
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Superfast Fourier transform using QTT

approximation

(revised version: March 2012)

by

Sergey Dolgov, Boris N. Khoromskij, and Dmitry Savostyanov

Preprint no.: 18 2011

Superfast Fourier transform using QTT

approximation

Sergey Dolgov⋆,†, Boris Khoromskij†, Dmitry Savostyanov⋆

⋆ Institute of Numerical Mathematics, Russian Academy of Sciences,
Russia, 119333 Moscow, Gubkina 8
❞♠✐tr②✳s❛✈♦st②❛♥♦✈❅❣♠❛✐❧✳❝♦♠

† Max Planck Institute for Mathematics in Sciences,
Germany, 04103 Leipzig, Inselstraße 22

❬s❡r❣❡②✳❞♦❧❣♦✈✱❜♦r✐s✳❦❤♦r♦♠s❦✐❥❪❅♠✐s✳♠♣❣✳❞❡

March 27, 2012

Abstract. We propose Fourier transform algorithms using QTT format for data-
sparse approximate representation of one– and multi-dimensional vectors (m–tensors).
Although the Fourier matrix itself does not have a low-rank QTT representation, it can
be efficiently applied to a vector in the QTT format exploiting the multilevel structure
of the Cooley-Tukey algorithm. The m–dimensional Fourier transform of an n×. . .×n

vector with n = 2d has O(md2R3) complexity, where R is the maximum QTT–rank of
input, output and all intermediate vectors in the procedure. For the vectors with mod-
erate R and large n and m the proposed algorithm outperforms the O(nm logn) fast
Fourier transform (FFT) algorithm and has asymptotically the same log-squared com-
plexity as the superfast quantum Fourier transform (QFT) algorithm. By numerical
experiments we demonstrate the examples of problems for which the use of QTT for-
mat relaxes the grid size constrains and allows the high-resolution computations of
Fourier images and convolutions in higher dimensions without the ‘curse of dimen-
sionality’. We compare the proposed method with Sparse Fourier transform algo-
rithms and show that our approach is competitive for signals with small number of
randomly distributed frequencies and signals with limited bandwidth.

Keywords: High-dimensional problems, tensor train format, QTT, Fourier transform,
convolution, sparse Fourier transform, quantum Fourier transform

AMS classification: 15A23, 15A69, 65T50, 65F99

$This work was supported by RFBR grants 09-01-12058, 10-01-00757, 11-01-00549, RFBR/DFG grant 09-
01-91332, Russian Federation Gov. contracts No. Π1112 and Π940, 14.740.11.0345. Part of this work was
done during the stay of S. Dolgov and D. Savostyanov in Max Plank Institute for Mathematics in Sciences,
Leipzig, Germany, supported by the Promotionsstipendium of Max Planck Society. Part of this work was
done during the Visiting Research Fellowship of D. Savostyanov (corresponding author) at the University
of Chester, supported by the Leverhulme Trust.

1. Introduction

For high-dimensional problems, data-sparse representation schemes allow to overcome
the so-called curse of dimensionality and perform computations efficiently. Among many
low-parametric formats, tensor decomposition methods appear to be the most promising
for high-dimensional data, see reviews [5, 39, 33] and monograph [18]. Recently proposed
tensor train (TT) format [48, 43, 46], also known in quantum chemistry as matrix product
states (MPS) [60], combines advances of both the canonical and Tucker formats: the num-
ber of representing parameters grows only linearly with the dimension and the approx-
imation problem is stable and can be computed by algorithms based on singular value
decomposition (SVD). For low-dimensional data, the tensor train format can be applied
by substitution of the dimensions with large mode size by a larger number of dimensions
with small mode size, resulting in a high-dimensional array. If the small mode size equals
two, it becomes ‘indivisible’, i.e., can not be reduced further. We can say that such mode
represents a quant or bit of information and call this representation of a vector the quan-
tized tensor train (QTT) format, following [32]. Similarly, in quantum computations a large
data vector is represented by the entangled quantum state of several qubits (quantum bits),
which are systems with two quantum states.

The QTT format is rank-structured and the storage size is governed by QTT–ranks. The
impressive approximation properties of the QTT format were discovered in [32] for a class
of functions discretized on uniform grids. In particular, it was proven that the QTT–ranks
of exp(αx), sin(αx), cos(αx), xp are uniformly bounded with respect to (w.r.t.) the grid

size. For the functions e−αx2 , xα, sin x
x

, 1
x
, etc., similar properties were found experimentally.

In this paper we propose algorithms for the discrete Fourier transform of one– and
high-dimensional data represented or approximated in the QTT format. Our approach
bases on a radix-2 recursion formula which reduces the Fourier transform to the one of
half size and lies behind the well-known Cooley-Tukey FFT algorithm [11, 4]. Each step of
the proposed QTT–FFT algorithm includes the approximation to reduce the storage size
of the intermediate vectors adaptively to the prescribed level of accuracy. The complexity
of m-dimensional n × . . . × n transform with n = 2d is bounded by O(md2R3), where R

is the maximum QTT–rank of input, all intermediate vectors and output of the QTT–FFT
algorithm. For vectors with moderate R, the QTT–FFT algorithm has square logarithmic
scaling w.r.t. the total number of array entries and outperforms the Cooley-Tukey FFT
algorithm, which has O(nm logn) complexity. Given an arbitrary input vector, it is not
possible to predict the value of R and state if QTT–FFT algorithm is efficient, until the
computation is done. This problem is solved partially in [53], where the class vectors
with R = 1 is fully described and is also shown by numerical experiments that many
vectors can be approximated by ones with moderate R. The QTT–ranks depend on the
desired accuracy level, and transforms with lower accuracy are computed faster by the
approximate QTT–FFT algorithm, in contrast to the exact FFT algorithm.

The QTT–FFT algorithm can be compared with the quantum Fourier transform (QFT)
algorithm, widely utilized in quantum computations, such as eigenvalue estimation,
order-finding, integer factorization, etc. A single operation in the quantum algorithm
has the exponential performance, since it changes all 2d components of the vector describing
the entangled state of a quantum system. Remarkably, the superfast QFT algorithm [8]
requires O(d2) quantum operations. The QTT–FFT algorithm has asymptotically the same
complexity for fixed R, that explains the word superfast in the title of this paper.

2

The QTT–FFT can be also compared with the Sparse Fourier transform. In the pro-
posed method we use data-sparse rank-structured QTT format for data representation,
instead of pointwise sparsity of the Fourier image exploited in the Sparse Fourier trans-
form. The QTT–FFT algorithm requires the QTT representation of the input vector, which
can be computed from a small number of vector elements (samples) using the TT–ACA
algorithm [54]. Our method is deterministic, while the Sparse Fourier transforms algo-
rithms are usually randomized with the probabilistic estimation of the accuracy.

This paper is organized as follows. We start from the overview of TT and QTT for-
mats in Section 2. In Section 3 we present the Fourier transform algorithm for vectors in
the QTT format. In Section 4 we explain how to keep the QTT–ranks moderate during
this procedure and result in the QTT–FFT algorithm for the approximate computation of
Fourier transform in the QTT format. In Section 5 we consider the real-valued transforms
(convolution, cosine transform) and explain how to compute them using QTT–FFT algo-
rithm. In Section 6 we develop the multi-dimensional Fourier transform algorithm in the
QTT format. In Section 7 we give numerical examples illustrating that the use of QTT for-
mat relaxes the grid size constrains and allows high-resolution computations of Fourier
images in higher dimensions without the ‘curse of dimensionality’. In particular, our ap-
proach allows to compute one-dimensional and multi-dimensional Fourier images using
n = 260 in 1D and n = 220 in 3D on a standard workstation, see Sec. 7.1 and Sec. 7.2. In
Sec. 7.3 we compute the convolution transforms of data with strong cusps or singularities
which occur in particular in quantum chemistry and require very fine grid. In Section 8 we
compare our method with Sparse Fourier transform algorithms for exactly Fourier-sparse
signals and signals with limited bandwidth.

2. Tensor train format

A tensor is an array with d indices (or modes)

X = [x(k1, . . . , kd)], kp = 0, . . . , np − 1, p = 1, . . . , d.

The tensor train (TT) format [43, 46] for the tensor X reads1

x(k1, k2, . . . , kd) = X
(1)
k1
X
(2)
k2

. . . X
(d)
kd
, (1)

where each X
(p)
kp

is an rp−1×rp matrix. Usually the border conditions r0 = rd = 1 are imposed
to make every entry x(k1, . . . , kd) a scalar. However, larger r0 and rd can be considered and
every entry of a tensor X = [x(k1, . . . , kd)] becomes an r0 × rd matrix. Values r0, . . . , rd−1

are referred to as TT–ranks and characterize the separation properties of the tensor X. Three-

dimensional arrays X(p) = [X
(p)
kp
] are referred to as TT–cores. The terms ‘cores’ and ‘ranks’

were introduced in [43, 46] to reveal the analogy between TT and Tucker formats.

Definition 1 ([43]). The p–th unfolding of a n1 × n2 × . . .× nd tensor X = [x(k1, . . . , kd)] is
the n1 . . . np × np+1 . . . nd matrix X{p} = [x{p}(s, t)] with the following elements

x{p}(s, t) = x(k1, . . . , kp, kp+1, . . . , kd),

s = k1 + k2n1 + . . .+ kp

p−1∏

q=1

nq, t = kp+1 + kp+2np+1 + . . .+ kd

d∏

q=p+1

nq.

1We will often write the equations in elementwise form, which assumes that all indices run through all
possible values.

3

We will write X{p} = [x(k1 . . . kp, kp+1 . . . kd)], assuming that comma separates row and
column indices. Obviously, if (1) holds, then rp > rankX{p}. In fact, rp = rankX{p}.

Statement 1 ([43, 46]). Each tensor X = [x(k1, . . . , kd)] can be represented by the TT–format
with TT–ranks equal to the ranks of unfoldings,

rp = rankX{p} = rank[x(k1 . . . kp, kp+1 . . . kd)]. (2)

For many tensors, unfoldings have large ranks, but can be approximated by the low
rank matrices as follows

‖X{p} − X̃{p}‖F 6 εp, rank X̃{p} = rp.

The minimum rp which satisfies this condition is referred to as the εp–rank of X{p}.

Statement 2 ([43, 46]). If unfoldings X{p} of a tensor X have εp–ranks rp, then X can be
approximated by the tensor X̃ with TT–ranks rp and the following accuracy

‖X − X̃‖F 6 ε, ε2 = ε21 + . . .+ ε2d−1.

The TT–format for X̃, i.e., the approximation of a given tensor X in the TT–format with
the prescribed accuracy ε, can be computed by the constructive SVD–based algorithm [46].
Here the Frobenius norm of a tensor is defined as follows

‖X‖2F
def
=

∑

k1...kd

|x(k1, . . . , kd)|
2.

In the following we will omit the subscript and write ‖ · ‖ = ‖ · ‖F for all vectors, matrices
and tensors.

To apply the TT compression to low dimensional data, the idea of quantization was
proposed [44, 32]. We will explain the idea for one-dimensional vector x = [x(k)]n−1

k=0 ,

restricting the discussion to n = 2d. Define the binary notation2 of index k as follows

k = k1 . . . kd
def
=

d∑

p=1

kp2
p−1, kp = 0, 1. (3)

The isomorphic mapping k ↔ (k1, . . . kd) allows to reshape a vector x = [x(k)] into the
d–tensor Ẋ = [ẋ(k1, . . . , kd)]. The TT format (1) for the latter is called the QTT format and
reads

x(k) = x(k1 . . . kd) = ẋ(k1, . . . , kd) = X
(1)
k1

. . . X
(d)
kd
. (4)

This idea appears in [44] in the context of matrix approximation. In [32] the TT format
applied after the quantization of indices was called the QTT format. The impressive prop-
erties of the QTT approximation motivate the development of vector and tensor transforms
in the QTT format.

By (2), the QTT–rank rp of a vector x of size n = 2d is bounded by the sizes of the
2p × 2d−p unfolding X{p}, i.e., 1 6 rp 6 2min(p,d−p).

2The order of bits in the binary notation can be different. The big-endian notation assumes that the most
significant bit kd goes first and the least significant bit k1 goes last, similar to numbers written in the posi-
tional system. The little-endian notation uses reversed directions of bits, from k1 to kd, similar to numerals
in the Arabic scripts. The little-endian ordering is consistent with the Fortran style of indexing for multi-
dimensional arrays. In this paper we choose the little-endian notation since it allows more elegant and
intuitive description of the main QTT–FFT algorithm. The little-endian notation is used also in [22].

4

Definition 2. We will call the vectors with QTT–ranks one the rank-one vectors and the
vectors with QTT–ranks rp = 2min(p,d−p) the full-rank vectors.

A random tensor, like a random matrix, has full TT–ranks with probability one. In
general, the QTT–ranks grow exponentially in d, making the QTT algorithms completely
inefficient. Therefore, QTT methods are naturally limited to the class of problems where
all data have moderate QTT–ranks. It is not possible yet to describe the whole class of
such problems and vectors explicitly, but it is possible to justify the concept by a number
of convincing examples. Some function-related examples are already mentioned, more
examples of (piecewise) smooth functions and functions with singularities that have the
low-rank QTT representation can be found in [16, 45, 37]. Exponential vector (i.e., function
discretized on the uniform grid) deserves a special interest in this paper. It has the rank-
one QTT representation [32]

exp(αk) = exp(α k1k2 . . . kd) = exp(αk1) exp(2αk2) . . . exp(2d−1αkd), (5)

which plays a key role for the efficient Fourier transform algorithm in the QTT format.

The QTT format can be applied not only to vectors, but also to matrices (see TTM format

in [44]). Consider a 2d × 2d matrix A = [a(j, k)]2
d−1
j,k=0, use the binary notation (3) for indices

j = j1 . . . jd and k = k1 . . . kd, then permute binary indices and reshape A to the tensor
Ȧ = [ȧ(j1k1, j2k2, . . . , jdkd)]. Finally, apply the TT format to Ȧ as follows

a(j, k) = a(j1 . . . jd, k1 . . . kd) = ȧ(j1k1, j2k2, . . . , jdkd) = A
(1)
j1k1

A
(2)
j2k2

. . . A
(d)
jdkd

, (6)

where each A
(p)
jpkp

is an rp−1 × rp matrix. Merging indices jp and kp in the pair-index ip, we

have the d–tensor Ȧ = [ȧ(i1, . . . , id)] and can use its unfoldings to find the TT–ranks of (6).
In Sec 3.1 we show that the Fourier matrix is ‘not compressible’ using the QTT format, i.e.,
its QTT–ranks grow exponentially with d. Therefore, the efficient Fourier transform ap-
pears to be a nontrivial problem. In contrast, recent results on explicit representation for
the inverse Laplacian and related matrices [25] and efficient convolution in the QTT for-
mat [26] are based on the low-rank QTT decompositions of certain matrices and tensors.
There are more examples of high-dimensional problems which were efficiently solved us-
ing the QTT approximation [38, 37, 6] as well as H–Tucker format [17].

The TT/QTT algorithms are based on the basic linear algebra procedures like summa-
tion, multiplication and rank truncation (tensor rounding) maintaining the compressed
format, i.e., the full data array is never computed. A comprehensive list of basic opera-
tions is given in [46]. We will need the Hadamard (elementwise) product,

z = x ⊙ y, i.e., z(k) = x(k)y(k), k = 0, . . . , 2d − 1.

If x and y are given in the QTT format (4), the QTT format for z is the following

z(k) = z(k1 . . . kd) = Z
(1)
k1

. . . Z
(d)
kd
, Z

(p)
kp

= X
(p)
kp

⊗ Y
(p)
kp

, p = 1, . . . , d, (7)

where X ⊗ Y denotes the Kronecker (tensor) product of matrices X and Y. The QTT–ranks
of the Hadamard product z are the products of corresponding QTT–ranks of x and y.

5

3. Discrete Fourier transform in one dimension

For n = 2d, the normalized discrete Fourier transform (DFT) reads

y(j) =
1

2d/2

2d−1∑

k=0

x(k)ωjk
d , ωd = exp

(

−
2πi

2d

)

, i
2 = −1, (8)

where Fd = 1

2d/2

[

ωjk
d

]2d−1

j,k=0
is the unitary Fourier matrix. The inverse Fourier transform is

written in the same way, with ωd = exp
(

2πi
2d

)

.

3.1. QTT decomposition of the Fourier matrix has full ranks

Unlike many matrices used in scientific computing (see, e.g., [44]), the Fourier matrix can
not be compressed in the QTT format (6), i.e., its QTT–ranks grow exponentially with d.

The proof is based on the properties of unfoldings of the Fourier matrix, defined as follows

F
{p}
d = [f

{p}
d (j ′k ′, j ′′k ′′)], f

{p}
d (j ′k ′, j ′′k ′′) =

1

2d/2
ωjk

d , where

j = j ′ + 2pj ′′, k = k ′ + 2pk ′′, j ′, k ′ = 0, . . . , 2p − 1, j ′′, k ′′ = 0, . . . , 2d−p − 1.

Lemma 1. For p 6 d/2 the unfoldings F
{p}
d have orthogonal rows, for p > d/2 they have

orthogonal columns.

Proof. If p 6 d/2, elements of the unfolding F
{p}
d are the following

f
{p}
d (j ′k ′, j ′′k ′′) =

1

2d/2
ωjk

d =
1

2d/2
ωj ′k ′

d ωj ′k ′′

d−pω
k ′j ′′

d−pω
j ′′k ′′

d−2p,

which in the matrix notation reads

F{d}p =
2d−p

2d/2
Ω ′ (Φ ⊗ Φ) Ω ′′,

where Ω ′ and Ω ′′ are unitary diagonal matrices and Φ is the 2p × 2d−p top submatrix of
Fd−p. Since Fd−p is orthogonal, the matrix Φ also has orthogonal rows and the Gram matrix

of F
{p}
d writes as follows

F
{p}
d

(

F
{p}
d

)∗
= 2d−2pΩ ′ (Φ ⊗ Φ) Ω ′′ (Ω ′′)

∗
(Φ ⊗ Φ)

∗
(Ω ′)

∗

= 2d−2pΩ ′ (ΦΦ∗)
⊗2

(Ω ′)
∗

= 2d−2pΩ ′ (Ω ′)
∗

= 2d−2pI.

The statement for the case p > d/2 is proved in the same way.

The following theorem proves that the low-rank approximation of the Fourier matrix
in the QTT format with the reasonable accuracy is not possible.

6

Theorem 1. If the Fourier matrix Fd is approximated by the matrixAwith relative accuracy
‖Fd −A‖ 6 ε‖Fd‖, and A is given in the QTT format (6) with QTT–ranks r1, . . . , rd−1, then

rp > (1− ε)4min(p,d−p), p = 1, . . . , d− 1.

Proof. From the assumption of the theorem it follows that for every p the unfolding matrix

F
{p}
d is approximated by the rank–rp matrix A{p} as follows,

‖F{p}d −A{p}‖ 6 ε‖F{p}d ‖, A{p} = [a{p}(j ′k ′, j ′′k ′′)],

a{p}(j ′k ′, j ′′k ′′) = A
(1)
j1k1

. . . A
(p)
jpkp

A
(p+1)
jp+1kp+1

. . . A
(d)
jdkd

.

where j ′ = j1 . . . jp, k
′ = k1 . . . kp, j

′′ = jp+1 . . . jd, k
′′ = kp+1 . . . kd. Denote by F̃

{p}
d the best

rank–rp approximation of F
{p}
d , then

‖F{p}d − F̃
{p}
d ‖ 6 ‖F{p}d −A{p}‖.

By Lemma 1, the 4p × 4d−p unfolding F
{p}
d has orthogonal rows/columns and the accuracy

of the best rank–rp approximation is exactly the following

‖F{p}d − F̃
{p}
d ‖ =

(

1−
rp

4min(p,d−p)

)

‖F{p}d ‖.

We have 1−
rp

4min(p,d−p) 6 ε, which completes the proof.

Corollary 1. The QTT–ranks of the exact QTT–decomposition of the Fourier matrix are
rp = 4min(p,d−p) and the storage size grows exponentially with d.

Remark 1. In contrast to the Fourier transform, the Hadamard transform matrix has QTT–
ranks one, which follows directly from the definition,

Hd = H⊗d
1 , H1 =

1√
2

[

1 1

1 −1

]

.

This transform, also known as Walsh transform, arises in various applications, includ-
ing quantum computing, etc. The Hadamard transform can be easily applied to a vector
given in the QTT format and does not change the QTT–ranks. The Fourier transform can
arbitrarily increase the QTT–ranks of a vector.

3.2. Radix-2 recursion formula in the QTT format

Since the Fourier matrix is not compressible in the QTT format, we can not compute y =

Fdx using matrix-vector multiplication algorithm in the TT format [46]. Nevertheless, we
can apply the Fourier transform to the QTT vector efficiently. We define

j = j1j2 . . . jd = j1 + 2j ′, j ′ = j2 . . . jd,

k = k1 . . . kd−1kd = k ′ + 2d−1kd, k ′ = k1 . . . kd−1
(9)

7

and split odd and even values of the result

y(0+ 2j ′) =
1

2d/2

2d−1−1∑

k ′=0

x(k ′)ω2j ′k ′

d +

2d−1−1∑

k ′=0

x(k ′ + 2d−1)ω
2j ′(k ′+2d−1)

d

=
1

2
d−1
2

2d−1−1∑

k ′=0

x(k ′) + x(k ′ + 2d−1)√
2

ω2j ′k ′

d

y(1+ 2j ′) =
1

2d/2

2d−1−1∑

k ′=0

x(k ′)ω
(1+2j ′)k ′

d +

2d−1−1∑

k ′=0

x(k ′ + 2d−1)ω
(1+2j ′)(k ′+2d−1)

d

=
1

2
d−1
2

2d−1−1∑

k ′=0

x(k ′) − x(k ′ + 2d−1)√
2

ωk ′

d ω
2j ′k ′

d .

We come to the well-known radix-2 recursion formula, the simplest and most common
case of the Cooley-Tukey fast Fourier transform (FFT) algorithm [11, 4]. It reduces the
full-size Fourier transform to the half-sized transforms as follows

PdFd =

[

Fd−1

Fd−1

] [

I

Ωd−1

]

1√
2

[

I I

I −I

]

. (10)

Here Pd is the bit-shift permutation which agglomerates even and odd elements of a vector,

and Ωd−1 = diag{ωk ′

d }
2d−1−1
k ′=0 is the matrix of twiddle factors. We will need the following

general definitions later,

(Ppy)(j2 j3 . . . jp j1︸ ︷︷ ︸
bit-shift

jp+1 . . . jd) = y(j1 j2 . . . jp jp+1 . . . jd), (11)

Ωp = diag(1,ωp+1,ω
2
p+1, . . . ,ω

2p−1
p+1).

Our goal is to compute y = Fdx for the vector x given in the QTT format (4). First, we
note that “top” and “bottom” half-vectors of x are the following

xtop(k
′)

def
= x(k ′) = x(k1 . . . kd−10) = X

(1)
k1
X
(2)
k2

. . . X
(d−1)
kd−1

X
(d)
kd=0,

xbot(k
′)

def
= x(k ′ + 2d−1) = x(k1 . . . kd−11) = X

(1)
k1
X
(2)
k2

. . . X
(d−1)
kd−1

X
(d)
kd=1,

(12)

and their summation/subtraction affects only the last core.

x̂
def
=

1√
2

[

I I

I −I

]

x, x̂(k) = X
(1)
k1

. . . X
(d−1)
kd−1

X̂
(d)
kd
,

X̂
(d)
0 = 1√

2

(

X
(d)
0 + X

(d)
1

)

,

X̂
(d)
1 = 1√

2

(

X
(d)
0 − X

(d)
1

)

.

The multiplication by the diagonal matrix writes as the Hadamard multiplication

z =

[

I

Ωd−1

]

1√
2

[

I I

I −I

]

x =

[

I

Ωd−1

]

x̂ = wd ⊙ x̂, (13)

wT
d

def
= [1 . . . 1︸ ︷︷ ︸

2d−1 elements

1 ωd ω
2
d . . . ω

2d−1−1
d︸ ︷︷ ︸

2d−1 elements

],

8

where vector wd = [wd(k)] has the following rank-two QTT decomposition

wd(k) = wd(k1 . . . kd) =
[

1 ωk1
d

]

[

1

ω2k2
d

]

. . .

[

1

ω
2d−2kd−1

d

] [

1− kd

kd

]

.

Therefore, the vector z = diag(wd)x̂ = wd ⊙ x̂ has the following QTT decomposition

z(k) = wd(k)x̂(k) = Z
(1)
k1
Z
(2)
k2

. . . Z
(d)
kd
, with Z

(1)
k1

=
[

X
(1)
k1

ωk1
d X

(1)
k1

]

,

Z
(p)
kp

=

[

X
(p)
kp

ω
kp
d−p+1X

(p)
kp

]

, p = 2, . . . , d− 1, Z
(d)
kd

=

[

(1− kd)X̂
(d)
kd

kdX̂
(d)
kd

]

.
(14)

Note that the multiplication by the twiddle factors doubles the QTT–ranks.
The last step to implement (10) is to apply the half-size Fourier transform to the “top”

and “bottom” parts of the vector z. We consider the following n/2 × 2rd−1 matrix

Z ′ = [z ′(k1 . . . kd−1, α)], where z ′(k1 . . . kd−1, :) = Z
(1)
k1

. . . Z
(d−1)
kd−1

,

and compute Fd−1Z
′ in the QTT format, applying the radix-2 recursion subsequently.

Each radix-2 step applies the bit-shift permutation to the result. It is easy to notice that
P1P2 . . . Pd = Rd, which is a bit-reverse permutation (Rdy)(jdjd−1 . . . j1) = y(j1 . . . jd). It can
be nicely implemented in the QTT format without any computations by reversing the order
of cores in the tensor train,

x(k) = x(k1 . . . kd) = X
(1)
k1

. . . X
(d)
kd
, (Rdx)(kd . . . k1) =

(

X
(d)
kd

)T

. . .
(

X
(1)
k1

)T

. (15)

We add the bit-reverse step and summarize all the above in the QTT–FFT Algorithm 1.

4. Approximate Fourier transform

We do not benefit from the use of the QTT format if QTT–ranks are too large. However,
in Algorithm 1 the QTT–ranks grow by a factor of two each time we multiply by twiddle
factors on Line 4. After d steps they grow by 2d = n, which makes the QTT representation
completely ineffective. To perform computations efficiently, it is necessary to truncate the
QTT–ranks, i.e., to approximate the result by the QTT format with smaller values of ranks.

4.1. TT–rounding and TT–orthogonalization

We recall the most important properties of the TT–rounding (also rank truncation or recom-
pression) algorithm proposed in [46]. We will use it to approximate a vector x given in the
QTT–format (4) by vector x̃ in the following QTT form,

x̃(k) = x̃(k1 . . . kd) = X̃
(1)
k1

. . . X̃
(d)
kd
, ‖x̃‖ = ‖x‖, ‖x− x̃‖ 6 ε‖x‖, (16)

where each X̃kp is an r̃p−1 × r̃p matrix, r̃0 = r0, r̃d = rd, r̃p 6 rp, p = 1, . . . , d − 1. The
approximation can be done up to some desired accuracy level or by bounding the values
of QTT–ranks r̃p from above. If we want to prescribe the relative accuracy ε in (16), then the

9

Algorithm 1: QTT–FFT, exact computation

Input: Vector x = [x(k)]2
d−1
k=0 in the QTT format x(k) = x(k1 . . . kd) = X

(1)
k1

. . . X
(d)
kd
.

Output: Vector y = Fdx = [y(j)]2
d−1
j=0 in the QTT format y(j) = y(j1 . . . jd) = Y

(1)
j1

. . . Y
(d)
jd

.

1: Define xd = x and X
(p)
d,kp

= X
(p)
kp
.

2: for D = d, d− 1, . . . , 1 do

3: X̂
(D)

D,0 :=
1√
2

(

X
(D)

D,0 + X
(D)

D,1

)

, X̂
(D)

D,1 :=
1√
2

(

X
(D)

D,0 − X
(D)

D,1

)

{Now x̂D has QTT form x̂D(k1 . . . kD) = X
(1)
D,k1

X
(2)
D,k2

. . . X
(D−1)
D,kD−1

X̂
(D)

D,kD
}

4: Z
(1)
k1

:=
[

X
(1)
k1

ωk1
D X

(1)
k1

]

,

Z
(p)
kp

:=

[

X
(p)
kp

ω
2p−1kp
D X

(p)
kp

]

, p = 2, . . . , D− 1, Z
(D)

kD
:=

[

(1− kD)X̂
(D)

kD

kDX̂
(D)

kD

]

.

{Now zD has QTT form zD(k1 . . . kD) = Z
(1)
D,k1

Z
(2)
D,k2

. . . Z
(D)

D,kD
}

5: X
(p)
D−1,kp

:= Z
(p)
D,kp

.

{Now xD−1 has QTT form xD−1(k1 . . . kD−1) := X
(1)
D−1,k1

X
(2)
D−1,k2

. . . X
(D−1)
D−1,kD−1

}
6: end for
7: Return Y

(p)
jp

:= (Z
(d−p+1)
d−p+1,jp

)T , p = 1, . . . , d. {bit-reverse the output}

values of r̃p appear during the work of the TT–rounding procedure and in general can not
be predicted. If r̃p are prescribed, then the approximation is quasi-optimal [49, 46], i.e.,

‖x− x̃‖ 6
√
d− 1‖x− x̃best‖,

where x̃best is the best approximation of xwith TT–ranks r̃p.However, the error ‖x−x̃‖ gen-
erally can not be known in advance. The TT–rounding algorithm is based on QR and SVD
algorithms for matrices, which are well established and included in many linear algebra
packages (cf. LAPACK). We illustrate the work of TT–rounding on Fig. 1.

The key part of the TT–rounding algorithm is the TT–orthogonalization.

Definition 3. The TT-core X(p) is called left– or right-orthogonal if, respectively,

∑

kp

(

X
(p)
kp

)∗
X
(p)
kp

= I or
∑

kp

X
(p)
kp

(

X
(p)
kp

)∗
= I.

If the TT-core X(p) is written as rp−1×np× rp tensor, the left-orthogonality implies that
the rp−1np× rp unfolding has orthogonal columns and the right-orthogonality means that
the rp−1×nprp unfolding has orthogonal rows. A product of two left-orthogonal TT–cores
is also a left-orthogonal array, as explained by the following statement.

Statement 3. [46] Consider p × q matrices Ai, i = 0, . . . ,m − 1, and q × r matrices Bj,

j = 0, . . . , n − 1. If 3-tensors A = [Ai] and B = [Bi] are left-orthogonal, i.e.,
∑

i A
∗
iAi = I

and
∑

j B
∗
jBj = I, then the p×mn× r tensor C = [Cij], Cij = AiBj, is also left-orthogonal,

∑

ij

C∗
ijCij =

∑

ij

(AiBj)
∗(AiBj) =

∑

j

B∗
j

(

∑

i

A∗
iAi

)

Bj =
∑

j

B∗
jBj = I.

10

X(1)

X(2) X(3) X(4) X(5) X(6) X(d)

X̃(1)

X̃(2) X̃(3) X̃(4) X̃(5) X̃(6) X̃(d)

Figure 1. The TT–rounding algorithm: (top) input; (bottom) output. The rectangles rep-
resent the QTT cores, the sides of rectangles are proportional to the values of QTT–ranks.

(a)

(b)

(c)

X(1)

X(p−1) X(p) X(q) X(s) X(s+1) X(d)

X̂(1)

X̂(p−1) X̂(p) X(q) X̂(s) X̂(s+1) X̂(d)

X̂(1)

X̂(p−1) X̃(p) X̃(q) X̃(s) X̂(s+1) X̂(d)

Figure 2. TT–orthogonalization. (a) Input QTT format for x; (b) TT–orthogonalization is
applied to interfaces X(1) . . . X(p) (left) and X(s) . . . X(d) (right); (c) TT–rounding is applied to

the subtrain X̂
(p)
kp
X
(p+1)
kp+1

. . . X
(s−1)
ks−1

X̂
(s)
ks
, giving X̃

(p)
kp
X̃
(p+1)
kp+1

. . . X̃
(s−1)
ks−1

X̃
(s)
ks
.

The same statement holds for right-orthogonal cores. It can be also generalized to a
larger number of subsequent TT–cores.

Definition 4. A sequence of TT–cores X(p), X(p+1), . . . , X(q−1), X(q) will be referred to as a
subtrain.

Statement 4. [46] If all TT–cores of the subtrainX(1), . . . , X(p) are left-orthogonal and r0 = 1,

then the following (n1 . . . np)× rp matrix X ′ has orthogonal columns,

X ′ = [x ′(k1 . . . kp, α)], where x ′(k1 . . . kp, :) = X
(1)
k1

. . . X
(p)
kp
.

The left– or right-orthogonality of the particular subtrain can be achieved straight-
forwardly, using matrix orthogonalization procedure such as QR. The algorithm is called
TT–orthogonalization and given in [46]. The ‘structured orthogonality’ of subtrains allows
to perturb other cores and control the accuracy of the whole tensor. We illustrate this on
Fig. 2. Given a vector x with QTT representation (4), we apply left TT–orthogonalization

11

Algorithm 2: QTT–FFT, approximation

Input: Vector x of size 2d in the QTT format (4), accuracy ε or maximum ranksR1, . . . , Rd−1.

Output: Vector y ≈ Fdx in the QTT format y(j) = y(j1 . . . jd) = Y
(1)
j1
Y
(2)
j2

. . . Y
(d)
jd

.

{Lines 1-4 as in Alg. 1}.
5: {Modify Line 5 of Alg. 1 as follows}

if accuracy criterion ε is given then
Use TT–rounding [46] to approximate zD with relative accuracy ε as follows

‖zD − z̃D‖ 6 ε‖zD‖, ‖z̃D‖ = ‖zD‖, z̃D(k1 . . . kD) = Z̃
(1)
D,k1

. . . Z̃
(D)

D,kD
.

else {maximum rank criterion R1, . . . , Rd−1 is given}
Use TT–rounding [46] to find quasi-optimal approximation

z̃D ≈ zD, ‖z̃D‖ = ‖zD‖, z̃D(k1 . . . kD) = Z̃
(1)
D,k1

. . . Z̃
(D)

D,kD
.

with QTT–ranks r̃p 6 Rp.

end if
X
(p)
D−1,kp

:= Z̃
(p)
D,kp

.

{Continue as in Alg. 1}

Return Y
(p)
jp

:= (Z̃
(d−p+1)
d−p+1,jp

)T , p = 1, . . . , d. {bit-reverse the output}

to the subtrain X(1) . . . X(p) and right TT–orthogonalization to X(s) . . . X(d). As a result, these
cores are modified and we get another QTT representation for the same vector x, where
cores X̂(1), . . . , X̂(p−1) are left-orthogonal and X(s+1), . . . , X(d) are right-orthogonal. We show
left– and right–orthogonal cores as and , respectively. Similar notation is used in [51].

After TT–orthogonalization is done, we apply TT–truncation to the subtrainX(p) . . . X(s)

and reduce TT–ranks rp, . . . , rs−1 to r̃p, . . . , r̃s−1, introducing an approximation error or per-
turbation to the subtrain. The orthogonality of the left and right interfaces X(1) . . . X(p−1) and
X(s+1) . . . X(d) guarantees that the same perturbation is introduced to the whole vector x.

The orthogonality of interfaces is also used in DMRG algorithm [60].

Both the TT–rounding and TT–orthogonalization procedures for the QTT format have
O(dR3) complexity, where d is the length of the tensor train and R = max rp is the max-
imum TT–rank. Note that the TT–rounding procedure can generate the approximation
with orthogonal cores. In [46] the TT–rounding generates left-orthogonal tensor train,
but we will assume that TT–rounding generates right-orthogonal QTT approximation, as
shown on Fig. 1.

4.2. Accuracy of the QTT–FFT algorithm with approximation

We include the TT–rounding step in Algorithm 1 and result in the version of QTT–FFT
with approximation, which we will call QTT–FFT in the following. It is given by Algo-
rithm 2 and visualized on Fig. 3. Each step of Algorithm 2 includes an approximation
which introduces an error to the active subtrain. In the following theorem we estimate the
accuracy of the result returned by QTT–FFT.

12

xd . . .

zd . . .

z̃d . . .

xd−1 . . .

zd−1 . . .

z̃d−1 . . .

xd−2 . . .

Pdy . . .

y . . .

Figure 3. Visualization of the QTT–FFT Algorithm 2.

Theorem 2. If accuracy-based criterion ε is used on each approximation step in Algo-
rithm 2, the accuracy of the result is the following

‖y− Fdx‖ 6 dε‖y‖.
Proof. In the first step D = d of the algorithm it holds y = Fdxd and

Pdy = (I1 ⊗ Fd−1) zd,

where Ip denotes the 2p × 2p identity matrix and zd is defined by (14). The approximation
step gives ‖zd − z̃d‖ 6 ε‖zd‖ and since Pd and I1 ⊗ Fd−1 are unitary matrices we have

y = ỹd + µd, ỹd
def
= PT

d (I1 ⊗ Fd−1) z̃d, ‖µd‖ 6 ε‖y‖, (17)

where ỹd is the approximation of the result and µd is the error at step D = d. At the
next step the Fourier transform is applied to the xd−1 are n/2× rd−1(z̃d) matrix xd−1, where
rd−1(z̃d) is the corresponding QTT–rank of z̃d. The matrix xd−1 has the following QTT de-
composition

xd−1(k1 . . . kd−1, :) := X
(1)
d−1,k1

X
(2)
d−1,k2

. . . X
(d−1)
d−1,kd−1

, X
(p)
d−1,kp

= Z̃
(p)
d,kp

, p = 1, . . . , d− 1.

If yd−1 = Fd−1xd−1 is computed, the approximation ỹd writes in elementwise notation as
follows

ỹd(j1 . . . jd) = yd−1(j2 . . . jd)Z̃
(d)
d,j1

. (18)

13

Note that the TT-core Z̃
(d)
d is right-orthogonal after the TT–truncation, see Fig. 3. This

means that any perturbation introduced to yd−1 results in the error of the same norm in-
troduced to ỹd. We will now estimate this error.

In the step D = d− 1 of the algorithm we compute the Fourier transform of xd−1 using
the same radix-2 step. We define zd−1 by Lines 3 and 4 of Algorithm 1 and have

Pd−1yd−1 = (I1 ⊗ Fd−2) zd−1,

which is similar to what we had before. Approximation gives ‖z̃d−1 − zd−1‖ 6 ε‖zd−1‖.
This leads to

yd−1 = ỹd−1 + µd−1, ỹd−1
def
= PT

d−1 (I1 ⊗ Fd−2) z̃d−1, ‖µd−1‖ 6 ε‖y‖.

Substituting this equation to Eqs. (18) and (17), we have, in elementwise form,

y(j1 . . . jd) = ỹd−1(j2 . . . jd)Z
(d)
d,j1

+ µd−1(j2 . . . jd)Z
(d)
d,j1

+ µd(j1 . . . jd).

Since the TT–coreZ
(d)
d is right-orthogonal, it does not change the Frobenius norm, and both

error terms have norm bounded by ε‖y‖. It is easy to notice that every approximation step
D introduces the perturbation ‖µD‖ 6 ε‖y‖, and since all TT–cores in the right subtrain

Z
(D+1)
D+1 . . . Z

(d)
d are right-orthogonal, the perturbation of the result has the same norm. Af-

ter d approximation steps of the algorithm, the total error is not larger than dε‖y‖. This
completes the proof.

Remark 2. The proof of the Theorem 2 actually shows that the norm of the error of Algo-
rithm 2 is not larger than the sum of the norms of errors introduced on each approximation
step. If for a certain input vector all TT–truncation steps are exact, the result returned by
Algorithm 2 is precise. The examples of such vectors are given in [53].

Theorem 2 holds for any input vector x. However, the QTT–ranks of the intermediate
vectors xD, D = d, . . . , 1, depend both on the accuracy level ε and the properties of the
vector x. It is not easy to describe explicitly the class of vectors x for which all xD in Al-
gorithm 2 will have QTT–ranks bounded by the desired value R for accuracy level ε. This
problem is solved for R = 1, ε = 0 (QTT–rank-one vectors with QTT–rank-one Fourier
images) in [53]. The numerical experiments provided in [53] show that the class of such
vectors for larger R and non-zero ε can be ‘not so small’, even if ε is close to the machine
threshold accuracy. For instance, the Fourier transform of a random rank-one vector typ-
ically (in the large set of numerical tests) is approximated by the vector with moderate
QTT–ranks.

4.3. Complexity analysis

Now we estimate the asymptotic complexity of Algorithm 2 assuming that all QTT–ranks
of vectors xD on all steps of the algorithm are bounded by R, as well as QTT–ranks of input
and output.

Theorem 3. If on levelsD = d, . . . , 1 of Algorithm 2 the QTT–ranks of intermediate vectors
xD are not larger than RD, the complexity is estimated as follows

work 6

d∑

D=1

O(DR3
D) 6 O(d2R3), where R = maxRD. (19)

14

Proof. On step D = d, . . . , 1 we do the following:

1. alter the last block X̂
(D)

0,1 = 1√
2

(

X
(D)

0 ± X
(D)

1

)

in O(R2
D) operations;

2. multiply the cores by twiddle factors, see Eq. (14) in O(R2
D) operations;

3. compress the subtrain zD(k) = Z
(1)
k1

· · ·Z(D)

kD
using the TT–truncation algorithm [46]

of O(DR3
D) complexity.

By summation we come to (19).

The complexity of the QTT–FFT algorithm is bounded by O(d2R3), where R depends
on the input vector x and the accuracy ε of the approximation. It can be compared with
the complexity of the superfast quantum Fourier transform [8], which is O(d2) quantum
operations. In general (for arbitrary input vector x) the value of R can grow exponentially
with d. If we use the ‘brute-force’ TT–truncation with the maximum rank criterion, the
value of R does not grow and complexity is O(d2) for all input vectors, but the accuracy of
the result can be arbitrarily bad. If the accuracy-based criterion is used, Theorem 2 guar-
antees the accuracy of the result, but the value of R and the complexity can be arbitrarily
large. Therefore, for a class of all possible input vectors the accuracy and the complexity
of the QTT–FFT are related (informally speaking) by the uncertainty principle: both can
not be small.

It is interesting (both theoretically and practically) to establish a special subclass of
vectors x for which the QTT–FFT algorithm has both the square–logarithmic complexity
and reasonable accuracy. This work is started in [53]. More examples are provided by the
numerical experiments in Sec. 7.

5. Real–valued transforms using FFT–QTT algorithm

Many problems are formulated in real-valued arithmetic but can be efficiently solved us-
ing the Fourier transform. For example, consider the discrete convolution of two real–
valued vectors, defined as follows

f(j) =

n−1∑

k=0

h(j− k)g(k), j = 0, . . . , n− 1.

In matrix-vector form f = Tg where T = [t(j, k)]n−1
j,k=0 is the Toeplitz matrix with elements

t(j, k) = h(j − k). Each n × n Toeplitz matrix is the leading submatrix of some 2n × 2n

circulant matrix

C =

[

T ∗
∗ T

]

, C = [c(j, k)] , where c(j, k) = ĉ(j− k mod 2n).

To correspond with the matrix T, elements of C are defined as follows

ĉ(k) = h(k), k = 0, . . . , n− 1,

ĉ(n) is arbitrary,
ĉ(k) = h(k− 2n), k = n+ 1, . . . , 2n− 1.

15

Circulant matrices are diagonalized by the unitary Fourier matrix [12] as follows

C = F∗ΛF, Λ =
√
2ndiag(Fĉ).

The multiplication by the Toeplitz matrix T can be performed as follows
[

f

∗

]

= F∗ΛF

[

g

0

]

, (20)

which involves three Fourier transforms of size 2n and can be done ‘at FFT speed’. The
result is the complex–valued vector representing the real–valued convolution. In standard
computations we can easily take the real or imaginary part of a vector. For vectors or ten-
sors represented in the QTT format such operation is not straightforward. The algorithm
is given by the constructive proof of the following theorem.

Theorem 4. If the complex-valued tensor X = [x(k1, . . . , kd)] is represented by the tensor
train format (1) with ranks r0, r1, ..., rd−1, rd, it can be represented by the following tensor
train with TT–ranks r0, 2r1, ..., 2rd−1, rd, where all cores but one are real-valued.

x(k1, . . . , kd) = X̂
(1)
k1

. . . X̂
(d)
kd

X̂
(1)
k1

=
[

B
(1)
k1

C
(1)
k1

]

, X̂
(p)
kp

=

[

B
(p)
kp

C
(p)
kp

−C
(p)
kp

B
(p)
kp
.

]

, X̂
(d)
kd

=

[

B
(d)
kd

−C
(d)
kd

]

+ i

[

C
(d)
kd

B
(d)
kd

]

, (21)

where p = 2, . . . , d− 1 and B
(q)
kq

= ℜX
(q)
kq
, C

(q)
kq

= ℑX
(q)
kq

for q = 1, . . . , d.

Proof. Start from

X
(1)
k1

=
[

B
(1)
k1

C
(1)
k1

]

[

I

iI

]

,

where I denotes the identity r1 × r1 matrix. Define the real-valued core X̂
(1)
k1

=
[

B
(1)
k1

C
(1)
k1

]

and multiply
[

I iI
]T

to the second core of tensor train as follows

[

I

iI

]

X
(2)
k2

=

[

I

iI

]

(

B
(2)
k2

+ iC
(2)
k2

)

=

[

B
(2)
k2

+ iC
(2)
k2

−C
(2)
k2

+ iB
(2)
k2

]

=

[

B
(2)
k2

C
(2)
k2

−C
(2)
k2

B
(2)
k2

]

[

I

iI

]

= X̂
(2)
k2

[

I

iI

]

,

where in the right-hand side X̂
(2)
k2

is the new real-valued core and I is r2×r2 identity matrix.
Continue the process and establish (21).

Corollary 2. The representation (21) allows to compute the real and imaginary parts of a
tensor train (1) as follows

ℜx(k1, . . . , kd) =

(

d−1∏

p=1

X̂
(p)
kp

)

ℜX̂
(d)
kd
, ℑx(k1, . . . , kd) =

(

d−1∏

p=1

X̂
(p)
kp

)

ℑX̂
(d)
kd
.

Example 1. Obtain the QTT representation for cosine and sine vectors [cosαk]2
d−1
k=0 and

[sinαk]
2d−1
k=0 . They are the real and imaginary part of the exponential vector, which has

rank-one QTT representation (5) with QTT–cores

X
(p)
kp

= exp(i2p−1αkp) = cos 2p−1αkp + i sin 2p−1αkp.

16

We use (21) and form the real-valued cores X̂
(1)
k1

=
[

cosαk1 sinαk1

]

and

X̂
(p)
kp

=

[

cos 2p−1αkp sin 2p−1αkp

− sin 2p−1αkp cos 2p−1αkp

]

, p = 2, . . . , d− 1.

We result in

cosαj =

[

cosαj1
sinαj1

]T

. . .

[

cos 2p−1αjp sin 2p−1αjp
− sin 2p−1αjp cos 2p−1αjp

]

. . .

[

cos 2d−1αjd
− sin 2d−1αjd

]

,

sinαj =

[

cosαj1
sinαj1

]T

. . .

[

cos 2p−1αjp sin 2p−1αjp
− sin 2p−1αjp cos 2p−1αjp

]

. . .

[

sin 2d−1αjd
cos 2d−1αjd

]

.

(22)

This is the simultaneous representation of cosine and sine vectors in the common QTT form.
The QTT–ranks are two, which follows from the existence of the rank-one QTT repre-
sentation for the exponential vector and the simultaneous representation of the real and
imaginary part of complex tensor train, ensured by Theorem 4.

Example 2. Given a vector x, compute the orthogonal DCT-II (discrete cosine even type-2)
transform, defined as follows

y(j) =

n−1∑

k=0

x(k) cos
(π

n
j(k+ 1/2)

)

, j = 0, . . . , n− 1.

The history of this and related cosine transforms, including the applications to signal and
image processing, can be found in a nice review [58]. The DCT-II can be computed through
the Fourier transform of size 2n applied to the vector x expanded by zeros,

y(j) = ℜ

[

exp

(

−
πi

2n
j

) 2n−1∑

k=0

x̂(k) exp

(

−
2πi

2n
jk

)

]

,

where x̂(0 : n − 1) = x and x̂(n : 2n − 1) = 0. In computational practice double-sized
vectors and transforms are usually avoided for the sake of efficiency. However, with QTT
approach, double sized vector/transform does not require double storage/cost. If n = 2d

and x is given in the QTT format (4), the vector x̂ has the following QTT representation,

x̂(k) = x̂(k1 . . . kdkd+1) = X
(1)
k1

. . . X
(d)
kd
(1− kd+1),

which has the same QTT–ranks as x.To compute y,we need to apply QTT–FFT algorithm 2
to find ŷ = Fd+1x̂, which requires O((d + 1)2R3) operations, asymptotically equal to the
complexity of the transform of size 2d. Then we need to consider “top” half-vector of ŷ
as explained by (12) and multiply the result pointwisely by the exponential vector. These
operations do not change the QTT ranks. Finally, we apply Theorem 4 and obtain the
real-valued cosine transform with the QTT–ranks twice as large as the ones of the Fourier
transform.

Finally, we should mention that the proposed approach to the computation of convo-
lution and cosine transform can be generalized to other types of trigonometric transforms
as well as to the higher dimensions.

17

6. Discrete Fourier transform in higher-dimensional case

The m–dimensional normalized Fourier transform is defined as follows.

y(j1, . . . , jm) =

n1−1∑

k1=0

. . .

nm−1∑

km=0

x(k1, . . . , km)√
n1 . . . nm

exp

(

−
2πi

n1

j1k1

)

. . . exp

(

−
2πi

nm

jmkm

)

, (23)

where jq = 0, . . . , nq − 1 for q = 1, . . . ,m. If x = [x(k1, . . . , km)] and y = [y(j1, . . . , jm)]

are considered as n1 . . . nd vectors, the m-dimensional Fourier transform is the Kronecker
product of m one-dimensional transforms, i.e., Fd1,...,dm = Fdm

⊗ Fdm−1
⊗ . . . ⊗ Fd2

⊗ Fd1
. Using

the tensor train representation (1), we have

x(k1, k2, . . . , km) = X
(1)
k1
X
(2)
k2

. . . X
(m)

km
, y(j1, j2, . . . , jm) = Y

(1)
j1
Y
(2)
j2

. . . Y
(m)

jm
,

Y
(q)
jq

=
1

√
nq

nq−1∑

kq=0

X
(q)
kq

exp

(

−
2πi

nq

jqkq

)

, q = 1, . . . ,m.
(24)

We see that due to the perfect separation of variables, Fourier transform is independently
applied to all TT–cores. The multidimensional Fourier transform does not change the TT–
ranks. Therefore, Eq. (24) is the straightforward algorithm to compute the m–dimensional
Fourier transform of a n × n × . . . × n vector with O(mR2n logn) complexity, where R is
the maximal TT–rank of a vector.

To reach the square–logarithmic complexity (of course, for a special type of input data),
we assume np = 2dp and use binary notation (3) for all mode indices. The input array is
represented as follows

x(k1, · · · , km) = x(k1,1 . . . k1,d1
, · · · , km,1 . . . km,dm) =

m∏

q=1

dq∏

pq=1

X
(q,pq)

kq,pq
. (25)

Then the QTT–FFT Algorithm 2 can be used to compute unimodular Fourier transforms
subsequently. The QTT–FFT introduces the error, controlled by Theorem 2. The appropri-
ate TT–orthogonalization should be used for interfaces to guarantee that this error will not
be amplified in the whole m–dimensional vector. The multi-dimensional version of QTT–
FFT is summarized by Algorithm 3 and visualized on Fig. 4. The accuracy and complexity
are estimated similarly to the one-dimensional case.

Theorem 5. If the accuracy-based criterion ε is used on each approximation step in Algo-
rithm 3, the accuracy of the result is the following

‖y− Fd1,...,dmx‖ 6

m∑

q=1

dqε‖y‖.

Theorem 6. The complexity of Algorithm 3 for m–dimensional transform of an n × n ×
. . .×n vector with n = 2d is not larger than O(md2R3), where R is the maximum QTT–rank
of all intermediate vectors at all steps of Algorithm 3 and all internal calls to Algorithm 2.

Proof. On Line 1 of Algorithm 3 the TT–orthogonalization of the tensor train withmd cores
is performed, which requires not more than O(mdR3) operations. Then the Algorithm 2
and TT–orthogonalization are applied to m subtrains with d cores each, which costs not
more than mO(d2R3)+mO(dR3). The last step does not require any operations. Therefore,
we obtain O(md2R3) estimate, which completes the proof.

18

Algorithm 3: Multi-dimensional QTT–FFT, approximation

Input: Vector x in the QTT format (25), accuracy ε or rank bounds R1,1, . . . , Rm,dm−1

Output: Approximation y ≈ Fd1,...,dmx of the Fourier transform (23) in the QTT format (26)

1: Orthogonalize input tensor train right-to-left using TT–orthogonalization [46]
2: for q = 1, 2, . . . ,m do
3: Apply QTT–FFT Algorithm 2 without the last bit-reverse step to the subtrain

∏dq

pq=1 X
(q,p1)
kq,pq

. The result appears as
∏dq

pq=1

(

Y
(q,dq−pq+1)

kq,dq−pq+1

)T

4: If q 6= m, make cores of the subtrain
∏dq

pq=1

(

Y
(q,dq−pq+1)

kq,dq−pq+1

)T

left-orthogonal

5: end for

6: Reverse the tensor train
∏m

q=1

∏dq

pq=1

(

Y
(q,dq−pq+1)

kq,dq−pq+1

)T

and obtain (26).

Note that due to the bit-reverse permutation issues, the order of mode indices in the
tensor train on output is reversed as follows.

y(j1, · · · , jm) = y(j1,1 . . . j1,d1
, · · · , jm,1 . . . jm,dm) =

1∏

q=m

dq∏

pq=1

Y
(q,pq)

kq,pq
. (26)

The reason is that every unimodular QTT transform is performed by Algorithm 2 with the
bit-reverse permutation of the result. In the 1D case, the bit-reverse permutation is made
without any computations by simple reordering of the transposed QTT cores. If we apply
this reordering to each unimodular subtrain individually, the TT–ranks (ranks separating
the physical variables) will not be consistent. Instead, we reverse the tensor train globally
and obtain the result where the order of bits in the QTT representation is correct, but the
order of frequency modes is reversed compared with the original ordering of space modes,
as shown on Fig. 4. Fortunately, a wide class of applications (e.g. convolution, solution
of discretized PDEs) requires two successive Fourier transforms. In this case the second
transform will recover the original ordering.

This drawback of the multi-dimensional QTT–FFT can be removed using a one-dimen-
sional QTT–FFT algorithm based on the self–sorting FFT [22].

7. Numerical examples

In this section we compare the accuracy and timings of the trigonometric transforms for
one–, two– and three–dimensional functions with moderate QTT–ranks. From the proof
of Theorem 3 we see that the complexity of the QTT–FFT depends on all QTT–ranks. The
maximum QTT–rank used in (19) sometimes gives incorrect impression of “structure com-
plexity” of particular data array. To account the distribution of all QTT–ranks r0, . . . , rd,

we define the effective QTT–rank3 of a vector as the positive solution r of the quadratic equa-
tion mem(r0, r1, r2, . . . , rd−1, rd) = mem(r0, r, r, . . . , r, rd), where mem measures the storage for
the QTT format as follows

mem(r0, r1, r2, . . . , rd−1, rd) = r0r1 + r1r2 + . . .+ rd−1rd.

3This definition was proposed by E. E. Tyrtyshnikov

19

X
(1,1)
k1,1

. . . X
(1,d1)

k1,d1
X
(2,1)
k2,1

. . . X
(2,d2)

k2,d2
. . . X

(m,1)
km,1

. . . X
(m,dm)

km,dm

(

Y
(1,d1)

j1,d1

)T

. . .
(

Y
(1,1)
k1,1

)T
X
(2,1)
k2,1

. . . X
(2,d2)

k2,d2
. . . X

(m,1)
km,1

. . . X
(m,dm)

km,dm

(

Y
(1,d1)

j1,d1

)T

. . .
(

Y
(1,1)
k1,1

)T (

Y
(2,d2)

j2,d2

)T

. . .
(

Y
(2,1)
k2,1

)T
. . . X

(m,1)
km,1

. . . X
(m,dm)

km,dm

(

Y
(1,d1)

j1,d1

)T

. . .
(

Y
(1,1)
k1,1

)T (

Y
(2,d2)

j2,d2

)T

. . .
(

Y
(2,1)
k2,1

)T
. . .

(

Y
(m,dm)

jm,dm

)T

. . .
(

Y
(m,1)
km,1

)T

Rd1
Fd1

Rd2
Fd2

RdmFdm

Y
(m,1)
km,1

. . . Y
(m,dm)

km,dm

. . . Y
(2,1)
k2,1

. . . Y
(2,d2)

k2,d2
Y
(1,1)
k1,1

. . . Y
(1,d1)

k1,d1

Figure 4. Visualization of the QTT–FFT Algorithm 3.

The effective QTT–rank is generally non-integer.

For experiments we use one Xeon E5504 CPU at 2.0 GHz with 72 GB of memory in
the Institute of Numerical Mathematics, Russian Academy of Sciences, Russia. The TT
subroutines and QTT–FFT algorithms are implemented in Fortran 90 by the third author.
We use Intel Fortran Composer XE version 12.0 (64 bit) and BLAS/LAPACK and FFTW
packages provided with MKL library.

7.1. Fourier images in 1D

For integrable function f(x), the Fourier transform, or image f̂(ξ) is defined for every real
ξ as follows

f̂(ξ) =

∫+∞

−∞

f(t) exp(−2πitξ)dt. (27)

We consider the rectangle pulse function, for which the Fourier transform is known,

Π(t) =

0, if |t| > 1/2
1/2, if |t| = 1/2,

1 if |t| < 1/2,

Π̂(ξ) = sinc(ξ)
def
=

sin πξ

πξ
. (28)

20

Table 1. Time for QTT–FFT (in milliseconds) w.r.t. size n = 2d and accuracy ε. Here
timeQTT is the runtime of Algorithm 2, timeFFTW is the runtime of the FFT algorithm from
the FFTW library, and rank f̂ is the effective QTT–rank of the Fourier image.

f = Π(t) ε = 10−4 ε = 10−8 ε = 10−12

d timeFFTW rank f̂ timeQTT rank f̂ timeQTT rank f̂ timeQTT

16 1.7 4.66 7.9 6.85 13.8 8.85 20.0

18 8.9 4.70 9.7 6.86 16.7 8.82 23.4

20 42.5 4.75 11.3 6.85 19.8 8.86 30.6

22 180 4.77 13.1 6.83 23.3 8.89 36.4

24 810 4.74 15.0 6.72 26.3 8.94 41.7

26 4100 4.62 17.0 6.76 30.0 8.89 46.5

28 26300 4.57 18.9 6.80 33.0 8.88 51.2

30 — 4.72 20.3 6.78 36.2 8.84 57.0

40 — 4.20 29.1 6.59 53.6 8.78 83.2

50 — 3.96 39.3 6.45 70.5 8.48 109

60 — 3.69 50.0 6.25 87.6 8.32 133

The Fourier integral is approximated by the rectangle rule. Since f(t) = Π(t) is real and
even, we write

f̂(ξj) = 2ℜ

∫+∞

0

f(t) exp(−2πitξj)dt ≈ 2ℜ

n−1∑

k=0

f(tk) exp(−2πitkξj)ht, (29)

where tk = (k+ 1/2)ht, ξj = (j+ 1/2)hξ and k, j = 0, . . . , n− 1. If hthξ = 1/n and n = 2d, the
sum in the right-hand side can be computed by DFT as follows

f̂ ≈ f̃ = 2
d/2+1htℜ (ωd+2ΩdFdΩdf) , f̂ = [f̂(ξj)]

2d−1
j=0 , f = [f(tk)]

2d−1
k=0 . (30)

For ht = hξ = 1

2d/2
and d even, the QTT representation of the rectangular pulse has

QTT–ranks one, i.e.,

Π(tk) = Π(h/2 + k1 . . . kd/2−1h+ kd/2 . . . kd/2) = (1− kd/2) . . . (1− kd).

We can use QTT–FFT Algorithm 2 to compute DFT in (30). According to Theorem 2 the
relative accuracy of the result is ε if the tolerance parameter is set to ε/d. The QTT–ranks
and timings will grow for smaller ε. In Table 1 we compare the runtime of Algorithm 2
for different ε with the runtime of the FFT out-of-place algorithm from the FFTW library.
The timings are rather small and were obtained by averaging the computation time over
a large number of executions. We see that for the considered example the QTT–FFT algo-
rithm outperforms the FFT algorithm from FFTW library for n > 220, even for very high
accuracy. We also see that the use of moderate or low accuracy for QTT–FFT significantly
reduces the QTT–ranks of result and speeds up the computation. That is not the case for
the standard FFT algorithm.

The accuracy of the rectangle rule (30) increases for smaller step size h. For fixed fre-
quency ξ we can expect O(h2) = O(n−1) convergence, but for very large frequencies ξj,

21

Table 2. Accuracy verification for the QTT–FFT Algorithm 2 and f = Π(t). The desired ac-
curacy is ε = 10−13, grid size h = 2−d/2, and acc denotes the relative accuracy in Frobenius
norm of (30) for subvectors corresponding to 0 6 ξj 6 16.

d 20 22 24 26 28 30 40 50 60

h 110−3 510−4 210−4 110−4 610−5 310−5 110−6 310−8 910−10

acc 210−5 510−6 110−6 310−7 810−8 210−8 210−11 210−13 210−13

j & n/2, Eq. (29) is not accurate since the period of exponent exp(−2πxξj) is less 2h. There-
fore, we check the accuracy of (30) for a subvectors corresponding to 0 6 ξj 6 16. The
results are shown in Table 2, where

acc = ‖f̂− f̃‖[0,16]/‖f̂‖[0,16], where ‖f‖2[0,16] =
∑

j:06ξj616

|f(ξj)|
2.

The computations for n 6 228 can be performed by FFTW or FFT–QTT. For n > 228 the
one–processor subroutine from FFTW can not be used due to storage limitations and data–
sparse QTT format is necessary to increase the accuracy of the computed Fourier image.
For d 6 28 the accuracy of QTT–FFT was verified by comparison with FFTW and the
QTT–FFT error was always ‘under control’, i.e., less than the desired accuracy.

7.2. Fourier images in 3D

In larger dimensions the one-dimensional size of the array that can be processed by stan-
dard FFT algorithm is severely restricted by computing resources. Therefore, the dis-
cretization accuracy obtained on simple workstations is often low and multiprocessor
parallel platforms have to be used for larger grids. As well as in 1D case, the use of data-
structured QTT–FFT algorithm relaxes/removes the grid size restrictions and allows to
reach higher accuracy of the computation using one CPU. As an example, we compute
the following m–dimensional Fourier image from [57]

f(x) =

{
(1− |x|2)δ, if |x| 6 1,

0 otherwise
, f̂(ξ) =

∫

Rm

f(x)e−2πix·ξdξ =
Γ(δ+ 1)Jm/2+δ(2π|ξ|)

πδ|ξ|m/2+δ
,

(31)
where Γ is the gamma-function, δ is arbitrary real parameter, Jα is the Bessel function of
the first kind of order α, and x · ξ denotes the scalar product. Introducing the uniform
tensor product n × n × . . . × n grids in space and frequency domains with step sizes
hx = hξ = 1/

√
n and n = 2d, we approximate (31) by the rectangle quadrature rule. The

result can be computed by m-dimensional DFT.
We perform the experiments for the case m = 3, where DFT can be computed both

by FFTW and QTT–FFT. The accuracy of Algorithm 3 is verified by comparison with the
analytical answer (31). Since the comparison at all 2dm points is unfeasible, the accuracy
is defined as follows

acc = ‖f̂− f̃‖diag[0,8]3/‖f̂‖diag[0,8]3 , where ‖f‖2diag[0,8]3 =
∑

j:06ξj68

|f(ξj, ξj, ξj)|
2.

The results are shown in Table 3. For d = 8 the accuracy of QTT–FFT is verified also by
comparison with the FFTW algorithm.

22

7.3. Convolution in 3D

In the scientific computing the Fourier transform is often used for the computation of
convolutions. As a motivating example, consider the evaluation of the Newton potential,

V(x) =
1

4π

∫

R3

f(y)

‖x− y‖dy, (32)

which plays an important role in the electronic structure calculations based on the Hartree-
Fock equation. In many chemical modelling programs, e.g., PC GAMESS and MOLPRO,
the electron density function f(y) is represented as a sum of polynomially weighted 3D
Gaussians, for which (32) is evaluated analytically. For larger molecules, the proper choice
of Gaussian-type orbitals (GTO) basis requires significant efforts, and sometimes compu-
tations become infeasible due to the huge number of basis elements involved. The possi-
ble alternative may be the discretization on the n × n × n tensor grids using standard
Galerkin/collocation schemes with piecewise–constant or –linear basis elements. The
electron density function has strong cusps in the positions of the nuclei, that motivates
the use of very precise grids. The tensor-structured methods lead to almost linear or even
logarithmic complexity w.r.t. n that make the use of very fine grids and high accuracy of
computations possible without a special choice of basis. In this way, fast tensor-product
convolution with the Newton kernel based on the canonical or/and Tucker tensor de-
compositions was developed in [34, 55, 31] and applied to the fully discrete grid-based
solution of the Hartree-Fock equation in [36, 27]. These algorithms reduce the three-
dimensional convolution to a number of one-dimensional ones, which are computed by
FFT in O(n logn) operations. The QTT representation of the canonical vectors reduces the
complexity to the logarithmic scale w.r.t. n, see [29]. The multidimensional convolution
of QTT-structured data can be computed also directly using the analytical QTT decompo-
sition of a multilevel Toeplitz matrix [26]. We refer also to [30, 10, 52, 35, 47, 14, 56, 28] for
the detailed discussions on recent progress in this field.

To discretize (32), we reduce the integration interval to B
def
= [−1/2, 1/2]3, assuming that

f(y) vanishes outside this cube, and introduce the uniform n×n×n tensor-product grid
inB.We consider two discretization methods: collocation and Nyström–type. Collocation
method approximates f(y) by a piecewise–constant function and leads to

V(x) ≈ Vc(x)
def
=

1

4π

∑

k

f(yk)

∫

Bk

dy

‖x− y‖ , V(xj) ≈ vc(j)
def
= Vc(xj), (33)

Table 3. Relative accuracy acc of 3D Fourier image (31)

FFTW QTT–FFT
δ d = 8 d = 8 d = 10 d = 12

0.5 210−3 210−3 310−4 710−5

1.5 810−5 810−5 710−6 510−7

2.5 910−6 910−6 310−7 110−8

3.5 810−7 810−7 110−8 210−10

23

nq = 3600

nq = 500

log10 r

log10 a

1086420−2

−2

−4

−6

−8

−10

−12

−14

−16

n = 28

n = 212

n = 216

n = 220

log10 ε

rank

−14−12−10−8−6−4−2

150

100

50

0

Figure 5. (left) Pointwise relative accuracy of the sinc–quadrature [19, eq. (5.3)] with nq

terms for r−1. (right) QTT–ranks of the first column of Newton potential matrix for grid size
n and relative accuracy ε. Solid lines — collocation method (33), dashed lines — Nyström–
type method (34).

where xj = (h + 1/2)j, yk = (h + 1/2)k, Bk is h × h × h cube centered at yk, j = (j1, j2, j3),

k = (k1, k2, k3) and jp, kp = 0, . . . , n − 1 for p = 1, 2, 3. As shown in [31], the pointwise
accuracy of this approximation is

|V(xj) − vc(j)| 6 Ch2.

Nyström–type convolution appears if we write (32) in points x = xj and then approxi-
mate integral by the rectangle quadrature rule over B as follows

V(xj) ≈ vn(j)
def
=

1

4π

∑

k

f(y ′
k)

h3

‖xj − y ′
k‖

, (34)

where y ′
k = kh and j, k are defined as earlier. Since y ′

k 6= xj for all j and k, the right-hand
side in this equation is well defined. The standard accuracy estimate of the rectangle rule
is not applicable to the singular functions and we did not find the accuracy estimate of this
method in the literature. Surprisingly, it can be proven that the accuracy of the Nystöm–
type convolution for the 3D Newton potential of smooth functions is estimated as

|V(xj) − vn(j)| 6 Ch2| logh|,

which is almost the same order of convergence, as for the collocation method. We will
report the proof elsewhere.

Note that the Nyström–type method ‘shifts’ the result, i.e., grids for f(y) and V(x) do
not coincide. This can be a drawback for some applications. However, the coefficients of
the convolution core in (34) are easier to compute than the ones in (33).

Both (33) and (34) represent the three–dimensional discrete convolution. By (20), it
can be computed by three three–dimensional DFTs of size (2n)3. This operation is highly
restricted by the value of n and for n & 29 is not feasible for full-sized vectors using a
standard FFT algorithm on one processor. If f(y) has moderate QTT–ranks, the Newton
potential can be efficiently computed using QTT–FFT Algorithm 3. To do this, we need the

24

σ
=

10 −

1

σ
=

10 −

2

σ
=

10 −

3

σ
=

10 −

4

σ
=

10 −

5

log2 n

log10 a

2015105

0

−2

−4

−6

−8

σ = 10−1

σ = 10−2

σ = 10−3

σ = 10−4

σ = 10−5

log2 n

time, se.

2015105

200

150

100

50

0

Figure 6. Accuracy (left) and computation time (right) for the Newton potential of the
Gaussian charge density (35) with width σ on the uniform tensor–product n × n × n

grid. Solid lines — collocation method (33), dashed lines — Nyström–type method (34).
Approximation accuracy for the QTT–FFT is ε = 10−10.

QTT representation of the first column of the Newton potential matrix, which is different
for the collocation and Nyström–type methods. Similar problem was discussed for the
representation of Newton/Yukawa potential in canonical format [3], and was solved using
the sinc–quadrature from [19], which expresses r−1 as the sum of Gaussian functions, i.e.,

r−1 ≈
nq∑

q=1

bq exp(−aqr
2) =

nq∑

q=1

bq exp(−aqx
2) exp(−aqy

2) exp(−aqz
2), r2 = x2 + y2 + z2.

Gaussians are perfectly separable in physical modes and the QTT representation of each
term can be constructed as the Kronecker product of one-dimensional Gaussians, for
which we can use full-to-TT algorithm [44]. The QTT–ranks of a one-dimensional Gaus-

sian are bounded by O(log
1/2 ε−1) [7].

The pointwise relative accuracy of the sinc-quadrature for different r is shown on
Fig. 5(left). We see that for rmax

rmin
≈ n . 104, the quadrature with nq = 500 terms pro-

vides almost the machine threshold accuracy. For n 6 106, the quadrature with nq = 3600

terms has the pointwise relative accuracy ε = 10−13, which is enough for our purposes.
Since the potential should be constructed only once (there is no adaptation of grid, etc.),
the large nq is not restrictive. In Fig. 5(right) we show the QTT–ranks of the convolution
cores (33) and (34) w.r.t grid size n and relative accuracy level ε.

To check the accuracy and speed of the proposed method, we compute the Hartree
potential (32) for the Gaussian charge density f = g0,σ for different σ and compare the
result with the analytical answer,

ga,σ(y) =
1

(
√
2πσ)3

exp

(

−
|y− a|2

2σ2

)

, V(x) =
1

4π|x− a|
erf

(

|x− a|√
2σ

)

. (35)

Here a, σ are the center and width of the Gaussian and erf(x)
def
= 2√

π

∫x

0
exp(−t2)dt is the

error–function. Accuracy and timings of the evaluation of (35) using 3D convolution are
shown on Fig. 6. The relative accuracy in the Frobenius norm is measured over one line
of grid points, {xj}× {xn/2}× {xn/2}, j = 0, . . . , n− 1.

25

It is interesting, that on the single graph on Fig. 6(left) we can note three error plateaus
which appear for different reasons. The right plateau for σ = 10−1 appears on the level
acc ≈ 10−6 due to the error, introduced by the truncation of the integral away from the
cube B. It is easy to notice, that on the boundary of B the Gaussian with σ = 10−1 does not
vanish to machine zero,

exp

(

−
x2

2σ2

)∣

∣

∣

∣

x=1/2

≈ 10−6.

Gaussian charges with smaller σ represent stronger cusps and do not have this error visi-
ble. Right plateau for the Gaussian with σ = 10−2 appears due to the approximation error
in QTT–FFT, which is set to ε = 10−10. Finally, left plateau for σ = 10−3, σ = 10−4 and
σ = 10−5 appear since these cusps can not be properly described on coarse grids. There-
fore, a precise evaluation of the Newton potential of such functions on the uniform tensor
product grids requires larger grid sizes and can be feasible only using QTT approximation.

Timings for the evaluation of 3D convolution using the QTT–FFT algorithm are very
moderate and scale square-logarithmically w.r.t. d, see Fig. 6(right).

7.4. Signals with sparse Fourier images

Consider a sum of p plane waves in m–dimensional space, defined as follows

f(k) =

R∑

p=1

ap exp

(

2πi

n
fp · k

)

, fp ∈ R
m, k = {0, . . . , n− 1}m, n = 2d. (36)

Each plane wave has QTT–ranks one (5), which do not depend on the accuracy and vector
size. The QTT–ranks of f = [f(k)] are not larger than R. If frequencies are integer numbers,
fp ∈ Z

m, all intermediate vectors of Algorithm 3 also have QTT–ranks one [53]. Therefore,
using plain waves we can construct a signal with prescribed QTT–ranks and complexity of
the QTT–FFT algorithm, which allows to compare the speed of QTT–FFT and the standard
FFT algorithm for different d and R. The results are given on Fig. 7.

We see that the QTT–FFT is asymptotically faster than the full–size FFT for all moderate
R that we have tested. However, the crossover point, i.e., the minimum size of transform for
which QTT–FFT outperforms the standard method, depends on R and m. For example, for
R = 8 the crossover point for m = 1 is d ≈ 20, for m = 2 is d ≈ 19 and for m = 3 is d ≈ 18.

Therefore, the QTT–FFT algorithm performs better for high-dimensional problems than
standard FFT algorithm and is not restricted by the problem size. However, the use of
QTT–FFT is restricted by large R.

By Theorem 6, the complexity of multi-dimensional QTT–FFT is not larger thanO(md2R3).

Using signals (36) with different R, we can measure the actual runtime w.r.t. R. The re-
sults for signals (36) with ap = 1 and random integer frequencies fp ∈ Z

m are given by
the fourth graph on Fig. 7. Surprisingly, the computational time grows quadratically, not
cubically, w.r.t. parameter R for the large-size transforms. The time of smaller-size trans-
forms (see N = 212) tends to constant for large R, since the QTT–ranks of vector (36) can
not exceed the QTT–ranks of full-rank vectors. This constant level is, however, signifi-
cantly larger than the time of corresponding transform of a dense vector. That shows that
our current implementation of QTT–FFT is far not so optimized as the algorithms from
FFTW library. We also see that for transforms of the same size N = nm, i.e., with the same

26

log2N

log10(time, se.) FFTW
R = 60

R = 30

R = 16

R = 8

R = 3

R = 1

dimension m = 1

45403530252015

1

0

−1

−2

−3 log2N

log10(time, se.) FFTW
R = 60

R = 30

R = 16

R = 8

R = 3

R = 1

dimension m = 2

45403530252015

1

0

−1

−2

−3

log2N

log10(time, se.) FFTW
R = 60

R = 30

R = 16

R = 8

R = 3

R = 1

dimension m = 3

45403530252015

1

0

−1

−2

−3 FFTW m = 1 N = 212

N = 260

N = 224

N = 212

log2 R

log2(time, se.)

76543210

6

4

2

0

−2

−4

−6

−8

−10

−12

−14

Figure 7. QTT–FFT and FFTW time for R plane waves in m dimensions. Graphs 1–3 show
the runtime w.r.t. problem size N = nm for different R and m. Graph 4 shows the runtime
w.r.t R for m = 1 (thick solid lines), m = 2 (dashed lines), m = 3 (thin gray solid lines).

log
2
N = m log

2
n = md, the transforms with larger m are faster, since the complexity is

linear w.r.t. m and quadratic w.r.t. d.
Since the complexity of QTT–FFT is defined by parameters d,m and R of the input

vector, the numerical results obtained for plane waves can be generalized to all vectors
with QTT ranks bounded by R at all steps of the Cooley–Tukey algorithm. Therefore, the
runtimes given on Fig. 7 can be considered as the ‘typical’ runtimes of QTT–FFT algorithm
for signals characterized by m,n and R.

8. Comparison with Sparse Fourier transform

8.1. QTT–FFT and Sparse Fourier transform

The QTT representation is the example of a data–sparse representation, i.e., with number of
representation parameters asymptotically smaller than the full number of array elements.
The sum of plane waves (36) is the particular example of a signal with data–sparse QTT
representation: the QTT–ranks of the sum of R plain waves does not exceed R. If fp ∈ Z

m,

this signal has no more than R non-zero Fourier components and is both QTT–sparse and
Fourier–sparse.

27

Signal Fourier image

QTT for signal QTT for Fourier

Sparse Fourier transform

TT–cross

QTT–FFT

TT–sparse

Figure 8. Sparse Fourier transform and QTT–FFT approach

The sparse Fourier transform problem is the following: given a signal of length n,

estimate the R largest in magnitude coefficients of its Fourier transform. If we use all n
elements of a given vector and the standard FFT algorithm, the answer can be trivially
computed in O(n logn) operations, which is both the complexity of FFT and sorting algo-
rithm. To reduce the complexity, the heuristic algorithms are developed, which estimate
the Fourier-sparse representation with given number of terms R using a subset of samples
(vector elements), usually selected with a certain randomization. Sparse Fourier transform
algorithms are most efficient for the vectors with o(n) non–zero Fourier components. Note
that the description of this class of vectors is not explicit, as well as the description of a
class of ‘suitable’ vectors for the QTT–FFT algorithm. The Fourier-sparsity of a general
input vector can not be predicted until the Fourier transform is computed.

To compare QTT–FFT with Sparse Fourier transform, we should first explain that the
QTT–FFT solves actually the different problem: given a signal in data–sparse QTT form,
compute a Fourier transform in the same data–sparse format. The similarity, which allows
to compare the QTT–FFT approach with the Sparse Fourier transform, is the following:
the class of QTT–sparse vectors includes all Fourier-sparse vectors, since each signal with
exactly R non-zero Fourier coefficients has QTT ranks bounded by R (but not vice versa).
The differences are the following: QTT–FFT algorithm requires input to be given already
in the QTT format, and the output is again the QTT format, which is data–sparse, but not
sparse. Two missing components are algorithm that computes the QTT representation of a
given signal from a set of samples (TT–cross), and algorithm that converts the QTT format
to a sparse vector (TT–sparse). This is illustrated by a scheme on Fig. 8.

Algorithms that reconstruct the tensor train format from samples of a given array are
proposed in [49, 54]. They are based on the maximum–volume principle [15, 13], which se-
lects proper sets of indices in the array for the interpolation procedure. Maximum–volume
algorithm is heuristic, adaptive to the signal and originally non–random, but certain ran-
domness can be included to check the accuracy and/or improve the robustness. The de-
velopment of the maximum–volume concept to higher dimensions is still at the early stage
and “TT–cross” algorithms should be further improved, as well as the background theory.

The “TT–sparse” algorithms were never considered previously, mostly due to the rea-

28

Figure 9. DFT image of 2D data set with R = 5 plane waves on 2d × 2d grid, d = 9. Loga-
rithm of amplitude is shown in 256 levels of gray (black = maximum, white = minimum).
From the right, the image after sparsification in the QTT format is shown

son that data–sparse TT/QTT representations are “good enough” for the numerical work
and we usually do not need to convert them into the pointwise–sparse format. In order
to proof the concept, we can propose a very naive algorithm which sparsifies the TT cores
of (1) independently as follows

A
(p)
kp

→ Ã
(p)
kp
, Ã

(p)
kp
(i, j) =

{
A

(p)
kp
(i, j), if |A

(p)
kp
(i, j)| > µmaxkp maxi,j |A

(p)
kp
(i, j)|,

0, elsewhere,
(37)

where µ is the threshold parameter. The sparsified TT format can be easily “decom-
pressed” into the sparse vector.

We show how “TT–cross → QTT–FFT → TT–sparse” scheme works for the particular
two–dimensional signal, which is the sum of five plain waves (36) with unit amplitudes
and randomly taken frequencies. Since frequencies are not integer, the discrete Fourier
image of this signal (see Fig. 9, left) is not sparse, but has strong cusps near the positions
of fp. We apply the TT–ACA algorithm [54] (which is the DMRG–type TT–cross algorithm)
to reconstruct the QTT representation of signal from a few samples. Then we apply Al-
gorithm 3 and sparsify the DFT image by (37) with µ = 0.4. The result is shown on Fig. 9
from the right and gives the correct positions of all five plane wave frequencies. This ex-
ample shows that QTT–FFT approach (three–step scheme) can be helpful for the problems
where Sparse Fourier transform algorithms are applied.

8.2. Comparison with Sparse Fourier transform algorithms

The history of the Sparse Fourier transform framework can be found in [20]. Since the
Sparse Fourier transform is not a central topic of this paper, we will compare our approach
only with recent algorithms developed in this field.

29

log2 n

log10 nval

252015

6

5

4

3 log2 n

log10(time, se.)

252015

1

0

−1

−2

log2 n

log10 nval

252015

6

5

4

3 log2 n

log10(time, se.)

252015

1

0

−1

−2

R = 60R = 20R = 8R = 3

log2 n

log10 nval

252015

8

7

6

5

4

3

R = 60R = 20R = 8R = 3

log2 n

log10(time, se.)

252015

3

2

1

0

−1

−2

Figure 10. Comparison of QTT–FFT approach with AAFFT algorithm for plane waves
example (36), m = 1. Left graphs — number of samples, right graphs — computation
time. Top — integer frequencies fp ∈ Z, middle — real frequencies, ε = 10−1, bottom —
real frequencies, ε = 10−2. Solid lines — TT–ACA + QTT–FFT, dashed lines — AAFFT,
gray lines — FFTW.

30

8.2.1. RAlSFA. The randomized heuristic algorithm RAlSFA [63] finds a near-optimal
R-term Fourier-sparse representation of a signal of length n with probability δ and quasi-
optimality parameter α in time poly(r) logn log(1/δ)/α2, where the polynomial poly(r) is
empirically found to be quadratic. The complexity of the QTT–FFT transform for such
array is O(R3 log2 n), that is larger than the RAlSFA complexity by R logn factor. The
program code is not available in public domain, and we can compare the running time only
using the information about crossover points with FFTW. The crossover point between
RAlSFA and FFTW algorithms is reported for R = 8, some δ and α and dimensions m =

1, 2, 3 as N ≃ 70000 for 1D transforms, N ≃ 9002 for 2D transforms and (estimated) as
N ≃ 2103 for 3D transforms. The crossover point of QTT–FFT and FFTW for R = 8 and
m = 1, 2, 3 are N ≃ 220 for 1D problems, N ≃ 219 for 2D problems and N ≃ 218 for
3D problems, see Fig. 7. If we consider the runtime of TT–ACA algorithm together with
QTT–FFT, the crossover point for 1D transform moves to N = 221, see Fig. 10(top right).
For m = 2, 3 the runtime of TT–ACA also does not change the crosspoint significantly.

We can conclude that our approach is slower than RAlSFA for 1D problems, has almost
the same speed for 2D problems and outperforms it in higher dimensions. The other
advantage of the QTT–FFT method is that it does not require any choice of parameters,
while the parameter tune in RAlSFA is quite tricky.

8.2.2. sFFT. The nearly optimal Sparse Fourier transform algorithm was recently pro-
posed by MIT group [21, 20]. The complexity is reported to be O(R logn log(n/R)), which
is smaller than the complexity of QTT–FFT by a factor of R2 for n ≫ R. The sFFT algorithm
is faster than FFTW for n = 222 and R 6 217. From Fig. 10(top right) we see that “TT–ACA
+ QTT–FFT” approach is competitive with FFTW for n = 222 and R . 23, i.e., our approach
is far less efficient for this problem. The program code for sFFT is currently not available
in public domain.

8.2.3. AAFFT. The combinatorial sublinear Fourier transform algorithm [24] provides the
approximation with high probability and has O(R log5 n) complexity. The deterministic
version requires O(R2 log4 n) operations. The complexity of QTT–FFT is O(R3 log2 n) and
TT–ACA algorithm [54] requires O(R3 logn) operations for each iteration/sweep. There-
fore, we can expect that AAFFT is faster than our approach for larger R.

The program code of AAFFT algorithm (written in C++) is available in public do-
main [23] for the case m = 1. This allows us to perform the numerical comparison. Note
that the measured runtime includes the time of evaluation of the value of signal on selected
positions (samples), i.e., signal is not precomputed before the experiment. This allows us
to use finer grids with n 6 230 but increases the runtime of “sampling” part (TT–ACA
and the corresponding part of AAFFT) by the factor of R. The results are reported on
Fig. 10(top) in terms of number of samples required from given signal (left column) and
runtime (right column). We see that our approach outperforms AAFFT for small n or
very small R. For larger n and R the AAFFT algorithm is faster than “TT–ACA + QTT–
FFT” scheme for the signal that is the sum of R one-dimensional plain waves (36) with
integer frequencies fp ∈ Z.

8.3. Comparison for limited bandwidth signals

We have considered the signals (36) with integer frequencies, i.e., the exactly Fourier-
sparse case. Such signals are the ‘best examples’ for the Sparse Fourier transform algo-

31

10.80.60.40.20−0.2−0.4−0.6−0.8−1

1

0.8

0.6

0.4

0.2

0

10.80.60.40.20−0.2−0.4−0.6−0.8−1

R∗

0

Figure 11. Example of limited bandwidth signal. Left — Fourier image, right — positions
of frequencies of R–term Fourier-sparse representation computed by AAFFT w.r.t. R.

rithms. However, since our approach is applicable to a wider class of signals, it is inter-
esting to provide comparison also for the signals which are not exactly Fourier-sparse.
For instance, we consider the same plain waves example (36) with arbitrary real frequen-
cies fp ∈ R

m. The Fourier images of such signals are not exactly sparse, for example see
Fig. 9(left). The QTT ranks of (36) are bounded by the number of terms R, but the QTT
ranks of Fourier image (as well as the complexity of QTT–FFT) are larger and depend on
selected accuracy level ε, if fp /∈ Z

m.

The number of Fourier terms required to represent the Fourier image of (36) with ac-
curacy ε in sparse format is o(n) but grows with ε. We found that for signals (36) with
random frequencies and unit amplitudes the Sparse Fourier representation with about
32R terms provides the accuracy ε = 10−1 and 1024R terms provide the accuracy ε = 10−2.

The corresponding number of samples and the runtime are shown on Fig. 10 on mid-
dle (ε = 10−1) and bottom (ε = 10−2) lines. We see that the QTT–ranks and runtime of
our method grow very slowly with ε, while the runtime of AAFFT is proportional to the
number of the Fourier terms required for the representation. Therefore, the sum of plane
waves (36) with real frequencies is the example of signal for which our approach allows
to compute the approximate Fourier image faster / more accurately than AAFFT Sparse
Fourier algorithm.

Another example is the signal consisting of three components with limited band-
widths,

f̂(ξ) = exp

(

−
ξ2

2σ2

)

+
1

10
exp

(

−
(ξ− ξ∗)

2

2σ2

)

+
1

10
exp

(

−
(ξ+ ξ∗)

2

2σ2

)

, (38)

where σ = 0.02 and ξ∗ = 0.4. The Fourier image is shown on Fig. 11(left). This signal
models the AM (amplitude modulation) broadcast, where the amplitude of central carrier
signal is one order of magnitude larger than the amplitude of sidebands. It is known that
the spectrum of the signal belongs to [−1, 1] interval and we can measure the signal at time
domain in points tk = hk on the uniform grid of size n = 2d. Suppose that our goal is to
locate the positions of sidebands in frequency space using the small number of samples
from the signal and/or the minimum runtime.

32

Table 4. Comparison of AAFFT and “TT–ACA + QTT–FFT” for limited bandwidth sig-
nal (38) of length n = 2d. AAFFT section — R∗ is minimal number of Fourier terms that
allow to detect the sideband, time and nval are corresponding runtime (in milliseconds)
and number of samples, ε is relative accuracy of the Fourier-sparse representation with
R∗ terms. TT–ACA + QTT–FFT sections — ε is desired accuracy, R is the maximum ef-
fective QTT rank seen in the computation, time and nval are corresponding runtime (in
milliseconds) and number of samples.

AAFFT TT–ACA + QTT–FFT TT–ACA + QTT–FFT
ε = 10−1 ε = 10−2 ε = 10−10

d R∗ time nval R time nval R time nval

10 46 190 7.36104 3.00 5.00 3.59103 7.29 10.9 4.74103

12 183 1.2103 3.29105 2.78 6.72 2.61103 7.30 19.8 4.92103

14 710 6.4103 1.42106 2.58 9.00 3.60103 7.13 28.1 5.00103

16 2800 8.4104 6.16106 2.42 9.81 3.83103 6.78 36.1 6.96103

18 11100 4.2105 2.67107 2.30 11.2 3.43103 6.44 43.8 5.52103

20 — —- — 2.19 12.9 1.56104 6.15 49.5 5.88103

Since the signal has many Fourier components which are almost zero, the problem
can be naturally considered using the Sparse Fourier transform framework, i.e., compute
the R–term Fourier-sparse representation of given signal and look at the positions of the
computed frequencies. However the number of non-vanishing Fourier components of
such signal is O(n), the ratio of the bandwidths of signal components to the whole inter-
val where the spectrum is considered. This makes this problem particularly difficult for
Sparse Fourier transform algorithms and can increase the complexity to O(n).

We try to locate the sidebands using the AAFFT algorithm with different R. Since the
amplitude of carrier signal is larger than the amplitudes of sidebands, for R < R∗ all com-
ponents of the obtainedR–term representation belong to the carrier signal. In other words,
even the presence of sidebands can not be detected until we set R = R∗ with certain critical
number of terms R∗. This is shown on Fig. 11(right). Note that R∗ grows with the signal
size, since the frequency domain grid size decreases and more Fourier-sparse components
belong to the support of each bandwidth limited component.

Our approach represents the signal by the QTT format (4), and large number of non–
vanishing components does not mean large QTT–ranks and large complexity of the pro-
posed method. In the experiment we note that QTT–ranks do not grow significantly
w.r.t n, and grow very reasonably w.r.t. accuracy parameter ε. This leads to the square-
logarithmic complexity of TT–ACA and QTT–FFT, i.e., O(R3d2), where R is very moderate.
The results are shown in Table 4. The sparse format with R = R∗ Fourier terms approx-
imates the given signal with relative accuracy in Frobenius norm ε ≈ 10−1. Much more
accurate QTT approximation is possible and can be obtained in sublinear time.

The considered limitation of the Sparse Fourier transform framework is general and
does not (in our opinion) address specifically the AAFFT algorithm. We can conclude
that for the considered signal with limited bandwidth our method outperforms the Sparse
Fourier transform algorithms, even for small n.

33

9. Conclusion and future work

We propose algorithms for the approximate Fourier transform of one– and multi-dimen-
sional vectors in the QTT format. The m–dimensional Fourier transform of an n× . . .×n

array with n = 2d has O(md2R3) complexity where R is the maximum QTT rank of input
vector, result, and all intermediate vectors of the Cooley-Tukey algorithm. The storage size
is bounded by O(mdR2). The proposed approach is efficient for vectors with moderate R.

For vectors with moderate R and large n and m the proposed algorithm outperforms the
O(nm logn) FFT algorithm. The complexity w.r.t. d corresponds to the complexity of the
superfast quantum Fourier transform, which is O(d2) quantum operations.

Using the QTT format, the 1D FFT transform of size n = 2d for vectors with QTT–
ranks R . 10 can be computed for n 6 260 in less than a second. The 3D FFT transform
for n × n × n array with about the same QTT–ranks can be computed for n 6 220 in one
second. This allows to use very fine grids and accurately compute the Hartree potential
of Gaussian functions with strong cusps and width in the range from σ = 10−1 to 10−5

by 3D convolution. We measure the runtime of algorithm applied to multidimensional
functions (m = 1, 2, 3) with small number of Fourier coefficients, which can be used to
estimate the runtime for vectors with similar m,d and R. Notice that in the case m > 3 the
computation of high-resolution FFT and convolution transforms is practically infeasible
without the use of a certain approximation.

Combining the QTT–FFT algorithm with a method that computes QTT representa-
tion from several elements (samples) of a given vector, we compare it with Sparse Fourier
transform algorithms. By numerical examples we show that our approach can be compet-
itive with the existing methods for the Fourier-sparse signals with randomly distributed
components, especially for higher dimensions. Our approach is especially advantageous
for the signals with limited bandwidth, which are not exactly Fourier-sparse. More de-
tailed comparison with modern Sparse Fourier transform algorithms and links with the
fast Fourier transform on hyperbolic cross points [9] and QTT–FFT or QTT cross interpo-
lation schemes are postponed for the future work.

The proposed method can be applied in various scientific computing solvers working
with multidimensional data in data-sparse tensor formats. The discrete sine/cosine and
other trigonometric transforms can be implemented using the corresponding recursion
formulae, following the structure of QTT–FFT algorithm. We hope that such algorithms
can have an application to image and video processing, directly or with the use of WTT
version of the format, following the ideas of [50]. Also, we hope that proposed method
can help to construct the classical model of several quantum algorithms based on the QFT,
at least for a certain class of input data.

34

References

[1] N. Ahmed, T. Natarajan, and K. R. Rao, Discrete cosine transform, IEEE Trans. Computers,
C-23(1):90–93, 1974. doi: 10.1109/T-C.1974.223784.

[2] N. Ahmed and K. R. Rao, Orthogonal transforms for digital signal processing, Springer-
Verlag, Berlin and New York, 1975.

[3] C. Bertoglio and B. N. Khoromskij, Low-rank quadrature-based tensor approximation of
the Galerkin projected Newton/Yukawa kernels, Computer Phys. Comm., 183(4):904–
912, 2012. doi: 10.1016/j.cpc.2011.12.016.

[4] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex
Fourier series, Math. Comput., 19:297–301, 1965. doi: 10.2307/2003354.

[5] L. de Lathauwer, A survey of tensor methods, in IEEE International Symposium on
Circuits and Systems, May 2009, pp. 2773–2776. doi: 10.1109/iscas.2009.5118377.

[6] S. Dolgov, B. Khoromskij, I. V. Oseledets, and E. E. Tyrtyshnikov, Tensor structured iter-
ative solution of elliptic problems with jumping coefficients, Preprint 55, MPI MIS,
Leipzig, 2010. ✇✇✇✳♠✐s✳♠♣❣✳❞❡✴♣r❡♣r✐♥ts✴✷✵✶✵✴♣r❡♣r✐♥t✷✵✶✵❴✺✺✳♣❞❢.

[7] S. Dolgov, B. N. Khoromskij, and I. V. Oseledets, Fast solution of multi-dimensional
parabolic problems in the TT/QTT–format with initial application to the Fokker-
Planck equation, Preprint 80, MPI MIS, Leipzig, 2011. ❤tt♣✿✴✴✇✇✇✳♠✐s✳♠♣❣✳❞❡✴

♣r❡♣r✐♥ts✴✷✵✶✶✴♣r❡♣r✐♥t✷✵✶✶❴✽✵✳♣❞❢.

[8] A. Ekert and R. Jozsa, Quantum algorithms: entanglement-enhanced information pro-
cessing, Phil. Trans. R. Soc. Lond., 356:1769–1782, 1998.

[9] M. Fenn, S. Kunis, and D. Potts, Fast evaluation of trigonometric polynomials from
hyperbolic crosses, Num. Algorithms, 41:339–352, 2006. doi: 10.1007/s11075-006-9017-
7.

[10] H.-J. Flad, B. N. Khoromskij, D. V. Savostyanov, and E. E. Tyrtyshnikov, Verification of
the cross 3D algorithm on quantum chemistry data, Rus. J. Numer. Anal. Math. Model.,
23(4):329–344, 2008. doi: 10.1515/RJNAMM.2008.020.

[11] C. F. Gauss, Nachlass: Theoria interpolationis methodo nova tractata, in Werke, vol. 3,
Königliche Gesellschaft der Wissenschaften, Göttingem, 1866, pp. 265–330.

[12] G. Golub and C. Van Loan, Matrix computations, Johns Hopkins University Press, Bal-
timore, MD, 1996.

[13] S. Goreinov, I. Oseledets, D. Savostyanov, E. Tyrtyshnikov, and N. Zamarashkin, How to
find a good submatrix, in Matrix Methods: Theory, Algorithms, Applications, V. Ol-
shevsky and E. Tyrtyshnikov, eds., World Scientific, Hackensack, NY, 2010, pp. 247–
256.

[14] S. A. Goreinov, I. V. Oseledets, and D. V. Savostyanov, Wedderburn rank reduction and
Krylov subspace method for tensor approximation. Part 1: Tucker case, SIAM J. Sci.
Comput., 34(1):A1–A27, 2012. doi: 10.1137/100792056.

35

http://dx.doi.org/10.1109/T-C.1974.223784
http://dx.doi.org/10.1016/j.cpc.2011.12.016
http://dx.doi.org/10.2307/2003354
http://dx.doi.org/10.1109/iscas.2009.5118377
 www.mis.mpg.de/preprints/2010/preprint2010_55.pdf
 http://www.mis.mpg.de/preprints/2011/preprint2011_80.pdf
 http://www.mis.mpg.de/preprints/2011/preprint2011_80.pdf
http://dx.doi.org/10.1007/s11075-006-9017-7
http://dx.doi.org/10.1007/s11075-006-9017-7
http://dx.doi.org/10.1515/RJNAMM.2008.020
http://dx.doi.org/10.1137/100792056

[15] S. A. Goreinov and E. E. Tyrtyshnikov, The maximal-volume concept in approximation
by low-rank matrices, Contemporary Mathematics, 208:47–51, 2001.

[16] L. Grasedyck, Polynomial approximation in hierarchical Tucker format by vector-
tensorization, DFG-SPP1324 Preprint 43, Philipps-Univ., Marburg, 2010. ❤tt♣✿✴✴

✇✇✇✳❞❢❣✲s♣♣✶✸✷✹✳❞❡✴❞♦✇♥❧♦❛❞✴♣r❡♣r✐♥ts✴♣r❡♣r✐♥t✵✹✸✳♣❞❢.

[17] W. Hackbusch, Tensorisation of vectors and their efficient convolution, Numerische
Mathematik, 119(3):465–488, 2011. doi: 10.1007/s00211-011-0393-0.

[18] W. Hackbusch, Tensor spaces and numerical tensor calculus, Springer–Verlag, Berlin,
2012.

[19] W. Hackbusch and B. N. Khoromskij, Low-rank Kronecker-product approximation to
multi-dimensional nonlocal operators. I. Separable approximation of multi-variate
functions, Computing, 76(3-4):177–202, 2006. doi: 10.1007/s00607-005-0144-0.

[20] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, Nearly optimal sparse Fourier transform,
Preprint arXiv:1201.2501 [cs.DS], 2012.

[21] , Simple and practical algorithm for sparse Fourier transform, in Proceedings of
23rd annual ACM-SIAM simposium on discrete mathematics, SIAM, 2012, pp. 1183–
1194.

[22] M. Hegland, A self-sorting in-place fast Fourier transform algorithm suitable for vector
and parallel processing, Numerische Mathematik, 68:507–547, 1994.

[23] M. A. Iwen, AAFFT (Ann Arbor Fast Fourier Transform), program code, 2008. ❤tt♣✿
✴✴✇✇✇✳s♦✉r❝❡❢♦r❣❡✳♥❡t✴♣r♦❥❡❝ts✴❛❛❢❢t❛♥♥❛r❜♦r❢❛✴.

[24] , Combinatorial sublinear–time Fourier algorithms, Found. Comput. Matem.,
10:303–338, 2010. doi: 10.1007/s10208-009-9057-1.

[25] V. Kazeev and B. N. Khoromskij, Explicit low-rank QTT representation of Laplace opera-
tor and its inverse, Preprint 75, MPI MIS, Leipzig, 2010. ✇✇✇✳♠✐s✳♠♣❣✳❞❡✴♣r❡♣r✐♥ts✴
✷✵✶✵✴♣r❡♣r✐♥t✷✵✶✵❴✼✺✳♣❞❢.

[26] V. Kazeev, B. N. Khoromskij, and E. E. Tyrtyshnikov, Multilevel Toeplitz matrices gen-
erated by tensor-structured vectors and convolution with logarithmic complexity,
Tech. Rep. 36, MPI MIS, Leipzig, 2011. ❤tt♣✿✴✴✇✇✇✳♠✐s✳♠♣❣✳❞❡✴♣✉❜❧✐❝❛t✐♦♥s✴

♣r❡♣r✐♥ts✴✷✵✶✶✴♣r❡♣r✷✵✶✶✲✸✻✳❤t♠❧.

[27] V. Khoromskaia, Numerical solution of the Hartree-Fock equation by multilevel tensor-
structured methods, PhD thesis, TU Berlin, 2010. ❤tt♣✿✴✴♦♣✉s✳❦♦❜✈✳❞❡✴t✉❜❡r❧✐♥✴
✈♦❧❧t❡①t❡✴✷✵✶✶✴✷✾✹✽✴.

[28] V. Khoromskaia, D. Andrae, and B. N. Khoromskij, Fast and accurate tensor calculation
of the Fock operator in a general basis, Preprint 4, MPI MIS, Leipzig, 2012. ✇✇✇✳♠✐s✳
♠♣❣✳❞❡✴♣r❡♣r✐♥ts✴✷✵✶✷✴♣r❡♣r✐♥t✷✵✶✷❴✹✳♣❞❢.

36

 http://www.dfg-spp1324.de/download/preprints/preprint043.pdf
 http://www.dfg-spp1324.de/download/preprints/preprint043.pdf
http://dx.doi.org/10.1007/s00211-011-0393-0
http://dx.doi.org/10.1007/s00607-005-0144-0
 http://www.sourceforge.net/projects/aafftannarborfa/
 http://www.sourceforge.net/projects/aafftannarborfa/
http://dx.doi.org/10.1007/s10208-009-9057-1
 www.mis.mpg.de/preprints/2010/preprint2010_75.pdf
 www.mis.mpg.de/preprints/2010/preprint2010_75.pdf
 http://www.mis.mpg.de/publications/preprints/2011/prepr2011-36.html
 http://www.mis.mpg.de/publications/preprints/2011/prepr2011-36.html
 http://opus.kobv.de/tuberlin/volltexte/2011/2948/
 http://opus.kobv.de/tuberlin/volltexte/2011/2948/
 www.mis.mpg.de/preprints/2012/preprint2012_4.pdf
 www.mis.mpg.de/preprints/2012/preprint2012_4.pdf

[29] V. Khoromskaia, B. N. Khoromskij, and R. Schneider, QTT representation of the Hartree
and exchange operators in electronic structure calculations, Comput. Meth. Appl. Math,
11(3):327–341, 2011.

[30] B. N. Khoromskij, On tensor approximation of Green iterations for Kohn-Sham
equations, Computing and visualization in science, 11(4-6):259–271, 2008. doi:
10.1007/s00791-008-0097-x.

[31] , Fast and accurate tensor approximation of multivariate convolution with
linear scaling in dimension, J. Comp. Appl. Math., 234(11):3122–3139, 2010. doi:
10.1016/j.cam.2010.02.004.

[32] ,O(d logn)–Quantics approximation ofN–d tensors in high-dimensional numer-
ical modeling, Constr. Appr., 34(2):257–280, 2011. doi: 10.1007/s00365-011-9131-1.

[33] , Tensor-structured numerical methods in scientific computing: survey
on recent advances, Chemometr. Intell. Lab. Syst., 110(1):1–19, 2012. doi:
10.1016/j.chemolab.2011.09.001.

[34] B. N. Khoromskij and V. Khoromskaia, Multigrid accelerated tensor approximation
of function related multidimensional arrays, SIAM J. Sci. Comput., 31(4):3002–3026,
2009. doi: 10.1137/080730408.

[35] B. N. Khoromskij, V. Khoromskaia, S. R. Chinnamsetty, and H.-J. Flad, Tensor decom-
position in electronic structure calculations on 3D Cartesian grids, J. Comput. Phys.,
228(16):5749–5762, 2009. doi: 10.1016/j.jcp.2009.04.043.

[36] B. N. Khoromskij, V. Khoromskaia, and H.-J. Flad., Numerical solution of the Hartree–
Fock equation in multilevel tensor-structured format, SIAM J. Sci. Comput., 33(1):45–
65, 2011. doi: 10.1137/090777372.

[37] B. N. Khoromskij and I. V. Oseledets, DMRG+QTT approach to computation of the
ground state for the molecular Schrödinger operator, Preprint 69, MPI MIS, Leipzig,
2010. ✇✇✇✳♠✐s✳♠♣❣✳❞❡✴♣r❡♣r✐♥ts✴✷✵✶✵✴♣r❡♣r✐♥t✷✵✶✵❴✻✾✳♣❞❢.

[38] , QTT-approximation of elliptic solution operators in high dimensions, Rus. J.
Numer. Anal. Math. Model., 26(3):303–322, 2011. doi: 10.1515/rjnamm.2011.017.

[39] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review,
51(3):455–500, 2009. doi: 10.1137/07070111X.

[40] B. G. Lee, A new algorithm to compute the discrete cosine transform, IEEE
Trans. Acoustics, Speech and Signal Processing, ASSP-32(6):1243–1245, 1984. doi:
10.1109/TASSP.1984.1164443.

[41] J. Makhoul, A fast cosine transform in one and two dimensions, IEEE Trans. Acoustics,
Speech and Signal Processing, 28(1):27–34, 1980. doi: 10.1109/TASSP.1980.1163351.

[42] S. A. Martucci, Symmetric convolution and the discrete sine and cosine transforms,
IEEE Trans. Sig. Proc., 42(5):1038–1051, 1994. doi: 10.1109/78.295213.

37

http://dx.doi.org/10.1007/s00791-008-0097-x
http://dx.doi.org/10.1016/j.cam.2010.02.004
http://dx.doi.org/10.1007/s00365-011-9131-1
http://dx.doi.org/10.1016/j.chemolab.2011.09.001
http://dx.doi.org/10.1137/080730408
http://dx.doi.org/10.1016/j.jcp.2009.04.043
http://dx.doi.org/10.1137/090777372
 www.mis.mpg.de/preprints/2010/preprint2010_69.pdf
http://dx.doi.org/10.1515/rjnamm.2011.017
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1109/TASSP.1984.1164443
http://dx.doi.org/10.1109/TASSP.1980.1163351
http://dx.doi.org/10.1109/78.295213

[43] I. V. Oseledets, A new tensor decomposition, Doklady Math., 80(1):495–496, 2009. doi:
10.1134/S1064562409040115.

[44] , Approximation of 2d × 2d matrices using tensor decomposition, SIAM J. Matrix
Anal. Appl., 31(4):2130–2145, 2010. doi: 10.1137/090757861.

[45] , Constructive representation of functions in tensor formats, Preprint 2010-04,
INM RAS, Moscow, 2010. ❤tt♣✿✴✴♣✉❜✳✐♥♠✳r❛s✳r✉.

[46] , Tensor-train decomposition, SIAM J. Sci. Comput., 33(5):2295–2317, 2011. doi:
10.1137/090752286.

[47] I. V. Oseledets, D. V. Savostyanov, and E. E. Tyrtyshnikov, Cross approximation in tensor
electron density computations, Numer. Linear Algebra Appl., 17(6):935–952, 2010. doi:
10.1002/nla.682.

[48] I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how
to use SVD in many dimensions, SIAM J. Sci. Comput., 31(5):3744–3759, 2009. doi:
10.1137/090748330.

[49] , TT-cross approximation for multidimensional arrays, Linear Algebra Appl.,
432(1):70–88, 2010. doi: 10.1016/j.laa.2009.07.024.

[50] , Algebraic wavelet transform via quantics tensor train decomposition, SIAM J.
Sci. Comput., 33(3):1315–1328, 2011. doi: 10.1137/100811647.

[51] T. Rohwedder, S. Holtz, and R. Schneider, The alternation least squares scheme for tensor
optimisation in the TT-format, Preprint DFG-Schwerpunktprogramm 1234 71, 2010.

[52] D. V. Savostyanov, Fast revealing of mode ranks of tensor in canonical format, Numer.
Math. Theor. Meth. Appl., 2(4):439–444, 2009. doi: 10.4208/nmtma.2009.m9006s.

[53] , QTT-rank-one vectors with QTT-rank-one and full-rank Fourier images, Linear
Alg. Appl., 436(9):3215–3224, 2012. doi: 10.1016/j.laa.2011.11.008.

[54] D. V. Savostyanov and I. V. Oseledets, Fast adaptive interpolation of multi-dimensional
arrays in tensor train format, in Proceedings of nDS-2011 Conference, IEEE, 2011. doi:
10.1109/nDS.2011.6076873.

[55] D. V. Savostyanov and E. E. Tyrtyshnikov, Approximate multiplication of tensor matri-
ces based on the individual filtering of factors, J. Comp. Math. Math. Phys., 49(10):1662–
1677, 2009. doi: 10.1134/s0965542509100029.

[56] D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, Fast truncation of mode
ranks for bilinear tensor operations, Numer. Linear Algebra Appl., 19(1):103–111, 2012.
doi: 10.1002/nla.765.

[57] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton
University Press, Princenton, N.J., 1971.

[58] G. Strang, The discrete cosine transform, SIAM Review, 41(1):135–147, 1999.

38

http://dx.doi.org/10.1134/S1064562409040115
http://dx.doi.org/10.1137/090757861
 http://pub.inm.ras.ru
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1002/nla.682
http://dx.doi.org/10.1137/090748330
http://dx.doi.org/10.1016/j.laa.2009.07.024
http://dx.doi.org/10.1137/100811647
http://dx.doi.org/10.4208/nmtma.2009.m9006s
http://dx.doi.org/10.1016/j.laa.2011.11.008
http://dx.doi.org/10.1109/nDS.2011.6076873
http://dx.doi.org/10.1134/s0965542509100029
http://dx.doi.org/10.1002/nla.765

[59] Z. Wang, Fast algorithms for the discrete w transform and for the discrete fourier
transform, IEEE Trans. Acoustics, Speech and Signal Processing, 32(4):803–816, 1984. doi:
10.1109/TASSP.1984.1164399.

[60] S. R. White, Density matrix formulation for quantum renormalization groups, Physical
Review Letters, 69(19):2863–2866, 1992. doi: 10.1103/PhysRevLett.69.2863.

[61] P. Yip and K. R. Rao, On the computation and the effectiveness of discrete sine
transform, Computers and Electrical Engineering, 7(1):45–55, 1980. doi: 10.1016/0045-
7906(80)90018-X.

[62] , Fast decimation-in-time algorithms for a family of discrete sine and cosine trans-
forms, Circuits Systems Signal Process, 3(4):387–408, 1984. doi: 10.1007/BF01599167.

[63] J. Zou, A. Gilbert, M. Strauss, and I. Daubechies, Theoretical and experimental analy-
sis of a randomized algorithm for Sparse Fourier transform analysis, J. Comp. Phys.,
211:572–595, 2006. doi: 10.1016/j.jcp.2005.06.005.

A. Discrete cosine and sine transforms in QTT format

Discrete cosine transform (DCT), proposed in 1974 by N. Ahmed [1], is a power tool for
signal and image processing [2]. It can be computed using real-to-complex Fourier trans-
form [1, 41] or with purely real-valued arithmetics using the radix-2 recurrence [40, 62].
More details can be found in a nice review by G. Strang [58]. Discrete sine transform (DST)
was later proposed by K. R. Rao [61]. The systematic factorisation method of Z. Wang [59]
leads to fast real-valued algorithms for the whole family of discrete trigonometric trans-
forms. Sixteen trigonometric transforms (sine or cosine, odd or even, type 1, 2, 3 or 4)
are usually considered in literature and eight are usually implemented in numerical li-
braries [42]. We consider the even transforms

y(j) =

n−1∑

k=0

x(k) cos
π(j+ j0)(k+ k0)

n
, z(j) =

n−1∑

k=0

x(k) sin
π(j+ j0)(k+ k0)

n
, (39)

where j0 and k0 define the particular transform and j, k = 0, . . . , n − 1. For n = 2d we
propose algorithms to compute (39) for a signal given in QTT format (4), similarly to QTT–
FFT Algorithm 2. This can be done using double-size Fourier transform and complex-to-
real transformation, as explained by Theorem 4 and Example 2. In the following we will
show how (39) can be computed in real-valued arithmetics, following the radix-2 scheme
from Section 3.

Before we start, it should be mentioned that (39) is slightly different from the common
definition: we omit the factor 1/2 for the j = 0 coefficient of DCT-1 and DST-3 transform
and indices j, k run as j, k = 0, . . . , n for DCT-1 and j, k = 1, . . . , n − 1 for DST-1. In
the QTT format, these corrections require the rank-one update of the result and can be
implemented easily. In the following we silently omit these details and explain the general
approach to the implementation of different radix-2 schemes in QTT format.

For n = 2d we use index transform (9) and write

cos
π(j+ j0)(k+ k0)

2d
= cos

π(2J+ j0 + j1)(K+ k0 + kd2
d−1)

2d

=c̃cJCc
′
K − c̃sJSc

′
K − s̃cJCs

′
K + s̃sJSs

′
K − c̃cJSs

′
K − c̃sJCs

′
K − s̃cJSc

′
K − s̃sJCc

′
K,

39

http://dx.doi.org/10.1109/TASSP.1984.1164399
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1016/0045-7906(80)90018-X
http://dx.doi.org/10.1016/0045-7906(80)90018-X
http://dx.doi.org/10.1007/BF01599167
http://dx.doi.org/10.1016/j.jcp.2005.06.005

where

c̃ = cos
πj ′k ′

2d
, cJ = cos

πJk ′

2d−1
, C = cos

πJK

2d−1
, c ′

K = cos
πj ′K

2d
,

s̃ = sin
πj ′k ′

2d
, sJ = sin

πJk ′

2d−1
, S = sin

πJK

2d−1
, s ′K = cos

πj ′K

2d
,

j ′ = j0 + j1, k ′ = k0 + kdn/2.

The same recurrence also writes for sine function. Therefore, the evaluation of sine and
cosine transforms performs in four steps.

1. Hadamard multiplication of top and bottom parts of vector x by certain sine and
cosine vectors,

2. half-size sine and cosine transforms with doubled frequency ω,

3. Hadamard multiplication of the odd and even elements of the result by another sine
and cosine vectors,

4. summation of the result according to the recurrence relation.

Obviously, the same recurrence can be written for half-sized and all subsequent trans-
forms. Since both sine and cosine vectors are of low QTT ranks (22), these steps can be
implemented maintaining the QTT format of the vectors, like we do for FFT. Therefore,
sine/cosine transforms can be efficiently implemented in QTT format, providing the ranks
of the vectors in the procedure remain bounded.

After the first radix-2 steps the even DCT and DST writes through two basic transforms,
cosine y = Cdx and sine z = Sdx, defined as follows

y(j) =

n−1∑

k=0

x(k) cos
πjk

n
, z(j) =

n−1∑

k=0

x(k) sin
πjk

n
, n = 2d. (40)

In the following we restrict the discussion to these two transforms. Applying the radix-2
scheme, we write in the block form

PdCdx =

[

Cd−1xtop + J1Cd−1xbot

Cd−1(c ⊙ xtop) − Sd−1(s ⊙ xtop) − J1Cd−1(s ⊙ xbot) − J1Sd−1(c ⊙ xbot)

]

,

PdSdx =

[

Sd−1xtop + J1Sd−1xbot

Cd−1(s ⊙ xtop) + Sd−1(c ⊙ xtop) + J1Cd−1(c ⊙ xbot) − J1Sd−1(s ⊙ xbot)

]

,

(41)

where c =
[

cos πk
2d

]2d−1−1

k=0
, s =

[

sin πk
2d

]2d−1−1

k=0
, and

J1 = diag(+1,−1,+1,−1, . . .+ 1− 1︸ ︷︷ ︸
2d−1 elements

). (42)

To get rid of Pd, we multiply both sides by the bit-reverse permutation Rp−1 and since

Rp−1Pd = Rd, Rd−1(J1 × I) = (Jd−1 × I)Rd−1,

Jd−1 = diag(+1,+1, . . .+ 1︸ ︷︷ ︸
2d−2 elements

−1,−1, . . .− 1︸ ︷︷ ︸
2d−2 elements

),

40

we finally come to the following recurrence

C̃dx =

[

C̃d−1xtop + Jd−1C̃d−1xbot

C̃d−1(c ⊙ xtop) − S̃d−1(s ⊙ xtop) − Jd−1C̃d−1(s ⊙ xbot) − Jd−1S̃d−1(c ⊙ xbot)

]

,

S̃dx =

[

S̃d−1xtop + Jd−1S̃d−1xbot

C̃d−1(s ⊙ xtop) + S̃d−1(c ⊙ xtop) + Jd−1C̃d−1(c ⊙ xbot) − Jd−1S̃d−1(s ⊙ xbot)

]

,

(43)

where S̃p and C̃p are sine and cosine transforms of size 2p with bit-reversed output. It
is important to note that the final form of the recurrence can be implemented only by the
operations with the two upper cores of tensor train (number d−1 and d), that considerably
simplifies the algorithm.

The discrete sine and cosine transforms in QTT format are summarised in Algorithm 4.
Basically, it consists of the two parts. First, we go down through the tensor train, detach
upper cores and multiply the rest of the train by sine, cosine and identity factor as pro-
posed by (41),(42). The QTT format for the multiples reads by (22)

1

cos πk
2d+1

sin πk
2d+1

T

=

1

cos πk1
2d+1

sin πk1
2d+1

T

1

cos πk2
2d

sin πk2
2d

− sin πk2
2d

cos πk2
2d

 . . .

1

cos πkd
2

sin πkd
2

− sin πkd
2

cos πkd
2

 .

The Hadamard multiplication by these function is implemented on Line 4 of Algorithm 4.
Second, we go up through the tensor train and implement the recurrence (43). To ex-

plain Line 10, it is enough to mention that for all half-sized vectors in (43) the QTT rep-

resentation with the same “lower-bit” structure Q
(1)
j1
Q

(2)
j2

. . . Q
(D−1)
jD−1

exists at this moment.
Therefore, for instance

Q
(1)
j1
Q

(2)
j2

. . . Q
(D−1)
jD−1

Y
(D)

jD
U

(D+1)
0 represents (C̃Dxtop)(j1 . . . jD),

Q
(1)
j1
Q

(2)
j2

. . . Q
(D−1)
jD−1

Z
(D)

jD
V

(D+1)
1 represents (S̃D(c ⊙ xbot))(j1 . . . jD)

and so on, where xtop and xbot are top and bottom halves of the corresponding 2D+1 vector
and c and s are appropriate sine and cosine multipliers, like we have in (42). Therefore,

the recurrence (43) is implemented by proper combination of matrices Y
(D)

jD
ZD
jD
, that define

the coefficients for cosine/sine transforms and U
(D+1)
jD+1

, V
(D+1)
jD+1

and W
(D+1)
jD+1

, that represent
bottom and top parts of vector x scaled by identity, cosine and sine multiplier, respectively.

41

Algorithm 4: QTT sine/cosine 1D, approximation

Input: x(k) = X
(1)
k1
X
(2)
k2

. . . X
(d)
kd
, accuracy ε or ranks R1, . . . , Rd−1

Output: [y(j) z(j)] = Q
(1)
j1
Q

(2)
j2

. . . Q
(d−1)
jd−1

[Y
(d)
jd

Z
(d)
jd
], where y, z are defined by (40)

1: Orthogonalized X
(1)
k1
X
(2)
k2

. . . X
(d)
kd

right-to-left
2: for D = d− 1, d− 2, . . . , 2 do {Go down along the train}

3: Define index k = k1 . . . kD and xD(k) = X
(1)
D,k1

. . . X
(D)

D,kD

4: Compute yD(k) = xD(k) cos πk
2D+1 and zD(k) = xD(k) sin πk

2D+1 by

TD(k)
def
= [xD(k) yD(k) zD(k)] = X̂

(1)
D,k1

X̂
(2)
D,k2

. . . X̂
(D−1)
D,kD−1

[

X̂
(D)

D,kD
Ŷ
(D)

D,kD
Ẑ
(D)

D,kD

]

,

where X̂
(1)
D,k1

:= X
(1)
D,k1

⊗

[

1 cos πk1
2D+1 sin πk1

2D+1

]

,

X̂
(p)
D,kp

:= X
(p)
D,kp

⊗

1

cos πkp
2D+2−p sin πkp

2D+2−p

− sin πk2
2D+2−p cos πk2

2D+2−p

 , p = 2, . . . , D− 1

X̂
(D)

D,kD
:= X

(D)

D,kD
, ŶD

D,kD
:= X

(D)

D,kD
⊗

0

cos πkp
22

− sin πkp
22

 , ẐD
D,kD

:= X
(D)

D,kD
⊗

0

sin πkp
22

cos πkp
22

 .

5: Use TT–SVD to recompress TD(k) using accuracy ε or rank R1, . . . , RD−1 criterion

TD(k) ≈ T̃D(k) =: X
(1)
D−1,k1

X
(2)
D−1,k2

. . . X
(D−1)
D−1,kD−1

[

U
(D)

kD
V

(D)

kD
W

(D)

kD

]

.

6: end for
7: Y

(1)
j1

:=
∑1

k1=0 X
(1)
1,k1

cosπk1j1/2, Z
(1)
j1

:=
∑1

k1=0 X
(1)
1,k1

sin πk1j1/2

8: for D = 1, 2, . . . , d− 1 do {Go up along the train}

9: Define index k = k1 . . . kD and [yD(j) zD(j)] = Q
(1)
j1
Q

(2)
j2

. . . Q
(D−1)
jD−1

[Y
(D)

jD
Z
(D)

jD
]

10: Implement recurrence step (43) by

C
(D)

jD,jD+1=0 := Y
(D)

jD
U

(D+1)
0 + (−1)jDY

(D)

jD
U

(D+1)
1 ,

C
(D)

jD,jD+1=1 := Y
(D)

jD
V

(D+1)
0 − Z

(D)

jD
W

(D+1)
0 − (−1)jDY

(D)

jD
W

(D+1)
1 − (−1)jDZ

(D)

jD
V

(D+1)
1 ,

S
(D)

jD,jD+1=0 := Z
(D)

jD
U

(D+1)
0 + (−1)jDZ

(D)

jD
U

(D+1)
1 ,

S
(D)

jD,jD+1=1 := Y
(D)

jD
W

(D+1)
0 + Z

(D)

jD
V

(D+1)
0 + (−1)jDY

(D)

jD
V

(D+1)
1 − (−1)jDZ

(D)

jD
W

(D+1)
1 .

11: Perform low-rank decomposition
[

C
(D)

jD,jD+1
S
(D)

jD,jD+1

]

≈: Q
(D)

jD

[

Y
(D+1)
jD+1

Z
(D+1)
jD+1

]

with
∑

jD
(Q

(D)

jD
)∗(Q

(D)

jD
) = I using accuracy ε or rank RD criterion.

12: end for
13: bit-reverse the output

42

	Introduction
	Tensor train format
	Discrete Fourier transform in one dimension
	QTT decomposition of the Fourier matrix has full ranks
	Radix-2 recursion formula in the QTT format

	Approximate Fourier transform
	TT–rounding and TT–orthogonalization
	Accuracy of the QTT–FFT algorithm with approximation
	Complexity analysis

	Real–valued transforms using FFT–QTT algorithm
	Discrete Fourier transform in higher-dimensional case
	Numerical examples
	Fourier images in 1D
	Fourier images in 3D
	Convolution in 3D
	Signals with sparse Fourier images

	Comparison with Sparse Fourier transform
	QTT–FFT and Sparse Fourier transform
	Comparison with Sparse Fourier transform algorithms
	RAlSFA
	sFFT
	AAFFT

	Comparison for limited bandwidth signals

	Conclusion and future work
	Discrete cosine and sine transforms in QTT format

