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Abstract We study heat transport in a one-dimensional chain of a finite number N of identi-

cal cells, coupled at its boundaries to stochastic particle reservoirs. At the center of each cell,

tracer particles collide with fixed scatterers, exchanging momentum. In a recent paper (Col-

let and Eckmann in Commun. Math. Phys. 287:1015, 2009), a spatially continuous version

of this model was derived in a scaling regime where the scattering probability of the trac-

ers is γ ∼ 1/N , corresponding to the Grad limit. A Boltzmann-like equation describing the

transport of heat was obtained. In this paper, we show numerically that the Boltzmann de-

scription obtained in Collet and Eckmann (Commun. Math. Phys. 287:1015, 2009) is indeed

a bona fide limit of the particle model. Furthermore, we study the heat transport of the model

when the scattering probability is 1, corresponding to deterministic dynamics. Thought as a

lattice model in which particles jump between different scatterers the motion is persistent,

with a persistence probability determined by the mass ratio among particles and scatterers,

and a waiting time probability distribution with algebraic tails. We find that the heat and

particle currents scale slower than 1/N , implying that this model exhibits anomalous heat

and particle transport.
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1 Introduction

The rigorous description of (classical) non-equilibrium steady states (NESS) remains an

elusive problem, despite some remarkable progress in the last few years, as described, e.g.,

in [2–4]. Indeed, it is usually impossible to guess the stationary state, and this distinguishes

non-equilibrium problems from equilibrium problems in statistical mechanics. Therefore,

many studies try to find the best descriptions of NESS and aim to understand what the

essentials of NESS are and how different models fit together. Among the few works in which

some properties of NESS have been obtained, we mention the harmonic chain coupled to

Langevin heat baths [5] and anharmonic chains coupled to infinite (non compact) reservoirs

[6, 7].

In this paper, we study heat and particle conduction in a 1-dimensional particle model

introduced in [1], which is a variant of a model studied in [8, 9]. The model consists of a

chain of identical cells, each of which contains a fixed point-like scatterer that exchanges

momentum with tracer particles. At its boundaries the chain is in contact with two stochastic

particle reservoirs, characterized by a fixed temperature. Inside the system the particles move

deterministically between cells, interacting with the scatterers but not among themselves.

However, on their passage the particles modify the local state of the substrate, which in

turn alters the evolution of the other particles. At the collisions energy and momentum are

conserved. For the quasi-1D models of [8, 9], this interaction leads to the establishment

of local thermal equilibrium and normal transport. Furthermore, we introduce a coupling

strength per cell, given by the probability that, when a particle encounters a scatterer, they

exchange momentum. If the chain is composed of N cells, we call this collision probability

γ /N , with γ ∈ [1,N ]. Therefore, the dynamics in the bulk is deterministic only if γ = N .

Out of equilibrium, i.e., when an open system is subjected to gradients of temperature

T and chemical potential μ, steady heat and particle currents (that we call JQ and Jn re-

spectively), appear. If the gradients are small these currents are linear combinations of the

thermodynamic gradients,

J = MF, (1.1)

where J = (JQ, Jn), F = (∇T ,∇μ) and M is a 2 × 2 matrix that is symmetric by virtue of

the Onsager’s reciprocity theorem. For instance, if Jn = 0 then (1.1) yields the well known

Fourier’s law relating the heat flux with the temperature gradient. Moreover, (1.1) implies

that, if the conductivities in M do not depend explicitly on the size N of the system then the

currents scale as J ∼ 1/N . In the literature, it is customary to call this scaling normal trans-

port as, combined with the conservation laws, (1.1) implies that the densities are diffusive

fields.

We analyze the equilibrium and nonequilibrium transport properties of the particle model

with a finite number N of cells and focus on two variants: a stochastic model with γ = 1 and

the deterministic model. We show numerically that in the limit of large N , the Boltzmann

description of the model obtained in [1] is a bona fide limit of the stochastic particle model.

Furthermore, we find that neither the stochastic nor the deterministic models satisfy the

Fourier’s law: in the stochastic model the transport is ballistic, i.e., the currents scale as

J ∼ N . Instead, the deterministic model exhibits superdiffusive transport with the currents

scaling as J ≈ N−0.4±0.02.

In the next section we describe in detail the model and in Sect. 3 we discuss the general

properties of its non-equilibrium steady state. In Sect. 4 we study the continuous limit of the

stochastic model and compare it with the theory that appeared in [1]. Finally, in Sects. 5 and

6 we discuss the energy and particle transport of the finite deterministic chain.
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2 The Model

In this section, we describe the 1-dimensional particle model that we consider, and briefly

review the results of [1] for the continuous model.

The model consists of N cells in a row, each cell of length λ. In the center of each cell

there is a point-like scatterer which does not move but which has a “momentum” P ∈ R

and a mass M . Particles move in these cells. They have mass m �= M and momentum p.

The particles do not interact among themselves but they do interact with the scatterers as

follows: Whenever a particle with momentum p reaches a scatterer whose momentum is P ,

the following happens: With probability 1 − γ /N , the particle crosses to the other side of

the scatterer, and continues with momentum p, while the scatterer retains its momentum P .

With probability γ /N actual scattering takes place and the new momenta p̃ and P̃ are given

by
(

p̃

P̃

)

= S

(

p

P

)

,

where the scattering matrix S is

S =

(

−σ 1 − σ

1 + σ σ

)

, and σ = (M − m)/(M + m). (2.1)

When γ = N , the particles interact with the scatterer every time they encounter one and,

except for the nature of the baths, the dynamics is fully deterministic. These rules are similar

in spirit (but far more rich), to the flipping Lorentz lattice gases studied some years ago [10].

When γ < N the model has some randomness, since for each encounter of a particle with a

scatterer, we need to decide if scattering takes place, or if the particle traverses the scatterer.

The collision rules (2.1) are just those of elastic scattering, but with the scatterers not

moving. The deterministic model (with γ = N ) is a one dimensional generalization of the

quasi-one dimensional models previously studied in [8, 9, 11, 12], where the scatterers are

fixed, freely rotating disks. In these models, the collisions provide a local energy mixing

among different degrees of freedom that leads to a local state which is well approximated

by a local equilibrium state, where the particles behave as a perfect gas. Close to equilibrium,

Green-Kubo relations for the heat and particle fluxes are valid and the corresponding On-

sager reciprocity relations are satisfied [8, 11]. Moreover, in the zero-coupling limit, where

the invariant measure of the NESS is expected to be a multivariate Gaussian, compact an-

alytical expressions for the currents and the density profiles have been obtained [9]. To the

lowest order, the corrections due to a finite coupling were considered in [12]. In [13], the

same collision rules with γ = N , have been considered to study the trajectories of one single

particle.

In the bulk, the dynamics preserves the total energy and total momentum in the system

irrespective of the values of σ and γ . Note that the total energy and total momentum of

the particles is not a conserved quantity, since arbitrary amounts of energy and momentum

can be stored by the set of scatterers. Only if σ = 0 i.e., if particles and scatterers have the

same mass the energies and momenta of the particles are “weakly” conserved, in the sense

that the particles exchange the initial value of their momenta among themselves through

different collisions with the scatterers.

To force the system out of equilibrium, we couple the leftmost and rightmost cells to

infinite ideal particle reservoirs. These reservoirs are not a perfect gas at temperature T ,

but should rather be viewed as an infinite bulk of particles and scatterers of our model at
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equilibrium temperature T . From each reservoir particles are injected into the system at a

given rate ν and with momenta distributed according to

F±(p)dp = �(±p)(2πmkBT )−1/2e−p2/2mkBT dp, (2.2)

where T is the temperature of the reservoir, kB the Boltzmann constant and the Heaviside

function �(p) restricts the sign of the momentum according to the side from where the

particles are injected (“−” for those entering from the right side and “+” for those entering

from the left). Equation (2.2) implies that the momentum distribution f (p) of the particles

inside any given cell, have a momentum density f (p) with a non-normalizable singularity

at p = 0. This also applies for the particle momentum distribution of the reservoirs. For the

reservoir coupled to the leftmost (i = 1) cell, f (p) is

fL(p)dp =
�(+p)

(2πmkBTL)1/2

e−p2/2mkBTL

|p|
dp, (2.3)

and for the reservoir coupled to the rightmost (i = N ) cell

fR(p)dp =
�(−p)

(2πmkBTR)1/2

e−p2/2mkBTR

|p|
dp. (2.4)

The distribution of the injected particles (2.2) is chosen so that the momentum distribu-

tion of the scatterers, are Maxwellian in equilibrium i.e., when both reservoirs are at the same

temperature TL = TR. More precisely, denoting by gi(P ) the distribution of the momentum

of the i-th scatterer and by Fi(p) = |p|fi(p), where fi(p) is the momentum distribution of

the particles in the i-th cell, in [1] it has been shown that if the particle injection rates are

the same (νL = νR) and TL = TR = T , then F and g are both Gaussian and are given by

F(p)dp = (2πmkBT )−1/2e−p2/2mkBT dp, (2.5)

g(P )dP = (2πMkBT )−1/2e−P 2/2MkBT dP, (2.6)

irrespective of i. Here, we illustrate this numerically. We have considered a chain of N = 30

cells with γ = N in equilibrium. The masses were chosen m = 11 and M = 3, so that

σ = 0.5. In Fig. 1a, the distributions gi(P ) (dashed) and Fi(p) (solid) are shown. Both

coincide with the respective Maxwellian distribution (not shown), at a temperature T equal

to the equilibrium temperature fixed by the reservoirs. Moreover, the same distributions are

found irrespective of the cell i in which they are sampled.

If particles do not interact, then the momentum distribution of the injected particles that

preserves the equilibrium state becomes |p|F±(p)dp (see e.g. [14]). Indeed, the infinite

invariant measure f (p) is a consequence of the particular dynamics of our system. The

singularity of f (p) is non-integrable only for models with one dimensional dynamics.2 This

is related to the fact that, while in any dimension slow particles need much longer times to

move across the system than fast particles, only in 1-dimensional dynamics this imply that

particles steadily accumulate near p = 0.

Another consequence of the infinite invariant measure f (p)dp is that in the stationary

state (the time t → ∞), the number of particles in the system is infinite. Starting with any

1In what follows, we fix the particle mass to 1.

2In higher dimensions, 1/|p| is integrable near p = 0.
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Fig. 1 (Color online) Momentum distribution of particles and scatterers for a chain of N = 30 cells, σ = 0.5

at equilibrium (a) and out of equilibrium (b). In (a) the momentum distributions gi (P ) (dashed curve) and

Fi (p) (solid line) are plotted for νL = νR = 240, TL = TR = 200. They coincide with the equilibrium dis-

tributions at the temperature of the reservoirs. Moreover, they do not depend on the cell i in which they are

sampled. In (b) (see Sect. 3), we show the scatterer’s momentum distribution gi (P ) (solid line) for i = 1, 10,

20 and 30 (in the order indicated by the arrow), with νL = 240, νR = 140, TL = 100 and TR = 300. As a

reference, the equilibrium distribution g(P ) of (a) is also plotted (dashed curve)

initial distribution, and letting the system evolve in time t , the number of particles with

low momenta grows without bounds. On the other hand if one can prove that the number

of particles with momentum p > p0 has a limit as t → ∞ then the stationary state is well

defined, in spite of the divergence of the total number of particles. To illustrate this, we have

measured the evolution in time of the number of particles in the system and their momentum

distribution, for a chain of N = 201 cells in equilibrium, with νL = νR = 100 and TL = TR =

100. We find that the number of particles inside the system, defined as n(t) =
∫ ∞

−∞
nt (p) dp,

diverges logarithmically in time, due to the slow accumulation of cold particles (inset of

Fig. 2). In Fig. 2, |p|nt (p) is shown for several successive times. We observe that for p larger

than some p0(t), |p|nt (p) is invariant. Naturally, the divergence of nt (p) is limited to the

set of very slow particles. Therefore, the singularity of f (p) does not affect the properties of

transport, as small velocity particles do not contribute to it.3 Similar conclusions have been

obtained in other contexts in [15, 16].

We conclude this section by briefly reviewing the continuum limit studied in [1]. In

the limit of N → ∞, setting x = i/(N · λ) for the position of the i-th cell, g(Pi) →

g(P,x), is the probability density that the scatterer at position x has momentum P and

so
∫

dP g(P,x) = 1, by definition. In [1] it was argued that in the continuous limit, this

system can be modeled by a Boltzmann equation, whose stationary solution is described by

the equations

p∂xF(p,x) = γ |p|

∫

dP
(

F(p̃, x)g(P̃ , x) − F(p,x)g(P,x)
)

, (2.7a)

0 =

∫

dp
(

F(p̃, x)g(P̃ , x) − F(p,x)g(P,x)
)

, (2.7b)

where the quantity F(p,x) is equal to F(p,x) = |p|f (p,x), with f (p,x) the probability

density that a particle at position x has momentum p, and γ ∈ [0,N ] corresponds to the

same quantity of the particle model, which determines the scattering probability. Therefore,

3In the same vein, p0(t) is seen to decrease to zero logarithmically.
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Fig. 2 Number of particles nt (p) with momentum ≈ p times the momentum |p|, at t = 200, 600, 1000,

1400 and 1800, for a chain of N = 201 cells at equilibrium with νL = νR = 100 and TL = TR = 100, σ = 1/2

and γ = N . dp is the width of the bins used to compute the empirical distribution nt (p). Thus, the x-axis

corresponds to the bin number. In the inset: logarithmic divergence of the total number of particles inside the

system

for p > 0, F(p,x) is related to the rate of particles with momentum p moving from x to

the right. Similarly, F(p,x) is, for p < 0, related to the rate of particles with momentum

p moving from x to the left. Note that, in contrast to f (p), the function F(p) is free of

singularities. Therefore, in spite of the infinite number of particles in the stationary state of

the scattering model, the flux F(p,x) is finite and integrable, and it is for this quantity that

the Boltzmann equation is formulated.

The Boltzmann equation (2.7) was derived assuming that F(p) and g(P ) are statistically

independent. Therefore, the similarity between the particle model and its Boltzmann version

should be best in the case of large N and when there are many particles (with momentum

|p| > p0 > 0) in each cell. Moreover, in [1], it was proven that for any particle injections

fL(p) and fR(p) in a certain cone in Banach space, (2.7) has solutions when γ = O(1). Our

numerical studies are, however, for parameter values well outside this cone, and still give a

very good comparison between the particle model and the Boltzmann model. Furthermore,

when γ = O(N), the particle model is still well defined, although different from the Boltz-

mann model. If γ = N a particle will scatter whenever it meets a scatterer and will never

fly to the other side of a scatterer without collision. When γ ≪ N , the local state cannot

correspond to a local equilibrium state. Indeed, when scattering is rare, the particles do not

interact, thus leading to local states that are described by the sum of two different fami-

lies of particles: those that were injected from the left, flying ballistically to the right, and

those injected from the right that fly ballistically to the left [17]. However, if γ = N , then

all particles scatter when they encounter a scatterer, leading to a stronger local interaction.

One would expect that this strong interaction would lead to a diffusive particle behavior.

However, in Sect. 5, we will show that the transport remains superdiffusive.
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3 Non-equilibrium Steady State

In this section we study the nonequilibrium properties of our model. Here and in what fol-

lows, we will limit ourselves to study the stochastic model given by γ = 1 and the deter-

ministic one corresponding to γ = N . This stochastic model corresponds to the Grad limit

considered in [1].

We start by defining the particle and energy injection rates. The particle injection rates

from the left and right reservoirs (denoted by νL and νR respectively) are defined is terms of

the momentum distribution of the injected particles (2.2) as

νL =

∫ ∞

0

F+(p)dp and νR =

∫ 0

∞

F−(p)dp. (3.1)

As we have discussed, the particle density in the bath is infinite. However, since the integral

in (3.1) is finite, one realizes that ν takes the role of an effective particle density. The rate at

which energy is injected into the system from each reservoir are determined by the particle

injection rates simply as

εL/R = νL/RkBTL/R. (3.2)

Setting ν and ε of both reservoirs, fixes the nonequilibrium state. Moreover, local differences

of these rates determine the currents. If the state fixed by the reservoirs’ rates is very far

from equilibrium then the identification of a local temperature in the bulk of the system

becomes problematic as the momentum distributions F(p) and g(P ) have large deviations

from Gaussian. We illustrate this in the Fig. 1b where gi(P ) is shown for i = 1 being the

leftmost cell, 10, 20 and 30 being the rightmost cell. Naturally, as the scatterers feel the

nonequilibrium state set at the boundaries, gi(P ) is not longer uniform with respect to the

position i. Furthermore, for all i, gi(P ) is far from being an equilibrium distribution.4 The

particle momentum distribution F(p) will be discussed in Sect. 4.

In Fig. 3 we compare the particle density ρ(x) and the temperature profiles numerically

obtained for the stochastic (γ = 1) and the deterministic models. The temperature at the

i-th cell is computed as 〈p2〉 averaged with respect to the particle momentum distribution

function Fi(p) measured at the i-th cell. This temperature coincides with the time averaged

kinetic energy of the i-th scatterer, indicating a good local equilibration. All the observ-

ables were averaged for a time interval during which the total number of particles inside the

channel does not change appreciably.

As commonly observed, the temperature in the bulk of the system of both models does

not match the nominal temperatures of the reservoirs (indicated by the dashed lines in the

upper panel). Moreover, the energy mismatch at the contacts with the reservoirs depends on

the scattering probability. This is natural as γ is proportional to the effective bulk resistance

of the system. This means that, lower values of γ translate into larger nonequilibrium cur-

rents. Therefore, since the energy jumps at the contacts must be proportional to the energy

current, they are larger for the stochastic model than for the deterministic one. In the bulk

of the system, the temperature profile for γ = 1 is less steep than for γ = N since in the

former case, particle-particle interaction, mediated by the scatterers, is less effective than

in the latter case. As for the particle density, a smaller scattering probability leads to a less

4In what follows, we shall take care of studying nonequilibrium states, for which the local temperature or at

least, a good approximation of it, can be determined.
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Fig. 3 Profiles of the particle density (lower panel) and the kinetic energy per particle density EK (upper

panel), for a chain of N = 30 cells, σ = 0.5 and for γ = 1 (squares), and γ = N (circles). Particles were

injected to the chain with rates νL = 220, νR = 180 and temperatures TL = 81.818 and TR = 122.222,

indicated here by the dashed line

steep density profile. Moreover, the accumulation of particles at the contact with the reser-

voirs is more pronounced when the scattering is less frequent. This is because the scattering

contributes to heat up the injected cold particles.

Out of equilibrium, the particles inside the cell at position x, leave the cell to the right at

a different rate than the rate at which they leave the cell to the left. This is a consequence of

the substrate-mediated particle-particle interaction. Calling the rate at which particles cross

from one cell to another from left to right νR(x) and from right to left νL(x), the particle

current is defined as

Jn(x) = νR(x) − νL(x + dx). (3.3)

Therefore, these local rates are strongly dynamically constrained, so that the stationary parti-

cle current is uniform. Indeed, we find that, in the stationary state, a uniform particle current,

with extremely linear profiles for νR(x) and νL(x). In Sect. 5, we will see that these strong

correlations determine an unexpected superdiffusive particle and energy transport.

4 Infinite Volume Limit: γ = 1

In this section, we compare the non-equilibrium probability distribution functions of the

discrete model with those predicted by the Boltzmann equation (2.7).

We have solved numerically (2.7) by a discretization in momentum space. Fixing the

spacing of the discretized momentum to �p, the number of points we considered is the

minimum necessary to keep the information from the tails of the distributions as small as

∼ 10−10. We proceed as follows: at any x, (2.7b) for g only depends on F(·, x). We dis-

cretize (2.7b) and solve it as an eigenvalue problem (with eigenvector g(·, x)). The only

limitation is the size of the matrices one obtains in this way: our runs were done with matri-

ces of size ∼ 4200. The function g found in this way is then inserted into (2.7a). High-order
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Fig. 4 (Color online) Momentum distribution F(p,x) of the particles at the left (solid curve) and right

(dashed curve) ends of the system, from the solution of the Boltzmann equation (2.7), for σ = 0.5, νL = 220,

νR = 180, TL = 81.818 and TR = 122.222. In the inset the finite size deviation of FN (p, x) from the Boltz-

mann solution are shown for N = 2 (black), N = 4 (red), N = 8 (green) and N = 16 (blue)

integration in position space is then used to integrate (2.7a) from x = 0 to x = 1. Therefore,

fixing the injection at x = 0 to (2.3), we use a shooting method to determine the extraction

of particles at x = 0 in such a way that at x = 1 the desired injection (2.4) will result (see

also [1] for more details).

In Fig. 4 we show the solution of (2.7) for σ = 0.5, νL = 220, νR = 180, TL = 81.818

and TR = 122.222, and γ = 1. The first peculiarity of the non-equilibrium distributions is

the jump at p = 0. This is due to the very weak particle-particle interaction obtained for

γ = 1. The size of the jump is partly determined by γ and, as it is clear from (3.1), partly by

the difference between νL and νR. Note that, as a consequence of the temperature gradient,

the positive and negative parts of the distribution are only approximately Gaussian. They are

Gaussian only if TL = TR.

To study the limit N → ∞, we have numerically followed the evolution of finite size N

chains and measured the particle momentum distribution FN (p, x) for the same parameters

as above. In the inset of Fig. 4, the deviation of FN (p, x) from the solution of the Boltzmann

equation F(p,x) is shown for chains from N = 2 to N = 16.

Deviations are seen over the whole domain, although they are biggest at the center of

the distribution. They are not symmetric in p, which is an indication that, for a given size

N , deviations may depend on the injection rates and bath’s temperatures in general. Fur-

thermore, we observe that the solution of (2.7) appears to be the asymptotic distribution,

limN→∞ FN (p, x) → F(p,x). In any case, the deviations from F(p,x) are less than 0.1%,

tending to zero very fast. For instance, for a chain of N = 16 the deviations are less than

0.01%.

Finally, we have also measured the distribution FN (p, x) for the deterministic finite chain

(γ = N ). In Fig. 5, we show FN (p, x) at x = 1/N (solid curve) and x = 1 (dashed curve),

for a chain of N = 30 cells and γ = 1 (panel (a)), γ = N (panel (b)). The other parameters

are reported in the caption of Fig. 4. The distributions F30(p, x) in Fig. 5a are on top of

the solution (2.7) and, as mentioned above, the deviations from the asymptotic distribution



340 P. Collet et al.

Fig. 5 (Color online) Momentum distribution FN (p, x) of the particles at x = 1/N (solid curve, blue) and

x = 1 (dashed curve, violet), for a chain of N = 30 cells, with σ = 0.5, for (a) γ = 1 and (b) γ = N . The

bath’s parameters are as in Fig. 4

decay very fast. For γ = N , the jump at p = 0 is much smaller, with the only remaining

contribution coming from the difference |νL − νR| of the injection rates. For both models,

F(p) is not Gaussian, even if νL = νR (not shown).

5 Energy Transport

In this section we turn our attention to the heat transport of the deterministic model, i.e.,

setting γ = N . The particles of mass m are the only energy carriers of the system. We start

by analyzing their dynamics.

5.1 Microscopic Evolution

We consider a finite chain of N cells with periodic boundary conditions and n particles per

cell. A stationary state of this closed system is the equilibrium state characterized by N , n

and the total energy E given by

E0 =
1

2

(

1

m

nN
∑

i=1

p2
i +

1

M

N
∑

i=1

P 2
i

)

. (5.1)

We start the evolution with the scatterers at 0 momenta. As for the open chain, the state of

the system approaches equilibrium logarithmically slowly (in time). During the transient,

the substrate continuously extracts energy from the gas of particles; the total energy of the

scatterers grows logarithmically in time, until it saturates at sufficiently long times. All mea-

surements are taken after the system has relaxed to the approximate equilibrium state.

Once equilibrium is reached, we follow the evolution of a tagged particle, for N and n

sufficiently large.5 Here, we are interested in the high density regime, which, following the

discussion about Fig. 2, is a good approximation of the stationary n = ∞ state.

When the particle encounters a scatterer, its velocity after the collision is determined by

(2.1). In fact, this scattering matrix leads to a persistent motion of the particle, namely the

5Since particles interact among themselves only through their collisions with the substrate, the local dynamics

may depend on the finite time particle density.
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Fig. 6 Persistent probability μ

as a function of the mass ratio

parameter σ , averaged over the

evolution of a tagged particle in a

chain of N = 11, n = 20 and

T = 500. The solid curve

corresponds to (5.3)

probability that the particle continues in the same direction in which it reached the scatterer,

is not 1/2. This probability, μ, can be easily computed as follows:6 without loss of gener-

ality assume that before the collision, the particle’s velocity is v > 0. In equilibrium, the

scatterer velocity distribution function is obtained by taking V = P/M in (2.6). Taking into

account that after the collision the particle’s velocity is v′ = −σv + (1 + σ)V (see (2.1)),

the probability that after the collision the particle has a velocity v′ > 0 can be written as7

μ(σ) ≡ P (v′ > 0|v > 0) =
(mM)1/2

2πkBT

∫ ∞

0

dv e
− mv2

2kBT

∫ ∞

σ
1+σ

v

dV e
− MV 2

2kBT , (5.2)

that can be integrated to yield

μ(σ) =
1

2
−

(

m

2πkBT

)1/2 ∫ ∞

0

dv erf

(

(M − m)v

(8MkBT )1/2

)

e
− mv2

2kBT , (5.3)

where erf(·) is the error function. The limit values of μ can be easily read from (5.3): for

σ = −1, namely M = 0, the error function is erf(−∞) = −1 and μ = 1. In the opposite

case, when σ = 1 (M = ∞), μ = 0. Finally, for σ = 0, namely M = m, erf(0) = 0 and

μ = 1/2. With the exception of σ = 0, the dynamics of the particles is persistent. In Fig. 6,

the probability μ(σ), computed from the statistics of the collisions of the tagged particle is

shown.

Neglecting the interaction between particles, we can simplify the model, studying the

dynamics on the lattice. If we do so, then the particle can be seen as a persistent random walk

that hopes from scatterer to scatterer with a waiting time τ that corresponds to the collision

times i.e., proportional to the inverse of the particle’s velocity after the last collision.

We have measured the distribution of the waiting time (τ) of the tagged particle for

different values of σ . In Fig. 7 we show (τ) for σ = 0 and σ = 0.5. As a consequence of

the single particle’s velocity distribution, (τ) turns out to be a broad distribution (τ) ≃

τ−(1+s). Our persistent walker seemingly performs a Levy walk. From a fit to a power law of

6To analyze the dependence of μ on the masses, it is convenient to work with the velocities instead of the

momenta.

7There is no factor 1/|v| here, because we must consider the probability of a particle with velocity in [v, v +

dv] hitting a scatterer within a given time.



342 P. Collet et al.

Fig. 7 Distribution function of the collision times (τ), for σ = 0 and σ = 0.5. The dashed lines correspond

to power law fits, namely (τ) ∼ τ−3.07±0.09 for σ = 0 and (τ) ∼ τ−1.99±0.02 for σ = 0.5

the numerical distributions (τ) we obtain that for σ = 0.5, s = 0.99 ± 0.02 and for σ = 0,

s = 2.07 ± 0.07. For different values of σ (not shown), we find that s ≈ 1.8 We cast these

results as

(τ) ∼

{

τ−3 for σ = 0

τ−2 for σ �= 0.
(5.4)

In the continuous limit, a persistent random walker yields to a particle’s density whose

evolution is described by the telegrapher’s equation [18]. Noting that asymptotically the

telegrapher’s equation yields to a diffusive evolution and that the Levy walk for 1 < s < 2

does only induce anomalous corrections to the normal long-time behavior [19], one would

expect that the microscopic particle’s dynamics yields diffusive transport. However, this is

not the case. In Fig. 8 we show the evolution of the dispersion of the position of a tagged

particle 〈x2(t)〉 for σ = 0.5, averaged over an ensemble of initial conditions. Asymptoti-

cally, 〈x2(t)〉 ∼ tα , with α � 2. In fact, we have found that the asymptotic scaling of 〈x2(t)〉

seems to depend on the mass ratio parameter σ (see inset of Fig. 8). The scaling being an

asymptotic property that we measure at large but finite times, we cannot discard the pos-

sibility that, measured at later times, α(σ) will get closer to 2, indicating that the particle

transport is always ballistic. Here, we limit ourselves to report our findings. Therefore, for

σ = 0 the particle’s motion seems to be ballistic, while for σ �= 0, the motion seems to be

superdiffusive. The observed anomalous behavior suggests that in one dimension, the effect

of the dynamical memory of the deterministic model is much stronger than in higher dimen-

sions.9 Since the particles are the energy carriers one expects that the energy transport will

be anomalous as well. We study this in the next section.

8The power −2 for σ �= 0 can be derived (approximately) from a multiple integral as in (5.3).

9Note incidentally that, if the direction of the particle after the collision if chosen randomly so that the effects

of the dynamical memory can be neglected, then diffusive transport is recovered.
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Fig. 8 Time dependence of the variance of the position of the tagged particle 〈x2(t)〉 averaged over an

ensemble of O(103) trajectories, for N = 11, n = 20 and temperature T = 500 (solid curve), when σ = 1.

The dashed line corresponds to a scaling ∼ t2. In the inset, asymptotic power scaling 〈x2(t)〉 ∼ tα , as a

function of the mass ratio parameter σ

6 Heat Conductivity

We turn our attention to the energy transport of our model. Considering the open system

coupled at its boundaries to two particle reservoirs, we have computed the dependence of

the heat conductivity κ on the size of the system N , for fixed nominal values of the injections

and temperatures of the particle reservoirs. We define the heat conductivity as

κ =
NJU

TN − T1

, (6.1)

where JU is the measured energy current and T1 (resp. TN ) is the temperature measured in

the leftmost (resp. rightmost) cell that, as we have seen, in general does not coincide with

the temperatures of the reservoirs.10 Moreover, the temperature difference slightly depends

on N .

In our simulations, the currents are measured at a finite time t , when the particle density

n(t) is also finite. Therefore, to study the scaling of JU and thus of κ , it is important to

compute κ from (6.1) at constant n(t). The length of the system is 1 since we space the

scatterers by λ = 1/N . The results of simulations are shown in Fig. 9 for γ = 1 (circles)

and γ = N (squares). For the stochastic model (γ = 1), we obtain κ ∼ N . Particles move

ballistically, simply because they interact with the substrate very rarely.11

Surprisingly, the transport of the deterministic model is anomalous. First, in the inset of

Fig. 9 the scaling with N of the energy and particle currents is shown. Within numerical

accuracy, both scale as ≈ N−2/5. From the conservation of energy it follows that the heat

10We have found that the temperature profile is, in good approximation, linear when the product of the

injection rates νǫ = ν2T is the same at both boundaries.

11The number of times that a typical particle collides with a scatterer before being re-absorbed is O(1).
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Fig. 9 Heat conductivity κ , as a function of the number of cells N , for σ = 0.5 and γ = N (squares)

and γ = 1 (circles). The reservoirs were set to νL = 220, νR = 180, TL = 81.818 and TR = 122.222. The

dashed lines correspond to linear fits from which we obtain that for the deterministic model κ diverges as

∼ N0.54±0.03 and for the stochastic model (γ = 1), κ ∼ N1.00±0.02. These power laws are indicated by

the dashed lines. Inset: scaling with N of the energy (cross) and particle (plus) currents of the deterministic

model. From fit to power law (solid lines), we obtain that JU ∼ N−0.39±0.03 and Jn ∼ N−0.4±0.02

current is JQ = JU −μJn, where μ is the value of the chemical potential in the bulk. There-

fore, using this and the fact that JU and Jn scale with the same power law, we conclude that

JQ ≈ N−2/5 as well. More importantly, the scaling of κ as defined in (6.1) coincides with

the scaling of the real thermal conductivity. We find that the thermal conductivity diverges

as κ ∼ N0.54±0.03.

It is interesting to note that usually, anomalous heat conduction is related to the existence

of global conserved quantities [3]. This relation is not rigorous as counterexamples exist for

which, despite of possessing additional global conserved quantities, the transport is normal

[20, 21]. For our family of models, the total energy and momentum i.e., the sum over par-

ticles and scatterers, are conserved. However, we believe that our models constitute a new

atypical situation in the sense that the additional global integral of motion, namely the total

momentum, is not the relevant quantity for transport.

The microscopic instantaneous energy current per particle at position x∗ and time t is

defined as

ju(x
∗, t) = E(t)v(x(t), t)δ(x∗ − x(t)),

where E(t) is the energy of the particle, x(t) its position and v(t) its velocity. The macro-

scopic energy current JU at position x∗, is thus obtained as a time average of ju(x
∗, t).

Thus, it follows that the relevant quantity for the JU is the total particle momentum, which

is not conserved. Whether or not our model constitutes a new type of anomalous transport,

deserves further investigation.

6.1 Return to Equilibrium

In order to shed more light on the anomalous heat transport we have studied the system’s

equilibrium response to a finite energy perturbation. Suppose that at a certain initial time,
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Fig. 10 (Color online) Evolution of the energy difference �E(x, t) for a chain of N = 201, n = 5 and

σ = 0.5, in a quadratic color ramp. (a) γ = N and an initial energy per degree of freedom of ε0 = 5000 and

ε̃ = 50000. (b) γ = 1 and ε0 = 50 and ε̃ = 500

t = 0, the equilibrium state of the system is perturbed by an additional amount of energy

�E that is distributed among all the degrees of freedom in a finite region of volume V ,

around the position x. By measuring the evolution of the energy field, one can estimate how

heat propagates through the system.

Considering the closed system as in Sect. 5.1 we proceed as follows: at time t = 0 we

perturb the state S0 of the system to S̃, as follows: the energies of the particles and scatterers

contained in the N central cells are changed so that the total energy inside these cells is

Epert. After this, we let the central subsystem relax. To obtain the evolution of the energy

perturbation �E(x, t), we have followed two trajectories of the system: the unperturbed one,

with initial state S0 and the perturbed one, with initial state S̃. Then, the energy difference

at time t and position x is

�E(x = λi, t) = 〈Ẽi(t) − E0
i (t)〉, (6.2)

where Ẽi(t) is the energy contained in the ith cell at time t of the perturbed trajectory

and respectively for E0
i (t), and 〈·〉 denotes the average over an ensemble of different initial

realizations.

When dynamical correlations are not too strong, one expects that after a sufficiently long

time the perturbation �E(x, t) scales (with x measured from the initially perturbed cells)

as

�E(x, t) =
1

t ξ
�E

(

x

t ξ
, t

)

, (6.3)

where the power ξ is related to the scaling of the heat conductivity with the size of the

system L as [22]:

κ = N2−1/ξ . (6.4)

In particular, ξ = 1/2 corresponds to normal diffusion, while ξ = 1 corresponds to ballistic

motion.

In Fig. 10 we show the evolution of the energy difference �E(x, t) for the determin-

istic chain γ = N (left panel) and compare it with the stochastic chain with γ = 1 (right

panel). We observe that for γ = N , the initial excess of energy at the central cell decays
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Fig. 11 Damping of the maximum of the traveling waves �E(x, t), as a function of time (solid curves), for

the same simulations of Fig. 10: γ = N (a) and γ = 1 (b). From fits to power law (dashed lines), we obtain

the scalings: (a) ∼ t−0.68±0.03 and (b) ∼ t−1.02±0.02

very rapidly. Practically none of the initial excess of energy remains in the central cell. The

perturbation moves apparently ballistically,12 to the ends of the chain, carried by two seem-

ingly independent families of particles, those with positive velocity and those with negative

velocity. The fast decay of the energy at the center that marks the existence of very strong

dynamical correlations. Note for instance, that a similar observation has been made recently

for a random walk with memory in the waiting times of successive steps [23]. For γ = 1, we

also observe an initial fast decrease of the energy perturbation.13 The evolution of the peaks

with positive and negative velocity seems to move ballistically.

The scalings (6.3) and (6.4) are valid for the decaying of the initial perturbation, namely

they are valid if measured from the decay of the central peak. Nevertheless, we find that in

our system, similar scalings are possible for the traveling waves. Assuming that the excess

of energy is transported across the system as a density packet, whose area is preserved on

average, we show in Fig. 11 the damping of the amplitude of the moving peak as a function

of time. For γ = N (panel (a)), the amplitude of the peak decays approximately as t−0.68,

corresponding to a heat conductivity that scales as κ ≈ N0.53. On the other hand, the ampli-

tude decay of the traveling wave for γ = 1 (panel (b)) is approximately t−1, corresponding

to a heat conductivity that grows linearly with N . To our knowledge, there is no theory that

addresses the scaling properties of the traveling waves that appear from the relaxation of a

perturbation. However, in view of the reasonable agreement between the conductivities ex-

tracted using (6.4) and those obtained from nonequilibrium simulations, one could rephrase

our findings as follows: for the family of models that we study here, the local energy is trans-

ported by traveling waves with a local dispersion that reflects the anomalous character of

the heat and particle transport. This conclusion deserves further investigation.
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