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SUPERDIFFUSIONS AND PARABOLIC NONLINEAR
DIFFERENTIAL EQUATIONS!

By E. B. DYNKIN

Cornell University

We establish connections between superdiffusion processes and one
class of nonlinear parabolic differential equations. Analytic results due to
Brezis and Friedman, Baras and Pierre and others are used to investigate
the graphs of superdiffusions. A survey of the literature and general
comments are presented in Section 4.

1. Probabilistic solution of the first boundary value problem.

1.1. We consider positive solutions of a differential equation
(1.1)  o(r,x) + Lo(r,x) —v(r,x)" = —p(r,x) for(r,x) €Q,

where 1 < a < 2, v = dv/dr, L is an elliptic differential operator in E = R?

(with coefficients depending on r and x), @ is a domainin S = R X E and p is

a positive function in . (Part of the results hold for a more general equation

with the term v® replaced by a function ¢ of a class described in [11] and [12].)
We assume that: (a) the coefficients of the operator

a 0 ad
(12) L-Yaym— + ¥ b
i Y ix; dx; 7 lox;
are bounded and smooth (it is sufficient that b, are continuously differentiable
and a,; are twice continuously differentiable); (b) there exists a constant y > 0

such that
(1.3) ZaijuiujZVZ uf
i J i

forall (r,x) €S, uy,...,uz €R

Under these conditions, there exists a Markov process £ = (¢,,11, ) in E
with continuous paths such that, for every bounded continuous function f
on E,

(14) F(r’x) =Hr,xf(§t)
is the unique bounded solution of the equation
(1.5) F+LF=0 in(-»,t) XE
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with the property

(1.6) F(r,x) > f(x) asr1t.

It can be constructed by using either Itd’s stochastic differential equations or
the fundamental solution of (1.5) (see, for instance, [24] or [9]). We say that ¢
is the diffusion with generator L.

Denote by & the Borel o-algebra in E, by M the set of all finite measures
on & and by .# the o-algebra in M generated by the functions fp(n) = u(B),
B € @. Let B, stand for the Borel o-algebra in S and let M, be the set of all
finite measures on %g such that u(Q°) = 0. Put u € 93?22 if the support of u
is compact and is contained in @. We drop the subscript @ if @ = S. For every
interval A, we put S, = A X E; here S _, means S, with A = (—x,t].

According to [10], [12], [15], there exists a Markov process (X,, P, ,) in
(M, .#) such that:

1.LA. If fi(x) is a bounded continuous function on S, then (f*, X,) is,
a.s., right continuous in ¢ (here {v,v) means the integral of v with respect
to v).

1.1.B. Forevery r<teR,vEM, fE B,
(1.7) P, exp{ —f, X, =exp{ —v",v),

where v"(x) = v(r, x) is a solution of the integral equation

(1.8) o(r,x) + 10, [v(s,£)"ds =T, . f(&) forr<t.

For every coanalytic set @, the formula
(1.9) 7, =inf{s: s > r,(s,£,) € Q}

determines a family of stopping times which we call the first exit times from Q.
Two M-valued random measures X, and Y, are associated with this family.
Moreover, the family of measures {P, ,,r € R,» € M} is contained in a bigger
family {P,, u € I} such that, for every P,

(1.10a) P, exp{—<p,Y,> = (f, X))} =exp{ —v,n,

where

v(r,x) + H,yxfTrv(s,gs)a ds

r

(1.11a) _ Hr’x[j-frp(s’gs) ds + f(r., ¢, )| for(r,x)€Q,

v(r,x) =f(r,x) for(r,x) & Q.

Here p is an arbitrary positive Borel function on @. If p = 0, p is the image of
v under the mapping x — (r,x) and @ = S_,, then (1.10a)—-(1.11a) imply
(1.7)-(1.8). Note that X, = and Y, = 0 P -as. if u(Q) = 0.
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We call the collection X = (X, X,; P,) the superdiffusion with parameters
(L, a).

The superdiffusion X can be obtained by a passage to the limit from a
branching particle system as the mass B of individual particles tends to 0 (see
[11] and [12D.

For every set U ¢ S we define the ¢-section of U by the formula U, =
{x: (¢, x) € U}. Condition 1.1.A implies that:

1.1.A". For every open set U, X,(U,) is, a.s., lower right semicontinuous in
t, that is, for every r > 0,
liminf X,(U,) > X, (U,).

tor,t>r

1.2. Let @ be an open set in S. A part of ¢ in @ is obtained from ¢ by
reducing the life interval [«, {) to [, 7,), where 7, are the first exit times from
Q (see [9], Chapter 3, Section 2). This is a Markov process £ = (£, 11 ) on @
with the generator I equal to the restriction of L to @. The state space Qt
(= the ¢-section of @) depends on ¢ and it is nonempty only for ¢ € A, where A
is the projection of @ on R.

Note that the first exit times 7,(¢) from @_, = Q@ N S_, are equal to 7, A ¢
for r < ¢t. The restriction X, of X « to @ is a measure concentrated on Q, It
follows from (1.10a)-(1. lla) that, for r < A

(1.10b) P exp{ — f, X)) = exp{ — V", v),

where
(111b) o(r,x) + 10, [""o(s,6,) ds =1L,  f(7, AL, €, ) forr<t.

If f=0o0n Q° and u € My, then formulae (1. 10b), (1.11b) are identical to
(1.7), (1.8) with ¢&,, X, replaced by £, and X,. Bach X, is defined only up to
equivalence. They can be chosen in such a way that { f/, L X ) is right continu-
ous P, -a.s. for every bounded continuous function f and every u € M. The
process X= (Xt, I_"L) where p € EIRQ can be interpreted as a superdiffusion
with parameters (L, a). We call X the part of X in Q.

If @ is an open set, then the random measure Y, in formula (1.10) can be
expressed through the part of X on € by the formula Y.(dt,dx) = dt X (dx).
(This follows from Theorem 1.6 in [12].) The measure Y(dt, dx) = th (dx)
corresponds to @ = S.

According to the Addendum to [12], if @' @2 and if X' is the part of X in
Q’, then X!(B) < XX (B)forall teR, Be &.

1.3. We refer to the Appendix for the definitions of the regular part 3.6 of
4Q, total subsets T of @, regular domains and the classes CHQ) and CXQ).
When we say that v is a solution of the equation (1.1) we mean that
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v € CAQ). We say that v satisfies a boundary condition v = f on B C 4Q if
v(r,x) > f(t,a) as(r,x) - (t,a) €B,(r,x) €Q.

THEOREM 1.1. Let X be a superdiffusion with parameters (L, a). Let @ be a
bounded open set and let 7, be the first exit times from Q. If p > 0 is bounded
and belongs to CYQ) and if f> 0 is a bounded function on 9Q, then the
function

(1.12) v(r,x) = —log P;__exp{—{p,Y,) — (f, X}

(8, . is the unit measure concentrated at (r,x)] is a solution of (1.1). If
(¢,a) € 3Q is regular and if f is continuous at (¢, a), then

(1.13) v(r,x) = f(t,a) as(r,x)— (t,a).

If Q is regular, then (1.12) is the unique solution of (1.1) which satisfies (1.13)
at all (t,a) €9.Q.
For every u € IR,

(1.14) P, exp{—{p,Y,) = {f, X0} = exp{ — v, ).

Proor. The equation (1.11) can be rewritten as
(1.15) v+ F,=h+F,
where h and F are given by (A.4) and (A.7) and

Fy(r,x) =11, , (s, &) ds.
Clearly, A and F are bounded and therefore v is also bounded. By A.1.D, F
and F; belong to CY(@). By A.1.C, h € C*Q). We conclude from (1.15) that
v € CHQ). Hence v* € CY(@) and, by A.1.D, F, € CXQ). Now (A.5), (A.10)
and (1.15) imply (1.1). Formula (1.13) follows from (A.6) and (A.8), and (1.14)
is an implication of (1.10). If @ is regular, then the conditions (1.1) and (1.13)
determine v uniquely by Lemma A.1. O

LemMa 1.1 (The mean value property). Suppose that 7, are the first exit
times from a bounded domain @ and T C93.Q is a total subset of Q. If v
satisfies the equation

(1.16) o(r,x) + Lu(r,x) —v(r,x)*=0 inQ
and if it is bounded continuous in @ U T, then
(1.17) Py exp{—v,X,)=e""" inQ.

Proor. By Theorem 1.1, the function
o(r,x) = —log P; exp(—v, X))

is a solution of (1.16) and & = v on T'. It follows from (1.11) that ¢ is bounded.
By Lemma A.l, 6 =vin Q. O
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THEOREM 1.2. Let v, be positive solutions of (1.16) and let v, — v point-
wise in Q. Then v is a solution of (1.16).

Suppose B is a relatively open subset of 3Q, all points of B are regular and f
is a bounded continuous function on B. If v, satisfy the boundary condition

(1.18) v,=f onB,

then the same condition holds for v.

Proor. Let (r% x°%) € Q. If ¢ is sufficiently small, then all functions v, are
uniformly bounded in U(r° x°) by Theorem A.2, and they have the mean
value property (1.17) by Lemma 1.1. By the dominated convergence theorem,
(1.17) holds for v, and, by Theorem 1.1, v satisfies (1.16) in U,(r°, x°).

To prove the second part of the theorem, denote by ¢ the supremum of f on
B and consider ¢ defined in Theorem A.3. Set @, = U.(r°, ) n @, T =4,Q, N
3.Q. Note that v, are uniformly bounded on @, N @ and that v, — f pointwise
on T=TU(QNJU,), where f=fonT, f=von T\T. Clearly, T < 4,Q,
and it is a total subset of dQ, and v, are continuous on @, N T. By Lemma
1.1, the mean value property (1.17) holds in @, and T for all functions v,. By
the dominated convergence theorem, it holds for v, and, by Theorem 1.1,
u(r, x) = f(r° x% = f(r° x°) as (r, x) = (r°,x°). O

THEOREM 1.3. Suppose that @ is a bounded regular domain, r, are the first
exit times from Q and f is a continuous mapping from 3.Q to [0, ). Then the
formula

(1.19) v(r,x) = —log P, ; exp( —f, X)), (r,x) €Q,

determines the minimal positive solution of the equation (1.16) subject to the
boundary condition

(1.20) v=Ff ondQ.
For every un € IR,
(1.21) P exp(—f,X,)=e ",

Proor. Let f, = f A k. By Theorem 1.1, the function

(1.22) vp(r,x) = —log P; _expS — f,, X,)

satisfies the equation (1.16) and the boundary condition

(1.23) v,=f, ondQ.

Clearly, v, < vy, < -+ and v, 1 v, where v is defined by (1.19). It follows from

Theorem 1.2 that v is a solution of (1.16) subject to condition (1.20) on the
part of 9,Q, where f(¢,a) < . For all k&, liminf v(r, x) > liminf v,(r, x) =
fi(t,a) as (r,x) — (¢,a) € 0,Q, and therefore (1.20) holds if f(¢,a) = .

For an arbitrary positive solution u of (1.16) subject to condition (1.20),
v, < u by Lemma A.1. Hence v < u. Formula (1.22) follows from (1.14). O
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TueorEM 1.4. Suppose that @ and t are the same as in Theorem 1.3. Let
I' be a relatively closed subset of 0Q and let A =90Q\T c3.Q, B=T1 n A"
Then

(1.24) v(r,x) = —log P, {X(T) =0}

is a solution of the equation (1.16) subject to the conditions
(1.25) v=0 onA,

(1.26) v=cw onB.

For every u € IR,
(1.27) P{X(T) =0} =e®,

REmaArRk. If I =0,.Q, then A = ¢ and B = 3,Q. Hence
(1.28) v(r,x) = —log P; {X, =0}
is a solution of (1.16) subject to the condition

(1.29) v=o ond@Q.

Proor. Consider a monotone decreasing sequence of positive continuous
functions f,: 9@ — [0,»] such that {f, =0}t A and f, =~ on I'. Let v,
correspond to f, by formula (1.19). Clearly, v, | v, where v is defined by
(1.24). By Theorem 1.2, v is a solution of (1.16) subject to the boundary
condition (1.25). For every (r° x°) € B, there exists a continuous function f
from 9@ to [0, =] such that f(r° x°) = wand f=0on A.If § corresponds to
f by (1.19), then i(r° x°) = © by Theorem 1.3. Since § < v in @, v satisfies
(1.26). O

2. The maximal positive solutions and the graphs.

2.1. Let w — F(w) be a mapping from () to the space of all closed sets in
S. For every A C S, we put Q4 = {w: F(w) N A # ¢}. We say that F is a
random closed set relative to a o-algebra & if Q¥ € & for all compact sets
K. This is equivalent to the condition QV € & for all open sets U. It is known
(see, e.g., [21], Chapter 2) that for every analytic set B in S, Q2 belongs to the
universal completion F* of & and, for every probability measure P on %,

(2.1) P(Q®B) = sup P(Q¥) = inf P(QY),
where K runs over all compact subsets of B and U runs over all open sets

which contain B.

2.2. The (closed) graph # of X is the minimal closed subset of S such
that, for every ¢ € R, the measure X, is concentrated on the f-section <, of
&. More generally, if X is the part of X on an open set @, then we denote by
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&y the minimal closed subset of S such that, for every ¢ € R, Xt is concen-
trated on the -section of . (The part X on Q is defined up to indistin-
guishability and therefore ¢, is defined up to equivalence).

Note that:

22A. P{g,= ¢} = 1if w(@) = 0.
22B. P{F,C Q) = 1 for every u € M.

2.2.C. For every open set U and every p € I,
{ZoNU+# ¢} ={X(U,) > 0forsome t € R}

= {Xt(Ut) > 0 for some rational t} P, -as.

2.2.D. &, coincides, P,-a.s., with the support of the measure Y,.

Properties 2.2.A and 2.2.B are obvious and 2.2.C and 2.2.D follow from
1.1.A (or 1.1.A).

Let & be the o-algebra generated by {X,,¢# € R} and let Fx be its
completion with respect to the family {P,, u € I}. The graph &, is a random
closed set relative to F.

THEOREM 2.1. Suppose that Q C Q are two open sets, T is a closed set such
that @ N dQ c T < Q° and all irregular points of IQ belong to I'. Then

(2.2) v(r,x) = —log Par’x{fé NT = ¢}
is the maximal pesitive solution of the problem
(2.3) v+Lv—v*=0 inQ,

v=0 onT°NaqQ.
For every u € MY,
(2.4) & is compact P,-a.s.
and, for every p € My,
(2.5) Pﬂ{fé NT = ¢>} =exp{ —v,u.

2.3. The proof of Theorem 2.1 is based on two lemmas:

LemMMa 2.1. Let r, be the first exit times from an open set @. Then, for
every closed set B  Q and every u € I,

(2.6) (£, cB)c{X.(B°) =0} P,ras.

Proor. By Theorem 1 in the Addendum to [12] applied to the part Xof X
on @,

[(f,X,)=0forallt}c {(f,X,)=0} P,as.
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for every positive bounded continuous function f and for the first exit time o
from an arbitrary open set U such that U c Q. Let U™ 1 @ and U"” c Q. The
corresponding first exit times o 1 7, which implies: { f, X,.) = {f, X/ P,-a.s.
(see [15], page 351). We conclude that

(2.6a) {(f,X)=0forall ) c {(f,X,)=0} P,as.
If B ={f=0},then{, c B} c{{f,X,) =0 for all £} P,-as. for all u .4,
Therefore (2.6a) implies (2.6).

LEmMa 2.2. Let U C @ be open sets and let o, be the first exit times from U.
Then

(2.7) (X, (@ =0 c{#cT} Pas
for every u € .

Proor. If w(U) = 0, then P-as., X, (@)= @) and (2.7) follows from
2.2.A. Therefore it is sufficient to prove that, for p € M and every ¢,

P(X,(Q)=0,X,,(Q\TU)>0}=0.
The special Markov property implies
{X,(Q) =0} c{X,,(Q) =0} Pas.
Hence
P{X,(@)=0,X,,/(Q\T) >0}

= Pu{Xtr/\t(Q<t) =0, ‘X‘T/\t(Q\ ﬁ) > 0}

= u{Xa'/\t(Q<t) =0, PX(,M[XTM(Q\I_]) > 0]} =0

because X, ., = v Pas. if v(@.,) = 0 and »(@\ U) = 0 if » is concentrated
on U. O

Proor oF THEOREM 2.1. Choose a sequence of bounded regular open sets
Q, T Q such that

0Q N3Q,19Q NT*,
@1NQcQ,.
Put
B,=4Q,nQ, T,=B, A ,=iQ\T,;
Z, =X, (I,)-
By Theorem 1.4,
(2.8) P{Z, =0} = exp{ — v, ),

where v, is a solution of (1.16) in @, with the boundary conditions v" = 0 on
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A, v"=wo0n B,. If u € M, , then by Lemma 2.1 (B = Q. ),
(Fa cQuis) c{F, c Qu_y)
c{X(Q_,)=0}c{z,=0} P,as.
By Lemma 2.2 (with U = @),
(2.10) {Z, =0} = {X.. is concentrated on A,} C {fé c Qn} P -as.
If o € MY, then, by (2.8), (2.9) and (2.10),
lim P{Z, = 0} = lim P,{G4 < Q,}

(2.9)

(2.11)
= P,{#; is compact and 3 N T = ¢}.

It follows from (2.8) and (2.11) that
(2.12) lim{uv,, u) = —log Pu{ﬁé is compact and £ N T = d)}
and
v(r,x) =limv,(r,x) = —log P, ;{# is compact and F; N.T = ¢}.

Since v, are uniformly bounded on the support of u, {(v,,u> — {v,u) and,
by (2.12),
(2.13) P{Z; is compact and £ N T = ¢} = e~ .

It follows from Theorem 1.2 that v satisfies (2.3). By applying (2.13) to
Q =S, T = ¢, we get that, for every u € IM°,

P (¥ is compact} = e <"*,

where v is a positive solution of (1.16) in S. By Theorem A.1, v = 0 and we
get (2.4).

If 7 is an arbitrary solution of (2.3), then, by Lemma A.1, § < v" in @,.

Thus 0 < v and v is the maximal solution of (2.3). Clearly, (2.13) and (2.4)
imply (2.5). O

2.4. By applying Theorem 2.1 to I' = @°, we get: For every open sets
Qc@,
v(r,x) = —log P, ;{5 c Q)

is the maximal positive solution of the equation (1.16) in @. Formula (2.5) with

~

Q@ =S, I' = Q° implies that
(2.14) log B{#NT = ¢} = [u(dr,dx)log P, ,{£NT = ¢}

if the support of u is compact and disjoint from T.
Note that, for every open @ and for all (r, x) € Q,

(2.15) P, (%< Q) =P (5 Q).
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Indeed, both parts are equal to e “"* where v is the maximal positive
solution of (1.16) in Q.
Arguments presented in the proof of Theorem 2.1 show that

(2.16) (X, =0}1{# @} P,as.

if 7, is the first exit time from @, = {z: dist(z, @°) > 1/n} and if
dist(@°¢, supp u) > 0.

2.5. We extend formula (2.14) to a more general situation.

LEmMMA 2.3. Let B be an analytic set and let C = supp u be disjoint from B.
Then

(2.17)  log P{#NB=¢} = [,L(dr, dx)log P, ,{#N B = ¢}.

Proor. (i) First we assume that B is compact. Then dist(B,C) > 0 and
we can apply (2.16) to @ = S and @ = B¢. Therefore

(X, =0}tW  P,as,

Tn

where W = {#N B = ¢}. Suppose that C c @, and put o = 7, . By Theorem
2 in the Addendum to [12], P(W) =P PX(W) Since X is supported by a
compact set {z: dist(z, B) = 1 /no} whlch is disjoint from B we have by (2.14),
Py (W) = exp{ — u, X,,), where u(r,x) = —log P, ; (W). Now (2.17) follows
from (1.10).

(ii) Let B be an arbitrary analytic set. Put

P = f,u,(dr,dx)Pr,sx.

There exists a monotone increasing sequence of compact subsets B, of B such
that

(2.18) P{ZNB,=¢}| P{ZN B = ¢}
and an analogous formula holds for 15#. By (i),

(2.19) P{ZNB,=¢} =exp{ —v,,u),
where

va(r,x) = ~log B, ;{0 B, = 6}.
Denote by B the union of B,. We have
v,(r,x)10(r,x) = —log P,,Sx{fﬂ B= ¢}
< —log P, ;{#N B =¢} =v(r,x).
On the other hand,

P;L{fﬂ B, = ¢} = fﬂ'(dr,dx)e_v"(r’x)l/}.b(dr, dx)e—v(r,x)
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and therefore exp(—ii(r, x)) and exp(—uv(r, x)) have the same integrals with
respect to . We conclude that & = v p-a.e. Therefore {v,, u) 1 {7, uy = {v, u).
Formula (2.17) follows from (2.18) and (2.19). O

3. #Z-polar sets.

3.1. Put B,,=BnNS,,. An analytic set B is called #polar if
(3.1) P, (#0B,, =¢)} =1

for all r < ¢t and all x € E. By Lemma 2.3, this condition is equivalent to the
condition:

(3.2) P{#NB,,=¢} =1

for every ¢ and u such that supp u is disjoint from B ,. It follows from (2.1)
that B is #Zpolar if and only if all compact subsets of B are Zpolar.

THEOREM 3.1. An analytic set B is “polar if it contains no set (—o,t) X E
and if :

(3.3) P; {(#NB#¢} =0 forall(r,x)¢&B.
A compact set T is &polar if and only if the conditions
(34) v+Lv—v*=0, v=0inT*
imply that v = 0.

Remark. The set S _, satisfies (3.3). But it is not G-polar.

Proor. (i) If U is a neighborhood of x and if T} = inf{t: X(U°) > 0},
then g = P, ,{Ty > r} = 1. Indeed, by Blumenthal’s 0-1 law, ¢ = 0 or 1 and,
by Theorem 2. 1, for every a <r,q = P, ;{ZC(a,®) X U} = e*"**, where v
is the maximal solution of (1. 16) in @ = (0 o) X U.

This result implies: ¢ consists, P, , -a.s., of the point (r, x) and the union
of &, over all s > r. Therefore (3. 3) holds for all “polar sets.

(ii) Suppose that an analytic set B satisfies (3.3). By our assumption, for
every r, there exists r® < r and x° such that (#°, x°) ¢ B. If s > r, then

0 =P, {#NB° # ¢} = Po o{X,(B,) > 0}.

Hence
O 1r0,8 O‘YS(BS) IIrOSO{gs EBS} f P(io,xo;S,y)dy,
x » Yx Bs

where p is the transition density of the diffusion £. Since p > 0, the Lebesgue
measure of B, is equal to 0. Therefore

(3.5) P, ; X,(B;) = pr(r,x;s,y) dy =90
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for all x. If ¢ > s > r, then, by (3.5) and by the Markov property,
(36) P.;{#NB., +*¢} =P {X(B,) =0,Px(FNB,,+¢)}
By Lemma 2.3, for every v € M,

(3.7) P, {NB,, =¢} =e "7,

where u(s,x) = —log P, ;{#NB,,=¢}. By (33), P, ;{#NB,,=¢}=1
for all x ¢ B,. By 3.7), P, {#NB.,=¢}=1if v(B,)=0 and, by (3.6),
P {ZNB,,+ ¢} =0.

If T is closed and if @ = I'¢, then

P; {#NT =¢} =P, (FcQ} = exp{-v(r,x)},

where v is the maximal solution of (1.16). This implies the second part of
Theorem 3.1.

3.2. Let
(3.8) k(r,x;t,y) =k,_(y — x),
where
k(%) = (2mr) " exp{-r/2 - |zI*/2r} for r > 0,
k(x)=0 forr<0

(% is the transition density of the Brownian motion in R¢ with killing rate 1).
We put B € .7, if B is an analytic set and if, for every measure n on %, the
function

(3.10) f(r,2) = [ k(r,x:,y)n(dt, dy)

belongs to L*(S) only if n(B) = 0. The class ., can also be described as the
class of all analytic sets of capacity 0 with respect to one of the capacities
studied by Meyers in [22]. [In the notation of [22] this is ¢ &, m,a» Where & is the
kernel (3.8), m is the Lebesgue measure and o’ is the conjugate for «, i.e.,

1/a) + (1/a") =1.]

(3.9)

THEOREM 3.2. The class of “polar sets coincides with .7#,.

Proor. (i) It is easy to see that B € ., if and only if all compact subsets
of B belong to .. Therefore it is sufficient to prove that a compact set K is
#polar if and only if it belongs to ./.

(i) Let B = K be #“polar and let f given by (3.10) belong to L*(S). We
need to show that n(K) = 0. We can assume that 7 is concentrated on K.
Clearly, n does not charge any set B € .~ and, by Theorem 1.1 in [14], there
exists an additive functional I” of X such that, for every u € I,

(3.11) BI"= [ u(dr,dx)p(r,x;t,y)n(dt, dy).
Sx8S
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Here I" = I"(R), p(r, x;t,y) is the transition density of £ and I, is the class
of all measures u € M of the form u(dr, dx) = q(r, x) drdx with q¢ € L*(S).
Moreover, by 1.3.F in [14],

(3.12) (FNK=¢}c{I"=0} P,as.

Since K is &polar, P{#NK_ , = ¢} =1 for every ¢ and u such that
suppu N B., = ¢. We can choose p # 0 of class 2, to satisfy this condition,
and we conclude from (3.11) and (3.12) that n(S _,) = 0. Since this is true for
every t,n = 0.

(iii) Now let K € S_ and let @ be a simple rectangle which contains K. By
Theorem 4.1 in [2], every positive solution of the equation

(3.13) vV+Lv—-v*=0 inQ\K
belongs to L% (@) and satisfies the equation

(3.14) v+ Lv—-v*=0 inCy(Q).
Moreover, by Lemma 3.4 in [2], if

(3.15) v+Lv>=0 inCg(Q),
(3.16) limsupv <0 ond,Q,

then v < 0 a.e. on . By Theorem 2.1, v(r, x) = —log P, ;{% N K = ¢} is the
maximal solution of (3.13) with the boundary condition

(3.17) v=0 ondQ.

(We apply Theorem 2.1 to open sets @ \ K C @ and to I' = K U (3Q \ 9,@).)
Since (3.13) implies (3.14), it implies also (3.15). Clearly, (3.17) implies (3.16)
and, since v > 0, we conclude that v = 0 in @. By (2.15),

Pr,ax{fc Q\ K} =Pr,ax{fQ\KC Q\K} = Pr,Sx{‘gQ C@\K}=1

for all (r,x) € @ \ K. This is true for an arbitrary @, and K is #polar by
Theorem 3.1. O

COROLLARY. A singleton {c} is a Zpolar set if and only if d > 2/(a — 1).
Indeed, let ¢ = (0, 0). Then f given by (8.7) is proportional to k_,(x) and

fk_r(x)a drdx = const.f 1,, 06”257 4/2 exp( —alx|?/2s) ds dx
s s

= Const.fwe_“s/2s—(a—1)d/2 ds.
0
The right side is finite if and only if d < 2/(a — 1).

3.3. Theorem 3.2 allows us to investigate Zpolarity of product sets A X A,
where A is an interval and A is an analytic set in E. We say that an analytic
set A CcE is S-polar if R X A is #“polar and we say that A is H-polar if
{t} X A is “polar for every t € R. Obviously, all S-polar sets are H-polar.
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Criteria of S-polarity and H-polarity can be stated in terms of the Bessel
kernels g,(x, y) = gg(y — x), where

g(x) = (2m) ™" [ eitx(1+ A1) P72 da

— (B—d)/2
=N, le / K(px—d)/2('xl)'

Here N, , is a constant and K, stands for the modified Bessel function of the
third klnd of order v. Note that

8x(%) = [ k() dr.

To every analytic set A and to every measure 7, there corresponds a
function

FE7(x) = [ galx,y)n(dy).

We put A € &F if f7 & L*(E) unless n(A) = 0. (Note that &2 comc1des
with the class Qa in [18]) In general, A € £# if and only if C HA) =
where Cg , is the Bessel capamty correspondmg to (3.17) (see [22], Sectlon 7)

The followmg result is an immediate implication of Theorem 3.2 and
Propositions 2.1 and 2.3 in [2]:

THEOREM 3.3. The class of S-polar sets coincides with &% and the class of
H-polar sets coincides with £&2/*. A set A is S-polar if A X A is “polar for
some interval A with the length |Al > 0. A set A is H-polar if {t} X A is “Zpolar
for some t € R.

THEOREM 3.4. If a = 2, then an analytic set A is H-polar if and only if
(3.18) {[gz(x,y)v(dy) is bounded} = {v(A) = 0)

A

(= means the logical implication).

Proor. Since the convolution of 8 and g, is equal to g, , the condition

[ £1(x0)v(dy) € LX(E)
is equivalent to the condition
(3.19) [ v(dx)gy(x,y)v(dy) <.
AXA

It is well known (see, e.g., [8], 1.XIIL.2) that (3.19) is equivalent to (3.18). O

REMARK. The condition (3.18) means that A is a set of capacity 0 in the
sense of classical potential theory.
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3.4. Criteria for S-polarity in terms of the Hausdorff measures have been
given in [13]. By similar arguments we get the following criteria for H-polarity.

THEOREM 3.5. Let H, and H, ; be the Hausdorff measures corresponding
to the functions

1 -B
h(r)=r", y>0 and h r)=r"log*— , vy=20,8>0.
¥y v, B r

Put \,=2/(a—1),y=d — A, Bo=1/(d — 1). We have:
(i) If y <0, then ¢ is the only H-polar set.
G) If y> 0, then

(H,(A) <} = {Ais Hpolar} = {H, ;(A) =0 forall B > Bo}-
(iii)) If y =0, then
{Hp g (A) < =} = {Ais Hpolar} = {Ho, g(A) = 0 forall B> B,}.
The Hausdorff dimension H-dim A is defined as the supremum of y such
that H (A) > 0. The Carleson logarithmic dimension L-dim A is the supre-

mum of B such that H, ,(A) > 0. The following result is an obvious implica-
tion of Theorem 3.5.

THEOREM 3.6. Let ¢c(A) be the Hausdorff codzmenswn of Ali.e., c(A) =
d — H-dim A]. If y > 0, then

{c(A) > r,} = {Ais Hpolar} = {c(A) = A,}.
Let I(A) =d — L-dim A. If y = 0, then
{I(A) > By} = {Ais H-polar} = {l(A) = B,}.
ReEMARK. Criteria for S-polarity proved in [13] can be obtained from Theo-

rems 3.5 and 3.6 by replacing A, by x, = A, + 2 = 2a/(a — 1) (or by replac-
ing d by d — 2).

4. Survey of the literature. Concluding remarks.

4.1. The monographs [17] and [19] are the standard reference books on
parabolic linear and semilinear partial differential equations. In the literature,
the equation (1.1) is usually written in the form

(4.1) a(t,x) — Lu(t,x) +u(t,x)" =p(¢, %),

which is equivalent to (1.1) with u(¢, x) = v(r, x), ¢ = —r. (The reversed time
direction is more natural from probabilistic point of view.) Besides, the term
u® is often replaced by |u|* 'u (which, of course, makes no difference if
u>0).
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A singular solution of the equation

(4.2) V+Av—v*=0 in(—w,t) XD
subject to the boundary condition
(4.3) v—4, asrflt,

where 8, is Dirac’s delta-function at point y has appeared, first, in [3]. The
authors proved that such a solution exists if and only if a < (d + 2)/d. (A
probabilistic implication of this result is stated as a Corollary to Theorem 3.2.)
It follows from [14] that the solution discovered by Brezis and Friedman can be
represented by the formula

(4.4) v(r,x) = —log P;__ exp(—L,,),

where L, , is the local time for X at point (¢, y) (the additive functional I™
corresponding to the measure 5 = §, ). This result and also a theorem proved
in [16] suggest that, for a < (d + 2)/d, X(dy) =L, , dy.

By replacing L, , with kL, , in (4.4) and by letting k tend to « we arrive at
the function )

(4.5) v(r,x) = —log Pﬁr,x{Lt,y = 0}.

This is the very singular solution of (4.2) constructed, first in [4] and investi-
gated in detail in [18]. Apparently, it coincides with the maximal solution

(4.6) u(r,x) = —log Pam{(t,y) & £}
in the domain @ = S\ {(¢, )}

4.2. In|[5), [6] and [23] the set valued process S, = {support of X,} has been
studied in the case L = A, a = 2. In particular, it was proved that S, is right
continuous with left limits (in the topology induced by the Hausdorff metric).
Moreover, S,_= S, a.s. for every fixed ¢. Clearly, the graph # coincides with
the union of all {¢} X S, and {¢} X S,_.

Perkins has shown that if B has a positive classical capacity, then S, " B #
¢ with positive probability (see [23], Theorem 6.1). Le Gall [20] gave a new
proof of this statement based on his trajectorial construction of X. He also
proved the converse statement for d = 2. Clearly, these results follow from
Theorem 38.4. Le Gall has developed his approach further in [20a] where he
gave a purely probabilistic proof of a part of Theorems 3.2 and 3.3. Namely, he
proved that, in the case @ = 2, all Zpolar sets belong to ., and all S-polar
sets belong to &2

4.3. If the coefficients of L are time independent, then the superdiffusion
X with parameters (L, @) is a Markov process with a stationary transition
function. In [13] we established the connections between X and positive
solutions of the elliptic equation Lv — v® = —p. In particular, we used the
results in [1] to investigate the range % of X. Since # coincides P, -a.s. for
p € MO with the projection of the graph « on E = R?, most of the results in
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[12] can be deduced (and improved) by using the results in the present paper.
Theorem 1.8 implies a result stated without proof at the end of Section 5 in
[12].

APPENDIX

Al. Let E = R® and let @ be an open set in S = R X E. Denote by C(@)
the set of all continuous functions in @. Put u € C{Q) if u and du/dx;,
i=1,...,d, belong to C(Q); and put u € CXQ) if u, &, du/dx;,i=1,...,d,
and 8%u/dx;9x;,1,j = 1,...,d, belong to C(@).

Let ¢ = (¢, 11, ,) be a diffusion process in E with the generator L given by
(1.2). We say that T C 4Q is a total subset of dQ if

(A1) o, ,{(r.¢6)eT}=1 for(r,x) €Q

If @ = (r,t) X D where D is an open set in E, then T, which consists of all
(s,x) € dQ such that s > r, is total in Q.

A point (¢, a) of 4Q) is called regular if II, [r,,= t} = 1. We say that Q is
regular if the set 4,@ of all regular points is total in 4@Q.

A cell is the product set [r, ¢] X [a,, 1] X *+* X [ag, byl. Every finite union
of cells is called a simple compact set and the totality of all its interior points is
called a simple open set. A simple rectangle (r,¢) X (a;, b)) X -+ X (a4, by) is
an example of a simple open set.

We have:

A.1.A. Every simple open set is regular. The intersection of two regular
open sets is regular.

A.1.B. Suppose that @ is a bounded open set and that u € C*Q) is
bounded from above and satisfies the conditions

(A.2) 2+Lu>0 in@Q,
(A3) limsupu(r,x) <0 as(r,x) — (t,a) €9Q.
for a total subset T of Q. Then u < 0 in Q.

A.1.C. Let @ be a bounded open set and let 7, be the first exit times from
Q. Then for every bounded Borel function f on 9@,

(A4) h(r,x) =1L, f(r,.£.)
belongs to C%(Q) and
(A.5) hA+Lh=0 inQ.

If (¢, a) € 3Q is regular and if f is continuous at (¢, a), then
(A.6) h(r,x) = f(t,a) as(r,x) — (¢,a).



SUPERDIFFUSIONS 959

A.1D. Let @ and 7, be the same as in A.1.C. If p is a bounded Borel
function in @, then

(A7) F(r,x) =1, ["p(s,£&)ds

is bounded, belongs to CX(@) and, for every regular point (¢, a) € 3Q,
(A.8) F(r,x) >0 as(r,x)— (t,a).

If, in addition, p is continuous and if, for every (r,x) € @, there exist a
neighborhood U and constants 0 < A < 1, C < « such that

(A9) lp(s,y) —p(s,2)| <Cly - z|* forall (s,y),(s,2) €U,
then F belongs to C%(Q) and
(A.10) F+LF=-p inQ.

Suppose, in addition, that @ is regular. Then, by A.1.B, & is uniquely
determined by (A.5) and (A.6) and F is uniquely determined by (A.8) and
(A.10).

If L is the Laplacian, then all these properties follow immediately from the
results in [7] and [8] (see, in particular, Theorems 3.1 and 3.3 in [7] and
Theorem 1.XVIL6 in [8]). The general case can be treated by using Ito’s
stochastic differential equations for paths of ¢ and by applying results on
linear parabolic PDE (in particular, A.1.D. follows from Theorem 1.9 in [17D.

Lemma A.1 (Comparison principle). Let @ be a bounded domain and let
¥: R*X Q@ » R* satisfy the condition
(A.11)  ¢(r,x;u) 2 ¢(r,x;v) forall (r,x) €Q,u=veR".
Ifu,v > 0 belongs to CHQ) and if
a(r,x) + Lu(r,x) — ¢(r,x;u(r,x))
>0(r,x) + Luo(r,x) — ¢(r,x;v(r,x)) inQ;
u — v is bounded above,
(A.18) limsuplu(r,x) —v(r,x)] <0 as(r,x) - (t,a) €T,
for a total subset T of 3Q, then u < v in Q.

(A.12)

Proor. Let w = u — v. If our statement is false, then @ = {(r, s): (r,x) €
Q, w(r,x)> 0} is not empty. By (A.18) and (A.11), u(r, x) + Lw(r,x) >
¥(r, x; ulr, x)) — ¢(r, x;v(r, x)) 2 0 in Q. Note that T=9@ N(QUT) is a
total subset of 4Q. If (t a) €@ N Q, then w(t,a)=0. If (4,a) € QNT,
then

limsupw(r,x) <0 as(r,x) — (t,a), (r,x) €@Q

by (A.13). We get a contradiction with A.1.B. O
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LEMMA A.2. Let @ = (s,t) X U, where U = {x: |x — x°| < R} and let

-1/(a—1)
(A14)  u(r,z) = A[(t — r)(R? - p?)] . (r,x) €Q,
where A is a positive constant and p = |x — x°|. We have
(A.15) limv(r,x) > o as(r,x) — (t,a) €9,Q.
Moreover
/\ a—1
0 .
(A.16) 0+Lv—v“sv“((7) —1) in @,
where
(A.17) Ay ' =aoR* + (¢t — s)(a,R® + ayR?)

anda, > 0, a,,a, > 0 are constants which depend only on «, the dimension d
and the upper bounds for a;; and b; in Q.

PrOOF. Put u(x) = (R? — p2)~2/(@~D By direct computation we get

Lu = (R? - pz)_za/<a_1){clz a;;2,2; + cy( R? — rz)(z a;+ Y bizi)>,

where 2, =x;, —x2, ¢; = 8(a + I a — D7} ¢; = 4a — DL Let A(r,x) be
the biggest eigenvalue of the matrix a,,(r, x) and let B(r, x)? = Lb,(r, x)*. If
A and B are upper bounds for A(r, x) and B(r,x) in @ then Za;;, < Ad and
L b;z; < BR in Q. Therefore

Lu < (R? - p2) **“"P[AR2(c, + cyd) + ¢, BR?]

and (A.16)—-(A.17) hold with ¢, = 1/(a — 1), a; = ¢y B, a, = Alc; + ¢od). O

A2 We apply Lemma A.1 with ¢(r, x,u) = u* and Lemma A.2 to prove
some properties of positive solutions of the equation

(A.18) i+Lu—u*=0 inQ.
We set
(A.19) U(r®%«®) ={r:lr—-r%<e} x{x:lx — 2% <¢}.

THEOREM A.1. The only solution u > 0 of the equation (A.18) in the entire
space S is equal to 0.

ProoF. Let v be defined by (A.14) with s <r® < ¢ and A = A,. Then by
Lemma A.1,

u(r° x%) < v(r, x°) = A [(t — rO)RY] VTV

= [ao(t - ro)—l + (alR_l + azR—Z)(t _ S)/(t _ ro)]l/(“_l).

The right side tends to 0 as £ 1, R 7. O
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THEOREM A.2. For an arbitrary open set @, the class of all posztwe solu-
tions v of (A.18) is locally uniformly bounded.

PROOF Let U = Uy(r° x°) and let v, be defined by (A.14) with s = r* — g,
t=r’+8 R= B and /\ =A. If B is sufﬁmently small, then U C @ and, by
Lemma A.1, v < vg in Us. Hence

(A.20) v(r,x) <N forallvandall (r,x) € U(r°x°)
for ¢ = B/2 and N equal to the maximum of v, on U.no

THEOREM A.3. Suppose that B is a relatively open subset of 0Q. Let c € R
and let V(B, ¢) be the class of all positive solutions of (A.18) in @ such that
(A.21) limsupv(r,x) <c as(r,x) - (¢t,a) € B.

Then, for every (r° x°) e B, there exist ¢ >0 and N <o such that
Q@ NU(r% x% c B and

(A22) uv(r,x) <N forallveV(B,c)andall (r,x) € @ n-U(r° x°).

PrROOF. Let Qg = Q N Uy(r® x°). Consider v, introduced in the previous
proof and put

fg(t,a) = limsup(v —vs) as(r,x) = (¢,a), (r,x) € Q.

Put A;=4.U; N Q@ and I'; = U N 9Q. Since 9,Q is total in Uy, the set
Ag U F is total in 0Q, = (Q al 8U ) U I, Clearly, f(¢,a) = —» on A,
remams to show f; < 0 on I} for some [3 and to repeat the arguments in the
proof of Theorem A.2.

The minimum of vg on U, is attained at (r° x°) and it is equal to

e(B) = [(%ao + “1)[5’_1 + 023_2]

If I; € B, then f; < ¢ — ¢(B) on Iy and, ¢ — ¢(B) < 0 for sufficiently small B.
O

1/(a—1)
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