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The Mw7.2 2010 El Mayor-Cucapah earthquake that ruptured an apparently relatively 

straight fault trace had a moment tensor that differed significantly from predictions based 

on a single planar elastic shear-dislocation. The 120 km long rupture extended from the US 

Mexico international boarder, along a fault system in the Sierra Cucapah to the Gulf of 

California in the southeast.  At depth, the rupture involved two N130ºE striking segments 

with opposite dip angles connected by a jog with a N15ºW striking normal segment. The 

earthquake initiated as a moderate normal event at this jog before rupturing bilaterally the 

two main segments with dominantly strike-slip motion. The complexity of the subsurface 

fault geometry and the distribution of slip orientation that is constrained by seismological, 

remote sensing, and geodetic data account for the large non-double-couple component of 

the moment tensor.   
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The El Mayor-Cucapah Earthquake (EMC) that occurred on April 4, 2010 produced 

extensive liquefaction in the Colorado River delta area and in the Mexicali and Imperial Valleys, 

and numerous rockfalls occurred in the Sierra Cucapah. This is the largest earthquake to have 

struck the southern California and northern Baja California, Mexico area since the Mw7.3, 

Landers Earthquake of 1992
1
. The GCMT (global centroid moment tensor) of the mainshock 

reveals a double couple component corresponding to scalar moment of 7.28×10
19

N·m (Mw7.17), 

with a significant non-double-couple (CLVD) component (2.4×10
19

N·m) (Fig. 1)
2
. The 

mainshock occurred where the system of continental parallel right-lateral strike-slip faults 

including the San Andreas, San Jacinto and Elsinore faults, connect with a system of transform 

faults and active spreading centers in the Gulf of California to the south
3
 (Fig. 1 and fig. S1). 

This fault system forms the plate boundary in southern California, where the Pacific plate moves 

northwestwards with respect to North America at about 46 mm/yr (Fig.1 inset). The main active 

fault recognized in the area was the Laguna Salada fault (LSF), a right-lateral normal oblique 

fault bounding the Sierra Cucapah to the west.  It accommodated a Mw7.1 earthquake in 

1892
4
(fig. S1).	
  

We synthesize the earthquake data using  modern methods in seismology, tectonic geodesy, 

remote-sensing (Global Positioning Systems (GPS), Interferometric Synthetic Aperture Radar 

(InSAR), sub-pixel correlation of optical satellite images and Synthetic Aperture Radar (SAR)). 

The remote-sensing data reveal an almost linear and continuous fault trace extending over about 

120 km from the northern tip of the Sierra Cucapah to the Gulf of California, with a right-lateral 

slip of about 2m on average (Fig.1). These data indicate that the April 4 mainshock didn’t 

rupture the LSF but rather  two other faults, the Borrego and Pescadores faults within the Sierra 

Cucapah, which had been mapped but not recognized to be active
4
 (fig. S1). Our data also reveal 
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a major strike-slip segment which extends from the epicenter to the southeast, across the 

Colorado River Delta. This part of the mainshock rupture that had been verified in the field and 

named the Indiviso fault
5
 occurred along basement faults beneath the sedimentary deposits of the 

Colorado River. So, the surface trace does not coincide with previously-identified active faults 

with an obvious geomorphic expression, such as the Laguna Salada Fault or the Canada David 

Detachment. Rather, the earthquake ruptured along a complex set of existing faults, illustrating 

the ongoing process by which the slip along Elsinore fault connects to the transform plate 

boundary in the Gulf of California.	
  

Overall, the location and focal-mechanism of the earthquake are consistent with right-lateral 

slip along the right-lateral transform plate boundary fault system (Fig. 1). However, the large 

non-double couple component of the moment tensor suggests a substantial component of normal 

faulting.  The modeling of the first 15s of the teleseismic waveforms (fig. S2) requires that the 

earthquake initiated as a normal event near the epicenter (Fig.1). This observation, together with 

the clear asymmetry of surface strain seen from the correlation of the optical (SPOT) and SAR 

images (Japanese Aerospace Exploration Agency ALOS PALSAR) as well as from InSAR 

analysis of PALSAR and European Space Agency Envisat ASAR (See Supplements), require a 

complex fault geometry at depth which seems at odds with the relatively straight strike-slip fault 

trace observed at the surface (Fig 2).	
  

We use finite-fault source modeling to determine what geometry and slip-distribution 

reconcile all the observations gathered in this study. We discretized the rupture zone into 

slipping patches (point sources) which contribute to the wave-field at a particular time controlled 

by the rupture velocity and rise-time
6
. Trade-offs among the amplitude of slip, the rupture 

velocity, and the rise-time
7,8

 are limited because constraints on the fault geometry are provided 
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by the remote-sensing observations. We concentrate on geometrical fault irregularities that can 

influence large events
9
 but are not easily resolved by seismology alone. We built the simplest 

possible fault geometry required to fit our observations. We chose a N355°E striking fault plane 

dipping 45° to the east (F1) to account for the teleseismic waveforms (fig. S2) and to match the 

local alignment of aftershocks near the epicenter. Segments F2 (51km long, striking N312°E), F3 

(60km long, striking N132°E) and F4 (18km long, striking N335°E) were defined to follow the 

surface trace. We use the geodetic and InSAR data to determine the best fitting dip angles based 

on a 5° grid-search steps. The best dip angles are 75° to the west for F2 and 60° to the east for F3 

and 50° to the east for F4. The GPS data (presented as vectors in Fig. 1) are recorded by stations 

located in the U.S.  These are closest to the northern segment, and constrain the dip angle of F4. 

The dip angles of F2 and F3 are mostly controlled by the InSAR data (see Supplements for 

details). Although the fault must be more complex at a finer scale, we are able to explain the bulk 

of our combined datasets with these four segments. 

To generate the kinematic model, we invert for the distribution of slip in terms of rake 

direction, amplitude of slip, rupture velocity and rise time
10
. Using the geodetic data (GPS and 

remote-sensing) we first determine a static co-seismic slip model representing the cumulative 

slip distribution due to the earthquake (fig. S3). We use the horizontal offsets measured from the 

SAR and SPOT images to constrain the fault slip at the surface (Fig. 2a), and the whole geodetic 

and InSAR dataset to constrain the static displacement field. Because of the simplified fault 

geometry, the formal inversion of shallow slip would indeed be biased to lower slip wherever the 

fault model does not follow exactly the measured fault trace. To avoid this bias, we impose slip 

on the shallow portion of the fault to fit the horizontal surface slip measured from the SAR and 

SPOT to within the average 2-σ uncertainty on these measurements (±0.5m) (Fig. 3a)
11

. To 
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restrict the large number of data points to be inverted, we resample the unwrapped 

interferograms
12

 (figs. S4 to S6), and perform the inversion for a static solution (fig. S3). The 

final model is then used to estimate the entire surface deformation field and assess residuals (fig. 

S8 to S11). A model compatible with all the static data is displayed in Fig. 2b. North of the 

epicenter, the motion on the northeastern side of the surface trace (blue) is larger than that (red) 

on the southwest. This asymmetry is a clear evidence that faults F2 and F3 are dipping in 

opposite directions (see figs. S4 to S11 for modeling details). 

 To determine the time evolution of rupture, we jointly inverted the seismological and 

geodetic data (remote sensing and GPS). The model is parameterized in terms of the distribution 

of slip (characterized by rake and amplitude of slip at each node), the rupture velocity and rise 

time
10

.  

 The static slip distribution corresponding to the model obtained from the joint inversion of 

the geodetic, remote sensing, and seismological data (Fig. 3b) is very close to the solution 

obtained from the inversion of the static deformation data (Table 1).  The only difference is that 

slip on F1 cannot be constrained from the geodetic data and is better determined from the 

seismological data.  The total moment of the joint inversion model is 9.9×10
19

N·m, which is 

calculated by summing up the contribution of each sub-fault.  The moment tensor is actually very 

close to the GCMT solution
2
. The double-couple moment is 7.4×10

19
N·m and the CLVD 

component is 2.1×10
19

N·m. This model provides a remarkably good fit to the seismological data 

(figs. S13 and S14) demonstrating the internal consistency of the whole dataset.  

 Overall, most of the energy release occurred at depths less than 9 km with slip reaching up to 

6 m. The inferred rupture velocity is quite variable and relatively low, about 2.5 km/s on average. 

The moment release history reflects the successive rupture of different asperities on faults F1 to 
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F4 (zones with locally high seismic slip) whose location is essentially constrained by the 

geodetic data (Fig. 3). The earthquake started with a dominantly normal sub-event on F1. This 

sub-event was not very impulsive and lasted for about 8s, which is a relatively long duration for 

an Mw 6.3 earthquake. There was a still smaller event a few seconds earlier which can be seen in 

some teleseismic waveforms (fig. S14). The event on F1 triggered rupture of segments F2 to the 

north and F3 to the south, F2 produced a sharp pulse of moment release 16s to 21s after the onset 

of the rupture. The peak in the moment release rate occurred around 27s when the rupture 

reached nearly simultaneously the high slip patches on F2 and F3. Altogether the rupture lasted 

about 45-50s. 

 The distribution of co-seismic slip and aftershocks suggest that the seismogenic zone extends 

to depths of only about 10km (Fig. 3c).  The depth extent is probably limited by the high crustal 

temperature in this zone of tectonic transition from of spreading centers and transform faults in 

the Gulf of California to continental faulting along the San Andreas fault system to the North
13

. 

The distribution of aftershocks is clearly anti-correlated with coseismic slip, especially north of 

the epicenter where hypocentral depth of aftershocks and the coseismic slip distribution are 

better constrained (Fig. 3c). Such an anti-correlation has been observed in a number of previous 

studies
14-17

 suggesting that some of the aftershocks release residual strains near the patches of 

high slip.   	
  

 The mainshock started as a moderate sub-event and evolved only ~15 s later into a more 

significant event (Fig. 3d). This rupture behavior challenges the idea that the final size of large 

earthquakes can be predicted within seconds of the onset of rupture
18

. Further the mainshock 

initiated at a local structural complexity, due an extensional jog at depth (define by F1) between 

faults F2 and F3. More generally the complex mainshock rupture illustrates how fault bends and 
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jogs, not necessarily visible from the surficial fault trace geometry, influence the initiation, 

evolution and termination of earthquake ruptures
19-22

.   

 

 

 

Table 1. Moment tensor solutions of GCMT and this study.	
  

	
   Mrr	
   Mtt	
   Mpp	
   Mrt	
   Mrp	
   Mtp	
   Mo	
   MDC	
   MCLVD	
   Unit	
  

GCMT	
   -2.49	
   -5.94	
   8.43	
   0.56	
   -0.14	
   -0.86	
   	
   7.28	
   2.84	
   10
19

(N·∙m)	
  

Static inv.	
   -1.42	
   -6.42	
   7.84	
   0.11	
   -1.05	
   -1.55	
   9.91	
   7.50	
   2.11	
   10
19

(N·∙m)	
  

Joint inv.	
   -2.03	
   -6.07	
   8.10	
   -0.23	
   -1.28	
   -1.62	
   9.90	
   7.36	
   2.14	
   10
19

(N·∙m)	
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Figure1. Seismotectonic setting of EMC Earthquake and aftershocks. Inset shows historic seismicity 

with earthquakes (M>6.5, red dots), main active faults (thin red lines) and approximate location of the 

plate boundary (heavy red line). The black rectangle region is enlarged in which the yellow and white 

dots denote the fault off-sets determined by SPOT imaging and sub-pixel correlations. Open circles show 

seismicity (M>2.5) 4 month before (red) and 11 days after (blue) the earthquake, relocated with the 

Double Difference method
23

 and the red lines indicate known surface faults. Moment tensor of GCMT 

and derived from our study are shown in the left top corner. Mechanisms of 5 large aftershocks are 

displayed as black beach balls with event dates and magnitudes above. The dark red beach ball and circle 
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indicates the Dec.30, 2009 Mw5.8 earthquake. The geometry of faults used in the inversion is projected to 

the free-surface and indicted as F1, F2, F3 and F4. The focal mechanism of the first event, which is 

obtained by inverting the first 15 seconds of teleseismic P-waves, is displayed in orange. The red star 

indicates the epicenter of first normal event. Arrows to the north of the US and Mexico border show the 

horizontal component of the co-seismic displacements measured at the PBO GPS stations (data in 

white,with 95% confidence ellipses, and synthetic in light red). 

  

Figure 2. N-S surface displacements measured from sub-pixel correlation of optical and SAR 

images. (a) Map of near-field co-seismic ground displacement measured from the sub-pixel correlation of 

SAR amplitude images
24

 and optical SPOT images
25,26

 acquired before and after the earthquake (see 

Supplement for details). The SPOT measurements are over-printing the SAR azimuth offsets. (b) 

Prediction from the preferred model. The blue colors indicate motion to the south and red to north, 

indicating right-lateral slip on the fault. The red star shows location of the epicenter where the rupture 

sequence initiated. The black dots displays the fault trace as determined from the SAR and optical images 

correlation. Thin black rectangles show surface projection of the idealized fault segments used in the 

modeling.  
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Figure 3. Slip distribution offsets and rupture history. (a) Surface displacements derived from serial 

profiles across the fault trace using the horizontal displacement field measured from the correlation of 

SAR (blue) and SPOT (red) images. (b) Cumulative slip distribution (arrows show slip vectors, and color 
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coding shows amplitude of slip) and isochrons of the seismic rupture. The rupture times are given relative 

to the onset of slip at the epicenter on F1. Note the large displacements around 17s and 27s on F2. (c) 

Comparison of relocated aftershocks projected on the faults with co-seismic slip distribution (smoothed). 

(d) Source time function showing the time evolution of moment rate released during the whole rupture 

sequence. The contribution of each fault segment is indicated by a different color with the same color 

code as in panel (b). 
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