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Large-amplitude fluctuations of the solar wind magnetic field can scatter energetic ions. One of the
main contributions to these fluctuations is provided by solar wind discontinuities, i.e. rapid rotations
of the magnetic field. This study shows that the internal configuration of such discontinuities plays
a crucial role in energetic ion scattering in pitch-angles. Kinetic-scale discontinuities accomplish
very fast ion pitch-angle scattering. The main mechanism of such pitch-angle scattering is the
adiabatic invariant destruction due to separatrix crossings in the phase space. We demonstrate that
efficiency of this scattering does not depend on the magnetic field component across the discontinuity
surface, i.e. both rotational and almost tangential discontinuities scatter energetic ions with the
same efficiency. We also examine how the strong scattering effect depends on the deviations of the
discontinuity magnetic field from the force-free one.

The supersonic solar wind is filled by large-scale mag-
netic field fluctuations, such as Alfven waves and solar
wind discontinuities (SWD) [1, 2]. Recent Parker Solar
Probe observations found an abundance of such SWD at
small radial distances from the Sun [3, 4]. These fluctu-
ations contribute significantly to the solar wind heating
[5], as well as acceleration [6] and scattering of energetic
ions [7, 8]. Such scattering results in random jumps of
ion pitch-angles due to the ion interaction with magnetic
field fluctuations [9], which are dominated by magnetic
field rotations [10, 11].
Energetic ion (> few keVs of thermal energy) scatter-

ing is responsible for the cross-field transport [12] affect-
ing ion propagation time in the heliosphere [13] and ion
spatial distributions [14]. The classical theory of ion scat-
tering is based on consideration of an ensemble of random
magnetic field fluctuations [7, 8, 15], whereas the inter-
nal structure of such fluctuations has not been studied
in detail. Compressional fluctuations, e.g. high-β cur-
rent sheets, are known to be effective ion scatters [16].
However, solar wind fluctuations are dominated by com-
pressionless magnetic field rotations (so-called rotational
SWD, see [1, 10]), and there is no theory describing the
role of the SWD internal structure in the ion scattering.
This study focuses on the ion scattering by such SWD
consistent with observed magnetic field configurations.
Figure 1 shows a typical example of rotational SWDs

observed by the ARTEMIS spacecraft [17] at 1 AU. The
magnetic field rotates while |B| ≈ const (see panel (a)):
the reversal of the magnetic field component along the
maximum variance direction, Bl is compensated by a
peak of the absolute value of the intermediate variance
direction component, Bm (see panel (b)). Using the so-
lar wind velocity projected onto the normal direction to
the SWD surface, that of the minimum variance, n, [e.g.,
18], we transform time to space rn and normalize it to
the proton inertial length dp =

√

mpc2/4πnpe2 where

np is the solar wind density. The spatial scale of this
SWD is few dp, and the current density peak reaches
jm ≈ (c/4π)∂Bl/∂rn ∼ 30 nA/m2 (panel (c)). These are
typical scale and jm for the most intense SWDs with Bl

magnitude B0 comparable to the |B| [18–20]. Ion scat-
tering is expected around the strongest magnetic field
gradient [21, 22], i.e. around the Bl reversal.
We fit the observed magnetic field around the discon-

tinuity center (Bl reversal) by a simple model: Bl ≈ B0 ·
(rn/L), Bn = const, Bm =

√

B2

0
−B2

l ≈ B0(1−r2n/2L
2)

where L is the discontinuity thickness, L ≈ cB0/4πjm ≈
250 km. The ion (of mass m and charge q) motion in
such a field is given by the Hamiltonian:

H =
1

2m
p2n +

1

2m

(

pl −
qB0

c

(

rn − r3n
6L2

))2

(1)

+
1

2m

(

pm − qBn

c
rl +

qB0

c

r2n
2L

)2

where momenta p = (pl, pm, pn) are conjugate to co-
ordinates r = (rl, rm, rn). We introduce dimensionless
variables (x, z) = (rl − pmc/qBn, rn)/

√
Lρ, (px, pz) =

(pl, pn)/
√
hm (note pm = const because ∂H/∂rm = 0),

H → H/h, κ = (Bn/B0)
√

L/ρ, where ρ =
√
2hmc/qB0

and h = (qB0L/mc)2m (i.e., ρ = L for this normaliza-
tion), and rewrite Eq. (1) as:

H =
1

2
p2z +

1

2

(

px − z +
z3

6

)2

+
1

2

(

κx− z2

2

)2

(2)

The distinctive feature of Hamiltonian in Eq. (2) is the
term ∼ z3/6 describing magnetic field Bm peak; previous
analysis of ion motion was limited to Hamiltonians with
p2x/2 [22, 28] or (px−z)2/2 [29, 30] terms, describing dis-
continuities with Bm = 0 and Bm = const. In this study
we demonstrate that the new term ∼ z3/6 qualitatively
changes the ion scattering efficiency.
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FIG. 1. Example of a discontinuity observed by ARTEMIS
[17] on 2020-02-19: (a) magnetic field in the discontinuity
coordinate system (l is the maximum variance direction, m
is the intermediate variance direction), (b) magnetic field
hodogram (Bl, Bm) and the circle (Bm − 0.75nT)2 + B2

l ≈
36nT2 (red dased curve), (c) current density profile, (d) ion
energy spectrum with the solar wind flow energy mpv

2

sw/2
shown with red dashed line; two bottom axes show κ parame-
ter calculated for the spectrum energy minus the flow energy,
∆E = E − mpv

2

sw/2 (∆E is zero for ions moving with the
solar wind; two Bn values are used for κ). We show κ for the
energetic part of spectrum only as interaction of these ions
with SWD is considered. Magnetic field at 0.25 s resolution
is from the fluxgate magnetometer [23], whereas ions at 4 s
resolution, the spin-period, is from the electrostatic analyzer
[24]. The local coordinate system and the current density are
obtained from maximum variance analysis [25] and timing,
respectively [see details in 18]. ARTEMIS data are processed
with SPEDAS V3.1 [26]. Two ARTEMIS observations are
not sufficient to accurately estimate the direction along the
normal n to the SWD surface [see discussion in 27], and thus
we use a range of Bn values (normalized to the Bl magnitude)
for the κ calculation in panel (d).

In most discontinuities the observed Bn/B0 ≪ 1 [31],
i.e. κ ≪ 1 and variables (κx, px) change much slower
than (z, pz) (see the range of κ values in Fig. 1(d)).
This determines the character of the ion interaction with
discontinuities. For frozen (κx, px), the Hamiltonian (2)
describes periodic motion in the (z, pz) plane with con-

served generalized magnetic moment Iz = (2π)−1
∮

pzdz.
For slow changes of (κx, px) Iz remains conserved, now
as an adiabatic invariant [32]. Iz only changes due to
a significant change of the trajectory configuration [33].
The conservation of Iz and energy (Hamiltonian in Eq.
(2) is conservative) is sufficient to fully integrate the ion
motion, and thus without Iz destruction there is no ion
scattering at discontinuities. Generally, the adiabatic
invariant Iz is conserved with an exponential accuracy
∼ exp(−const/κ) [21, 34, 35], i.e. ion scattering is quite
weak (slow). However, the Hamiltonian in Eq. (2) de-
scribes two different types of ion motions in the (z, pz)
plane (see Fig. 2(a) showing two types of phase por-
traits), and change of one type of motion to another type
corresponds to an Iz jump of the order of ∼ κ or ∼ 1 due
to crossing of the separatrix demarcating phase domains
with two types of motions [36–38].

Jumps of Iz due to separatrix crossings have been stud-
ied for special cases of the Hamiltonian of Eq. (2) with
∼ p2x/2 [22] and ∼ (px−z)2/2 terms [30]. In both systems
these jumps are found to be random with an amplitude
∼ κ and zero mean value, 〈∆Iz〉 = 0 after averaging
over many separatrix crossings, i.e. there is slow diffu-
sion of Iz with variance 〈(∆Iz)

2〉 ∼ κ2 and diffusion rate
〈(∆Iz)

2〉/τ ∼ κ3 ≪ 1 [39] where τ ∼ 1/κ is the time-
scale between two separatrix crossings (time-scale of the
ion motion in the (κx, px) plane).

Besides the exponential ∼ exp(−const/κ) or slow ∼ κ3

destruction of Iz for systems with κ ≪ 1, there also ex-
ists a so-called geometrical destruction (with 〈∆Iz〉 ∼ 1)
predicted theoretically [40] and not yet found for conser-
vative Hamiltonians describing ion interaction with dis-
continuities [see discussion in 30]. In this study we show
that the term ∼ z3/6 (i.e., Bm peak) results in such ge-
ometrical Iz destruction and produces very fast ion scat-
tering.

To show the effect of Iz change due to separatrix cross-
ings, we color the (κx, px) plane according to the phase
portraits in a (z, pz) plane. Note the two types of phase
portraits correspond to two profiles of effective potential
energy U(z) = H − p2z/2: there are two potential wells
(one or two possible orbits in the (z, pz) plane at fixed
H) in the left portrait in Fig. 2(a), and there is a sin-
gle potential well (one possible orbit in the (z, pz) plane
at fixed H) in the right portrait shown in Fig. 2(a). In
Figure 2(c,d) the region with a single possible orbit is yel-
low and the region with two possible orbits is red (lines
ℓ1−5 demarcate these regions). Orbits crossing ℓ1−4 do
not change their potential well of U(z), i.e. the corre-
sponding particles continue oscillating in the same well.
Separatrix crossings occur when orbits cross (or reflect
from) the boundary ℓ5. Particles moving with κx de-
creasing at crossing ℓ5 change oscillations in one of the
two potential wells to oscillations covering the both wells
(and vise versa for particles moving with κx increase).
Particles moving with κx decrease and reflecting from ℓ5
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FIG. 2. Properties of Hamiltonian system of Eq. (2) for total energy H = 1/2. (a) Phase portraits of Hamiltonian (2) at
frozen (κx, px): H values of each curve are shown in the plot; κx = 2.5, px = 1 in the left panel and κx = 0, px = 0.5 in the
right panel. (b) Ion trajectories for many periods of slow motion in the (κx, px) plane (κ = 0.01); color shows instantaneous
value of Iz; arrows show different types of orbits: except for the permanently closed orbits that never cross the separatrix, all
other curves are sections of the same orbit reflecting from ℓ5 and changing Iz at these moments. All the orbits have H = 1/2
and initial (κx, px) = (5.5, 2.0), (0.0,−3.5), (0.0, 0.5). (c) Plane (κx, px) colored according to the type of motion in (z, pz) plane
with frozen (κx, px): yellow is for a single possible orbit in the (z, pz) plane at fixed H = 1/2 (the right phase portrait in the
panel (a) or the left phase portrait in the panel (a), but with only one orbit having H = 1/2), red is for two possible orbits in
the (z, pz) plane at fixed H = 1/2 (the left phase portrait in the panel (a)), grey is for the absence of solutions. (d) Zoomed-in
section of (c) at κx ∈ [0.85, 1.05] and px ∈ [−0.1, 0.1]. (e) 1D profiles of potential energy U(z) = H − p2z/2 at frozen (κx, px):
numbers correspond to # marks in (c).
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change oscillations in one of the two potential wells to
oscillations in another well. Such crossings correspond
to change of the well that results in Iz jump (this 2π∆Iz
jump equals to the difference of areas of two regions sur-
rounded by the separatrix in the (z, pz) plane and does
not depend on κ, see [33]). This is why Iz always changes
when the orbit reflects from ℓ5 in (κx, px) plane (and thus
switches from oscillations in one well to oscillations in an-
other well in (z, pz) plane): Fig. 2(b) demonstrates the
change of Iz (shown in color) for a single orbit.

There are two main populations of trajectories in the
(κx, px) plane. The first consists of trajectories reflected
from ℓ5 curve and quickly scattered due to ∆Iz ∼ 1
jumps. The second consists of so-called closed trajecto-
ries trapped within the discontinuity, which never arrive
close to ℓ5 (see Fig. 2(b)). Exchange between these two
ion populations should be controlled by external forces
and dissipative processes (e.g., wave-particle interactions
[41] or discontinuity evolution [10, 42]). Such evolution
and (or) dissipation makes the system non-conservative
(i.e., particle energy changes during particle interaction
with the discontinuity), and results in evolution of the
boundary separating these two populations in the phase
space [39, 43]. A third (minor) population of quasi-closed
trajectories that cross ℓ5 rarely, is quite small for Hamil-
tonian (2). Let us discuss peculiarities of these three
populations regarding their interaction with ℓ5.

The first two populations are: (i) regular trajectories
never approaching ℓ5 with Iz ≈ const (in the (κx, px)
plane these trajectories occupy region located to the left
from ℓ5); (ii) transient trajectories reflecting from ℓ5.
Due to geometrical Iz jumps trajectories of this latter
population are characterized by rapid destruction of Iz
invariant. The population (iii) consists of ion trajecto-
ries that cross ℓ5. We can call these trajectories quasi-
regular, because ions on these trajectories can spend a
long time on the boundary of the regular trajectory re-
gion (Iz ≈ const for this motion), but rarely such a
trajectory crosses ℓ5 and goes to the (κx, px) region of
transient trajectories. Figure 3 shows an example of
this quasi-regular behavior: the ion moves along a quasi-
closed orbit on the left from ℓ5 (within the region of closed
trajectories) for quite a long period of time; then finally
the weak scattering in Iz results in crossing ℓ5 and escape
into the region of transient trajectories. An analog of this
orbit with the ion moving in the opposite direction would
be represented by the ion approaching ℓ5 from the right
and then crossing ℓ5. Note that the absolute majority of
trajectories approaching ℓ5 from the right are transient
trajectories, which are reflected from ℓ5.

To estimate the amount of such quasi-regular trajec-
tories we use the Poincaré section technique: we run 105

trajectories with initial 10 values of κx ∈ [−1, 1], px = 0
and uniformly distributed z; then we plot the points
where the trajectories cross z = 0 plane with pz > 0.
These points are spread within the circle (κx)2+p2x = 2H

p
x

−2

−1

0

1

2

κx

−1 0 1 2 3

FIG. 3. Quasi-regular trajectory (black curve) of the ion mov-
ing along a quasi-closed orbit within the region of regular tra-
jectories and then escaping this region by crossing ℓ5. Blue
shows the boundary of the region of allowed particle motion
(outer curve) and ℓ1 − ℓ5 curves.

and their distribution shows the three populations of tra-
jectories (see Fig. 4): (i) ions moving along regular tra-
jectories fill closed curves in the Poincaré section; (ii)
quickly scattered ions on transient trajectories fill some
domain in the Poincaré section by random and sparse
points (note the density of points is determined by the
typical time-scale between two successive crossings of
z = 0 plane, and rapidly scattered ions can get quite
small Iz corresponding to strongly elongated trajectories
in the (κx, px) plane with long excursions between two
z = 0 crossings); (iii) ions moving along quasi-regular
trajectories cross z = 0 with a short period (regular tra-
jectories correspond to large Iz), but positions of cross-
ings are randomly distributed. Figure 4 demonstrates
that quasi-regular trajectories (crossing ℓ5) fill a layer
separating regular trajectories and transient trajectories,
but the total area of these quasi-regular trajectories is
smaller than the areas filled by both regular and tran-
sient trajectories.
Figure 2(b) shows that different sections of orbit cross-

ing the separatrix are associated to quite different Iz val-
ues. This is an important property of the geometrical Iz
destruction: jumps 〈∆Iz〉 ∼ 1 do not depend on κ and
are quite large, i.e. even for arbitrarily small κ the ion
scattering is fast and effective. Note κ → 0 means the
transition between rotational (with Bn 6= 0) and tan-
gential (Bn → 0) types of SWDs [44]. Figure 5 (left
panel) shows evolution of initially narrow Iz-distribution
for two κ values: geometrical jumps of Iz quickly widen
Iz-distributions. The scattering rate in the slow time

κt does not depend on κ. However, the rotation pe-
riod τ of particle motion in the (κx, px) plane is of or-
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FIG. 4. Poincaré section of the system (2): the closed red
curves show particles moving along regular trajectories; black
random sparse dots show particles moving along transient tra-
jectories; blue random dense dots show particles moving along
quasi-regular trajectories, which cross ℓ5.

der 1/κ. This period determines the time scale of the
ion interaction with the same SWD, i.e. after one sep-
aratrix crossing ions turn around at large κx and come
back to the separatrix again after ∼ τ period. Ion scat-
tering and destruction of Iz is equivalent to the pitch-
angle scattering, because Iz determines the ion pitch-
angle, e.g. at z = 0, px = 0 the ion pitch-angle is defined
as cosα = v · B/Bv = (κx +

√

2h− (κx)2)/
√
1 + κ2.

Each trajectory in (κx, px) plane is associated with some
Iz value, and jump of Iz means change of trajectory. As
each trajectory is characterized by some κx at px = 0
crossing, jumps of Iz result in changes of this κx (see
Fig. 2(b)). Thus, Iz jumps lead to values of κx at
px = 0 jumps and to α = α(κx) jumps (note h = const
for ion scattering). Figure 5 (right panel) shows evo-
lution of pitch-angle distributions recalculated from Iz-
distributions: starting with a narrow α-distribution, ions
are quickly scattered and fill a broad α range.
To demonstrate the effect of magnetic field component

Bm on ion scattering we compare Iz,α-distributions ob-
tained for Hamiltonian (2) with (px − z + z3/6)2 term
(Bm peak) and with p2x/2 term (Bm = 0; classical com-
pressional discontinuity, see [22]). Figure 5 shows that in
the absence of Bm peak (i.e., when Bm = 0) the ion scat-
tering is quite weak: Iz,α-distributions are narrow peaks
around the initial distribution (in agreement with theo-
retical predictions of slow Iz destruction, see [36, 37]).
Although Fig. 1 shows almost force-free discontinuity

(B ≈ const), the Bm magnitude is slightly smaller than
Bl magnitude, i.e. the field model B2

m + B2

l = const
in Hamiltonian (2) is an approximation. To study ion
interaction with discontinuities having Bm/B0 < 1 we
consider statistics of ion-scale L ∼ di discontinuities from

[18]. Figure 6(a) shows Bm/B0 distribution and ∆B/〈B〉
(deviation from the force-free condition) for ∼ 250 indi-
vidual discontinuities: there is a significant fraction of
Bm/B0 ∈ [0.5, 0.75] events, whereas for most of events
∆B/B ∼ 0.03. To examine how effect of strong Iz de-
struction depends on Bm/B0 we plot Iz-distributions for
κt = 100 simulation time and different Bm/B0 values
in Hamiltonian (2). For Bm/B0 > 0.75 the Iz destruc-
tion rate is comparable to one for Bm/B0 = 1, whereas
for Bm/B0 < 0.75 the Iz destruction rate is smaller and
resulted Iz-distribution is narrower. Therefore, the ef-
fect of the fast Iz destruction remains actual for a wide
range of observed Bm/B0 values. Note we consider ro-
tational discontinuities that are typically Alfvenic-type
structures with B ≈ const [10, 18, 31], but solar wind
ions also interact with various compressional structures
contributing to the solar wind magnetic field spectrum
[45, 46], e.g. mirror mode structures [e.g., 47, 48] and
interplanetary shocks [e.g., 49–51]. Investigation of ion
scattering by such structures (with Bm/B0 ≪ 1 and
asymmetrical Bl profiles) deserves a separate study. An
important element of compressional structures with the
ion kinetic scales is a polarization electric field forming
due to the decoupling of ion and electron motions [e.g.,
52]. Such field almost absents in the force-free discon-
tinuities [53], but can strongly influence ion scattering
in compressional discontinuities [54]. Therefore, further
investigations of ion interaction with partially force-free
and compressional structures would require inclusion po-
larization fields into consideration.

In Hamiltonian (2), κ determines the time interval be-
tween two scatterings (a time scale of one period of ion
motion in the (κx, px) plane). In systems with multiple
SWDs, the time-scale between scatterings would be par-
tially controlled by the SWD occurrence rate, which does
not depend on κ. This further reduces the importance of
Bn (or κ) value for the ion scattering, and makes separa-
tion between almost tangential (small, but finite Bn) and
rotational SWDs unimportant for determination of their
role in ion scattering. Thus, we show that Bn amplitude
(κ value) does not control the ion scattering rate in the
presence of geometrical Iz destruction, i.e. ions are simi-
larly scattered by rotational and almost tangential (with
small, but finite Bn) SWDs.

This scattering is a universal mechanism for SWDs
with the Bm peak comparable to the Bl magnitude (the
most common configuration of compressionless SWDs,
e.g. [1, 10, 19, 42]) and sufficiently hot ions (or suf-
ficiently thin SWDs; L ∼ ρ). The condition L ∼ ρ
can be rewritten for the ion energy h/Ti ∼ βi(L/dp)

2

with Ti and βi being solar wind temperature and the
ratio of thermal and magnetic pressures. For most in-
tense discontinuities L/dp ∈ [1, 10] [18–20], and typical
βi ∈ [0.1, 10][see 55]. Thus, almost all suprathermal solar
wind population can be strongly scattered due to inter-
action with SWDs. This effect, together with scattering
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by plasma waves [e.g., 41, 56], should shape the observed
low-anisotropic distribution of solar wind ions at 1 AU
[55] and contribute to the quick cross-field transport of
high-energy ion populations [12–14].
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