

resulting silica physical properties for prospective applications in portland cement and mullite 

whiskers. The observed surface area was 280-480 m2/g. The average particle size was between 

0.6 - 2.0 mm. James and Rao (1986) characterized silica obtained from RHA through the HF 

volatilization method using X-ray diffractrograms and a scanning electron microscope (SEM). 

Surface area was determined with a physical adsorption analyzer. Color, chemical composition, 

crystal size and surface area varied significantly according to the method of ash production and 

processing time. An X-ray diffraction and SEM study for RHA silica by Proctor (1990) indicated 

silica-rich ash was composed mostly of lower order cristobalite and tridymite, with variable 

particle size. Kamath and Proctor (1998) produced rice hull silca gel (RHSG) from RHA and 

compared their chemical and physical properties to commercial silica gel- Trisyl 300. The 

surface area of RHSG was observed as 258 m2/g with a particle pore diameter of 121 Å and 

particles size ranged from 5 –40 µm. 

2.4 Conventional Rice Bran Extraction and Processing Methods 

Some agricultural products such as cottonseed, peanut and sunflower contain a high  

percentage of oil  (30-35 %, 45-50 % and 50-55% respectively) whereas others such as soybean 

and rice bran are lower in oil (18-22% and 16-22%, respectively). High oil-bearing materials 

(>22%) are initially subjected to mechanical pressing using electric or hydraulic power and later 

extracted using solvents (Augilera and Stanley, 1990; Hu, 1995). Solvent extraction is widely 

used to extract oil from many cereals and rice bran because of its 16-18% oil and because high 
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oil recovery is achieved compared to mechanical pressing, with oil recovery of 10-12% of the 

oilseed (Juliano, 1985; Sivala et al. 1991,1993; Takeshita, 1993). In solvent extraction processes, 

solvent power of petroleum-based solvents (petroleum ether, hexane, ethyl alcohol, isopropanol, 

etc.) is used beneficially to extract lipid components from biomaterials (Salunkhe et al., 1992). 

The overall extraction process to obtain crude oil is comprised of flooding and washing lipids 

contained in the biomaterial with the solvent to produce a lipid-solvent miscella. The miscella is 

then heated to evaporate the solvent, which has a low boiling point. Hexane is the most 

predominant solvent for the extraction of rice bran oil (Johnson and Lusas, 1983). Hexane, 

however, is very toxic and exposure has a detrimental effect on the nervous system (WHO, 

1991).  

Particle size is an important factor influencing the extraction of the oil from bran. Sah et 

al. (1983) observed that for rice bran, the  greater the length and diameter of the pellet (particle) 

the lower the surface area and the higher the extraction time. So, the surface area of the pellet 

should be maximized for more efficient extraction.  In mechanical oil expression (pressing) 

studies for rice bran, Silva et al. (1993) were able to recover up to 45 % of the oil from the bran 

at 12.5 MPa pressure and a holding time of 45 minutes. Proctor et al. (1994) carried out 

laboratory-scale rapid equilibrium extraction fromrice bran (2 g) by mixing it with hexane (20 

ml) and stirring for different time periods (1, 2, 5, and 10 minutes). They observed that 90% of 

the oil was extracted in the first minute and 93% in 10 minutes. Oil obtained was low in 

phospholipids (42.7 ppm) and low in FFA (2.21). Proctor and Bowen (1996) compared hexane 

and isopropanol for the extraction of rice bran oil at ambient temperatures. At both levels of their 

study (2 g bran and 20 ml solvent, 30 g bran and 150 ml solvent), both hexane and isopropanol 

were found equally effective for extraction. Oil contained 2-3 % FFA levels, but oil extracted 

with isopropanol was more stable to heat oxidation compared to hexane-extracted oil, mainly 
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because of higher antioxidant levels in the isopropanol extract. Ohmic heating was found to 

increase the total lipid yield from rice bran compared to the control experiment without any 

heating (Lakkakula et al., 2004). Several studies of rice bran oil extraction using solvent 

extraction processes have been reported (Kim, 1987; Sayre et al., 1985; Talwalkar,1965; 

Hu,1995). These studies focused on effects of various extraction parameters such as the use of 

different solvents, extraction time, temperature, flow rates of solvent, and stabilization 

techniques, etc., to optimize the quantity and quality of rice bran oil.   

The crude rice bran oil obtained from solvent extraction processes is not suitable for 

direct consumption. Apart from containing 80-90% triglycerides and 3-20% fatty acids, RBO 

also contains 2-5 % wax, 2% gum, 3-5 % unsaponifiables and different pigments (Sah et al., 

1983; Bhattacharya and Bhattacharya, 1987; Mishra et al., 1988; Nicolosi et al., 1994). To obtain 

an edible oil of light color, the gum, waxes, FFA and pigments need to be removed. This refining 

process consists of steps such as degumming, dewaxing, deacidification, bleaching, winterization 

and deodorization (Juliano,1985; Nicolosi et al., 1994; Hu,1995). Figure 2.4.1 shows a general 

flow chart of the refining operations for producing edible oil from crude oil. All these steps have 

been described in detail elsewhere (Juliano, 1985; Hu,1995; Greyt and Kellens, 2000). 

 Degumming involves using heat and acid treatment with centrifugation (Sarkar and 

Bhattacharya, 1991) whereas in dewaxing, the oil-solvent mixture is cooled for crystallization 

and centrifugation of the wax (Bhattacharya et al., 1983). The dewaxed and degummed crude 

RBO is deacidified using either alkali neutralization, reesterification, steam refining or 

distillation to remove FFA (Reddi et al., 1948; Kim et al., 1985; Sayre et al., 1985; 

Seetharamaiah and Prabhakar, 1986; Bhattacharya et al., 1986,87,89; Salunkhe,1992). Bleaching 

is carried out to remove pigments, oxidized lipids and polar components of the oil using 

bleaching clay or silica gel. For salad oil production, RBO must be winterized to make the oil 
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  Figure 2.4.1 Overview of the refining process for edible oil 
Source: Greyt and Kellens (2000) 
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suitable for low temperature storage (Hu, 1995). Deodorization removes odors, off flavors and 

any remaining FFA using steam distillation (Baldwin 1948, Nicolosi et al., 1994).  

Sarkar and Bhattacharya (1991) observed that nutritive characteristics of rice bran oil 

were significantly affected by the extent of purification. The coefficient of digestibility was 

slightly  higher (94.8%) for oil that was dewaxed compared to that not dewaxed (93.8%). Gopala 

Krishna (1993), studied wax settling and refining of rice bran oil and concluded that 

monoglycerides must be removed before dewaxing.  Oryzanols and phospholipids must then be 

removed to obtain oil free wax and to recover other by-products and reduce refining losses. Kim 

et. al.  (1985) found that steam refining was more effective than caustic refining in retaining 

natural antioxidants in the oil. Steam refining was also able to eliminate soap production. Crude 

RBO is difficult to refine and refining losses are higher (34-38%) with only 62 – 66% edible oil 

recovered from crude RBO, using a solvent extraction process without winterization (Hu, 1995; 

Yokochi, 1997). The extraction and refining of RBO for edible oil production may not be 

economically competitive with other edible oils such as cotton seeds, soybeans and corn, and 

may not be economically feasible unless rice bran oil is considered as a source of high-value 

nutritional components such as tocopherols, tocotrienols and oryzanols (Santos, 1992; Wells, 

1993). 

2.5 Separation, Recovery and Analysis of Important Components of Rice Bran Oil  

Purification, separation, identification and quantification of the nutritionally important 

components of rice bran oil are of great interest and considered an important part of the present 

study. Few studies reported the recovery and separation of these components from RBO and 

other lipids. Recovery of α -tocopherol, β-sitosterol and other rice bran components such as 

Vitamin –B, fatty acids, lecithin and phytin, were investigated by Talwalker et al. (1965). Their 

process involved the refluxing of bran with ethanol (95%) in a 3:1 solvent ratio. The miscella 
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was saponified with sodium hydroxide for 30 minutes at higher temperature and was mixed with 

an  equal amount of water after cooling before extracting it with petroleum ether. Up to 290-320 

mg/kg of α -tocopherol and 500- 600 mg/kg of β-sitosterol were recovered from bran. There was 

almost a 50 % loss of α -tocopherol during saponification and ether extraction. Oryzanol with up 

to 80 % and 70 % purity can be produced using a pH adjustment method and absorption method, 

respectively (Okada and Yamaguchi, 1983).  

Hu (1995) studied different processes (solid liquid extraction, saponification, liquid  

liquid extraction) for the optimal recovery of tocopherol, tocotrienol and oryzanol from rice bran. 

His study involved looking at the effects of parameters such as solvent-bran ratio (2:1 &3:1 

w/w), temperature of extraction (40 & 60 oC) and extraction time (5,10,15,20 and 30 min). He 

reported a recovery of 60 % vitamin-E and 70% oryzanol under optimum saponification and 

liquid–liquid extraction conditions. Budavari et al. (1989) identified eight compounds of 

tocopherol and tocotrienol making up vitamin E  (α-,β-,γ-,δ-tocopherols and α-,β-,γ-,δ-

tocotrienol). They also identified oryzanol as a mixture of ferulic acid esters of sterols 

(campesterol, stigmasterol,β-sitosterol) and triterpenealcohol (cycloartanol, cycloartenol, 24-

methylenecycloartanol, cyclobranol). Xu (1998) isolated and identified ten fractions of γ-

oryzanol with reverse-phase high pressure liquid chromatography (HPLC). Xu and Godber 

(1999) also discussed the use of normal and reverse phase HPLC for the extraction, purification 

and identification of different components of oryzanol from crude rice bran. Hua (2000) used 

fourier transform infrared spectroscopy (FTIR) to quantify γ-oryzanol and vitamin E.  

Different silica columns were compared by Diack and Saska (1994) for the separation 

of vitamin-E and oryzanol from rice bran with normal phase HPLC and it was found that Nova-

pack silica more effectively separated these compounds in comparison with other columns used 
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in the investigation. Gimeno et al. (2000) used reverse-phase HPLC with methanol-water mobile 

phase, ODS-2 column and UV detection at 292 nm for the direct measurement of tocopherols in 

vegetable oils. Chase et al. (1994) compared fluorescence and evaporative light scattering 

detection (ELSD), and found that fluorescence detection was highly sensitive (ten times higher) 

for identifying tocopherols compared to ELSD. Tan and Brzuskiewicz (1989) used different 

columns and mobile phases during normal and reverse phase liquid chromatographic analysis of 

tocopherols and tocotrienols. Shin and Godber (1993) discussed the normal phase HPLC method 

for vitamin E to improve the stability and reproducibility using acetic acid, ethyl acetate, acetic 

acid and 2,2 –dimethoxypropane (98.5, 0.9, 0.85, 0.1) mobile phase, in which acetic acid was 

helpful in reducing retention times and improving column stability. 2,2–dimethoxypropane 

reduced the need for column regeneration and stabilized retention times. Rogers et al. (1993) 

used reverse-phase HPLC with fluorescence and a photodiode array for detection of tocopherols, 

tocotrienols and oryzanol respectively. Yarita et al. (1994) used supercritical chromatography 

with a carbon dioxide mobile phase and a ODS – silica gel column for determination of 

tocopherols in vegetable oils. They observed the retention to be dependent on the density of 

carbon dioxide and concentration of methanol modifier in the mobile phase. The SFC results 

were in agreement with normal-phase HPLC determinations. 

2.6 Supercritical Fluids and Supercritical Fluid Extraction  

 A supercritical fluid is defined as any substance that is above its critical temperature       

(Tc) and critical pressure (Pc). The critical pressure is the highest pressure at which a liquid can 

be converted into a gas by an increase in temperature, while critical temperature is the highest 

temperature at which a gas can be converted into liquid by an increase in pressure. In 1822, 

Baron Cagniara de la Tour was able to identify the appearance of a supercritical phase in a 

closed glass container (Clifford and William, 2000, Mukhopadhyay, 2000, Clifford 1999). In the 
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critical region there is only one phase, which possesses both gas and liquid-like properties. 

Figure 2.6.1 shows the phase diagram for a pure compound. A Supercritical fluid has both the 

gaseous property of being able to rapidly diffuse into a solid matrix and the liquid property of 

being able to dissolve materials into their components. Moreover, the solvating power of a 

supercritical fluid varies with a change in its density as a result of a change in pressure or 

temperature. Generally, for supercritical fluids at constant pressure, solvating power decreases 

with an increase in temperature, whereas, at constant temperature, the solvating power increases 

with an increase in pressure. Therefore, the solvating power of a supercritical fluid may be 

maximized by appropriate manipulations of both pressure and temperature. Hence the density of 

a fluid can be adjusted to solublize certain types of compounds in a selective way (Scneider et 

al.,1980; Stahl et al.,1988; Rizvi,1994; Kiran et al.,2000; McHugh and Krukonis,1994; Clifford, 

1999; Mukhopadhyay, 2000). These properties of supercritical fluids make them an ideal solvent 

because of their high mass transfer properties as well as their selective extraction capabilities. 

They exhibit higher diffusivities, lower viscosities and very low surface tensions. Table 2.6.1 

shows different properties of commonly used supercritical fluids. Apart from high diffusivities 

and low viscosities, supercritical solvents like carbon dioxide also offer gentle treatment of heat 

sensitive materials, and preserve natural fragrances and aromas of agricultural and biological 

products, such as nutraceuticals and traditional medicines. 

McHugh and Krukonis (1994) have given a detailed historical perspective of the 

developments related to supercritical fluids. Supercritical fluid extraction technology, after initial 

ups and downs in its developments, started becoming an alternative extraction technology 

inmany fields in the late 1980’s and early 1990’s. Possible applications of supercritical fluid 

extraction technology in the food and bioprocessing industries are summarized in Table- 2.6.2. 
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 Figure: 2.6.1 Phase diagram for supercritical fluid 
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Table 2.6.1 Physical properties of common supercritical solvents 

Critical constants Fluid Normal Boiling

Point (oC) Pressure (bar) Temperature (oC) Density (g/cm3)

Carbon Dioxide -78.5 73.8 31.1 0.468 

Ethane 88.0 48.8 32.2 0.203 

Ethylene -103.7 50.4 9.3 0.20 

Propane -44.5 42.5 96.7 0.220 

Propylene -47.7 46.2 91.9 0.23 

Benzene 80.1 48.9 289.0 0.302 

Toluene 110.0 41.1 318.6 0.29 

Chlorotrifluoromethane -81.4 39.2 28.9 0.58 

Trichlorofluoromethane 23.7 44.1 196.6 0.554 

Nitrous Oxide -89.0 71.0 36.5 0.457 

Ammonia -33.4 112.8 132.5 0.240 

Water 100.0 220.5 374.2 0.272 

  Source: Klesper, 1980 
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Table 2.6.2 Potential applications of supercritical fluids extraction in processing of 
natural and food products 

 

 

 

 

 

  

 

 

 

 

 

 

 

   

 

 

 

Source: Mukhopadhyay (2000) 

 

 

 

Sr. No Application area 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Decaffeination of coffee and tea 

Spice Extraction ( oil and Oleoresin) 

Deodorization of oil and fats 

Extraction of vegetable oils from flaked seeds and grains 

Flavors, Fragrances, aromas and perfumes 

Hops extraction from bitter 

Extraction of herbal medicines 

Stabilization of fruit juices 

Lanolin from wool 

De-oiling of fast foods 

De-cholesterolization of egg yolk and animal tissues 

Antioxidants from plant materials 

Food colors from botanicals 

Natural pesticides 

De-nicotinization of tobacco 
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The most commonly used supercritical fluid, as an extraction solvent, is carbon dioxide. 

It is relatively inert, non-flammable, non- toxic, easily available in a highly pure form and is 

environment friendly. Carbon dioxide has a low critical temperature (31oC), most suitable for 

thermally degradable biological and food materials, and has an easily attainable critical pressure 

of 7.38 MPa (1071 PSI). The phase diagram given in Figure-2.6.1 shows the supercritical region 

for carbon dioxide. Carbon dioxide is a non- polar fluid, has a solvating power comparable to 

hexane and is widely used for the extraction of non-polar compounds. Modifiers, in the form of 

appropriate solvents such as ethanol, may be used to extract polar compounds using carbon 

dioxide. The major problems associated with the conventional solvent extraction industry 

(flammability, possibilities of toxic residues, waste disposal regulations and environmental 

concerns) had resulted in increased attention towards supercritical fluid extraction. Supercritical 

fluid extraction (SFE), apart from overcoming problems associated with conventional solvent 

extraction, also offers additional advantages such as selective extraction and fractionation of 

high-value components in the extract at optimized extraction conditions. Increasing public 

consciousness towards healthy, natural and non-toxic products and growing environmental 

regulations has resulted as an impetus for the supercritical fluid industry. Moreover, the 

pharmaceutical, nutraceutical and food industries have also promoted developments in this area 

of research (Scneider et al., 1980; Stahl et al., 1988; McHugh and Krukonis, 1994; Rizvi, 1994; 

Clifford, 1999; Kiran et al., 2000; Mukhopadhyay, 2000). chemical engineering and 

thermodynamic aspects of supercritical fluids. Clifford (1999) and Kiran et al. (2000) dealt with  

the fundamentals of supercritical fluids. William and Clifford (2000) described process 

development using supercritical fluids. Supercritical fluid extraction from food, pharmaceutical, 

nutraceutical and other natural and biological products has received significant attention in the 

past several years. Rozzi and Singh (2000), Mohamed and Mansoori (2002) and Raventos et al. 
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(2002) reviewed applications of supercritical fluids in the food industry. Rizvi (1994), Awasthi 

and Trivedi (1997) as well as Mukhopadhyay (2000) enumerated extraction techniques from 

natural materials. King and List (1996) dealt with applications for supercritical fluid extraction 

for lipids and oils. Chen and Ling (2000), as well as Lang and Wai (2001), described 

applications of SFE technologies for herbal medicine. Apart from these detailed reviews and 

books, there are several other research publications on  supercritical fluids for the extraction of 

various biological materials (Froning et al.,1990; Perker et al.,1992; Bhaskar et al., 1993; List et 

al., 1993; Tsuda et al.,1995;  Cheung et al.,1998; Chester et al.,1998; Hulbert et al.,1998; Nguyen 

et al., 1998; Ambrosino et al.,1999; Galan et al., 1999;  Ibanez et al., 1999,  King, 2000; 

Senorans et al., 2001; Wong et al., 2001; Canela et al., 2002; Danaher and O’Keefe, 2002; Rozzi 

et al.,2002;  Prieto et al., 2003). Tehrani (1993) suggested successful supercritical fluid 

extraction strategies. DeCastro and Carmona (2000), after reviewing advantages and limitations 

of supercritical fluid extractions, talked about future directions of the process. 

2.7  Supercritical fluid extraction of lipids  

Prospective application for the supercritical fluid extraction of lipids or oils, apart 

from common vegetable oils (soy oils, corn oil, rice bran oil, sunflower oil, olive oil, etc.), also 

include animal fats, fish oil, oil from sea weeds and oil from microorganisms like fungi etc. 

(Walker et al., 1999; Mukhopadhyay, 2000). Major components of lipids include 

monoglycerides, diglycerides, triglycerides, free fatty acids with minor constituents such as 

sterols, tocopherols, gums, alkaloids, flavonoids, wax and volatiles, which provide taste and 

odor. Most studies concerning SFE of lipids are focused on the optimization of extraction 

conditions to increase the yield of extractable materials (Hu, 1995). Several components of lipids 

have significant health and nutritional implications for the food and pharmaceutical industries. 

Polyunsaturated fatty acids (PUFA) have important therapeutic value. Unsaturated fatty acids 
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and saturated fatty acids have different health effects. Sterols, antioxidants, wax and volatile 

compounds also are significantly important for health. Major SFE applications include separation 

of FFA from vegetable oils, separation of PUFA from animal fats, refining and deoderization of 

vegetable oils, fractionation of glycerides, recovery of oil from biological materials, de-oiling of 

lecithin and de-cholesterolization and de-lipidation of food products (Mukhopadhyay 2000) 

Eller (2000) reviewed the SFE of fat and observed that solubility of fats in supercritical 

carbon dioxide generally increased with pressure and temperature. At very low pressures, the 

solubility of fats is slightly higher at lower temperatures. He found that SFE of fat, however, 

worked best at high temperatures above 80 oC and pressure above 8000 psi or 55.16 MPa. 

Smaller particles yielded more oil as did dryer material. He described SFE as a promising 

technology for the extraction of small-scale, high-value products of fat bearing materials. SFE, 

apart from other advantages, limits auto-oxidation, decomposition and polymerization of omega-

3 poly-unsaturated fatty acids such as eicosapentanoic acid (EPA) and docosahexanoic acids 

(DHA) in fish oil  (Krukronsis, 1988 and Rizvi et al, 1988). 

Bjergegaard et al. (1999) compared SFE and conventional solvent extraction for the 

extraction of volatiles and hydrophilic compounds from rapeseed, sunflower and soybean. SFE 

was useful for analytical purposes to obtain lipid content. Montanari et al. (1996) used 

supercritical carbon dioxide and a co-solvent (ethanol) for the selective extraction of 

phospholipids from soybean flakes. Taylor and King (2000) used analytical-scale SFE and SFC 

(supercritical fluid chromatography) for the optimization and fractionation of corn bran oil to 

achieve a high concentration of ferulate phytosterol esters (FPE). They extracted a maximum 

1.25 % FPE from corn bran among the different combinations of temperatures (40, 60, 80oC) and 

pressures (13.8, 34.5, 69 MPa) tried during the experiments.  
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Eaggers and Sievers (1989) studied the SFE of rapeseed with different pretreatments and 

observed that flaked rapeseed cake and higher pressures were beneficial. Friedrich and Pryde 

(1984) applied SFE to soybean, cotton seed, corn germ, wheat germ and bran and observed that 

supercritical extracted oil was light colored compared to hexane extracted oil. Moreover, they 

observed some fractionation during the extraction, where more polar and higher molecular 

weight compounds were found to increase during later stages of the extraction process. Fattori et 

al. (1988) studied supercritical extraction of canola seed oil (25-90 oC, 10-36 MPa) and found 

that oil solubility in supercritical carbon dioxide was strongly dependent on pressure, but was not 

significantly dependent on temperature. Total oil recovery was also significantly dependent on 

the pretreatment of the seed (flaking, cooking, pressure rupture, chopping, crushing). Greater 

amounts of oil were recovered from flaked and cooked seed compared to whole seed.  

Brown seaweed extraction with supercritical CO2 (24.1- 37.9 MPa, 40-50 oC ) was 

compared with Soxhlet extraction using chloroform/methanol (2:1,v/v) ( Cheung et. al., 1998). 

Oil yields of SFE at 37.9 MPa (40/50 oC) were comparable to Soxhlet extraction. ω-3-Fatty acids 

concentrations were higher (31.4 %) in supercritical extract compared with Soxhlet extraction 

(23.5 %). For constant pressure (24.1 MPa), SFE yielded more lipids at 40 oC  than at 50 oC . 

The concentration of total PUFA in oil decreased significantly and that of total saturated fatty 

acids increased significantly with increased pressure and solvent density 

During olive oil de-acidification with supercritical carbon dioxide at different pressures 

(20 and 30 MPa) and temperatures (35-60 oC), CO2 extracted fatty acids more selectively than 

triglycerides ( at 60 oC and 20 MPa). Moreover the physical state of solute significantly affected 

solubility trends as a function of temperature and pressure. Supercritical fluid de-acidification of 

olive oil was found suitable, especially for oils with relatively high FFA (<10 %) due to a higher 

selectivity factor for FFA (Brunetti et al., 1989). 
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Studies on the extraction of spearmint oil (essential oil of Mentha spicata) from Turkish 

mint plant leaves with supercritical CO2 indicated that concentration of the monoterpenes 

fraction in oil and oil yields were inversely related. SFE compared to conventional methods of 

hydro-distillation produced lower concentrations of the monoterpenes in the oil at low 

temperature that was safe for heat sensitive essential oil (Ozer et al., 1996). Lavender essential 

oil and wax extraction with supercritical carbon dioxide resulted in higher linalyl acetate content 

in oil (34.7%) compared with conventional hydro-distillation (12.1%) (Reverchon and Porta, 

1995). 

Other recent lipid extraction studies using SFE include canola oil (Bulley and Fattori, 

1984; Temelli, 1992), citrus oil (Sato et al, 1988), menhaden oil  (Nilsson et al., 1988), rapeseed 

oil       (Eggers and Sievers, 1989), evening primrose oil (Favati et. al., 1991), soybean oil (List et 

al., 1993), soya, canola and corn germ oils (Taylor et al., 1993), peppermint oil (Motonobu et al., 

1993), caraway essential oil (Sovova et al.,1994), soybean oil (Reverchon and Osseo, 1994), 

ginger oil (Roy et al.,1996), cloudberry seed oil (Manninen et al.,1997),  sunflower oil (Perrut et 

al., 1997), pistachio nut lipids (Palazoglu and Balaban, 1998), almond oil (Marroene et al.,1998), 

lavender essential oils and waxes (Akgun et al., 2000),  grape seed oil (Lee et al., 2000), hiprose 

seed oil (Reverchon et al., 2000) and Romanian mentha hybrids oil (Eugenia  and Danielle, 

2001)  

2.8 Supercritical Fluid Extraction of Rice and Other Bran 

In the past few years, attempts have been made to extract lipids from stabilized rice 

bran using SFE. Zhao et al. (1987) conducted the fractional extraction of rice bran oil with SFE 

at pressures of 14.7 to 34.3 MPa, and at a fixed temperature of 40 oC. They found differences in 

oil yield (18.6 to 22.0 %) extracted with pressures. Qualitative differences indicated that 

fractions obtained at high pressures contained less FFA and waxes or unsaponifiables in the oil. 
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Grinding of bran was also found effective in reducing the required carbon dioxide and extraction 

time. Ramsey (1991) compared different RBO extraction processes including solvent extraction 

(hexane), SFE and SFE with 5 % ethanol co-solvent. The oil yield was 20.2 % for solvent 

extraction, 18.0 % for SFE extraction and 18.2 % for SFE with modifier. For SFE and SFE co-

solvent extractions, they used 35oC for 5 hr at a flow rate of 20.5 g/min in a 1-liter vessel at 30.0 

MPa. They also compared concentrations of sterol components in the extracts, which were 9.4, 

7.3 and 8.3 mg of sterol per g of rice bran oil for hexane, SFE and SFE–co solvent extractions, 

respectively. An entrainer (ethanol and chloroform) and separation columns were used by Saito 

et al. (1993) for SFE of RBO with carbon dioxide at 40-100oC and 8.2 –19.8 MPa. A separation 

column (silica gel supported nitric acid column) was effective in the fractionation of fatty acids 

whereas ethanol entrainer increased extraction efficiency up to 1.6 times. There was not much 

difference in FFA composition with or without entrainer. For example, C16:0, C18:1, C18:2 were 

18.6, 42.5 and 35.1 % of total FFA for SFE extraction whereas their concentrations in SFE with 

ethanol extraction were 18.2, 43.1 and 35.4 %, respectively.  Higher temperatures increased the 

fractionation of fatty acid esters.  

King et al. (1996) used combined SFE (25 MPa and 80 oC) and supercritical fluid 

chromatography (SFC) (1.7 cm diameter and 20 cm long columns charged with 60-200 mesh 

silica gel, 16 g, in a preparative mode) to fractionate and enrich tocopherol components of the oil 

from soybean flakes and rice bran. Total tocopherol recovery and enrichments were observed as 

a function of the mass ratio of CO2/seed charge. Also tocopherol recovery differed from one seed 

type to another. Garcia (1996) found that at 28 MPa and 70 oC (highest allowable system 

pressure and temperature in their system) they obtained 16-60 % of solvent extractable oil yield 

from rice bran. Oil obtained by SFE was lighter in color, high in waxes and had greater long 

chain fatty acids (C20-C34) compared to hexane-extracted oil.  
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Kuk and Dowd (1998) carried out SFE of rice bran (6 % moisture, below 0.297 mm 

particle size) at 48.26 & 62.05 MPa for 1.5 hours and reported 19.2-20.4 % RBO yield, 

compared to 20.5 % extraction yield using hexane in 4 hr. They also found increases in RBO 

yield with increasing temperatures at constant pressure. Sterol extraction was found to increase 

with increasing pressure and temperature. Kim et al. (1999) compared EFA (essential fatty acids) 

in rice bran oil extracted under different conditions (40, 50& 70oC; 20.68, 27.58, 34.47 & 41.37 

MPa). They found yields to be dependent on reduced density of supercritical carbon dioxide. Up 

to 70-80 % of RBO may be extracted in 4 hours. Xu and Godber (2000) compared solvent 

extraction (50% hexane & 50 % isopropanol v/v) of rice bran to supercritical carbon dioxide 

extraction at 50 oC and 68.9 MPa pressure for extraction of γ -oryzanol. Their study indicated 

that SFE extraction may extract up to four times higher γ -oryzanol (5.39 mg/g of rice bran) in 

less time compared to solvent extraction. Dunford and King (2000) studied extraction of RBO by 

supercritical carbon dioxide fractionation for reducing FFA and minimizing losses of 

phytosterols. From their experiments at the pressure of 20.5 to 32.0 MPa and temperatures 

ranging from 45 to 80oC, they found that low pressures and high temperatures reduced loss of 

triglycerides and phytosterols during removal of FFA from crude rice bran oil. Rice bran oil 

containing less than 1 % FFA, up to 95 % triglycerides, 0.35 % free sterols and 1.8 % oryzanol, 

may be obtained by SFE extraction. Badal (2002) studied the effects of particle size (16-48 mesh 

and >48 mesh) and bio-treatment with Pythium irregulare fungi, on the yield and the quality of 

rice bran oil extracted with supercritical carbon dioxide (40°C, 27.57 MPa, 200 standard cm3 per 

min). The extraction yield was approximately 50.0 % of the total ether Soxhlet extractable oil in 

2 hours from the smaller particle rice bran. Eicosapentaenoic acid and arachidonic acid produced 

during the treatment by Pythium irregulare were extracted by SFE. Oil yield was found to be a 

function of particle size during SFE (p =0.0013), but not for Soxhlet ether extraction. 
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Taylor and King (2000) used SFE (13.8, 34.5 and 69 MPa; 40, 60, 80oC) to extract high- 

value ferulate phytosterol esters (FPE) from corn bran and they observed that highest levels of 

FPE (1.25%) were obtained in the extract at 69 MPa and 80oC as well as 34.5 MPa and 40oC.  

Furthermore SFE (34.5 MPa, 40oC) extracted corn bran oil with subsequent fractionation with 

SFC (amino propyl sorbent, commenced at 69 MPa at 80oC and subsequently lowered to 34.5 

MPa  at 40oC with addition of ethanol modifier at lower pressure) that produced up to a 14.5% 

FPE enrichment level. Dunford et al. (2003) used continuous counter-current supercritical fluid 

processing (CO2 flow rate of 2 liter/min and oil flow rate of 0.7 liter/min) for de-acidification of 

rice bran oil at isobaric and isothermal conditions at a pressure range of 13.8 – 27.5 MPa and 

temperature range of 45-80oC and observed that fractionation at 13.8 MPa and 80oC was 

effective in de-acidification without loss of oryzanol.  

2.9 Modeling of Supercritical Fluid Extraction 

 

2.9.1 Modeling of Solubility and Diffusion Relationship in Supercritical Fluid  

Extraction Processes 

 
Mathematical expression of kinetics of supercritical extraction phenomena can be of 

great significance for further studies as well as in understanding general behavior of extraction 

phenomena for given components. Knowledge of phase equilibrium behavior and generation of 

phase equilibrium data such as solubility, distribution coefficient and selectivity of separation of 

extractables in supercritical fluids is of great importance for improved understanding of the 

process. All applications of supercritical fluid extraction for food, flavor, fragrances and 

pharmaceuticals involve basic understanding of high pressure, fluid phase and equilibrium 

behavior. Most SFE applications involve multi-component systems. The common approaches for 

modeling has been to treat the SCF phase as a dense gas that may be represented using equations 

of state to calculate fugacity coefficients or to treat the SCF phase as an expanded liquid apart 
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from other approaches involving semi-empirical correlations or molecular models based on 

computer simulations. Though SCF phase behavior indicates some interesting trends, practical 

tasks to model and predict such behavior for qualitative and quantitative understanding pose 

serious challenges due to molecular complexities of solutes, uncertainties in specific interactions 

in dilute supercritical solutions at higher pressure and high compressibility of the SCF solvents. 

Agricultural and biological materials add to these challenges by their complex biological 

structures, which present many undefined variables for the technologist attempting to use 

supercritical fluids in their processing (Clifford, 1999; King, 2000; Mukhopadhyay, 2000).  

Equation of state (EOS) is widely used to represent the solubility of solids insupercritical fluids. 

Solubility may be predicted as a function of the temperature and pressure along with solute and 

solvent properties. Some of the most commonly used EOS models are the Peng –Robinson and 

Soave-Redlich -Kwong equations. Both produce similar results. Equation of state (PR-EOS) will 

be discussed as it is more widely used.The PR- EOS equation is 

                                         b)b(vb)v(v

a(T)

bv
RTP

−++
=

−
=  

where v is the molar volume, a accounts for intermolecular interactions between species of the 

mixture and b accounts for size differences between the species of the mixture. (Peng and 

Robinson 1976; McHugh and Krukonis, 1994) 

Thermodynamic and phase equilibrium properties dictate the feasibility of the SFE 

process and conditions for maximum possible separations whereas knowledge of transport 

properties of supercritical fluids and resistances to the transport processes are required for 

calculating time required for the extraction and  the sizes of the critical components of the plant 

(Mukhopadhyaya,  2000). Because of the rapid changes in properties such as viscosity η, 

diffusivity D, etc. with small changes in the conditions of the supercritical solvent around the 
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critical point, prediction of these properties are difficult and require sound theoretical 

considerations and understanding of the process. 

Fick’s law defines the molecular diffusion flux of a component with respect to the 

concentration gradient for a binary mixture. It states that flux is proportional to the concentration 

gradient and that diffusion of a compound occurs in the direction of decreasing concentration 

(Mukhopadhyaya, 2000).  Fick’s second law for a spherical geometry is given as  
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with initial conditions     C= C0    at   t = 0 
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  C = C∞ when r = R and t = ∞ 

Where,  C = the concentration of solute in the sphere at time t 

  C∞ = the final concentration of solute at the surface 

 D  = the diffusion coefficient 

    r= distance from center of sphere 

  R= the radius of the sphere   

The analytical solution takes the form of an infinite series with ‘n’ terms, for the total amount of 

a species diffusing from the sphere (Crank 1975): 
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Where Mt and M∞ represent the total amount of solute leaving the sphere at time t and total 

amount of solute extracted over infinite time, respectively. D represents the effective diffusivity 

for porous media with void volume, ε, and tortuosity factor τ (Walker, 1997). 
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2.9.2 Models Describing Supercritical Fluid Extraction of Lipids 

The mass transfer rate for SFE for lipids from natural materials involving high initial 

concentration of extract (such as in oil seeds) in a fixed bed typically remains constant and then 

declines. SFE involves the control of solubility by manipulating temperature and pressure. 

Natural materials contain multiple components whose solubility and extractabilities are difficult 

to predict (Lira, 1996). Mathematical aspects related to SFE of lipids were discussed by King 

and List (1996), which included solubility (Maxwell, 1996), phase equilibria, mass transfer 

(Egger, 1996), fractionation (Peter, 1996) and modeling of SFE of lipids (Goodrum et al., 1996; 

Yoo and Hong, 1996).  

Reverchon (1996) modeled supercritical extraction of sage oil from leaves at 9 MPa and 

50 oC, for four different particle sizes. The model, based on a mass balance along the extraction 

bed, was proposed. Diffusivity of solute was the only adjustable parameter in their model. In 

their model a mass balance over an element of the extractor of height ‘dh ‘ was written as: 
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with,initial conditions t=0, C=0 and C = 0C  and boundary conditions h=0,  C(0,t)=0 

where ε is the bed porosity, V is the extractor volume, C is the extract concentration in fluid 

phase, C  is the extract concentration in solid phase, 
*

C  is the concentration at the solid fluid 

interface, u is the superficial solvent velocity, µ is the coefficient dependent on particle 

geometry, Di is diffusion coefficient, h is bed height and  l=Vp/Ap (particle volume / particle 

surface) is a characteristic dimension.  Equations 1 and 2 also described for the fixed bed divided 

into n stages. Testing of the model with experimental results suggested internal mass transfer to 
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be controlling step for the extraction process. The particle’s shape was important for modeling 

experimental data, with spherical shape giving a good fit. 

Marrone et al. (1998) modeled supercritical extraction of almond oil from crushed 

almond seeds of three different sizes at 35 MPa and 40 oC. The following assumptions were 

made: the oil was considered a single pseudo component; the solute concentration was dependent 

only on time and the axial coordinates; uniform temperature, pressure, flow conditions along the 

extraction vessel; negligible axial dispersion and constant solid mass in the vessel during the 

extraction process were assumed. Their model was based on physical evidence of broken and 

intact oil cells and considered two different phases of the extraction process. The initial phase 

contained  freely available oil and was contained within the broken cavities on the surface of the 

crushed particles and an oil phase was contained inside the particles or internal surfaces.  A good 

fit was observed for experimental data with an internal mass transfer coefficient of 7.5 X 10-9 

m/s.   

Reverchon et al. (1999) tried to model the fractional extraction of fennel seed oil and 

essential oil in two stages. In the first step conducted at 9MPa and 50oC, essential oils were 

selectively extracted and then at 20 MPa and 40oC, the remaining vegetable oil was extracted. 

The flow rates tested were 8.33, 16.67 and 25 g/min. The model described vegetable oil 

extraction was based on differential mass balances around the concept of broken and intact cells, 

with the internal mass transfer coefficient as an adjustable parameter. Essential oil extraction was 

modeled as desorption from vegetable matter with a low resistance to mass transfer, having the 

same internal mass transfer co-efficient value as that of seed oil extraction. Both models 

represented good fits to experimental data. 
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An extraction model for pennyroyal essential oil by Vasco et. al. (2000) with extraction at 

10 MPa and 50oC  for different particle sizes (0.3, 05, 0.7 mm) and different CO2 flow rates 

(18.6, 25.8, 37.2 g/min),  utilized  axial dispersion effects based on the desorption of oil near the 

leaf surface and  mass transfer resistance in the internal part of the vegetable structure . They 

divided the extraction process, into two parts for the purposes of modeling. The first part of the 

extraction described adsorption equilibrium with superimposed axial dispersion, where as in the 

second part of the extraction process internal mass transfer was assumed as the controlling 

factor. Yield curves for all particle sizes and flow rates of carbon dioxide were fitted fairly well 

with an internal mass transfer coefficient Ki as an adjustable parameter. Akgun et al. (2000) 

described the extraction and modeling of lavender flower essential oil with supercritical carbon 

dioxide in a semi-continuous system at 8-14 MPa pressure, 35–50oC temperatures and 1.092-

2.184 g/min flow rate ranges of carbon dioxide. They used a quasi-steady state model as a 

function of extraction time, flow rate, pressure and temperature with inter-particle diffusion 

coefficient as an adjustable parameter. The model was satisfactorily correlated with experimental 

data with best fitted value of effective diffusivity (1.2 X 10-11 m2/sec). 

Reverchon et al. (2000) conducted experiments for SFE extraction of hiprose seed oil at 

different pressures (10.34, 20.68, 41.37 and 68.94 MPa), temperatures ( 40, 50 and 70oC) and 

flow rates (1, 2, 4 and 6 g CO2/min) with different particle sizes of seeds (0.42, 0.79 and 1.03 

mm) and validated them with a mathematical model based on the structure of hiprose seed 

particles. For modeling purposes they assumed oil as a single pseudo component, the extraction 

bed was assumed tobe continuous, and the pressure and temperature gradients along the column 

were neglected. The volume of the solid was assumed constant and the solute concentration in 

the fluid phase was assumed dependent only on time t and axial coordinates. Axial dispersion 

was neglected. Their model was given as 
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C= C0  at time t=0 for each z 

q=q0 at time t=0 for each z 

C=0 at z=0 for each t 

Here u is superficial velocity of supercritical carbon dioxide, ε is void fraction of extractor, ρs is 

density of hiprose seed. ρf is density of supercritical CO2, Y is the yield of oil seed, a is specific 

surface of vegetable matter, Keq is linear equilibrium constant, C and q are the concentrations 

expressed as a mass ratio of oil in fluid phase and solid phase, respectively, and q* is the 

concentration of oil in solid phase at solid-fluid interface. Z is the axial coordinate, and Ki is the 

mass transfer coefficient. The model assumed internal mass transfer coefficient as linearly 

variable and fitted well to the experimental data. 

Sovova (1994)  and Sovova et al. (1994) modeled grape oil extraction at 28 MPa and 40 oC 

with grape seed of different particle size, flow rates and flow directions.  Plug flow was observed 

for downward flow of compressed gas, whereas extraction was retarded by natural convection in 

the case of up -flow. The up-flow model with parallel plug flow more closely represented the 

extraction process. Roy et al. (1996) modeled oil extraction from freeze-dried ginger root as a 

function of flow rate of carbon dioxide, pressure, temperature and particle size. The extraction 

process was controlled by intra-particle diffusion within the root. The rate of extraction increased 

with small particle size due to a decrease in the diffusion path. A crossover effect was observed 

with temperature and pressure. High temperatures increased extraction rates at 24.5 MPa, but 
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low temperatures increased extraction at 10.8 MPa. A shrinking-core model with effective 

diffusivity and solubility as fitting parameters when applied to experimental results fitted the 

data for large particle sizes. Goodarznia and Eikani (1998) developed a two-phase model 

composed of solid and supercritical phases, which when tested for essential oil extraction 

showed a dependence on particle size and shape. 

Kim et al. (1999) extracted and separated rice bran oil rich in essential fatty acids (EFA) 

using the SFE process. They described an extraction rate equation as  

m(t)= Kg AsVt ∆Cm 

Where  As= 6 ( 1- φ )/dp         and          
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Here m(t) is the solute extraction rate at time t (g/sec) , As is the specific mass transfer area (cm2/ 

cm3), Vt is the total effective volume of the rice bran bed (cm3) and ∆Cm is concentration 

difference of oil between the initial saturated and that extracted in the rice bran bed (g/ cm3) . Kg 

is mass transfer coefficient (cm/sec). Dimensionless Sherwood number (Sh), Schmidt number 

(Sc), and Reynolds number (Re) were utilized as written below to correlate with the SFE 

extraction process, which was described as a hybrid process between natural and forced 

convection of the fluids. 
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Where dp, Mav, ρ, µ and u are diameter of particle, molecular weight of carbon dioxide, density 

of carbon dioxide, viscosity of carbon dioxide and superficial velocity of solvent, respectively . 

Re is the ratio of inertial to the viscous forces; Sc is the ratio of the momentum and mass 

diffusivities Sh gives dimensionless concentration gradient at the surface. 
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Goto et al. (1993) extracted peppermint oil with supercritical carbon dioxide at varying 

conditions ( 313-353 oK, 8.83-19.6 MPa) and studied extraction curves and extraction rates of 

major components (l-menthol and menthone). A mathematical model was also developed based 

on local adsorption equilibrium of essential oil lipid in leaves as well as mass transfer. Their 

model was based on the following assumptions: (1) leaves are porous solids with essential oil 

and lipid, (2) essential oils are extracted from leaves as if desorbed from solid biological tissue 

where lipids are associated with essential oils, and (3) essential oil dissolved in supercritical fluid 

diffuse to external surface and through the external film to be carried away by bulk flow. The 

adsorption equilibrium constant determined by fitting the theoretical extraction curve to 

experimental data increased with temperature and decreased with pressure. 

Canela et al. (2002) applied the Goto model to supercritical fluid extraction of fatty acids 

And cartenoids from microalgae (spirulina maxima) to describe the extraction process. In their 

study to determine the kinetic parameters, extraction experiments were conducted at varying 

pressures (15, 16.5 and 18 MPa) and temperatures (20, 25 and 30 oC) where the yield and 

composition, which were determined at a constant solvent flow rate (3.33x10-5 kg/s). They 

applied the Goto et al. (1993)’s model assuming substrate as a porous matrix with diffusion 

occurring through the inside of the particle pores with mass transfer resistance being offered by 

the film around the particle. In their application the mass of extract at the bed out let was 

described by the following equation 
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where,   a1 and  a2 are defined as 
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ε1=interstitial bed porosity 

εp= particle porosity 

Kp= combined mass transfer coefficient 

Ap= specific surface area (1/L) 

K= particle coefficient of solvent in solute 

X0= initial solute mass ratio in the solid phase 

ρs= solid true density ( M/L3) 

QCO2 = volumetric solvent flow rate (L3/T) 

t= extraction time (T)   and 

τ = CO2 residence time (T) 

2.10 Adsorption Processes  

2.10.1 Introduction to Adsorption 

Kayser introduced the term “adsorption” in 1881 to denote the condensation of gaseous 

molecules on a surface. Adsorption is defined as the enrichment of one or more components on 

an interfacial layer and is the process by which molecules of a liquid or gas contact and adhere to 

a solid surface (Gregg 1982). Adsorption is an exothermic process and is caused by the forces 

acting between a solid surface (adsorbent) and molecules in the fluid phase (adsorbate). 

Adsorption processes may be either physical or chemical. Physical adsorption occurs when 

intermolecular van der Waals forces bind the adsorbing molecule to the solid substrate and the 
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process is reversible. Chemical adsorption occurs when covalent or ionic bonds are formed 

between the adsorbing molecules and the solid substrate and is not reversible (Davidson and 

McMurry,2000). In many adsorption processes, the adsorbate (the adsorbed component) from the 

fluid is held strongly to permit complete removal of that component from the fluid with very 

little adsorption of the other components. Regeneration or desorption of the component may be 

carried out to obtain adsorbate in concentrated form ( McCabe and Hgrrioff, 1985b) 

Adsorption at various interfaces is an extremely important process of technological, 

environmental and biological importance for many industrial applications. The adsorption of 

substrates is used in many catalytic processes as a method for separating mixtures and for 

changing the concentration of components at the interface. Theoretical descriptions of adsorption 

have been achieved through the development of molecular models by means of computer 

simulation methods and with new technologies that examine surface layers or interfacial regions. 

In recent years, several new classes of solid adsorbents have been developed, such as activated 

carbon fibers, carbon molecular sieves, fullerenes, heterofullerenes, microporous glasses and 

nanoporous materials (Dabrowski, 2001).  

The most common adsorbents are highly porous materials including activated carbon, 

activated alumina, silica, and zeolites. Silica is a finely divided mineral oxide whose surface 

properties have been studied extensively. Adsorption on silica is important for applications such 

as chromatographic media, catalysts and reinforcement agents for rubber. Silica has unique 

adsorption properties and production of refined silica adsorbents has widely affected the methods 

used for separating complex mixtures in the chemical, pharmaceutical, environmental and food 

industries. The production of chemically bonded silicas of desired type, sizes, shape, density and 

topography has made them an attractive substance for use in the separation industry (Paprier, 

2000). Factors that affect the capacity of an adsorbent include its surface area, pore size and 
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polarity. Whenever a gas is in contact with a solid, equilibrium conditions between the molecules 

in the gas phase and the corresponding adsorbed species (molecules or atoms) will depend upon 

a number of factors such as relative stabilities of the adsorbed and gas phase of species involved, 

temperature of the system, pressure of the gas, etc.  

2.10.2 Mathematical Models for the Adsorption Process 

An adsorption isotherm is the equilibrium relationship between the concentration in the 

fluid phase and the concentration in the adsorbate particles at a given temperature and pressure. 

These isotherms are useful for indicating the affinity of an adsorbate for a particular adsorbent. 

The Langmuir isotherm was developed by Irving Langmuir in 1916 to describe the dependence 

of the surface coverage of an adsorbed gas on the pressure of the gas above the surface at a fixed 

temperature. Langmuir isotherms provide useful insight into the pressure dependence of the 

extent of surface adsorption. Langmuir derived a relationship for q (weight of component 

adsorbed for unit weight of adsorbent) and C (concentration of a component in a fluid) based on 

a few assumptions that include uniform surface, a single (mono) layer of adsorbed material and 

constant temperature. The rate of attachment to the surface should be proportional to the driving 

force multiplied by an area. The driving force is the concentration in the fluid, and the area is the 

area of non-adsorbed surface. If the fraction of covered surface isφ , the rate per unit of surface is 

given as,  

qin = Rate going in = )1(1 φ−Ck          

 where, φ  = fraction of the surface covered 

The evaporation from the surface is proportional to the amount of surface covered  

        Qout = Rate going out = φ2k   
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 where k1 and k2 are rate coefficients  

 At equilibrium, the two rates are equal, and we find that:  

             )1(1 φ−Ck = φ2k  
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Since q will be proportional toφ , and introducing qm  for monolayer  and another constant ka to 

replace k2/ k1,  the useful form of the equation is 
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where:  qm = q for a complete monolayer  ( amount of adsorbate adsorbed to form monolayer 

 coverage on adsorbent) 

and      ka = Langmuir adsorption equilibrium constant. 

Taking reciprocals and rearranging, 
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This equation describes the Langmuir isotherm in its linear from. Farook and Ravendran 

(2000) used the Langmuir isotherm to describe saturated fatty acid adsorption by acidified rice 

hull ash from palm oil. This linear form of the Langmuir isotherm described all fatty acid 

adsorption. Idiris and Adam (1994) also found that adsorption of FFA such as lauric, myristic 

and stearic acids on rice hull may be described with Langmuir isotherms.  

Freundlich proposed an empirical relation for the amount adsorbed per unit weight of 

adsorbent versus the concentration in the fluid at the equilibrium given as 
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q = Kf  C
n 

where Kf and n are coefficients  

q = weight adsorbed per unit wt of adsorbent 

 C = concentration in the fluid 

Taking logs and rearranging 

                                             log q = log Kf + n log C 

Free fatty acid adsorption from soy oil by rice hull ash followed the Freundlich-type 

isotherm (Proctor and Palaniappan,1990). Adsorption efficiency of pine wood carbon, 

commercial silica and rice hull ash for the adsorption of free fatty acid and carotenoids were 

compared with the use of the Freundlich isotherm. (Vazquez et al.,2000). Langmuir and 

Freundlich adsorption isotherms were also applied to the bleaching of rubber and melon seed oil, 

which confirmed adsoption of the coloring compounds of oil followed monolayer adsorption  

and indicated an increase in active sites with rise in temperature ( Achife and Ibemesi, 1989).  

               Brunauer-Emmett-Teller (BET) equation for adsorption exceeding the monolayer is 

given as: 
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where,    Ca = concentration at which all layers are filled 

                                     Kb= a coefficient 

Assumptions for the BET equation were  (1) adsorbed molecules do not move (2) enthalpy of 

adsorption is the same for any layer, (3) energy of adsorption is the same for layers other than the 

first, and  (4) a new layer may start forming before another is finished. 
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Chen et al. (2003) discussed the kinetics of adsorption of β-carotene from soy oil with rice 

hull ash under vacuum in the detail. They used the following expression for the description of the 

adsorption rate 
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where C = pigment concentration at time t 

          C0= pigment concentration at time t = 0 

          K0= Frequency factor [µm-n
1   min-0.5] 

          d =diameter of rice hull ash (µm) 

         ∆E = activation energy ( J mol-1) 

          r = ratio of rice hull ash to soy oil 

          R = gas constant (8.314 J mol-1 K) 

           T= temperature (oK) 

 n1  and n2 = exponents of  d  and  r respectively 

2.11 Combined Application of Supercritical Fluid Extraction and Adsorption Processes  

Many food and pharmaceutical industries are looking into the integration of supercritical 

fluid extraction and other separation processes. Continuous supercritical adsorptive separation is 

one such process. Many products like pharmaceuticals could be processed more economically 

and with greater purity with combined supercritical fluid adsorption/desorption processes.  

Cross and Akgerman (1998) discussed multicomponent supercritical adsorption 

phenomena and developed a dynamic model, taking into consideration of column dispersion, 

mass transfer and diffusive resistances. Experimental data predicted the breakthrough profiles 

with the model. Reverchon et al.(1998) successfully modeled the supercritical adsorption of a 

complex terpene mixture with a model that was based on the differential mass balance on fluid 
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and solid phases. Ambrogi et al. (2003) studied separation of natural colorants using combined 

high pressure  (50 MPa, 100oC) extraction and adsorption (on silica gel) processes to separate 

carotene from natural sources. Sato et al. (1998) tried pressure swing adsorption of citrus oil  

with silica gel as an adsorbent. Adsorption isotherms were represented by the multi-component 

Langmuir equation. Their study included adsorption (at 8.8 MPa & 40 oC), desorption (at 19.4 

MPa and 40 oC) and rinse step to determine the effect of feed concentration, half cycle time and 

flow ratio of carbon dioxide.  
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Chapter 3 
 

Extraction of Rice Bran Lipids and Its Antioxidant Compounds with Supercritical 
Carbon Dioxide at Pilot Scale 

  
3.1 Introduction 

Rice bran, which includes the pericarp, the aleurone and subaleurone layers, parts of the 

germ, embryo and small portions of the starchy endosperm, is a valuable by-product of the rice 

milling industry.  Bran, almost 10 % the weight of rough rice, is rich in oil content ranging from 

15- 22 % depending on the milling procedure and the rice variety (Houston, 1972; Randall et al., 

1985; Saunders, 1986; Martin, 1994). Crude rice bran oil contains 68- 71% triglycerides, 2-3 % 

diglycerides, 5-6% monoglycerides, 2-3 % free fatty acids, 2-3 % waxes, 5-7 % glycolipids and 

3-4 % phospholipids with 4% unsaponifiable (Saunders, 1990; Caskill and Zhang,1999). Rice 

bran oil contains oleic acid (38.4 %), linoleic acid (34.4%) and linolenic acid (2.2%) as 

unsaturated fatty acids, and palmetic (21.5%) and stearic acid (2.9%) as saturated fatty acids  

(Rukmani and Raghuram, 1991; Xu, 1998). Rice bran is also a source of linoleic acid that is 

essential to human health (Ramezanzadeh et al., 2000). 

The growing interest in rice bran oil is due to its high unsaponifiable level (4.2 %) 

compared  to other vegetable oils (Orthoefer, 1996; Lloyd et al., 2000; Dunford, 2001). Rice bran 

is a rich source of vitamin E (∼300 mg/kg) ( 0.1-0.14%)  and has high concentration of oryzanols 

(∼3000 mg/kg) (0.9-2.9%). (Kato et al., 1981; Sayre and Saunders, 1990; Hu, 1995; De Deckere 

and Korver, 1996; Shin et al., 1997; Xu and Godber, 1999; Lloyd et al., 2000; Zhimin et al., 

2001). Vitamin E consists of components of tocopherols (α, β, γ and δ) and tocotrienols (α, β 

and γ). Oryazanols, tocopherols and tocotrienols are the antioxidant compounds that improve 

stability and frying quality in rice bran oil (Yuki and Ishikawa,1976; Duve and White, 1991; 

Sonntag, 1997; Xu, 1998; Llyods et al., 2000). Fat-soluble antioxidant compounds of Vitamin E 
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protect cell membranes by blocking the oxidation of the unsaturated fatty acids and acting as a 

scavenger of free radicals (Komiyama et al., 1992; Nestaretnam et al., 1998). Gamma oryzanol is 

reported to reduce cholesterol absorption (Bourgeois, 1992; Orthoefer and Nicolosi, 1993, Hu, 

1995; Rong et al, 1997). Oryzanols also have hypolipidimic effects, promote growth, 

gonadotrophoic action and hypothalamus stimulation effects (Sugano and Tsuji, 1997)  

Oryzanols are the mixture of ferulate (4-hydroxo-3- methoxycinnamic  acid) esters of 

sterols (campesterol, stigmasterol and β-stigmasterol) and triterpene alcohols                    

(cycloartenol, cyccloartenol, 24-methylenecycloartanol, cyclobranol). Major portions of γ-

oryzanol are cycloartenyl ferulate, 24 –methylene cycloartanyl ferulate and campesteryl ferulate. 

γ -Oryzanol is 1.5 –2.9 % of rice bran oil and is white or yellowish tasteless powder with little or 

no odor (Kaneko and Tsuuchiya, 1954; Okada and Yamaaguchi, 1983; Juliano, 1985; Budavari 

et al., 1989; Hu, 1995; Xu, 1998; Xu and Godber, 2000). Vitamin E, which is a mixture of 

tocopherols and tocotrienols, is a pale-yellow and viscous oil (Budavri et al., 1989, Hu, 1995). 

Tocopherols and tocotrienols differ in the number and positions of methyl groups on the fused 

chromonol ring, and the absence and presence of three double bonds in the isoprenoid side chain. 

(Hua , 2000).  Major forms of tocopherols in rice bran oil are 5,7,8-trimethyltocol  (α-

tocopherol), 7,8-dimethyltocol (γ-tocopherol) and 8-methyltocol (δ-tocopherol). Similarly major 

tocotrienol forms are 5,7,8-trimethyltocotrienols (α-tocotrienol), 7,8-dimethyltocotrienol (γ-

tocotrienol) and 8-methyltocotrienol (δ-tocotrienol) , (Diack and Saska, 1994; Xu,1998, Hu, 

1995; Xu and Godber, 1999; Hua , 2000 ). 

Solvent extraction is the conventional method for lipid recovery from rice bran that uses 

toxic and flammable solvents like hexanes, petroleum ether, isopropanol, etc. Proper disposal, 

toxic residue in final food product and environmental regulations represent key problems 
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associated with the use of these solvents. These issues have prompted scientists to search for 

alternative, non-hazardous extraction techniques. Supercritical fluid extraction (SFE) is a 

prominent alternative technique, which promises to meet a growing demand for natural, green 

and organic extracts from food and biological materials. McHugh and Krukonis (1994) have 

given a detailed historical perspective of the developments related to supercritical fluids. 

Supercritical fluid extraction (SFE), apart from overcoming problems associated with 

conventional solvent extraction, also offers additional advantages of the selective extraction and 

fractionation capability for high- value components in the extract at optimized extraction 

conditions. Carbon dioxide is the most widely used supercritical solvent due to its low critical 

temperature and pressure (31 oC, 7.10 MPa). It is non-toxic, inert, inexpensive, easily available, 

odorless and tasteless. Carbon dioxide is an appropriate SFE solvent for biological materials like 

rice bran, because of the possible thermal degradation of important minor components at higher 

temperature. (Rizvi, 1994; Chester et al., 1998; Clifford, 1999; Kiran et al., 2000; 

Mukhopadhyay, 2000; William and Clifford 2000). 

Supercritical fluid extraction from food, pharmaceutical, nutraceutical and other natural 

and biological products have received significant attention. Several recent detailed studies, 

reviews and books reported the supercritical fluid extraction of various biological, food and 

natural products (Chen and Ling, 2000; King, 2000; Mukhopadhyay, 2000; Rozzi and Singh, 

2000; Lang and Wai, 2001; Pop and Barth, 2001; Senorans et al., 2001; Wong et al., 2001; 

Canela et al., 2002; Danaher and O’Keefe, 2002; Mohamed and Mansoori , 2002; Raventos et 

al.,2002; Rozzi et al.,2002;  Prieto et al., 2003).  Lipids are an important part of the food system. 

Some of the recent studies relating to application of supercritical fluid for lipid include extraction 

from lavender (Reverchon and Porta., 1995), ginger oil (Roy et al.,1996), Turkish mint plant 

leaves (Ozer et al.,1996), corn (Moreau et al.,1996, soybean (Montanari et al.,1996), spearmint 
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oil from mint plant leaves (Ozer et al., 1996), cloudberry seed oil (Manninen et al.,1997), sun 

flower oil (Perrut et al , 1997), almond oil (Marroene et al.,1998), pistachio nuts lipids 

(Palazoglu and Balaban, 1998), rape seed, sunflower and soybean (Bjergegaard et al.,1999), corn 

bran (Taylor and King, 2000), grape seed oil (Lee et al., 2000), hiprose seed oil (Revercon et al., 

2000), lavender essential oils and waxes (Akgun et al., 2000),  Romanian mentha hybrids oil 

(Eugenia  and Danielle, 2001). 

Rice bran lipid extraction with supercritical fluid is also reported. Zhao et al. (1987) 

studied fractional extraction of rice bran oil at 40 oC and obtained oil yield in the range of 18.6 – 

22.0 % with pressures variation from 14.7 –34.3 MPa. Fractions obtained with SFE contained 

8.8 % free fatty acids compared to 11.9 % for hexane-extracted oil. Ramsey (1991) compared 

rice bran oil extraction with hexane, SFE (29.99 MPa, 35 oC, 5 hr, 20.5 g/min) and SFE with co-

solvent (29.99 MPa, 35 oC, 5 hr, 20.5 g/min, 5 % ethanol) extraction processes. He was able to 

recover 20.21%, 17.98% and 18.23 % oil yield and sterol yields were 9.35, 7.25 and 8.3 mg /g of 

rice bran for hexane, SFE and SFE–Co solvent extractions, respectively. Garcia et al. (1996) 

recovered 16-60 % of solvent extractable oil yield from rice bran at 28 MPa and 70 oC. Kuk and 

Dowd (1998) reported 19.2-20.4 % RBO yield in SFE extraction (48.26 - 62.05 MPa) compared 

to 20.5 % in hexane extraction. Xu and Godber (2000) compared solvent extraction (50% hexane 

and 50 % isopropanol v/v) of rice bran with supercritical carbon dioxide extraction (50 oC and 

68.9 MPa) for γ -oryzanol fractionation. Their study suggested that SFE extracts up to four-times 

greater γ -oryzanol (5.39 mg/g of rice bran) compared to solvent extraction.  

Dunford and King (2000) studied enrichment of rice bran oil (20.5 –32.0 Mpa and 45 to 

80 oC) to reduce FFA and minimize loss of phytosterols and found that low pressure and high 

temperature combinations are better for reducing loss of triglycerides and phytosterols during 

removal of FFA from crude rice bran oil. Badal (2002) in their rice bran lipid study with 
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supercritical carbon dioxide (40°C, 27.58 MPa) found that oil yield was the function of particle 

size during SFE. Their yield was 51.5% of the total ether extractable oil in 2 hours from small 

particle (16-48 mesh) compared to 41.2  % extracted from larger particle size (> 48 mesh) rice 

bran. In the present study supercritical extraction of rice bran lipids and antioxidant components 

were investigated at the pilot scale with use of carbon dioxide as a solvent. 

3.2 Mathematical Modeling 

The mass transfer rate of high initial concentration of extract (such as oil seeds) from a 

fixed bed containing natural material typically remains constant and then declines. Supercritical 

fluid extraction involves the control of solubility by manipulating temperature and pressures. 

Natural materials contain multiple components with solubilies and extractabilities that are 

difficult to predict (Lira, 1996). Different mathematical aspects related to SFE of lipids were 

described by King and List (1996) that include solubility, phase equilibria and mass transfer, 

fractionation and modeling. Because of the large number of mathematical variables and 

complexity of the equations involved in the modeling of supercritical extraction of lipids from 

the natural only the model used in this is described.  

The Goto et al. (1993) model for extraction of essential oil from peppermint leaves was 

found applicable to the present study. Solute is assumed to be extracted after desorption from 

porous solid substrate of treated peppermint leaves. During the process diffusion occurred inside 

pores and the film surrounding the particle offers mass transfer resistance. This model was also 

applied to fatty acid and cartenoids extraction from microalgae spriulina maxima by Canela et al. 

(2002) and was used in the present study because of the similarity with experimental materials, 

extraction procedures and the experimental variables. In their application the mass of extract at 

bed outlet was described by the following equation 
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and      τφ pp AK=                   ( eq 3.7) 

 

 where,  ε1=interstitial bed porosity 

  εp= particle porosity 

 Kp= combined mass transfer coefficient 

 Ap= specific surface area (1/L) 

K= particle coefficient of the solvent in the solute 

X0= intital solute mass ratio in the solid phase 

ρs= solid true density (M/L3) 

QCO2 = volumetric solvent flow rate (L3/T) 

t= extraction time (T)   

τ = CO2 residence time (T) 
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3.3  Materials and Methods 

Stabilized rice bran (Producers rice mill, Stuttgart, Arkansas) was sieved (4 mesh -1.18 mm) 

and stored in a freezer at –16 oC. The initial moisture content of the bran was 3.8 % (w.b.). The 

pilot-scale supercritical fluid extractor (from Thar Technologies, Pittsburgh, PA) (Figure 3.3.1 

and 3.3.2) had a capacity of 3 L and could operate at maximum pressure of 68.95 MPa. Before 

extraction, rice bran (750g) samples were thoroughly mixed with glass beads (3 mm, 1100g) to 

facilitate uniform distribution of carbon dioxide and to prevent channeling.  

3.3.1 Supercritical Fluid Extraction 

Extraction experiments were carried out for rice bran (750g) at different extraction 

pressures (27.58, 41.37 and 55.16 MPa) and temperatures (40 and 60 oC). The flow of 

supercritical carbon dioxide through the extraction vessel was also varied (25, 45 and 65 g/min). 

Resulting extracts were collected at time intervals of 30, 60, 90, 120, 180 and 240 min from the 

cyclone collectors in pre-weighed glass vials. The duration of each extraction run was four hours 

and each experiment was duplicated. The oil samples extracted were weighed and cumulative 

weights were calculated by cumulatively adding the weight of oil collected during each 

extraction run. Extraction rates were calculated in terms of g of oil recovered per minute. 

3.3.2 High Pressure Liquid Chromatography 

The collected samples were analyzed with normal phase high-pressure liquid chromatography 

(HPLC). Chromatography system consisted of WatersTM (Milford, Ma) 510 HPLC pump, a 717 

plus injector, a 470 scanning fluorescence detector (excitation at 290 nm and emission at 330 

nm) and 486 absorbance detector (UV) (330 nm).  A SupelcosilTM (Supelco, Bellefonte, PA) LC-

Si, 5µm, 25cm X4.6 mm i.d. column with hexane: ethyl acetate: acetic acid(98.4:0.8:0.8) mobile 

phase, flow rate of 1.9 ml/min was used for chromatographic separation of oryzanol, tocopherols  
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Figure 3.3.1 Pilot scale supercritical fluid extractor used for the experiments 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.2 Flow diagram of the supercritical fluid extraction system used for the experiments.  
C- CO2  cylinder, CB- cooling bath, P- pressure pump, MP- modifier pump, H- heater, EV- 
extraction vessel, PR- pressure regulator, V -valve 
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and tocotrienols.  The chromatogram (see Figure 3.3.3 as example) from samples were analyzed 

by external standard method. 

3.3.3 Soxhlet Extraction 

Extraction of rice bran lipids with conventional solvent extraction method was also 

carried out by applying AOAC method (Aa- 4-38) with use of a Soxhlet apparatus (Kimax) and 

electric heater (Electrothermal) using petroleum ether. Rice bran samples (20 gm) were placed in 

the cellulose extraction thimble (WhatmanTM 30 X 77) and 200 ml of solvent (petroleum ether) 

was filled in the boiling flask, and was heated to change the solvent to a gaseous phase. The 

solvent in gaseous form passed through rice bran in the thimble that was liquefied by cooling the 

solvent vapor by a water-cooled condenser. Each Soxhlet extraction experiment was continued 

for 6-hour time interval and duplicated. At the end of the extraction solvent was evaporated by 

heating in a conventional water bath with application of nitrogen. The oil percentage in rice bran 

was calculated.  Solvent-extracted samples of rice lipids were also analyzed for concentration of  

antioxidant compounds using normal-phase HPLC techniques described earlier. 

3.4 Results and Discussions 

The experimental data for extract yields and antioxidant were used to calculate the total 

yield and cumulative yield with the time.  

3.4.1 Total Oil Yield 

The solvent extraction of the experimental rice bran with petroleum ether for 6-hours in two 

replications gave oil yielded an average of 17.8 % with petroleum ether extractions. Several 

samples were extracted for time up to 10 hours under same conditions and yielded same 

extraction yields. There fore, 17.8 % oil yield was taken as the maximum ether-extractable oil. A 

20 gm sample from rice bran recovered after SFE experiments was again extracted with 6-hour 
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Figure 3.3.3 Normal phase chromatogram for tocopherol, tocotrienol and oryzanol 
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solvent extraction for determination of the residual oil after supercritical extractions. The bar 

diagram were plotted by combining these results. 

Total oil yield from SFE extraction (for 4 hour) was very low which increased 

significantly (p< 0.05) with increase in pressure. Figure 3.4.1.1shows total oil yield at different 

pressures. At 60 oC and 45 g/min, SFE oil yield was 30.2 % of solvent  (petroleum ether) 

extractable (40.48 g total) oil yield at 27.6 MPa (4000 psi) and increased to 76.3% (102.23 g) at 

55.2 MPa (8000 psi). Similar trends were shown by Garcia et al. (1996) where 16-60% hexane 

extractable oil yield at pressure range of 10-28 MPa (temperature 70 oC) and their experiments 

also indicated increase in oil yield with pressure. This increase in yield may be explained by the 

increase in density of carbon dioxide with pressure. With increase in pressure solubility of the oil 

constituents increases (Reverchon et al., 2000). Maximum oil extracted at 55.1 MPa and 60 oC 

was 96.7 % of hexane extractable oil in four hour SFE extraction.  

There was significant (p < 0.05) increase in total oil yield with flow also. Figure 3.4.1.2 

shows the effect of flow at 41.4 MPa and 40 oC. Increase in flow from 25 g/min to 65 g/min the 

total oil yield increased from 38.6 % (51.72 g) to 91.3% (122.27 g) of solvent extractable oil. 

This increase in extract yield may be attributed to the increased mass transfer rate at higher flow 

rates. This trend indicates that convective mass transfer may be dominant force compare to 

intraparticle diffusion resistance.  

Temperature effect on total oil yield was opposite to the pressure and flow effects. The 

lower temperature resulted in higher oil extraction. Temperature effect on total oil yield was not    

found statistically significant. Figure 3.4.1.3 shows the temperature effect at 55.2 MPa for  

different flow rates. As we can see for all flow rates quantitative extraction of oil decreased with 

the rise in temperature possibly due to lower solvent density at higher temperature. Similar 

results were reported by Garcia et al. (1996) in their experiments at 28 MPa and temperatures of          
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Figure 3.4.1.1 Total oil yield as affected by pressure (F=45 g/min, T=60 oC) 
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Figure 3.4.1.2 Total oil yield as affected by flow ( P=41.4 MPa, T=40 oC) 
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Figure 3.4.1.3 Total oil yield as affected by temperature ( P=55.2 MPa) 
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40-50 oC. But they also observed opposite trend at higher temperature ranges (50 –70 oC). Shen 

et al. (1996) also observed higher extract yield at 60 oC compared to 40 oC in their experiments 

at 24 MPa with rice bran. 

3.4.2 Cumulative Extraction and Extraction Rates 

Total extract yield data may not be sufficient to represent the extraction process 

completely. Hence, experiments were designed to collect the extract samples at various time 

intervals (30, 60, 90, 120, 180 and 240 min) during a given four-hour extraction run. These 

extract yield data collected along the extraction process were used to calculate cumulative extract 

yield up to a particular extraction time and the extraction rates for particular time interval (by 

dividing mass of the extract with duration of collection). These data were also used for 

understanding and characterizing extraction process by appropriate graphical representations and 

statistical calculations.  

  The extract yields were significantly (p<0.05) increased with increase in extraction 

pressures from 27.6 to 55.2 MPa as shown in Figure 3.4.2.1 at 40 oC. Similar increase in yield 

with pressure are reported by Shen et al. (1996) at 17, 24 and 31 MPa, Garcia et al. (1996) at 10, 

16.5 and 28.0 MPa, and Kim et al. (1999) at 20.68 to 41.37 MPa.  Increase in pressure of 

supercritical fluid at constant temperature leads to increase in density of the carbon dioxide and 

there by increase its solvating strength. At 65 g/min extraction curve converts from linearly 

increasing with time at low pressure to logarithmic type at higher pressure, indicating 

stabilization at some later point at higher pressures.  This indicates that at higher flow rates since 

intially extractions are high, at later stage of extraction diffiusion resistance through the rice bran 

particle plays major role.  

Oil extraction process was also significantly (p<0.05) affected by flow rate of 

supercritical carbon dioxide. As shown in Figure 3.4.2.2 an increase in flow from 25 g/min to  
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Figure 3. 4 .2.1 Cumulative extract yield as affected by pressure at 40 oC with respect to  
                          flow rate( F) 
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Figure 3.4.2.2 Cumulative extract yield as affected by flow at 60 oC with respect to  
pressure ( P) 
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65 g/min enhanced oil extraction. The 65g/min flow rate at 55.2 MPa yielded the highest of 

129.5 g per 750 g rice bran loaded in the batch cell. Reverchon et al. (2000) also reported 

increase in oil yield from hiprose seed with increase in flow rate of carbon dioxide from 1 g/min 

to 6 g/min. At low flow rates mass transfer between carbon dioxide and oil from bran is limiting 

and results in a linear relationship. At higher flow rates convective mass transfer is generally not 

limiting but the diffusion resistance from center to the surface of the bran becomes the primary 

limiting factor. 

Temperature effect on the extraction process was opposite to the pressure and flow effect. 

Figure 3.4.2.3 indicates higher extraction at 40 oC compared to 60 oC, but this temperature effect 

was not found statistically significant (p>0.05) for each extraction time. Xu and Godber (2000) 

observed increase in extract yield with increase in temperature from 30 o to 60 oC, but they also 

observed that yield does not increase further with increase in temperature to 75 oC. Shen et al. 

(1996) also observed higher extract yield at 60 oC compared to 40 oC in their experiments at 24 

MPa with rice bran. On the other hand Garcia et al. (1996) reported higher yield at 40 compared 

to 50 oC. Tasuda et al. (1995) also reported higher extract yield at lower temperature in the case 

of their tamarind extraction studies. Based on those results temperature effect varied widely 

depending on other extraction conditions including batch size and other variables. Turner et al. 

(2001) reported that effect of temperature on the solvent strength depends on corresponding 

pressure of carbon dioxide in the supercritical region. Below “crossover point” increase in 

temperature results in lowers solvent strength with lower density where as above “ cross over 

point” increase in temperature may increase solvent strength in spite of  reduced density because 

of increased vapor pressure of analyte.  
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  Figure 3.4.2.3 Cumulative extract yield as affected by temperature 
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3.4.3 Antioxidants in Rice Bran Oil 

Normal phase high-pressure liquid chromatography analysis of extracts gave data for 

concentration of antioxidant compounds of oryzanol, tocopherols and tocotrienols. These results 

of HPLC analysis were used to describe the effect of extraction condition of supercritical carbon 

dioxide on concentration and extraction yields of these nutritionally important components of 

rice bran oil.  

Pressure was also found to have positive effect on these antioxidants and pressure effect 

was statistically significant for Oryzanol, tocopherols and tocotrienols (p<0.05). As shown in 

figure 3.4.3.1 concentration of the antioxidants compounds increased with pressure of 

supercritical carbon dioxide. Shen et al. (1996) in their SFE experiments with rice bran got 

increased yield of oryzanol with increase in pressure from 17 to 31 MPa at 40 oC. Higher solvent 

density at higher pressure may be responsible for increased solubility and hence extraction of 

antioxidant compounds at higher pressures. Cheung et al. (1998) also reported increased 

extraction of ω-3 fatty acids with increase of pressure from 24.1 MPa to 37.9 MPa.  

Flow effect on antioxidants in rice bran oil was not as clear as pressure effect and was not 

statistically significant for antioxidants (p>0.05). Figure 3.4.3.2 showing the concentration of 

antioxidants compound also indicates that flow effect varied with different antioxidants as well 

as with extraction conditions. Though results does not gives statistically significant difference in 

antioxidants due to flow rate, Figure 3.4.3.2 shows trends towards increased antioxidant 

extraction with increase in flow rate of the supercritical carbon dioxide. This trends may be due 

to slight variation in the solubility of antioxidant compounds with different flow rates.  

Temperature did not significantly affect antioxidants extraction (p> 0.05). Figure 3.4.3.3 

give temperature effect on antioxidants concentration. Xu and Godber (2000) found variations in  
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  Figure 3.4.3.1 Effect of pressure on concentration of antioxidants 
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                        Figure 3.4.3.2 Effect of flow on concentration of antioxidants 
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  Figure 3.4.3.3 Effect of temperature on concentration of antioxidants 
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the temperature effect on concentrations of oryzanols from rice bran depending on time of  

extractions. For 10 min extraction γ-oryzanol extraction was significantly higher at higher 

temperature (55, 60, 75 oC) compared to lower temperatures (30, 40, 45, 50 oC), but 

concentration of γ-oryzanol at 60 and 75 oC for 20 min extract was significantly lower than that 

at 50 oC. Shen et al. (1996) found increased α-tocopherol extraction of rice bran oils with 

temperature with their extractions at 24 MPa and 20, 40 and 60 oC however they obtained lower 

oryzanol concentrations at higher temperatures, which supports varying behavior with type of 

antioxidants. These variations with antioxidant compounds may be due to their differences in 

chemical structure and size of the molecules.  

3.4.4 Comparing Solvent and Supercritical Extractions 

Conventional methods of rice bran lipid extraction utilize solvents such as hexane and 

ethers. Petroleum ether extractions using the Soxhlet method were compared with supercritical 

fluid extraction in terms of oil yields and antioxidant extraction. As evident from Figure3.4.4.1 

when supercritical extraction was carried out at higher pressure (55.2 MPa) and flow rate (65 

g/min) of carbon dioxide, resultant extract yields were comparable with that of solvent 

extraction. But at low pressure and flow rates SFE extractions yields were poor compared to 

petroleum ether extractions. This means that solvent strength of carbon dioxide at higher 

pressure and flow rate was good enough to replace petroleum ether for extraction. Shen et al. 

(1996) obtained 96.8% of the hexane extractable oil yield with SFE of rice bran at 31 MPa, 40 oC 

and flow rate of 2.5 kg/hr (41. 7 g/min) flow rate in 6 hours extraction. On other hand Garcia et 

al. (1996) obtained 16-61 % rice bran oil yields at 28 MPa and 40-70 0C. One advantage of SFE 

over solvent extraction is the selective extraction and fractionation of desired compounds by 

altering density. So extraction of antioxidant compounds with SFE extraction was compared with 

that of solvent extraction. Figure 3.4.4.2 shows the results of minor antioxidant components to  
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determine if fractionation occurred. As evident from this figure the supercritical extract obtained 

at 55.2 MPa and 60 oC with 65 g/min flow rate of carbon dioxide showed much higher 

concentrations of oryzanol, tocopherols and tocotrienols when compared to petroleum ether 

extract. Similar results are also reported by Xu and Godber (2000) for extraction of γ-oryzanol 

from rice bran. 

3.4.5 Modeling Results for The Extraction Process 

The Goto et al. (1996) model for supercritical fluid extraction from porous biological 

material in the form similar to that applied by Canela et al. (2002) in their SFE study related to 

microalgae was applied to the present study. Properties of rice bran such as surface area, particle 

size, different densities etc. were measured or obtained from the available literature to apply to 

the model. The average particle size  and surface area were was measured at the materials lab of 

CAMD–LSU. Details of the obtained property data are shown in Table 3.4.5.1 Constants for the 

model such as a1, a2, b, c and A were calculated by using appropriate property data with the 

equations given in Section 3.2 for each experimental operating conditions( P, F, T) and were 

placed in the mass equation (3.1) to calculate predicated mass of the extract.   

The mass of extract predicted with model was compared with that of actual extract yield 

values obtained during the experiment. The values of coefficients K and Kp in these equations 

were varied to obtain the least square difference between the experimental and predicted values. 

The value of coefficients K and Kp were optimized in such a way by least square method till we 

get the best fit of the model with experimental values. This procedure was repeated for each set 

of extraction conditions and K and Kp values were obtained. Table 3.4.5.2 shows the values of 

partition coefficient K and mass transfer coefficient Kp  for the respective experimental 

conditions.  Figure 3.4.5.1 shows the comparison between experimental and fitted lines for the 

different extraction conditions.  From these curves of experimental value and predicted value  
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Table 3.4.5.1 Property data obtained for the modeling of extraction process 

Parameter Symbol Equation for 
calculation 

Value of the parameter 

Bed density 
Particle density 
True density 
Initial solute mass ratio in the solid phase 
Specific surface area 
Particle porosity 
Total bed porosity 
Interstitial bed porosity 
Residence time for CO2 

ρa 
ρp 
ρs 
X0 
ap 
εp 
ε 
ε1 
τ 

Literature value 
Literature value 
Literature value 
Measured value 
Measured value 
1-ρp/ρs 
1- ρa/ρs 
1- ρa/ρs 
ε Vc/ QCO2   

1048 kg/m3 
865.3 kg/m3 
1220 kg/m3 
0.18 
1.7  
0.299 
0.14 
0.174 
Varied with flow rate 

 

 
Table 3.4.5.2 Values of partition co-efficient (K) and mass transfer coefficient (Kp) predicted 
using Goto model 
 

Flow 
g/min 

Temp 
oC 

Pressure
MPa 

K Kp r2 Kpap x 100 K X 100 

27.58 0.033 0.009 0.95 1.530 3.29 
41.37 0.023 0.010 0.98 1.700 2.30 

40 

55.16 0.021 0.011 0.96 1.921 2.10 
27.58 0.039 0.011 0.94 1.870 3.95 
41.37 0.022 0.013 0.97 2.125 2.18 

25 

60 

55.16 0.019 0.012 0.99 2.074 1.86 

27.58 0.024 0.010 0.96 1.717 2.40 
41.37 0.018 0.011 0.98 1.921 1.80 

40 

55.16 0.016 0.012 0.99 2.006 1.60 

27.58 0.029 0.013 0.96 2.159 2.93 
41.37 0.018 0.014 0.97 2.312 1.84 

45 

60 

55.16 0.017 0.012 0.99 2.057 1.69 

27.58 0.019 0.010 0.97 1.700 1.94 
41.37 0.014 0.010 0.99 1.700 1.44 

40 

55.16 0.016 0.012 0.98 2.040 1.60 

27.58 0.022 0.012 0.98 2.040 2.24 
41.37 0.016 0.014 0.99 2.295 1.60 

65 

60 

55.16 0.014 0.013 0.97 2.125 1.36 

 

 



 82

 

 

 

 

Modeling results for extraction data

( P=55.2 MPa, T= 60 
o
C)

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300

Time  (min)

E
x

tr
a

c
te

d
 a

m
o

u
n

t 
(g

)

25 g/min

45 g/min

65 g/min

 

  Figure 3.4.5.1 Comparing model and experimental values for extraction  
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with model and from the data given in Table 3.4.5.1, the Goto model was closely able to predict 

the extraction behavior of the rice bran total lipid extraction under the experimental conditions 

used in the present study. 
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Chapter-4 
 

Supercritical Fluid Exaction and Adsorption Processes for Rice Bran Lipids with 
Use of Rice Hull Ash 

 
4.1 Introduction 

A nutritional benefit of rice bran oil, coupled with developments in stabilization 

techniques, has increased interest in rice bran. Rice bran oil has a high unsaponifiable level (4.2 

%), vitamin E (0.1-0.14%) and oryzanols (0.9-2.9%)  (Kato et al., 1981; Sayre and Saunders, 

1990; Hu, 1995; De Deckere and Korver, 1996; Orthoefer, 1996; Shin et al., 1997; Xu and 

Godber, 1999; Lloyd et al., 2000; Dunford, 2001). Vitamin E consists of tocopherols (α, β, γ and 

δ) and tocotrienols (α, β and γ). Vitamin E protects cell membranes by blocking the oxidation of 

the unsaturated fatty acids and acting as a scavenger of free radical (Komiyama et al., 1992; 

Nestaretnam et al., 1998). γ-Oryzanol reduces cholesterol absorption (Bourgeois, 1992; 

Orthoefer and Nicolosi, 1993; Hu, 1995; Rong et al., 1997).  

Rice lipids (16-22 % of rice bran) are a by-product of the rice milling industry. 

Supercritical fluid extraction (SFE) is an emerging alternative extraction technique of 

conventional solvent extraction methods that use toxic and flammable solvents and create an 

environmental concern. SFE with carbon dioxide is a “green” extraction technique that has 

gained generally regarded as safe (GRAS) status and additionally has fractionation capability. 

Carbon dioxide (Pc = 7.10 MPa and Tc = 31 oC) is the most widely used supercritical solvent for 

biological, food and pharmaceutical materials (Rizvi, 1994; Chester et al., 1998; Clifford, 1999; 

Kiran et al., 2000; Mukhopadhyay, 2000; William and Clifford, 2000). 

Recently, SFE from food, pharmaceutical, nutraceutical and other natural and biological 

products has received significant attention (Mukhopadhyay, 2000; Rozzi and Singh, 2000; Lang 

and Wai, 2001; Pop and Barth, 2001; Senorans et al., 2001; Wong et al., 2001; Mohamed and 
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Mansoori, 2002; Raventos et al., 2002; Rozzi et al., 2002; Prieto et al., 2003). Lipid extraction 

using supercritical fluids has been reported from many natural products (Reverchon and Porta., 

1995, Roy et al.,1996, Ozer et al., 1996; Moreau et al., 1996; Montanari et al., 1996; Ozer et al., 

1996;  Manninen et al.; 1997; Perrut et al., 1997; Marroene et al., 1998; Palazoglu and Balaban, 

1998; Bjergegaard et al., 1999; Taylor and King, 2000; Lee et al., 2000; Revercon et al., 2000; 

Akgun et al., 2000; Eugenia  and Danielle, 2001). Rice bran lipid extraction has also reported in 

recent literature (Zhao et al.; 1987; Ramsey, 1991; Garcia et al., 1996; Kuk and Dowd; Xu and 

Godber, 2000; Dunford and King, 2000; Badal, 2002)  

The rice hull (husk), outer fibrous layer of the rice kernel, constitutes approximately 20 % 

of the weight of paddy. Over 510 million tons of rice production worldwide produces 

approximately 100 million tons of rice hulls available from rice mills. Increased energy cost has 

lead to increasing use of rice hulls as a renewable source for energy. Rice hull energy content at 

14.0 % moisture content is 11.9 – 13.0 MJ/kg (5,116.5-5,589.4 Btu/lb). Use of hulls for energy in 

rice mills also eliminates high transportation costs for disposing this low bulk density by-product 

(Vellupillai et al., 1997). Rice hull ash (RHA) (16- 22 % of husk) is an end product of the rice 

husk energy generation system (IRRI, 2003). The cellulose of the rice hull is consumed in the 

burning process, which leaves silica-rich ash as an end product. Composition of rice hull ash 

depends on the conditions of pyro-processing (Vellupillai et al., 1997).  Beagle (1978) has 

tabulated possible uses of RHA, but until recently it has been mostly used for production of 

cement. Due to its high silica content (>90%), RHA is an excellent potential medium for 

adsorption processes. Past studies relating to use of rice hull ash adsorbent are mainly concerned 

with the adsorption of components from oils and wastewater. These include adsorption of 

phospholipid (Brown and Snyder, 1989), lutein (Proctor and Pallanippan, 1990), palmitic and 

oleic acids (Ooi and Leong, 1991), carotene (Liew et al., 1993), lauric, myristic and stearic acids 
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(Idris and Farook, 1994), xanthophylls, lutein, phospholipid, free fatty acids (Proctor et al., 

1995), myristic, palmitic and stearic acids (Huseyin and Yuksel, 1999), saturated fatty acids 

(Farook and Ravendran, 2000) and carotenoids (Jorge et al., 2000) from different lipid mediums. 

RHA has been used for basic blue dye adsorption from textile effluent (Ahmed and Ram, 1992), 

Hg (II) adsorption from aqueous solutions (Tiwari et al., 1995), protein adsorption (Jeyashoke et 

al., 1996), decolorization of raw sugar solutions (Ahmedna et al., 1997), purification of 

bacteriocins from freeze dried culture supernatants (Janes et al., 1998), and treatment of textile 

dyes (Sumanjit , 2001).  

Past studies of supercritical extraction have indicated competitive quantitative extraction 

and higher quality extraction compared with conventional solvent extraction. More research 

efforts are needed for supercritical extraction of rice bran especially in relation to recently 

identified antioxidant components. Although the absorption of soya, sesame, palm and other oils 

by rice hull ash has been studied in the past, no study reported the absorption behavior of rice 

bran oil and its constituent antioxidant compounds on hull ash, which is silica-rich adsorbent. 

Hence, the present study was aimed at applying different supercritical conditions with use of 

RHA adsorption media for combined application of extraction and adsorption processes for rice 

bran lipids and its important components.  

4.2 Materials and Methods 

4.2.1 Experimental Procedures 

Rice bran obtained from a single variety (Wells) with constant milling conditions was 

procured after adequate stabilization from Producers Rice Mill (Stuttgart, Arkansas). The rice 

bran was sieved (14 mesh-1.18 mm) and stored at a temperature of (-16 oC). Agrilectric Power 

Corporation (Lake Charles, Louisiana) donated industrial rice hull ash with high content of silica 

(93-97%). The 3-liter pilot scale supercritical fluid extractor used in the current study was 
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designed and fabricated by Thar Technologies (Pittsburgh, PA). Figures 3.3.1 and 3.3.2 show the 

picture and the flow diagram of the SFE system, respectively. It was controlled and operated 

with a personal computer with feedback from pressure, temperature and flow sensors. Combined 

extraction and adsorption experiments were carried out at different pressures (27.58, 41.37 and 

55.16 MPa), temperatures (40 and 60 oC) and flow rates of supercritical carbon dioxide (25, 45 

and 65 g/min). Each experiment was conducted in duplicate. Rice bran samples (750 g) were 

thoroughly mixed with glass beads (3 mm size, 1100 g) before loading bran into the extraction 

vessel to ensure uniform distribution of the carbon dioxide throughout the vessel and to prevent 

channeling effects. RHA (200 g) was then placed on top of the bran. Supercritical carbon dioxide 

at desired temperature, pressure and flow conditions was passed through the extraction vessel 

and extracts were collected from cyclone collectors at different time intervals (30, 60, 90, 120, 

180, 240 min) into pre-weighed sample vials.  

The collected extracts were analyzed with normal phase HPLC for concentration of 

antioxidants. The HPLC system consisted of WatersTM (Milford, Ma) 510 HPLC pump, a 717 

plus injector, a 470 scanning fluorescence detector (excitation at 290 nm and emission at 330 

nm) and 486 absorbance UV detector (330 nm).  A SupelcoislTM (Supelco, Bellefonte, PA) LC-

Si, 5µm, 25cm X4.6 mm i.d. column with hexane:ethyl acetate:acetic acid (98.4:0.8:0.8) mobile 

phase at a flow rate of 1.9 ml/min was used for separation of oryzanol, tocopherols and 

tocotrienols. The chromatographs from samples were compared with those of standards to 

calculate concentration of these compounds in the extracted samples. An example of a 

chromatogram is shown in Figure 3.3.3. To characterize the ash effect, all SFE experiments were 

repeated without ash. Also, extraction of rice bran lipids with a conventional Soxhlet solvent 

extraction method was carried out by applying AOAC method (Aa- 4-38) and with petroleum 

ether as solvent for six hours. The oil samples collected during SFE experiments without ash and 
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solvent extraction were also analyzed with HPLC. The residual bran and ash at the end of the 

SFE experiments were then subjected to 6-hour solvent extraction to quantify the residual lipids 

remaining in bran or adsorbed onto the ash.  

4.2.2 Mathematical Modeling 

Supercritical extraction of multi-component lipid compounds from the biological 

materials involving complex and varying vegetative structures is difficult to quantify 

mathematically. Combining such a process with adsorption phenomena adds to this complexity. 

Though there are few attempts to mathematically describe lipid extraction from plant materials, 

none of those involved its combined application with adsorption phenomena.  

Different mathematical aspects related to SFE of lipids were described by King and List 

(1996) that include solubility, phase equilibria and mass transfer, fractionation and modeling. 

Because of the large number of mathematical variables and complexity of the equations involved 

in modeling of supercritical extraction of lipids from natural materials, the Goto et al. (1993) 

model for extraction of essential oil was found applicable to the present study. This model was 

also applied to fatty acid and carotenoids extraction from microalgae spriulina maxima by 

Canela et al. (2002) and was used in the present study because of the similarity with 

experimental materials, extraction procedures and the experimental variables. In their 

application, the mass of extract at the bed out-let was described by the following equation 
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and      τφ pp AK=         (eq 4.7) 

where,  ε1=interstitial bed porosity 

εp= particle porosity 

Kp= combined mass transfer coefficient 

Ap= specific surface area (1/L) 

K= particle coefficient of the solvent in the solute 

X0= intital solute mass ratio in the solid phase 

ρs= solid true density ( M/L3) 

QCO2 = volumetric solvent flow rate (L3/T) 

t= extraction time (T) 

τ = CO2 residence time (T) 

4.3 Results and Discussions 

Extract yield and antioxidant data obtained from the SFE with ash experiment were used 

to evaluate the effect of the different parameters on the qualitative and quantitative extraction of 

rice bran lipids with ash. Moreover, similar data obtained from control SFE with bran-only 

experiments and Soxhlet experiments were used to compare the ash effect on the rice bran oil 

yield and antioxidants.  
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4.3.1 Total Oil Yield 

Oil yield increased significantly (P<0.05) with an increase in pressure. Figure 4.3.1.1 

shows total oil yield at different pressure in case of the ash experiments.  At 60 oC and 45 g/min, 

SFE oil yield increased from 24.2 % (32.5 g) to 91.31 % (122.2 g) of solvent extractable oil 

when pressure increased from 27.58 MPa (4000 psi) to 55.16 MPa (8000 psi). Oil adsorption on 

ash was highest (27.05 % of solvent extractable, 36.2 g) at 41.37 MPa whereas residual oil in 

bran was highest at the lowest pressure (27.58 MPa). This behavior of increased extraction rate 

with increased pressure was the result of the increase in solvent density with an increase in 

pressure at constant temperature. Garcia et al. (1996) also reported an increase in extract yield 

when pressure was increased from 16.5 to 28.0 MPa. Cheung et al. (1998) also reported higher 

extraction of algal lipids with increase in pressure from 24.1 to 37.9 MPa. 

Figure 4.3.1.2 shows the effect of flow rates of carbon dioxide on the extraction and 

adsorption of oil for ash experiments, where significantly (p<0.05) increased total oil yield 

occurred with increased flow. As flow increased from 25 to 45 g/min at 55.2 MPa and 40 oC, 

extract yield also increased from 61.7 % of solvent exactable oil (82.54 g) to 97.2 % (130.11 g). 

At 41.37 MPa and 40 oC the increase was from 53.1 % to 91.2 % of solvent exactable oil. This 

indicated that an increase in the convective mass transfer rate has positive impact on oil 

extraction and that using high flow rate can reduce extraction time and increase the oil yield in 

case of large systems with recycling of CO2. Highest adsorption at 55.2 MPa and 40oC was 8.6 

% of solvent extractable oil at the lowest flow rate of 25 g/min. As expected, at 55.2 MPa the 

lowest flow (25 g/min) yielded maximum residual oil in the bran (17.6 % of solvent extractable).  

Figure 4.3.1.3 visually indicates increasing trends in total oil extraction yields with 

increasing temperature. However actual differences in these oil yields due to temperature were 

not found statistically significant. This indicates that the solvent density, and hence the solvent  
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Figure 4.3.1.1 Total oil yield as affected by pressure in SFE with ash experiments 
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Figure 4.3.1.2 Total oil yield as affected by flow in SFE with ash experiments 
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strength did not change drastically with an increase in temperature from 40 to 60oC. Shen et al. 

(1996) observed higher extract yield at 60oC compared to 40oC in their experiments at 24 MPa, 

with rice bran where as Garcia et al. (1996) reported lower yield in oil with increased 

temperature in their experiments at 28 MPa and temperatures of 40-50oC. This indicates that 

temperature effect on rice bran oil extraction was strongly influenced by other extraction 

parameters such as pressure, flow rate, system configuration as well as sample sizes. 

Temperature was also found to have a cross-over effect in solvent density with a rise at constant 

pressure, which may possibly be explained by retrograde behavior. 

4.3.2 Cumulative Extraction and Extraction Rates 

4.3.2.1 Effect of Extraction Conditions 

Cumulative extract yield and extraction rates were used to describe the extraction process with 

time. As pressure of supercritical carbon dioxide increased from 27.6 to 55.2 MPa in 

experiments conducted with ash, cumulative extract yields were significantly  (p< 0.05) 

increased with extraction pressures as shown in Figure 4.3.2.1.1 This was mainly because of an 

Increase in density at constant extraction temperature of 60 oC.  For example, as shown by Roy 

et al. (1996) at 40oC density of supercritical carbon dioxide increased from 676.1 to 879.5 kg/m3
 

when pressure was increased from 10.8 MPa to 24.5 MPa. The maximum yield of 97. 2 % of 

Soxhlet extractable oil was obtained  (at 55.2 MPa, 65 g/min, 40oC) where as lowest oil yield of 

18.4 % was obtained (at 27.6 MPa, 25 g/min 40oC). Solubility of fats in supercritical carbon 

dioxide generally increases with an increase in pressure. Turner et al. (2001) indicated that when 

density of the supercritical fluid is equivalent to density of target analyte, the maximum 

solubility of analyte may be obtained.  Similar increases in yield with increased pressure are 

reported by Shen et al. (1996) at 17, 24 and 31 Mpa, Garcia et al. (1996) at 10, 16.5 and 28.0 

Mpa, and Kim et al. (1999) at 20.68 to 41.37 MPa.  
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Figure 4.3.2.1.1 Effect of pressure on cumulative oil extraction with ash adsorption 
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Flow of carbon dioxide also influenced the extraction process significantly (p>0.05) as 

shown in Figure 4.3.2.1.2.  From 750 g of rice bran with a flow rate of 65g/min, oil yield of up to 

130.11,122.12 and 77.41 g were obtained at 55.2, 41.4, and 27.6 MPa whereas 17.01, 63.34, 

82.54 g were obtained for the flow rate of 25 g/min. Eggers and Sievers (1989) reported that at 

constant mass flow rate the extraction curve is linear until being retarded by diffusion within the 

product thus switching to logarithmic behavior.  This may be indicative of the benefit of smaller 

particle sizes in the extraction process as reported by Reverchon et al. (2000) and Badal (2002). 

Increases in extract yield with increasing flow rate also indicates that extraction is governed by 

the solubility of the compound in compressed carbon dioxide. 

Temperature effect was not statistically significant (p>0.05) for the extraction 

experiments with ash in terms of cumulative oil yield. Graphs in Figure 4.3.2.1.3 indicate the 

temperature effect at different flow rates and pressures. Xu and Godber (2000) observed an 

increase in adsorption extract yield with increased temperature from 30 to 60oC, but it did not 

increase further when temperature was raised to 75oC. Garcia et al. (1996) also observed varying 

temperature effects on extract yields. Turner et al. (2001) reported that when the temperature of a 

supercritical fluid is increased at constant pressure, the solvent strength is dependent on that 

respective pressure. At pressures below a cross-over point, increase in temperature decreases 

solvent density, which reduces extraction efficiency of the analyte. However, above the cross-

over point, in spite of a decrease in solvent density, with increasing temperature, extraction 

nevertheless improves due to a significant increase in vapor pressure of the analyte. Another 

phenomena, known as retrograde behavior, exists for supercritical fluids that suggests that 

analyte solubility first increases with temperature at constant pressure due to increased analyte 

vapor pressure, but with further temperature elevation beyond a certain point where the 

temperature influence on decreasing solvent density becomes more significant than increasing 
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Figure 4.3.2.1.2 Effect of flow on cumulative oil extraction with ash adsorption  
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Figure 4.3.2.1.3 Effect of temperature on cumulative oil extraction with ash adsorption  
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analyte vapor pressure, the solubility of the analyte is then reduced. 

4.3.2.2 Mathematical Modeling of Extraction Process 

Properties of rice bran and RHA such as surface area, particle size, densities etc. were 

measured or obtained from the available literature to apply to the present study. Table 3.4.5.1 

show property data used in the modeling. Constants such as a1, a2, b, c and A were calculated with 

equations 4.2 to 4.7 and resultant values were placed in the mass equation 4.1 to calculate 

predicated mass of the extract.  

Since the results of the extraction behavior for cumulative oil extract yield in combined 

extraction-adsorption applications in this study did not show any significant variation from 

experiments without adsorption media present, the SFE extraction model was also applied to this 

combined extraction-adsorption with the assumption that adsorption behavior for oil was 

negligible.   

Predicted mass of extract using the model was compared with the experimental extraction 

values by placing approximate values of coefficients in the beginning. The coefficients K and Kp 

were then varied to obtain the least square difference between the experimental and predicted 

results. Accordingly, values of K and Kp were optimized within MS EXCEL software to obtain 

the best fit of the model with experimental values at different experimental conditions of 

pressure (P), Flow (F) and Temperature (T). Table 4.3.2.2.1 shows the resultant values of 

partition coefficient K and mass transfer coefficient Kp for the respective experimental 

conditions. Figure 4.3.2.2.1 shows the comparison between experimental and fitted lines for the 

different extraction conditions. The Goto model was able to predict the extract yields in 

combined extraction-adsorption experiments with reasonable accurately for rice bran lipid under 

the experimental conditions used in the present study.  
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           Figure 4.3.2.2.1 Comparing model and experimental values for extraction with ash 
   

 

Table 4.3.2.1 Modeling results for the co-efficient 

Flow 
g/min 

Temp 
oC 

Pressure
MPa 

K Kp r2 Kpap x 100 K X 100 

27.58 0.0329 0.0090 0.95 1.530 3.29 
41.37 0.0230 0.0100 0.97 1.700 2.30 

40 

55.16 0.0210 0.0113 0.98 1.921 2.10 
27.58 0.0395 0.0110 0.97 1.870 3.95 
41.37 0.0218 0.0125 0.98 2.125 2.18 

25 

60 

55.16 0.0186 0.0122 0.99 2.074 1.86 

27.58 0.0240 0.0101 0.96 1.717 2.40 
41.37 0.0180 0.0113 0.98 1.921 1.80 

40 

55.16 0.0160 0.0118 0.99 2.006 1.60 

27.58 0.0293 0.0127 0.94 2.159 2.93 
41.37 0.0184 0.0136 0.99 2.312 1.84 

45 

60 

55.16 0.0169 0.0121 0.93 2.057 1.69 

27.58 0.0194 0.0100 0.98 1.700 1.94 
41.37 0.0144 0.0100 0.99 1.700 1.44 

40 

55.16 0.0160 0.0120 0.93 2.040 1.60 

27.58 0.0224 0.0120 0.96 2.040 2.24 
41.37 0.0160 0.0135 0.99 2.295 1.60 

65 

60 

55.16 0.0136 0.0125 0.98 2.125 1.36 
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4.3.3 Antioxidants in Rice Bran Oil 

 
Yields of antioxidant components obtained by HPLC were used to characterize the 

effects of the extraction conditions on antioxidants in SFE with ash experiments. Concentration 

and yields of the antioxidants increased significantly with an increase in pressure (p<0.05) for 

the three antioxidants in the SFE with ash experiments. Graphs in Figures 4.3.3.1 represent the 

pressure effect on concentration of antioxidants. Greater amounts of all antioxidants were 

extracted at higher pressures most likely due to an increase in solubility of the antioxidant 

compounds at higher pressure because of increased density and solvent strength of supercritical 

carbon dioxide. Shen et al. (1996) also reported increased yield of oryzanol when extraction 

pressure increased from 17 to 24 and 31 MPa at 40 oC.  

The effect of flow on antioxidants in rice bran oil was not statistically significant 

(p>0.05). Graphs in Figure 4.3.3.2 indicate that flow effect on concentration of the antioxidants, 

which were difficult to characterize from this experimental data. This suggest that though with 

higher flow the extract yield increased with an increase in convective mass transfer, it did not 

contribute to an increase in extraction of antioxidant compounds. Statistically, there was no 

significant difference in extraction of antioxidants due to the temperature (p>0.05), which was 

similar to temperature effects on yield in these experiments.   

Figure 4.3.3.3 shows the temperature effect on antioxidant concentration for SFE with 

ash experiments. Xu and Godber (2000) found variations in the temperature effect on 

concentrations of oryzanols from rice bran depending on time of extraction. Shen et al. (1996) 

found increased α-tocopherol extraction with temperature for extraction of RBO at 24 MPa and 

20, 40 and 60 oC, but in the same experiments they obtained lower oryzanol content at higher 

temperatures. Such variations in temperature effects on antioxidant extraction may be the result  



 100

  

 (F=25 g/min, T=40 
o
C)

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

Time of extraction (min)

O
ry

z
a

n
o

l 
C

o
n

c
e

n
tr

a
ti

o
n

 

(u
g

/m
l)

27.6 MPa

41.4 MPa

55.2 MPa

 

  

( F=25 g/min , T=40 
o
C)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300

time of extraction (min)

to
c
o

p
h

e
ro

ls
 

c
o

n
c
e
n

tr
a
ti

o
n

(u
g

/m
l)

27.6 MPa

41.4 MPa

55.2 MPa

 

  

(F=25 g/min, T=40 oC)

0

0.5

1

1.5

2

0 50 100 150 200 250 300

Time of extraction (min)

to
c
o

tr
ie

n
o

ls
 c

o
n

c
e
n

tr
a
io

n
 

(u
g

/m
l)

27.6 MPa

41.4 MPa

55.2 MPa

 

Figure 4.3.3.1 Effect of pressure on concentration of antioxidants in SFE with ash  
  experiments  
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     Figure 4.3.3.2 Effect of flow on concentration of antioxidants in SFE with ash  
      experiments 
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Figure 4.3.3.3 Effect of temperature on concentration of antioxidants in SFE with  
            ash experiments 
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of the cross-over effect of pressure, at a constant temperature, which was discussed earlier in 

section 4.3.2.1.  

4.3.4 Effect of Ash Adsorption on Rice Bran Oil and Antioxidants 

Supercritical extraction with ash was compared with control SF extractions (no ash present). 

Figure 4.3.4.1 shows the total oil yield in case of different extractions. From the graphs SFE of 

oil in the presence of ash at higher pressure (55.2 MPa, 65 g/min, and 40 oC) was comparable in 

terms of total oil yield with SFE of oil from bran without ash and to the Soxhlet solvent using 

petroleum ether as solvent. This indicates that solvent density of the supercritical fluid at higher 

pressure and flow rates was strong enough to over come any ash adsorption effect on the oil 

yield. The comparable effects observed for petroleum ether in solvent extraction indicated 

similar solvent strength to SFE. Cumulative yield graphs shown in Figure 4.3.4.2 indicate that 

SFE extraction with ash showed similar extraction behaviors with time as that of SFE for bran.  

Though there were minor differences in the oil yields with and without ash, which varied over 

extraction conditions, these differences were not statistically significant (p> 0.05). 

Antioxidants in the rice bran oil were significantly (p<0.05) affected by the ash 

adsorption as expected. Figure 4.3.4.3, 4.3.4.4 and 4.3.4.5 compare SFE with ash extractions to 

those without ash in relation to antioxidant extraction. Figure 4.3.4.3 indicates that oryzanol 

concentration was significantly higher in the extract in presence of ash. This behavior was 

similar to the adsorption with chromatographic phases during HPLC and other techniques in 

which silica and other adsorbents retain the compounds by adsorption, which is later eluted in 

high concentration to appear as a distinctive peak with good separation. But the ash effect on the 

oryzanol concentration was found to be somewhat pronounced compared to that in case of 

tocopherols and tocotrienols. Ferreira et al. (2002) showed that solubility and composition of oil 

were affected significantly by the molecular weights of the components using supercritical  
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Figure 4.3.4.1 Comparing oil yield in SFE with ash experiments to other extractions 
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Figure 4.3.4.2 Comparing cumulative oil extraction in SFE experiment with and  
             without ash 
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Figure 4.3.4.3 Comparing oryzanol concentrations in SFE experiment with and  
             without ash 
 

 

 

 

 



 106

 

 

SFE with ash ( F=45 g/min , T=60 
o
C)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Time  (min)

to
c

o
p

h
e

ro
ls

 

c
o

n
c

e
n

tr
a

ti
o

n
s

 (
u

g
/m

l)
27.6 MPa

41.4 MPa

55.2 MPa

 

SFE bran only ( F=45 g/min , T=60 
o
C)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300

Time (min)

to
c
o

p
h

e
ro

ls
 c

o
n

c
e
n

tr
a
ti

o
n

s

27.6 MPa

41.4 MPa

55.2 MPa

 

 

Figure 4.3.4.4 Comparing tocopherol concentrations in SFE experiment with and  
             without ash 
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Figure 4.3.4.5 Comparing tocotrienols concentration in SFE experiment with and  
             without ash    
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extraction of black pepper essential oils. Hu (195) reported differences in physical properties of 

the rice bran oil components describing Vitamin E (tocopherols and tocotrionels) as viscous oil 

components with boiling point of 200-220 oC, where as oryzanol was a powder with a melting 

point range of 137.5 to 138.5 oC. Shen et al. (1996) reported that, in comparison to the 

tocopherols, free fatty acids, triglycerides, and oryzanols were more difficult to extract. Though 

oryzanols are lower (~270 Da) then triolein in molecular weight, they have more rigid and 

voluminous polycyclic structure and linkages with other components of the bran. These studies 

indicate that oryzanols are more difficult to extract compared to other compounds of rice bran 

lipids. Also as shown in HPLC chromatogram shown in Figure 3.3.3, oryzanol components are 

eluted at much later time of approximately 25 minutes compared to vitamin-E components of 

tocopherols and tocotrienols. This shows that oryzanol is adsorbed more strongly on the ash.  

Tocopherol extraction was also significantly affected by ash (p<0.05) as can be seen in Figure 

4.3.4.4. With SFE of bran only experiments, tocopherols concentrations declined with time as 

extraction progressed. With ash adsorption, the extraction resulted in lower tocopherol 

concentration in the extract initially then increased as extraction progressed.  Ambrogi et al. 

(2003), who studied a combined extraction-adsorption process for separation of carotene, also 

found that composition of carotenoids was significantly affected by the presence of silica 

adsorbent after the extraction process. Here, also, a significant delay was observed due to 

adsorption phenomena.  They observed variation in concentration depending on type of 

adsorbent, due to variation in surface and ionic characteristics. This indicates that structural 

differences in the tocopherols and oryzanol might be responsible for different adsorption 

behavior of these compounds with constant surface and ionic characteristics of RHA silica 

surface. Figure 4.3.4.5 shows extraction behavior of tocotrienols with ash compared to bran only 

experiments. The ash effect on the tocotrienols was similar to that of tocopherols, i.e. higher 
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initial extraction with bran only experiments whereas lower initial extraction occurred in 

experiments with ash due to the adsorption.  Since, tocopherols and tocotrienols are structurally 

similar compounds, there similar adsorption behavior with rice hull ash shows the agreement 

with the earlier discussion of the adsorption dependence on structural characteristics.  
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Chapter 5 

Adsorption of Antioxidant Compounds on Rice Hull Ash from Rice Bran Oil 

5.1 Introduction 

 Rice bran is nutritionally rich with 16–22% lipid, 12–16 % protein, 8-12 % crude fiber 

and high levels of other vitamins and minerals (Saunders, 1990). The high content of lipids make 

bran a commercially viable feedstock for oil extraction. Rice bran oil (RBO) has oleic acid (38.4 

%), linoleic acid (34.4%) and linolenic acid (2.2%) as unsaturated fatty acids, and palmitic 

(21.5%) and stearic acid (2.9%) as saturated fatty acids  (Rukmani and Raghuram, 1991; Xu, 

1998). Three major fatty acids include palmitic, oleic and linoleic, which make up 90 % of the 

total fatty acids of the RBO. Rice bran is a good source of linoleic acid that is essential to human 

health (Ramezanzadeh et al., 2000). The fatty acid composition of RBO is similar to peanut oil 

although the level of unsaponifiable lipid is higher.  

RBO also contains nutritionally important antioxidant compounds that include oryzanols, 

tocopherols and tocotrienols (Godber et. al., 1994). These antioxidant compounds are beneficial 

in lowering cholesterol as well as preventing cardiovascular diseases (Lloyd et al., 2000). 

Tocopherols are also believed to have anticancer effects (Tarber and Packer, 1995; Dunford, 

2001). Oryzanols lower harmful cholesterol (LDL) without reducing good cholesterol (HDL) 

(Nicolosi et al., 1992; Dunford, 2000). Oryzanols, tocopherols and tocotrienols, as antioxidants, 

give improved stability to the rice bran lipids and also improve the frying quality of RBO             

(Llyods et. al. 2000, Yuki and Ishikawa, 1976, Duve and White, 1991; Sonntag, 1997; Xu, 

1998).  

The rice hull (husk) also constitutes an important by-product of the rice milling industry 
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accounting for approximately 20% of the paddy’s weight. Rice husks are rich in cellulose(28-36 

%), crude fiber (34.5-45.9 %) and ash (13.2 –21.0 %) (Julianao, 1985). The environmentally- 

sound disposal and use of large quantities of hull is a challenging issue for rice processors around 

the world. In countries like the USA where the rice milling industry is well organized and mills 

are large, rice hulls are burnt to generate thermal power for drying and other mill operations. 

Rice hull energy content ranges between 13.8 –15 MJ /kg  (Juliano, 1985). Rice husk ash (RHA) 

is an end product of the combustion of rice husk. The chemical composition of ash varies 

according to the conditions in the gasifier used for burning the husk. RHA contains a very high 

content of silica that has very good absorbent properties. RHA has the potential to replace other 

conventional sorbent materials such as bleaching earth, clay, activated carbon, silicate, etc. in 

various industries. In the past decade, just a few studies have been reported that are related to the 

use of RHA as an adsorbent. These studies mainly dealt with the adsorption of components from 

oils and wastewater.  

 Adsorption studies for oil components with RHA include fatty acids, lutein, 

phospholipids, etc. from soya, palm, sesame and other oils. When compared with that of 

commercial bleaching clay and silica hydrogel, RHA adsorbed more xanthophylls, lutein, 

phospholipids, free fatty acids and peroxides per unit surface area from soy oil. However, RHA 

was not as effective as silica hydrogel on the basis of weight of adsorbent used (Proctor et al., 

1995). Soy oil phospholipid adsorption on acid activated RHA was found higher for smaller 

doses of adsorbents (Proctor et al., 1992). Lutien adsorption from soy oil on RHA increased with 

5 % acid activation (sulfuric acid), but free fatty acid adsorption from soy oil was found to 

decrease (Proctor and Pallanippan, 1989&1990). Soya oil adsorption studies for phospholipds, 

using silica (Brown and Snyder, 1985& 1989), and for lutein, using silicic acid (Proctor and 

Snyder, 1987) have also been reported.  
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 Studies of adsorption of carotene from palm oil by rice hull ash (treated with 20 % 

sulfuric acid, followed by washing with de-ionized water) indicated that unwashed acid activated 

ash was more effective. Relative adsorptive activities of acid-treated RHA were higher than 

carbon and silica, but lower compared with bleaching clay (Liew et al., 1993). The adsorption of 

monglycerides of palmitic and oleic acids was achieved from palm oil on RHA and yielded 15.8 

mg of adsorption per gram of ash in the case of monopalmitin (Ooi and Leong, 1991). When 

adsorption efficiency of RHA for free fatty acids and carotenoids from sesame oil was compared 

with two commercial adsorbents, synthetic silica and wood carbon (vegetable carbon), RHA 

retained most of the oil, while silica had lower retention compared with wood carbon (Jorge et 

al., 2000). Decolorization studies on rubber and melon seed oil using fuller’s earth, activated 

charcoal and their mixture (1:1) at three different temperatures, produced Freundlich and 

Langmuir isotherms, which indicated the formation of a monolayer on the adsorbent. Also, an 

increase in adsorption with increased temperature due to an increase in active sites (Achife and 

Ibemesi, 1989) was observed. Other studies involving RHA as an adsorbent for oil components 

include adsorption of saturated fatty acids (Farook and Ravendran, 2000), lauric, myristic and 

stearic acids (Idris and Farook,1994), myristic, palmitic and stearic acids (Huseyin and Yuksel, 

1999).   

 Rice hull ash is also suited for the adsorption from other mediums apart from oil, such as 

organic waste water substances from cargo red and vacuum pump oil in a packed bed (Chou et 

al., 2001), decolorization of raw sugar solutions (Ahmedna et al., 1997), protein adsorption 

(Jeyashoke et al., 1996), purification of bacteriocins from freeze dried culture supernatants 

(Janes et al., 1998), Hg (II) adsorption from aqueous solutions (Tiwari et al., 1995), basic blue 

dye adsorption from textile effluent (Ahmed and Ram, 1992) and adsorption treatment of textile 

dyes (Sumanjit , 2001).  
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 An adsorption isotherm represents the equilibrium relationship between the concentration 

in the fluid phase and the concentration in the adsorbate particles at a given temperature and 

pressure. These isotherms are useful for indicating the affinity of an adsorbate for a particular 

adsorbent. Langmuir and Freundlich isotherms have been widely used to describe adsorption 

behaviors. Langmuir (1916) derived a relationship for q (weight of component adsorbed for unit 

weight of adsorbent) and C (concentration of a component in a fluid) based on several 

assumptions, such as a uniform surface, a single (mono) layer of adsorbed material and constant 

temperature.  

CKqqq amm
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+=  

where    qm = amount of adsorbate adsorbed to form monolayer coverage on adsorbed and      

  

 Ka = Langmuir adsorption equilibrium constant. 

The above equation describes the Langmuir isotherm in its linear from.  Farook and 

Ravendran (2000) used the Langmuir isotherm to describe saturated fatty acid adsorption by 

acidified RHA from palm oil. All fatty acid adsorption showed the linear form of the Langmuir 

isotherm. Idiris and Adam (1994) also found that adsorption of FFA, such as lauric, myristic and 

stearic acids, on RHA may be described with Langmuir isotherms.  

 Freundlich  proposed an empirical relation for the amount adsorbed per unit weight of 

adsorbent versus the concentration in the fluid at the equilibrium given as 

q = Kf  C
n 

where  Kf and n are coefficients  

 q = weight adsorbed per unit wt of adsorbent 

 C = concentration in the fluid 
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Taking logs and rearranging 

log q = log Kf + n log C 

Free fatty acid adsorption from soy oil by rice hull ash followed a Freundlich type isotherm. 

(Proctor and Palaniappan, 1990). Adsorption efficiency of pine wood carbon, commercial silica 

and RHA for the adsorption of FFA and carotenoids were compared with use of the Freundlich 

isotherm (Vazquez et al., 2000). Langmuir and Freundlich adsorption isotherms were also 

applied to bleaching of rubber and melon seed oil, which confirmed adsorption of the coloring 

compounds of oil followed monolayer adsorption and indicated an increase in active sites with a 

rise in temperature (Achife and Ibemesi, 1989). 

 Antioxidant compounds of the RBO have gained increased importance due to their 

nutritional and health benefits. RHA adsorbents have successfully adsorbed other important lipid 

components such as fatty acids, phospholipids, lutein, carotene etc. Though several studies 

regarding adsorption of lipid components using RHA have been reported in recent literature, 

adsorption of the important antioxidant compounds reported in this chapter using rice hull ash 

adsorption medium has yet to be studied. Hence, in present study, RHA adsorbent was used to 

adsorb antioxidant compounds of oryzanol, tocopherols and tocotrienols from the rice bran oil 

hexane miscella at varying conditions and the resulting adsorption isotherms were used to 

characterize adsorption behavior. 

5.2 Materials and Methods 

 Agrilectric Power, Lake Charles, Louisiana, donated industrial RHA for experimental 

use. The Agrilectric Corporation has built a 13 MW electricity plant that generates electricity 

from rice hulls. The rice hull ash used in this experiment was a by-product from this plant. The 

detailed composition of rice hull ash as per the manufacturer’s analysis is given in Table-5.2.1  
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Table 5.2.1 Quantitative analysis of rice hull ash 

    used in experiments 
 

Major Constituents Concentration (%) 

Silica (Amorphous) 93-97 
Caron  3-7 
Trace Constituents Concentration (ppm)

Arsenic 1.91 
Barium 42.25 
Cadmium 0.13 
Chromium 0.33 
Lead < 0.14 
Mercury < 0.03 
Selenium 0.181 
Silver < 0.1 
Zinc 67.9 
Aluminum 59.85 
Antimony < 0.27 
Calcium 3240 
Copper 8.155 
Iron 216 
Magnesium 1220 
Manganese 531.5 
Nickel < 2.01 
Potassium 0.87 
Sodium 244.5 

           Source: Agrisilicas LLC by Agrilectric Co.  
 Lake Charles, LA 
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The properties of rice hull ash, such as particle size and surface area were measured at CAMD 

lab of LSU, Baton Rouge, LA. 

 An adsorption study was conducted using commercial rice bran oil and industrial RHA. 

Three different weights of ash (5, 10, 20 g) were mixed with 100 ml of rice bran: hexane 

miscella (20:80 v/v) and was agitated using stirrer at 200 rpm. The oil samples were kept in the 

agitator for different durations (30, 60, 90,120 and 180 min) and the agitator inside environment 

was kept at different temperatures (20, 30 and 40oC). After agitation, the mixture in the flask was 

filtered using Whatman filter paper, and residual quantity of unabsorbed oil was measured using 

a graduated cylinder. Oil adsorbed on the hull ash for each sample was calculated from the 

difference in initial and final volumes of the miscella in the flask. The sample of unadsorbed oil 

was collected and analyzed using HPLC to determine the adsorption of the important 

components of the bran oil.  

 The sample collected after adsorption (1 ml) was analyzed with normal-phase 

HPLC to determine antioxidant concentrations. The HPLC system consisted of WatersTM 

(Milford, Ma) 510 HPLC pumps, a 717plus WatersTM injector, a 470 scanning fluorescence 

detector (for tocopherols and tocotrienols) with excitation at 290 nm and emission at 330 nm. A 

SupelcosilTM  (Supelco, Bellefonte, PA) LC-Si, 5µm, 25cm X4.6 mm i.d. column was used. The 

mobile phase consisted of hexane:ethyl acetate:acetic acid (98.4:0.8:0.8) with a flow rate of 1.9 

ml/min. For analysis of oryzanol, the same system and sample was used, but the detector was 

UV at the 330  nm using a WatersTM 486  UV absorbance detector. The chromatograms (Figure 

3.3.3) obtained with the above system for a given refined rice bran oil sample were compared 

with those of standards to obtain the concentration. 
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5.3 Results and Discussions  

 Adsorption and HPLC data obtained from the batch study for adsorption of antioxidant 

compounds from rice bran oil at different temperatures and initial amounts of RHA were used to 

calculate adsorbed concentration and mass of antioxidant compounds as well as equilibrium 

concentration of the components in the miscella.  Figure 5.3.1 shows adsorbed amount of the 

antioxidant compounds at different times. As can be seen from the graphs, adsorbed amount 

increased for first 30 minutes and then remained fairly constant for all three antioxidant 

compounds. Similar results were obtained by Kao et al. (2000) for chlorophenols adsorption with 

fly ash, in which equilibrium was achieved in 1 h. When different antioxidants were compared, 

adsorption behavior of oryzanol was different from tocopherols and tocotrienols. Hu (1995) 

reported differences in physical properties of the rice bran oil components describing Vitamin E  

(tocopherols and tocotrienols) as viscous oils with boiling point of 200-220oC, whereas oryzanol 

was a powder with a melting point range of 137.5 to 138.5 oC. Because oryzanols have more 

rigid and voluminous polycyclic structure and linkages with other components of the bran, this 

structural differences could have played a major role in the differences in their adsorption 

behavior on the RHA. 

 Similar differences in adsorption on rice hull ash in a supercritical phase were also 

observed in a separate set of experiments (Section 4.4, page 114). These results of differences in 

adsorption behavior of vitamin E and oryzanol components, if correlated with Fgures 3.3.3, it 

seems that oryzanol was retained for longer time on the silica column in HPLC analysis also. So 

this behavior might be responsible for significantly higher oryzanol concentration obtained with 

ash compared to SFE without ash experiments.  Figures 5.3.2, 5.3.3 and 5.3.4 show the 

adsorption of oryzanols, tocopherols and tocotrienols at different temperatures, respectively.  The  
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   Figure 5.3.1 Effect of time on adsorption of antioxidants 
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Figure 5.3.2 Adsorption of oryzanol at different temperatures 
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 Figure 5.3.3 Adsorption of tocopherols at different temperatures 
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Figure 5.3.4 Adsorption of tocotrienols at different temperatures 
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adsorption data were also used to fit the Freundlich adsorption isotherm in the form of the 

following equation.                n

eqkC
m

x /1=  

where,  x = amount of adsorbate adsorbed (ug) 

           m= amount of adsorbent (g) 

           Ceq = Concentration of residual amount of adsorbate at equilibrium (ug/ml) 

           k and n = Freundlich fitting parameters 

Experimental data were fitted to the above Freundlich equation and fitting parameters (k 

and 1/n) were determined.  Resultant values of fitting parameters for the adsorption of oryzanol, 

tocopherols and tocotrienols are shown in Table 5.3.1. It can be seen that, k increases with 

temperature in the case of oryzanol whereas with of tocopherols and tocotrienols k values 

decrease with increased temperature. This indicates that adsorption of oryzanol was favorable at 

higher temperature whereas adsorption of tocopherols and tocotrienols was favorable at lower 

temperatures. Oryzanol is a mixture of ferulic acid esters of sterols and triterpene alcohols. 

Tocopherols and tocotrionels are similar compounds with difference in the number and position 

of methyl groups on the fused chromanol ring and the absence or presence of three double bonds 

in the isoprenoid side chain. Hence, these structural differences between oryzanol compared with 

tocotrienols and the similarity between tocopherols and tocotrienols could be the reason for 

above adsorption behavior in relation to Freundlich fitting parameters. 

Van’t Hoff-Arrhenius equation is given as 

C
RT

H
k +

∆
−=ln  Where,  ∆H = the enthalpy change in reaction (kcal/mol)  

R= ideal gas constant (1.987 cal/mol) and C = Arrhenius constant. 

The k values given in Table 5.3.1, along with absolute temperature values for the 
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Table 5.3.1  Freundlich parameters and enthalpy change 

Freundlich 
adsorption 
Parameters 

Antioxidant Temperature 
( oC) 

k 1/n 

∆H 
(kcal/mol) 

Oryzanol 20 
30 
40 

10.263
17.347
18.682

1.2015
1.4399
1.5392

5.501 

Tocopherols 20 
30 
40 

5.6663
4.4197
4.414 

1.3382
1.9032
2.2020

-2.299 

Tocotrionels 20 
30 
40 

5.7293
5.1728
4.7798

1.3424
1.7647
2.0463

-1.652 
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experiment (293, 303 and 313oK), were used to plot the Arrhenius equation as shown in Figure 

5.3.5. From this plot, the enthalpy values (∆H) were obtained and are given in the Table 5.3.1.   

The positive value of the enthalpy change for oryzanol indicate the adsorption process was 

endothermic, whereas negative values of ∆H in the case of tocopherols and tocotrienols indicates 

the process was exothermic. The  HPLC chromatogram given in Figure 3.3.3 also indicates that 

oryzanol is retained for more time on the silica of the column compared to the tocopherol and 

tocotrienols. So this behavior also confirms the differences in adsorption characteristics of these 

components. An attempt to fit the Langmuir equation to the experimental data, gave poor results. 

Based on this study adsorption behavior of the oryzanol was different compared with  that of the 

tocopherols and tocotrienols.  
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  Figure 5.3.5 Arrhenius plot for the antioxidant compounds 
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Chapter 6 
 

Summary and Conclusions 

  

Rice bran, makes up approximately 10 % of rice milling fractions and is nutritionally 

rich with 16 –22% lipid, 12 –16 % protein, 8-12 % crude fiber and high levels of other vitamins 

and minerals (Saunders, 1990). The lipid fraction of rice bran contains nutritionally important 

antioxidant compounds, that include oryzanols, tocopherols and tocotrienols (Godber et al., 

1994). These antioxidant compounds are beneficial in lowering cholesterol as well as preventing 

cardiovascular diseases (Lloyd et al., 2000).  Tocopherols are also believed to have anticancer 

effects (Tarber and Packer, 1995; Dunford, 2001). Oryzanols lower harmful cholesterol (LDL) 

without reducing good cholesterol (HDL) (Nicolosi et al., 1992; Dunford, 2000). Organic solvent 

extraction is the conventional method for lipid recovery from rice bran, which uses highly toxic 

and highly flammable solvents and has problems of waste disposal and leaving toxic residues. 

The search for alternative, non-hazardous and environment-friendly extraction technique has 

lead to the emergence of supercritical fluid techniques for extraction related to food, 

pharmaceutical, nutraceutical and natural product industries. Carbon dioxide is the most widely 

used supercritical solvent (McHugh and Krukonis, 1994; King, 2000; Mukhopadhyay, 2000; 

Mohamed and Mansoori, 2002). Earlier studies have found supercritical extraction as more 

efficient extraction technique in comparison with solvent extraction of γ-oryzanol from rice bran 

(Xu and Godber,2000). 

Rice husks (hulls) make up approximately 20% of the rice milling fraction and is widely 

used for energy generation in the rice milling industry.  Rice husk ash (RHA) is an end product 

of the combustion of rice husk. RHA has good adsorbent properties because of its high silica 

content (Vellupillai et al., 1997). Apart from textile (Ahmed and Ram, 1992), food (Ahmedna et 
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al., 1997), pharmaceuticals (Jeyashoke et al., 1996 Janes et al., 1998) and waste water 

components,  RHA has also been successfully applied as adsorbent for several lipid components 

such as phospholipid (Brown and Snyder, 1989), lutein (Proctor and Pallanippan, 1990), palmitic 

and oleic acids (Ooi and Leong, 1991), carotene (Liew et al., 1993) and saturated fatty acids 

(Farook and Ravendran, 2000). 

In the present study, rice bran was extracted at the pilot scale with supercritical carbon 

dioxide with combined application of RHA adsorbent for extraction and adsorption of rice bran 

oil and its antioxidant compounds.  The extraction conditions were varied by changing pressure 

(27.6, 41.4 and 55.2 MPa), flow (25, 45 and 65 g/min) and temperature (40 and 60 oC). 

Experiments were conducted with and without RHA adsorbent and extracts were collected at 

different time intervals (30, 60, 90, 120, 180, 240 min) during four hour extraction runs in a 3L 

pilot-scale supercritical fluid extractor with sample size of 750 g. Each experiment was 

replicated twice and the collected extracts were analyzed for oil weight. The sample taken from 

the extracts were then analyzed with normal phase HPLC using a WatersTM system with 

fluorescence and UV absorbance detection. Extraction of rice bran lipids with a conventional 

Soxhlet solvent extraction was also carried out for 6 hour using petroleum ether as a solvent. 

These solvent extracted samples of rice lipids were also analyzed for yield as well as 

concentration of antioxidant compounds.  

The Goto et al. (1993) model in the form similar to that applied by Canela et al. (2002) 

for carotenoids extraction from microalgae was applied to the rice bran oil extraction data in the 

current experiments for mathematical representation of the extraction process.  A separate batch 

study for adsorption of antioxidants from commercial rice bran oil was also conducted. RHA was 

used to adsorb antioxidant compounds from rice oil:hexane (20:80) miscellas. The initial ash 

weights (5, 10 and 20 g) and incubation temperatures (20, 30 and 40 oC) were varied with 
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constant agitation at 200 rpm. The samples were incubated with ash for different time intervals 

(30, 60, 90, 120 and 180 min) and samples collected after adsorptions were analyzed with HPLC 

to quantify the adsorption of the antioxidants. Freundlich adsorption isotherms were applied to 

the antioxidant adsorption data and the change in enthalpy values were calculated using the 

Van’t Hoff-Arrhenius equation.  

Total extract yield in the case of bran without ash experiments (17.26-18.52 %) as well as 

in the bran with ash experiments (17.35-18.99 %) for the extraction conditions of higher pressure 

(55.16 MPa) and flow rates (65 g/min) was comparable to that of solvent extractable oil yield 

(17.88 %). This indicated that supercritical carbon dioxide extraction was quantitatively 

competitive with conventional solvent extraction. Total extract yield significantly increased 

(p<0.05) with an increase in pressure from 27.58 MPa to 55.16 MPa and an increase in flow rate 

from 25 g/min to 65 g/min in both sets of experiments (with ash and bran only experiments). 

Cumulative extract yield for both extraction experiments were significantly affected (p<0.05) by 

pressure as well as flow rate. Increased solvent density and strength with pressure and an 

increase in convective mass transfer with increased flow rate could be responsible for these 

behaviors. Temperature effect on total extract yield, as well as cumulative extract yields, with 

time, did not show any specific trends and was not statistically significant (p>0.05). Cross-over 

effect of temperature at a constant pressure, may have contributed to a temperature effect on 

extraction. 

In the bran-only experiments, antioxidant extraction was significantly (p<0.05) increased 

with an increase in pressure. This indicates that solubility of the antioxidant increased with 

increased solvent strength. The flow effect was not significant (p>0.05) for antioxidants 

extraction, which shows that an increase in mass transfer rate does not contribute positively to 

antioxidant extractions. The pressure and flow effects were similar in the case of oryzanol, 
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tocopherols and tocotrienols. Temperature effect on extraction of antioxidant compounds varied 

over the studied extraction conditions as well as with type of antioxidant. Statistically there was 

no significant difference (p> 0.05) in antioxidants extraction due to temperature.  

Concentration and yields of the antioxidants increased significantly (p< 0.05) with an 

increase in pressure for all three antioxidants in SFE with ash experiments. The effect of flow on 

antioxidants in rice bran oil for the experiments with ash was not significant (p> 0.05) and varied 

with antioxidant type and extraction conditions.   

SFE extraction of total oil with ash was comparable to SFE bran only experiments under 

similar conditions. Moreover at higher pressure (55.16 MPa) and flow rate (65 g/min), SFE with 

ash also gave total oil yields (17.35-18.99 %) that were comparable with the Soxhlet extractions 

(17.88 %) using petroleum ether. Cumulative-yield graphs at different extraction conditions also 

indicated that SFE extraction with ash showed similar extraction behaviors with time compared 

to SFE bran-only experiments.  Though there were minor observable differences in the oil yields 

with and without ash, the differences were not statistically significant (p<0.05). These behaviors 

indicated that ash does not cause any major changes in the extraction pattern of the oil. However, 

antioxidants in the rice bran oil were significantly affected by ash adsorption. Oryzanol 

concentrations and yields were much higher in the extract for the with-ash experiment. This 

result could have occurred because oryzanol is a difficult compound to extract compared to other 

rice lipid constituents. Tocopherol extraction was significantly affected by ash adsorption. In the 

SFE bran-only experiments, tocopherol concentrations declined with time as extraction 

progressed. Whereas in the with-ash adsorption, since the ash was adsorbing the tocopherols, 

resultant extracts were lower in tocopherols initially, and increased over time as extraction 

progressed.  Extraction behavior of tocotrienols in the with-ash and bran-only extractions were 
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similar to that of tocopherols. Structural similarity between tocopherols and tocotrienols could 

have contributed to this similar adsorption behavior with ash.  

The Goto et al. (1993) model developed for extraction of essential oil was applied in the 

present study. The model successfully characterized extraction behavior for the bran-only 

experiment and values of the partition coefficient K and mass transfer coefficient Kp were 

calculated and reported. Since the results of the extraction behavior in combined extraction- 

adsorption applications in this study did not show any significant variation from extraction 

experiments with bran only in terms of the total extract yield, as well as cumulative extract yield 

behaviors, the Goto extraction model was applied to this combined SFE extraction and 

adsorption study in relation to extract yields. The Goto et al. (1993) model was able to accurately 

predict the extract yields in combined extraction-adsorption experiments for rice bran lipid under 

the experimental conditions. The resultant values of partition coefficient K and mass transfer 

coefficient Kp for bran-only and with-ash experiments were compared and did not differ 

significantly. 

From the batch adsorption study with rice oil-hexane miscella, adsorbed amount 

increased for the first 30 minutes and then remained fairly constant for all three antioxidant 

compounds. Moreover, with time, adsorption behavior of tocopherols and tocotrienols were 

similar and their adsorption was higher compared to that of oryzanol. Experimental data were 

successfully fitted to the Freundlich equation and fitting parameters (k and 1/n) were determined 

for each antioxidant.  Values of k increased with increased temperature for oryzanol whereas for 

tocopherols and tocotrienols k values decreased with increased temperature. This indicated that 

adsorption of oryzanol was favorable at higher temperature where as that of tocopherols and 

tocotrienols was favorable at lower temperatures. The k values were used to plot the Van’t Hoff- 

Arrhenius and calculate enthalpy change value (∆H). The positive values of the enthalpy change 
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for oryzanol indicated its adsorption process was endothermic, whereas negative values of ∆H 

for tocopherols and tocotrienols indicated their process to be exothermic. This batch adsorption 

study also indicates the differences in adsorption behavior for oryzanol compared to tocopherols 

and tocotrienols.  
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Appendix 

Materials and Methods 

A.1 Experimental Raw Materials  

  The stabilized rice bran was procured from Producers Rice Mill (Stuttgart, AR) in 

sufficiently large quantities from a single lot of bran. Care was taken to obtain bran from a single 

variety to minimize the experimental variation due to differences in rice variety.  The bran was 

of long grain rice variety “Wells”, which is increasingly  popular  in major rice growing areas of 

Arkansas due to its reportedly high returns. The bran was separated in a 14 mesh (1.18 mm) 

sieve and was stored at –16 oC  until use. The moisture content of bran was determined using the 

oven drying method (105 oC for 24 hour) and averaging 10 observations The rice bran used for 

the experiments is  shown in Figure A.1 

   Agrilectric Power (Lake Charles, LA) donated industrial rice hull ash for 

experimental use. The Agrilectric Corporation has built a 13 MW plant that generates electricity 

from rice hulls. The rice hull ash used in this experiment was a by-product from this plant. The 

detailed composition of rice hull ash as per the manufacturer’s analysis are given in Table 5.1 

Rice hull ash used for the experiments is shown in Figure-A.1-2 The ash was stored at room 

temperature. The properties of rice bran and rice hull ash such as bulk density, particle density, 

porosity particle size and size distribution and surface area were measured. To measure bulk 

density of rice bran (ash), the USDA (1983) procedure was used. The particle density was 

determined by taking the ratio of bran (ash) weight to the volume of solid particles. The volume 

of solid particles was obtained from porosity measurements. The porosity measurement 

procedure outlined by Farral (1979) was used and consisted of adding water to the bran in a 

container of known volume. The volume of water was recorded after the complete saturation of 

bran. The porosity of bran, expressed as percentage, was obtained by calculating the ratio of 
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         Figure A.1.Stabilized rice bran used for the experiments 

 

 

Figure A.2 Rice hull ash used as adsorbent 
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the added volume of water to the total volume of the container ( Tao et al., 1994)Particle size and 

size distribution of the bran and ash were determined by scanning electron microscopy (SEM) at 

the LSU Center for Advanced Microstructure and Devices (CAMD) lab of LSU. Similarly the 

surface are of the particles were obtained using facilities at the CAMD lab.     

A.2 Description of Pilot Scale Extraction Equipment 

The supercritical fluid extraction equipment used in the present experiment was designed 

and fabricated by Thar Technologies (Pittsburgh, PA) with an integrated co-solvent pump. The 

extractor volume was 3 liters. Specification for the system were a maximum flow rate, maximum  

pressure and  maximum temperature of 200g/min, 68 MPa and 150 oC respectively. The co-

solvent pump’s capacity was 40 MPa with a maximum solvent flow rate of 10 ml/min. The back 

pressure regulator was capable of handling flow rates up to 350g/min. The collection system 

consisted of three one-liter capacity cyclones with heated jackets. Solvent compatible with the 

system included  carbon dioxide, methanol, ethanol, acetonitile, isopropyl alcohol, chloroform 

and methylene chloride. The flow diagram of the system is given in Figure 3.3.2 whereas a 

picture of system is shown in Figure 3.3.1. The system was controlled and operated with a  

personal computer with feedback from pressure, temperature and flow sensors. The system was 

also computer controlled and current operating conditions of the system displayed. 

A.3 Supercritical Fluid Extraction Procedures and Details of Experiments 

Before starting each extraction, the extraction vessel and cyclones were cleaned thoroughly 

using paper towel. Rice bran and glass beads (3 mm size) were weighed and thoroughly mixed in 

the desired proportion (750g bran and 1100 g beads) with rice bran  to ensure uniform flow of 

carbon dioxide through the bran and prevent possible channeling. The bran-glass bead mixture 

was then poured into the vessel using a plastic funnel. Rice hull ash (200 g) was placed on top of 

the bran in case of with ash experiments. Glass wool was placed on top of the vessel and it was 
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closed with the  hand-tighten lid. CO2 tubing to the backpressure regulator was then connected 

and valves were kept in the appropriate position to maintain required flow of CO2 as per the 

standard operating procedures supplied with the SFE system. The operation procedures supplied 

with the equipment were followed with proper settings for temperature, pressure and flow rate of 

CO2, depending on the experimental conditions under investigation (Table A.2.1). Since modifier 

was not used in the system, the valve for that pump was kept closed all times. The collection 

cyclone temperature was kept at 35 oC for all experimental runs. The valves carrying flow to the 

cyclone were regulated, depending on the collection time of the sample. During the extraction, 

samples of extracted rice bran were collected from the cyclone by use of valve. After collecting a 

sample the particular cyclone was cleaned using fresh paper towel until no subsequent oil was 

sticking on paper from wall or the bottom of the cyclone. 

Extraction experiments were conducted in duplicate. For each extraction run samples were 

collected at six different times (30, 60, 90, 120, 180, 240 min from start of extraction). In each 

experiment, the rice bran weight (750 g) and glass bead weight (1100 g) were kept constant. For 

experiments with rice hull ash, 200 g of ash was placed on top of the bran. Samples were 

collected at different times in pre-weighed sample vials and then weighed. The sample of rice 

bran oil extract collected at the end of SFE extraction in a vial were stored in the refrigerator and 

ater analyzed with an high pressure liquid chromatography (HPLC) for determination of 

oryzanol, tocopherols and tocotrienols components in the oil  

A.4 Solvent Extraction of Rice Bran Oil 

For comparison, rice bran oil samples were extracted using the conventional Soxhlet 

extraction process following standard AOAC procedures (No-Aa-4-38). Twenty grams of rice 

bran were placed in an extraction thimble and was extracted using petroleum ether solvent at    

oC for 6 hr. The solvent containing oil was then evaporated by boiling in a conventional nitrogen 
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Table A.2.1 Details of experimental treatments 

Parameter Experimental Values

Pressure ( MPa) 27.6, 41.4 and 55.2 

Flow  (g/min) 25, 45 and 65 

Temperature ( oC ) 40 and 60 

Quantity of RHA   0 and 200 g 

 

 

 

 

 

 

 

 

 

 

 

 



 155

water bath. After the complete removal of petroleum ether, the oil was weighed. The oil sample 

extracted using the Soxhlet method was analyzed with HPLC to determine antioxidants.  

A.5 Analysis of Rice Bran Oil  

Aliquots of extract (1 ml ) from SFE  for each extraction run and the collection time were 

taken and was thoroughly mixed with 5 ml of hexane using magnetic stirrer for analysis by 

HPLC.   A sample (1000µl) was placed in the injection vials for HPLC analysis. The HPLC 

system consisted of WatersTM (Milford, Ma) 510 HPLC pump, a 717plus WatersTM injector, a 

470 scanning fluorescence detector (for tocopherols and tocotrienols) with excitation at 290 nm 

and emission at 330 nm. A SupelcosilTM  (Supelco, Bellefonte, PA) LC-Si, 5µm, 25cm X4.6 mm 

i.d. column was used. The mobile phase consisted of hexane: ethyl acetate: acetic acid (98.4 

:0.8:0.8) at a  flow rate of 1.9 ml/min. For analysis of oryzanol, the same system and sample was 

with WatersTM 486 absorbance detector at 330 nm used. The Millennium32 (Milford, MA) 

software was used to monitor and record signals from the detectors. Chromatogram obtained    

(Figure 3.3.3) were compared with those of external standards of oryzanols and tocopherols to 

obtain the concentration. Concentrations of Oryzanol, tocopherol and tocotrionel were obtained 

by summing all individual components.  After each of the supercritical fluid extraction 

experiment the remaining rice bran was collected to determine residual oil using soxhlet 

extraction for  6 hr with petroleum ether and sample size of 20 g. The residual oil percentage was 

calculated on the basis of bran weight. 

A.6 Adsorption Study With Rice Hull Ash 

For better understanding and characterization of the adsorption process of rice bran oil on 

rice hull ash, a separate batch adsorption study was conducted. Ash in varying quantity (5, 10, 20 

g) were mixed with 100 ml of rice bran : hexane miscella (20:80 v/v) and agitated in a  stirrer at 

200 rpm. The oil samples were kept in the agitator for different durations (30, 60, 90, 120 and 
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180 min) at different temperatures (20, 30 and 40 oC) to generate adsorption isotherm data. After 

agitation, the mixture was filtered using Whatman filter paper (1004,150) and residual quantity 

of unabsorbed oil was measured. Oil adsorbed on the hull ash for particular sample was 

calculated from the difference in initial and final volume of the miscella. The sample from  

unadsorbed oil was analyzed using HPLC to know antioxidant  components.  
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